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1 Introduction

Persistent homology has been introduced in 2002 by [12ktérels size functions
[15] which record changes in the number of connected compsraéd sublevel sets
of measuring functions, thus they can be relate@-ttegree persistent homology.
Since then, persistent homology has been developed by mahgra as an impor-
tant tool for the topological analysis of discrete data. ¥ferto surveys[11, 6]. How-
ever, its effective computation remains a challenge duleddtige size of complexes
built from data. Some recent works focussed on algorithrasriduce the original
complexes generated from data to much smaller cellular t®wp, homotopically
equivalent to the initial ones by meansaafyclic partial matchingsf discrete Morse
theory.

Although algorithms computing acyclic partial matchings/é@ primarily been
used for persistence of one-dimensional filtrations, sge[£9, 24,21], there is cur-
rently a strong interest in combining persistence inforamatoming from multiple
functions in multiscale problems, e.g. to study photorogirbperties of textures in
[5] or in biological applications [28], which motivates exisions to generalized types
of persistence. The extension of persistent homology tdifittudhtions is studied in
[7]and is the one of interest in this paper. Other relateedions are explored e.g. by
the authors of [27] who do statistics on a set of one-dimeradipersistence diagrams
varied as coordinate system rotates, and in [13], wheréspense modules on quiver
complexes are studied.

Our attempt parallel to [13] is [2], where an algorithm givey King et al. in
[19] is extended to multifiltrations. The algorithm proda@epartition of the initial
complex into three setéA, B, C) and an acyclic partial matchimg : A — B. Any
simplex which is not matched is added@and defined as critical. The matching
algorithm of [2] is used for reducing a simplicial complexa@maller one by elimi-
nation of matched simplices in a way that is guaranteed tegpve multidimensional
persistence. Reductions are derived from the works of [IL22).

First experiments on the algorithm of [2] with filtrations twfangular meshes
show that there is a considerable amount of cells identifjetidalgorithm as critical
but which seem to be spurious, in the sense that they appehrsters of adjacent
critical faces which do not seem to carry significant topalabinformation.

The first contribution of this paper is a new algorithm thahsiat improving
our previous matching method [2] for optimality, in the sewd reducing the num-
ber of spurious critical cells, while still returning an atig partial matchingA, B, C)
that allows for multidimensional persistent homology eresg reductions. Our new
matching algorithm extends the one given in [24] for cubamahplexes, which pro-
cesses lower stars rather than lower links. The major inimvaf the matching al-
gorithm presented here with respect to that of [24] emenges the observation that,
in the multidimensional setting, it is not enough to lookatér stars of vertices: one
should take into consideration the lower stars of simplafesl dimensions, as there
may be vertices of a simplex which are not comparable in thiggb@arder of the
multifiltration. Thus, the vector-valued function initiglgiven on vertices of a sim-
plicial complex is first extended to simplices of all dimess. Then the algorithm
processes the lower stars of all simplices, not only théosst The resulting acyclic
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partial matching can be used as in [2] to construct a reduttecefil Lefschetz com-
plex with the same multidimensional persistent homologthasoriginal simplicial
complex filtered by the sublevel sets of the function.

The second contribution of this paper is a combinatorigrimtetation of the crit-
ical cells obtained by our new algorithm. As we said, untivnany simplex added
to Cby our algorithm has been defined as critical. It was legiténta do so, because
an application-driven extension of the Forman discreteddoheory [14] to multidi-
mensional functions has not been carried out yet. Hencig thésts no definition of
a general combinatorial critical cell in this context. Iretbonference paper [3], we
state this as an open problem and a subject for future worthigitime, we have the
first step towards the appropriate extension of the Forntheisry. We propose new
definitions of a multidimensional discrete Morse functifor Short,ndmfunction),
of its gradient field, its regular and critical cells. We nskbw that the functiorf
used as input for our algorithm gives rise toradmfunctiong with the same order of
sublevel sets and the same partit{@nB, C) as the one produced by the algorithm.

As a further contribution of this paper, we present expenit®en synthetic data
aimed at the geometric interpretation of the critical cedtsieved by our algorithm
as Pareto critical points of multiple functions. As suchitical cells in this setting
cannot be expected to be isolated but rather to form suboidsifThe fact that criti-
cal cells are located around the expected sets of Pareatpbints is an indication
of improvement for optimality of our new algorithm. This imgvement with respect
to our previous algorithm is shown also by tests on real dets Jhis is part of the
new material added to this paper which is an extension of tiv& wublished in [3].

The paper is organized as follows. In Section 2, the prekm@s are introduced.
In Section 3, the main Algorithm 2 is presented and its cdness is proved. Next,
the complementing reduction method is recalled from [2]th& section end, com-
plexity of the algorithm is analyzed. In Section 4, we propthge new definition of an
ndmfunction and provide combinatorial interpretation of thgoaithm. In Section 5,
experiments on synthetic and real 3D data are presenteeciin8 6, we comment
on open questions and prospects for future work.

2 Preliminaries

Let KC be a finite geometric simplicial complex, that is a finite semnposed of ver-
tices, edges, triangles, and theidimensional counterparts, called simplicesqA
dimensional simplex is the convex hull of affinely indepemideerticesvy, ... v, €
R” and is denoted by = [vy, . . . v,]. We will sometimes denote this ly? to make
the dimension apparent in the notation. The setsimplices ofK is denoted by<,,.
A faceof a ¢g-simplexo € K is a simplexr whose vertices constitute a subset of
{vo,v1,...,94}. If dim 7T = ¢ — 1, itis called afacetof . In this casey is called a
cofacetof 7, and we writer < o.

A partial matching(A, B, C,m) on K is a partition ofK into three set#\ B,C
together with a bijective mam : A — B, also calleddiscrete vector fieldsuch
that, for eachr € A, m(7) is a cofacet ofr. The intuition behind is that pro-
jection from to the complementing part of the boundaryrofr) induces a ho-
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motopy equivalence betweédd and a smaller complex. Am-path is a sequence
00,70,01,T1,---,0p, Tp, Op+1 SUCh that, for each = 0,...,p, 0441 # 04, 77 =
m(o;), andr; is a cofacet ofr; ;.

A partial matching(A, B,C,m) on K is calledacyclicif there does not exist a
closedm-path, that is amn-path such thaty, 1 = oo.

The main goal of this paper is to produce an acyclic partigthiag which pre-
serves the filtration of a simplicial compléx by sublevel sets of a vector-valued
functionf : Ky — RF given on the set of vertices &f. We assume that : £y — R*
is a function which iscomponent-wise injectiye¢hat is, whose componenfs are
injective. This assumption is used in Subsection 3.1 foripig correctness of the
algorithm.

Given any functionf : K, — R*, we can obtain a component-wise injective
function f which is arbitrarily close tof via the following procedure. Let denote
the cardinality ofCy. Fori = 1,. .., k, letus set); = min{|f;(v) — f;(w)| : v,w €
Ko A fi(v) # fi(w)}. Foreach with 1 < i < k, we can assume that thevertices in
Ko are indexed by an integer indgxwith 1 < j < n, increasing withf;. Thus, the
functionf; : Ko — R can be defined by setting(v;) = f;(v;)+jni/n®, withs > 1
(the largers, the closerf to f). Finally, it is sufficient to sef = (f1s fay-ooy fr). We
extendf to a functionf : K — R” as follows:

@)= (o), fulo))  with  filo) = max fi(w). (1)
Any functionf : K — R” that s an extension of a component-wise injective function
f : Ko — RF defined on the vertices of the complExin such a way thaf satisfies
equation (1) will be calleédmissibleIn R* we consider the following partial order.
Given two values: = (a;),b = (b;) € R* we seta < b if and only if a; < b; for
everyi with 1 < ¢ < k. Moreover we writea = b whenevera < b anda # b.
The sublevel set filtratiorof K induced by an admissible functiofiis the family
{K*},er+ Of subsets ofC defined as follows:

K*={o=[vo,v1,...,09] € K| f(v;) Za,i=0,...,q}.

Itis clear that, for any parameter values R* and any simplex € K¢, all faces of

o are also inC*. ThusC* is a simplical subcomplex df for eacha. The changes of
topology of £ as we change the multiparametguermit recognizing some features
of the shape ofK| if f is appropriately chosen. For this reason, the funcfias
called in the literature eneasuring functioor, more specifically, aultidimensional
measuring functiofd]. Thelower starof a simplex is the set

L(o) ={a e K |ofaceofa and f(a) = f(o)},

and thestrict lower staris the setl. (o) = L(o) \ {o}.

2.1 Indexing Map

An indexing mapon the simplices of the complek of cardinality NV, compatible
with an admissible functiotf, is a bijective map : £ — {1,2,..., N} such that,
for eacho, 7 € K with o # 7, if o is a face ofr or f (o) 2 f(7) thenI(o) < I(7).
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To build an indexing mag on the simplices of the compleg, we will revisit
the algorithm introduced in [2] that uses the topologicaliag of a Directed Acyclic
Graph (DAG) to build an indexing for vertices of a complextttsacompatible with
the ordering of values of a given function defined on the vesti We will extend
the algorithm to build an indexing for all cells of a complérat is compatible with
both the ordering of values of a given admissible functicimeel on the cells and the
ordering of the dimensions of the cells.

We recall that a topological sorting of a directed graph imedr ordering of its
nodes such that for every directed edgev) from nodeu to nodev, u precede® in
the ordering. This ordering is possible if and only if thegrdnas no directed cycles,
that s, if it is a DAG. A simple well known algorithm (see [2%pr this task consists
of successively finding nodes of the DAG that have no inconeitiges and placing
them in a list for the final sorting. Note that at least one sootle must exist in a
DAG, otherwise the graph must have at least one directe@cycl

Algorithm 1 Topological sorting
1: Input: A DAG whose list of nodes with no incoming edged is
2: Output: The listL containing the sorted nodes
3: while there are nodes remaininglindo

4: remove a node from |
5: addu to L
6:  for each node with an edge: fromu tov do
7: remove edge from the DAG
8: if v has no other incoming edgésen
9: insertv into |
10: end if
11:  end for
12: end while

When the graph is a DAG, there exists at least one solutioth#osorting prob-
lem, which is not necessarily unique. We can easily see #wit Bode and each edge
of the DAG is visited once by the algorithm, therefore itsming time is linear in the
number of nodes plus the number of edges in the DAG.

We can prove the following lemma which builds an indexing rbggmeans of
a topological sorting on a DAG given by the Hasse diagram ofiitalsle partial
ordering on the simplicial complex.

Lemmal Let f : K — R* be an admissible function. There exists an injective
function! : £ — N such that, for eaclr, 7 € I with ¢ # 7, if o is a face ofr or
f(o) 2 f(r) thenI(o) < I(7).

Proof The setk is partially ordered by the following relation: = 7 if and only if
eitherc = 7 oro # 7 and, in the latter case,is a face ofr or f(o) = f(7). Indeed,
it can be straightforwardly checked that this relation féeséve, antisymmetric and
transitive. Hencé/C, C) can be represented in a directed graph by its Hasse diagram
that is acyclic.

The topological sorting Algorithm 1 allows us to sort andettihne simplices i
in an arrayL of size NV, with indexes that can be chosen from 1No It follows that
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the map/ : £ — {1,2,..., N} that associates to every node its index in the array
L is bijective. Moreover, and due to the topological sortihgatisfies the constraint
that foro, 7 € K with o # 7, if o is aface ofr or f(o) 2 f(7), thenI(o) < I(7).

O

3 Matching Algorithm

The first contribution of this paper is the Matching Algoritl2.

Algorithm 2 Matching

1: Input: A finite simplicial complexiC with an admissible functiorf : X — RF and an indexing map
I:K—{1,2,...,N} onits simplices compatible witfi.

2: Output: Three listsA, B, Cof simplices ofKC, and a functiorm : A — B.

3: for:=1to N do

4 o :=TI71(i)
5 if cl assi fi ed(o)=false then
6 if L+« (o) contains no cellshen
7: addo to C, cl assi fi ed(o)=true
8 else
9 ¢ := the cofacet inL« (o) of minimal index ()
10 add o to A and 6 to B and definem(ec) = 4, classified(o)=true,
cl assi fi ed(d)=true
11: add alle € L« (o) — {6} with numuncl ass_f acet s, («) = 0toPQzer o
12: add alla € L« (o) with numuncl ass_f acet s, (a) =1 anda > 6 to PQone
13: while PQone # ) or PQzer o # () do
14: while PQone # () do
15: a := PQone.popfront
16: if numuncl ass_f acet s,(a) = 0then
17: adda to PQzer o
18: else
19: add\ € uncl assfacets,(a) to A adda to B and definem(\) = «,
cl assi fi ed(a)=true, cl assi fi ed(\)=true
20: remove\ from PQzer o
21: add allg € L« (o) with numuncl ass_f acet s,(8) = 1 and either3 > « or
B > X\ toPQone
22: end if
23: end while
24: if PQzer o # 0 then
25: ~ := PQzer o.popfront
26: addy to C, cl assi fi ed(y)=true
27: add allr € L. (o) with numuncl ass_f acet s,(7) =1 andr > ~ to PQone
28: end if
29: end while
30: end if
31:  endif
32: end for

Ituses as input a finite simplicial compl&xof cardinality/V, an admissible func-
tion f : K — R built from a component-wise injective functigh: X, — R* using
the extension formula given in equation (1), and an indexiag / compatible with
f. It can be precomputed using the topological sorting in Athon 1 and explained
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w12

Q'

0 0 : wa
vo = (0,0) v1=(1,0) ws=(20) w1 €3

(@ (b)
Fig. 1 In (a), the complex and output of Algorithm 3.3 of [2] are di&sed. Gray-shaded triangles are
those which are present in the simplicial complex. Critsiahplices are marked by red circles and the
matched simplices are marked by arrows. In (b), the compglexddified so to satisfy the coordinate-wise

injectivity assumption. Labeling of all simplices by thalexing function and the output of Algorithm 2
are displayed.

in the proof of Lemma 1. Given a simplex we useuncl ass_f acet s, («) to de-
note the set of facets of a simplexhat are inL(c) and have not been classified yet,
that is, not inserted in eithe, B, or C, andnumuncl| ass_f acet s, («) to denote
the cardinality oincl ass_f acet s, («). We initializecl assi f i ed(c)=falsefor
everyo € K. We use priority queueBQzer o andPQone which store candidates
for pairings with zero and one unclassified facets respelgtin the order given by
1. We initialize both as empty sets. The algorithm processéls i the increasing
order of their indexes. Each cellcan be set to the statesafassi f i ed(o)=true
orcl assi fi ed(o)=falseso that if it is processed as part of a lower star of another
cell it is not processed again by the algorithm. The algarithakes use of extra
routines to calculate the cells in the lower sidr) and the set of unclassified facets
uncl ass_facet s,(a)ofain L, (o) foreach celb € K and each cell € L, (o).

The goal of the process is to build a partition/6finto three listsA, B, andC
whereC is the list of critical cells and in which each cell Ais paired in a one-to-
one manner with a cell iB which defines a bijective mamp : A — B. When a cell
o is considered, each cell in its lower stafo) is processed exactly once. The cell
is inserted into the list of critical cell€if L.(c) = . Otherwiseg is paired with
the cofaceb € L. (o) that has minimal index valug§). The algorithm makes addi-
tional pairings which can be interpreted topologicallyas process of constructing
L. (o) with simple homotopy expansions or the process of reduEirig) with sim-
ple homotopy contractions. When no pairing is possible bi€elassified as critical
and the process is continued from that cell. A cels candidate for a pairing when
uncl ass_f acet s, (a) contains exactly one elementthat belongs tdPQzer o.
For this purpose, the priority queuszer o and PQone which store cells with
zero and one available unclassified faces respectivelyraated. As long aBQone
is not empty, its front is popped and either inserted @ er o or paired with its
single available unclassified face. WhB@one becomes empty, the front cell of
PQzer o is declared as critical and insertedn
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We illustrate the algorithm by a simple example. We use timgpkcial complexS
from our first paper [2, Figure 2] to compare the outputs ofgfevious matching al-
gorithm and the new one. Figure 1(a) displ&@and the output of [2, Algorithm 3.3].
The coordinates of vertices are the values of the functiorsidered in [2]. Since
that function is not component-wise injective, we denoteyitf and we start from
constructing a component-wise injective approximatfatiscussed at the beginning
of Section 2. If we interpret the passage frgrto f as a displacement of the coordi-
nates of vertices, the new complixis illustrated by Figure 1(b). The partial order
relation is preserved when passing frghto f, and the indexing of vertices in [2,
Figure 2] may be kept fof. Hence, it is easy to see that [2, Algorithm 3.3] applied
to KC gives the same result as that displayed in Figure 1(a). lardodapply our new
Algorithm 2, we need to index all4 simplices ofkC. For convenience of presentation,
we label the vertices,, edges;, and triangles; by the index values= 1, 2, ..., 14.
The result is displayed in Figure 1(b). The sequence ofeestiy, v1, v2, v, v4) IS
replaced byw, wa, wy, ws, wi2).

Here are the main steps of the algorithm:

i1=1 L*(wl):m,wlec

1= L*(wg) = {63}, m(wg) = e3.

1= es classified.

i=4 L.(wg) = {es,e6,t7}, Mws) = e5, eg € PQzero,
t7 € PQone,

line 15: a = t7 leavesPQone,
line 19: X\ = eg, M(eg) = t7, eg leavesPQzer 0.
1=05,6,7 | es,eq,ty classified.

1= L*(wg) = {69}, m(wg) = €9.

1=9 eg Classified.

=10 L.(e10) = {t11}, m(e10) = t11.

1 =11 t11 classified.

1=12 L.(wi2) = {eis, e1a}, M(wiz) = e13, e1a € PQzero,
PQone = ),

line25: vy =eyy € C
1 =13,14 | ey3, eq4 classified.

The output is displayed in Figure 1(b). As it can be noticedhim example of
Figure 1, Algorithm 2 processes all the simplices, and pisrtoiperform all the ex-
pected matchings, since it is based on lower stars of sieglia contrast, Algorithm
3.3 of [2], being vertex-based, does not process simptiggandt;; as they do not
belong to the lower star of any vertex. Thug, andt;; are residually classified by
Algorithm 3.3 of [2] as critical at the end of the whole proge§his phenomenon is
to be expected any time a simplex does not belong to the loigeio$ any vertex.
The more numerous are the non-comparable values of theidnrmt the vertices,
the more numerous simplices are residually classified &satrby Algorithm 3.3 of
[2], while they have the chance of being matched by our pte&kgorithm 2. That
this is really the case in practical situations can be chetak@able 1.
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3.1 Correctness

We now prove that our algorithm is correct in the sense thadbidys terminates, and
produces an acyclic partial matching compatible with thteafiion by sublevel sets
induced by the input function.

Recall thatf = (fi,..., fx) : Ko — R¥ is a function whose componentsare
injective on the vertices df; moreoverf is extended tgf = (f1,..., fx) : K — R¥
defined on cellg of any dimension by using formula (1). The assumption that
component-wise injective on the vertices is not sufficientbtain disjoint lower
stars, but when two lower stars meet, then they get classifite same time. This
is expressed by the following statements.

Lemma 2 The following statements hold:

(1) If 7 € L(o), thenf(r) = f(0).

(2) If 7 € L.(0), thenI(o) < I(7).

(3) If f(o) = f(r) then there exista face ofc N T with f(a) = f(o) = f(7).

(4) Assume that; ando- are two simplices ok such thatL(oy) N L(og) # 0
Then, there exists a simplgxe K such thatl(oy) U L(o2) C L(5) andI(5) <

min{1(o1),1(02)}.

Proof (1) If 7 € L(o), thenf(7) < f(o) by definition of lower star. On the other
hand, since is a face ofr, by definition of f, f(o) =< f(7). Thusf(o) = f(7).

(2) If T € L.(0), theno is a face ofr and the conclusion follows from the definition
of the indexing map.

(3) If f(o) = f(7), then, for everyi, max,ci, (o) fi(v) = max,cixy(r) fi(v). By

the injectivity of f;, the two maxima must be attained at the same vertex. Therefor
o andr have a common face.

(4) If there exists a simplex € L(o1) N L(o2), then we geff () = f(o1) = f(o2)
from (1). By (3), there exists a simplex face ofo; N o3 such thatf (3 ) ( o1) =
f(o2). Itis now clear that forany € L(o1)UL(02), 5 face ofd andf(d) = f(o

flo2) = f(B), thuss € L(B). By (2), I(8) < min{I(o1), I(02)}.

In the next two lemmas we show that, if a celis unclassified when Algorithm 2
reaches line 5, then eithér, (o) is empty for which case is classified as critical, or
L. (o) contains at least one cofacetothat hass as a unique facet ik(o). Then
o is paired with the cofacet with minimal index and the remainaf its cofacets in
L. (o) have no unclassified facetsin (o) and hence they must enfe@zer o at line
11 of Algorithm 2. Moreover, if for every celk with I(«) < I(o), L(«) consists
only of classified cells, then all cells (o) are also unclassified.

)
1)

ol

Lemma 3 Assume that is a cell inK. If « € L. (o) is a cofacet ob then, at any
stage of the algorithmpumuncl ass f acet s,(«) < 1,anditis equal to 1 if and
only if o is still unclassified. In this case, the unclassified face f exactlyo.

Proof Let us assume thatumuncl ass_f acet s,(«) > 1. For any unclassified
facey of a such thaty € L(o), it holds thatdim~y = dimo. Indeed,dim~y <
dima = dimo + 1, anddim~y > dimo becausey € L(o). Thus, ify # o,
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the assumptiony € L(o) is contradicted. As a consequenceyif£ o for all ~,
numuncl ass_f acet s,(«) = 0; if ¥ = o, thennumuncl ass_f acet s, (a) =
1. a

Lemma 4 Assume that € K is unclassified when Algorithm 2 reaches line 5 for
1 = I(0), and thatcl assi fi ed(y)=true for all simplexes5 € K with I(3) <
I(0) and all cellsy € L(5). Then the following statements hold true:

(i) All simplexes inL(c) are also unclassified at step 5 whee: I(0);
(i) If Algorithm 2 gets to line 9, then there exists at leaseaofacet of. Moreover,
the one with minimal index, say has exactly as unclassified facet, and it is
still unclassified. Thus andd get classified at line 10.
(i) If « € L.(o) andnumuncl ass_facet s,(«) = 0 at line 11 of Algorithm 2,
thena is a facet ob.

Proof (i) If L(c) = {o} the claim is true by assumption. Let us assume that
has at least one cofacec L.(0). If « is classified it belongs to the lower star
of another cells different fromo with I(5) < I(c). By Lemma 2(4), als@
belongs toL(3) and, therefores is already classified by assumption. This gives
a contradiction. Hence is not classified.

(i) If o had no cofaces, theh, (o) would be empty. Therefore line 9 would not be
reached, contradicting the hypothesis.&Shas at least one cofacee L.(o).
By Lemma 2(1),f(«) = f(o). Assumingdim o = p anddim o = p + r, there
exists a sequence of simplices, ..., of dimensiong +1,....,.p+7r—1
such that

o< <o <...<Op_1<a.

By definition of f, f(0) =< f(an) < f(a) for h = 1,...r — 1. Recalling that
fla) = f(o)weseethaf (a1) =... = f(ar—1) = f(o). Thusay, € L.(o) for

h =1,...r — 1. In particular,«; is a cofacet ob that belongs td.. (o). Every
cofacet ofo in L. (o) has onlys as unclassified facet ifi(o) by Lemma 3. Let
0 be the cofacet o& with minimal index. Statemen() implies that is still

unclassified.

(i) Letdimo = panddima = p+ 7. If r > 1 then there are at least two sequences
c<a;<...<a_; <aando <o) <...<dal._; < aofcells belonging
to L(o) with a,.—1 # «._,. These cellsy,_; and«!._; need to be already clas-
sified at line 11 because of the assumptirmuncl ass f acet s, (a) = 0.
By (i), they had not been classified wher I(o). Since we are at line 11, it has
necessarily occurred when= (o) at line 9. But the cofacé of o with minimal
index is unique so only one between_; anda’._; has been classified at line 9,
giving a contradiction. Thus, = 1.

O

We shall prove by induction on the index of the cells that gl is classified
in a unigue fashion by the algorithm. The proof is simple wiienindex takes values
1 and 2 since the cells can be only vertices or edges:

Lemmab5 Leto € K such that/ (o) = i withi < 2. Then is a vertex. Moreover,
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1. ifs = 1, then Algorithm 2 classifies as critical at line 7;

2. ifi = 2, then eitherL(c) = {0} or L(c) = {o,0} whered is an edge whose
vertices are the cells with indexes 1 and 2. Moreovek(if) = {c}, theno is
classified as critical at line 7; if.(0) = {0, d}, thend is an edge and is paired
with ¢ at line 9.

Proof If I(o) < 2, theno needs to be a vertex. Indeed, if we assulineo > 1, then

it can be written ag = (vg, v1, . .., vx) With k& > 1. It follows thato has at least two
faces of lower dimension and lower value pyvhich should also have lower indexes
than that ofr. This contradicts the fact théfo) < 2.

Let us now prove separately statemen#snd2.

1. We note thatl assi fi ed(o)=false at line 5 because of the initialization.
Moreover,L. (o) is empty. To see this, let us observe that, for any cofacéo, it
must hold thaff; (o) < fi(v) for atleast one indekx= 1, ..., k. Indeedg is a vertex
of v and at any other vertex of the value off; must be greater thafi (o) because
fi is injective andr has minimal index. Hence gets classified at line 7 and there is
no other cell inL (o) to classify.

2.1f o € L,(0), then all the vertices ir other tharnr should havef values lower
thano. They should therefore have lower indexes too. The onlyipiisg left is to
havea = (v, w) wherel(v) = 1 andl(w) = 2. O

For the general index, we first prove the following property:

Lemma 6 Leta € L. (o) be such thatwhen itis popped frd?@one atline 15 of Al-
gorithm 2,uncl ass_f acet s, («) is a singleton{ A}. Then\ belongs tdPQzer o.
Therefore all cellsy popped out fronPQone at line 15 of Algorithm 2 for which this
condition holds get paired at line 19.

Proof We reason by induction on> 2 wheredim o« = p+r. Note that forr = 1, «

is a cofacet ofr with 0 unclassified faces ifi(o) after step 9 is executed. Therefore
« cannot entePQone. Forr = 2, \ is a primary facet of with 0 unclassified faces
in L(o) after step 9 is executed. Thereforec PQzer 0. Assume by induction that
for each natural numbegrfrom 2 up to value- — 1, whena with dima = p + j is
popped fromPQone with numuncl ass_f acet s, («) = 1, its unique unclassified
face \ belongs toPQzer o and thereforex and A get paired at line 19. Let now
j =r,anddima = p + j. Let us assume thatis not inPQzer o. Then there are
two cases. If\ has entere®Qone, then it has been processed befareSincel is
not inPQzer o, by the induction hypothesis, it must have been paired vaithescell

in PQzer o. This is a contradiction to the statemenimuncl ass_f acet s, («) =

1. If A did not entePQone, then the number of unclassified facesoin L(o) is
greater than or equal to 1. Thus, sinces of dimensiorp + r — 1, there must exist a
facer(P+7=2) of \ of dimensiorp + r — 2in L. (o) that is not paired and not added
to C. This process can be carried out until we gépa- 1)-cell 7"+ in L, (o) that

is not classified by the algorithm. In general, we get seqgeeitl (o) such that

O'(p) < 7—(17+1) < T(p+2) <. .. < T(p+7'_2) < >\(p+7'_1) < a(p+7'+2)

with 7(P+1) not classified by the algorithm. By Lemma 3 the number of wssita
fied faces ofr»+1) is 0, implying thatr(?*1) has entere®Qzer o. Let us fix the
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sequence for which(®+2) is of minimal index and has only one unclassified face,
hence it has enterd@Qone beforea. It exists becausé has been classified ard

is a simplicial complex. We deduce thef+!) andr(?*2) have been paired, contra-
dicting the assumption that?*!) has not been classified by the algorithm. Hence,
should belong té?Qzer o, which completes the proof. O

We next state that each cell that is still unclassified afiter 10 of the algorithm
ultimately enters?Qone or PQzer o and gets classified. This requires an argument
based on the dimension of the cell and the number of its usifiled faces in the
considered lower star. Moreover, we prove that if a celligady classified, it cannot
be considered again for classification or enter the prigugue$Qone or PQzer o.

Lemma 7 Leto € K. Each cell inL(o) is processed exactly once by the algorithm
and it is paired with some other cell or classified as critichlence Algorithm 2
classifies all cells of and always terminates.

Proof We break the conclusion into three statements:

(a) Each cellin the lower star eventually entBfone or PQzer o.
(b) Each cell that has enter®fone or PQzer o is eventually classified.
(c) Acellthat has already been classified cannot dP@@mne or PQzer o again.

We simultaneously prove the three statements by induction & (o). For
i = 1,2 the claim is proved by Lemma 5. Let us now assume by inductiahthe
claim is true from 2 up ta — 1. Let I(o) = . If cl assi fi ed( o) =true, theno
has already been classified as parfL.gf) for some cell5 that is a face o&. Thus,
I(B) < I(s) = i and L(o) C L(B). By induction hypothesis, every cell (o)
is processed once by the algorithm and it is paired with sotimer @ell or classified
as critical. Ifcl assi f i ed( o) =false, ¢ is either declared critical at line 7 or, by
Lemma 4ii), paired with some other cellin L. (o) at line 10. The cells and¢ are
no further processed.

Let~ be a cell leftinL, (o), if any. Suppose that

numuncl ass_facet s,(y) < 1. (2)

Then~ is either added t®Qzer o or to PQone and it is ultimately either paired or
classified as critical. More precisely,ifis added td”Qone, then it is either moved
to PQzer o atline 17, or paired at line 19 by Lemma 6lfis added tdPQzer o, it
is either paired at line 20 or declared critical at line 26isTdiso shows that, when
1 =1(0), every cellinL, (o) enters at most once PQzer o andPQone.

It remains to show that (a) also holds for cellsvith

numuncl ass_facet s,(y) > 2. 3)

We prove (a) by induction on the dimensiorof cells in L..(o). The initial step is
dim~y = dim o + 1. But theny is a cofacet o and, by Lemma 3, (2) holds. Assume
by induction that all cells oL, (o) with dimension smaller tham have entered either
PQzer o or PQone.

Lety be a cell of dimension in L. (o). If (2) holds, we are done. Suppose that
(3) holds. We show that eventually enter®Qone. By induction, all faces ofy
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eventually entePQzer o or PQone. We have earlier shown that those which enter
PQone are classified or moved Qzer 0. So all faces ofy which are not classified
enterPQzer o. All such faces which have a coface RQone or get a coface in
PQone at line 21 are classified at line 19-20. We remain with the $aafey which

are inPQzer o but have no coface iRPQone. Let r be the number of such faces.
Necessarilyr > 1, otherwisey is in PQone. At lines 25-26 one of those faces is
classified as critical, so we remain with- 1 such faces. After passing other 2
times through lines 25-26, remains with only one unclassified face and it is added
to PQone at line 27.

So we have proved that every cellirfo) is processed exactly once by the algo-
rithm whilei = (o) and it is paired with some other cell éf(o) or classified as
critical.

Finally, since the number of cells in the complgxis finite and the union of
L(o)’s covers the complex, the proof is complete. O

The correctness proof is concluded by proving that the atlyarproduces an
acyclic partial matching of the complex compatible with fiigation of I induced
by f.

Proposition 8 A, B, Cis a partition of the compleXC andm is a bijective function
from Ato B. Moreover, ifo € K> N Athenm(o) € K£«.

Proof By Lemma 7 AUBUC = K. We show thaANB = (). This statement is trivial
for vertices since they cannot belongBoAssume on the contrary that there exists a
cell P with p > 1 such thaty € ANB. Thus, there exist cell?—1) < o < ~@+1)
such tham(a) = v andm(é) = «. This means that is paired twice by processing
two different lower stard.(o1) andL(c2). By Lemma 2(4), there exists a cgélisuch
that the cells, « and~ are all processed withif (/). Thus« is processed twice
within L(3), which contradicts Lemma 7. If we assume tAatC # () and contains a
cell o, thena has been declared critical either at line 7 or at line 26. &ffitst case,

a was not previously assigned #fobecause of line 5; on the other hand it cannot be
assigned te\ later because of Lemma 7. In the second case, whisradded tcC, it
comes fromPQzer o andPQone is empty. The only cells that may ente@zer o

or PQone later are cofaces af (see line 27). Therefore cannot be added again to
PQzer o, and as a consequence it cannot be added fthe proof thaBN C = ()
can be handled in much the same way. It follows tha, Cis a partition offC.

By construction, the mam is onto. We will show tham is injective. If two
cellso; ando, are paired with the same cell it follows thata must belong to the
intersection of two lower stars. Therefore, again by Lemr®,Zhere must exist
a 8 such thatw is processed twice by the algorithm withli{ 3) which is again a
contradiction to Lemma 7. Thum is bijective.

By constructiong is a face ofm(o) and they both belong to sondg 3). Thus,
by Lemma 2(1)f (o) = f(m(e)), and therefore it € K*NAthenm(s) € K*. O

Theorem 9 Algorithm 2 produces a partial matchin@, B, C, m) that is acyclic.

Proof A partial matching is acyclic if and only if there are no navial closedm—
paths. We prove this by contradiction. Assume that

m > m > > m >
o) —To) — 01 —T1 —... =0, — Tn, — 00 4)
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is a directed loop in the modified Hasse diagram. In particalbo; in the loop have
the same dimension, sayand all; have the same dimensipnt 1. The index: of
o; is not the value of the indexing functidnbut it simply displays its position in the
loop. From Lemma 2(1), it follows that

f(o0) = f(r0) = f(o1) = f(11) = ... = f(on) = f(ma) = f(o0).  (5)

If any of the inequalities (7;—1) > f(o;) is strict, then there exists a coordingte
such thatf;(r,—1) > f;(0;) and sof;(oo) > f;(00), a contradiction. Henc¢ is
constant on all the elements of the loop. Let usssetjual to the cell such that

I(&)min{](a)EN:ag ﬁaiﬂﬁﬂ}.

1=0 i=0

The simplexz exists by Lemma 2(3). This implies that andr; belong toL () for

i =0,...,n. Now we have two cases: either= o; for somej, 0 < j < n,orgis

a face ofg; for everyj. In the first case, without a loss of generality, we may assume
thatd = oy. Sinceo,, has the same dimensionas itisin L(oy) ifand only ifo,, =

oo, implying that the loop is trivial, a contradiction. In thecond case, note that Al-
gorithm 2 produces a pairing(c;) = 7; only whennumuncl ass_f acet s5(7;)

=1, and in that case the unclassified face;aé exactlyo;. Therefore, we have that
oy is paired tory after thato, also a face ofy, has been paired tq.

Iterating this argument for = 1, ..., n, we deduce that, is paired tory after
thato,, has been paired tg,. But sinceoy is also a face of,,, andoy is still un-
classified whermr,, is paired tor,, it follows thateo,, = ¢, implying that the loop is
trivial, again a contradiction. O

3.2 Filtration Preserving Reductions

Lefchetz complexes introduced by Lefschetz in [20] are tged further in [22] un-
der the namé&-complex. In our context, these complexes are produced plyiag
the reduction method [18,22,21] to an initial simpliciahgplex /C, with the use of
the matchings produced by our main Algorithm 2. Both congeppartial matchings
andsublevel set filtratiomf X induced byf : K — R¥ introduced in Section 2 natu-
rally extend to Lefschetz complexes as proved in [2]. We tkehp H., (S) the graded
homology module o§ with respect to a given principal ideal domdin A choice of

a ground ringR is made in applications. The dependence of persistent fagyain
that choice is discussed in [7]. As the computation of ireats based on ranks of ho-
mology modules is of concern, such as rank invariants inf8& sufficient to assume
that R is a field, and most ofteR = Z, is chosen. Persistence is based on analyzing
the homological changes occurring along the filtration asiultiparameten € R*
varies. This analysis is carried out by considering,dor b, the homomorphism
H,(5®Y) : H,(S*) — H,(S") induced by the inclusion mag®? : S* « SV,
The image of the ma[Hq(j(“vb)) is known as the-th multidimensional persistent
homology groupf the filtration at(a, b) and we denote it by{g’b(S). It contains the
homology classes of orderborn not later tha and still alive ab.
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If we assume thatA, B, C, m) is an acyclic matching on a filtered Lefschetz com-
plex S obtained from the original simplicial compléX by reduction, the following
result holds which asserts that the multidimensional past homology of the re-
duced complex is the same as of the initial complex (see [2]).

Corollary 10 For everya < b € R¥, H*"(C) = HX*(K).

The collection of homology groupsH2*(K) | a < b € R*} together with the
mapsH.. (5(**)) induced by inclusiong(®*) may be phrased in terms of multidimen-
sional persistence modules introduced by [7]. Algorithmd programs computing
such modules are constantly being improved and we refemf&iance to [16] for
recent contributions.

3.3 Complexity Analysis

We first describe the computational complexity of Algorit2rand then establish
some comparisons with Algorithm 3.3 in [2]. We use the foilogvdefinitions and
parameters in estimating the computational cost of Algari®.

1. Given asimplex € K, the coboundary cells of are given by
cb(o) := {r € K|ois aface ofr}. (6)

Itis immediate from the definitions thét. (o) C cb (o).
2. We define the coboundary magsf K as

7 = max cardcb (o), 7

where card denotes cardinality. Whilas trivially bounded byV, the number of
cellsin/C, this upper bound is a gross estimate &6r many simplicial complexes
such as simplicial manifolds or approximating surface lutzuies of objects.

3. Forthe simplicial complek’, we assume that the boundary and coboundary cells
of each simplex are computed offline and stored in such a vaatitess to every
cell is done in constant time.

4. Given an admissible functiofi: K — R*, the values byf of simplicess € K
are stored in the structure that stores the comjiléw such a away that they are
accessed in constant time.

5. We assume that adding cells to the li&t8, andCis done in constant time.

Algorithm 2 processes every cell of the simplicial complexC and checks
whether it is classified or not. In the latter case, the atgorirequires a function that
returns the cells in the strict lower sthg (o) which is read directly from the structure
storing the complex. In the best cage o) is empty and the cell is declared critical.
SinceL.(c) C cb(o), it follows that cardL.(c) < ~. By Lemma 7, we can see
that every cell inL.. (o) enters at most once iBQzer o andPQone. It follows that
the while loops in the algorithm are executed all togetheatimost2~ steps. We
may consider the operations such as finding the number oéssitied faces of a cell
to have constant time except for the priority queue opematishich are logarithmic
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in the size of the priority queue when implemented using ke§mce the sizes of
PQzer o andPQone are clearly bounded by, it follows that L. (o) is processed

in at mostO(+ log ) steps. Therefore processing the whole complex incurs atwors
case cost 0D (N - vylog~y).

Algorithm 3.3 in [2] is based on processing recursively loweks of vertices
to achieve a partial classification of the cells of the compléhe cells that are not
classified at the end of the process are added to the list tidadrcells. We have
established in [2] that given a simplicial complExwith vertex setCy of size Ny,
the computational cost of Algorithm 3.3 for processing aé tells of the complex
is bounded above by (d + 1)!No whered is the dimension of the complex and
Yo = max,cic, cardeb (v). Itis easily seen thag = v, andN < vN,, wherey and
N are as defined above. Unlike Algorithm 3.3, Algorithm 2 pisses and classifies
all the cells of the complex with a computational cost thainzs excee@ Ny log v <
23 Ny. It follows that whend > 3, we have2 Ny logy < 273Ny < 274(d + 1)!Np.
This suggests a possible improvement in the computati@mapexity of the second
algorithm when the dimension of the complex is high. This panson does not take
into account the number of residual cells, which are thesa¢blt are not classified
by Algorithm 3.3 and added by default to the critical cellbisTnumber is example
dependent and can represent an important proportion wheppaed to the total
number of cells of the complex as shown in column 4 of TableHens the number
of residual critical cells for several complexes is disgldypetween parentheses. For
example, the proportions of residual cells with respeda&odriginal number of cells
represent2% for spher e_1, 61% for spher e_2 andt or us_4608, and50% for
Kl ei n_187.

4 Combinatorial Interpretation of the Matching Algorithm
4.1 Multidimensional Discrete Morse Function

As commented in Introduction, we provide here the first stepsrds an extension
of the Forman discrete Morse theory [14] to multidimensidoactions. We relate
the new definitions to the acyclic partial matching provitdgdAlgorithm 2.

Given a functiory : K — R*, for anya € K,,, we introduce the notation

Hy(a) ={B € Kpy1 | > aandg(B) = g(a)};

Ty(a) ={y € Kp—1 | v < aandg(a) < g(7)}.
The letterH stands foheadsandT for tails.

Definition 11 A functiong : K — R¥ is amultidimensional discrete Morse function
in short, ammdmfunction if the following conditions hold for every € K.

(1) cardH,(a) <1
(2) cardly(o) <1
(3) If B+ > ais notin H,(a), theng(a) = g(3)
(4) If v~ < ais notinT,(a), theng(y) = g(a
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Proposition 12 For any simplexx € K, one of the set#l,(«) or T,(a)) must have
cardinality zero. That is, for any,

cardH,(«) - cardT, (o) = 0.

Proof We recall that any simplicial complex has the property thagmevery(?—1) <
aP) < gle+1) necessarily there existé(”) % « such thaty < o/ < 3.

Let us assume that bofti, («) andTy(a) are nonempty for some € £,,. Then
there exists a cofac8”*!) and a facey?~1) of the simplexa such thatg(3) <
gla) =2 g(v). Leto’ # « be a different face off that containsy. It follows from
Definition 11 thaty(y) = g(a’) 2 ¢(8), which is a contradiction. O

Definition 13 Let g : K — R* be a multidimensional discrete Morse function. A
simplexy € K is critical if both H,(y) andT,(y) are empty. A simplex that is not
critical is calledregular.

Essentially, discrete Morse functions are functionskotthat increase with the
dimension of the simplices, with at most one exception farhesimplex«. The
simplest example of a multidimensional discrete Morse fiands the one given by
the formulag(a) = (dim(a),...,dim(a)) € R¥. In this case, all simplices o€
are critical. Any classical Forman’s Morse functign C — R gives rise to amdm
functiong : K — R* defined byg(c) = (f(o),..., f(o)) € R*.

Recall that adiscrete vector field” on K is a collection of pairda(®), 3(*+1)
of simplices ofK with o(P) < g(P+1) such that each simplex @ is in at most one
pair of V.

Let nowg : K — R* be anmdmfunction. It follows from Definition 11 and
Proposition 12 that the sets

A={aeK|cardH,(a) =1}, B={B € K| cardly(8) = 1},

and
C={ye K |cardHy(y) =0 = cardl,(vy)}

form a partition ofKC. Next, a mapn : A — B defined by
m(a) = € Hy(a),

whereg is the unique element d@f, (o), defines a discrete vector figldor, m(a)) }, ca
which will be called thegradient fieldof ¢. It also follows tha{A, B, C, m) is a partial
matching as defined in Section 2.

4.2 Linking MultiD Discrete Morse Functions to the MatchiAtgorithm

Letnow f : K — R¥ be the function used as input in Algorithm 2 af#&l B, C, m) is
the partial matching produced by that algorithm. It is inditaseen that, in general,
f does not satisfy the assumptions of Definition 11. Indeedlldtver star.(«) of a
simplexa?) may contain more than one simplg%*!) so the condition (1) of the
definition fails. Condition (2) may fail as well. We do howeVeve this:
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Proposition 14 Any functionf : K — R* used as input in Algorithm 2 satisfies
conditions (3) and (4) of Definition 11.

Proof Let3 = 31 > o be any cofacet of a givem € K, Sincef is an extension
of the data values on vertices:

fila) = L fi(v),
we havef(a) < f(5). Hence sucl$ is in H¢(«) ifand only if f (o) = f(8). Thus a
cofacetd of ais notinHy(«) if and only if f(«) 2 f(8) and (3) follows. Condition
(4) follows by the same argument. O

We now proceed toward the construction ofraimfunctiong from the function
f obtained so that the partial matching produced by the algorfor f coincides
with the one forg.

Any simplexo € K is either classified by Algorithm 2 at the beginning of pro-
cessing its own lower star (lines 7 or 10), that is when iteinf o) is considered in
the algorithm, or as an element of a lower star of a distimap#x. In the first case,
we call o aprimary simplex of lower star processing shortlyprimary. Otherwise,
it is calledsecondaryIn particular, every vertex iprimary. It is easily seen that a
simplex isprimary if and only if it is not contained in a lower star of another plex
with smaller index. Any such simplex is always classifieti@itat line 7 or at line 10
of Algorithm 2.

Let P = {oy,,0i,,...,0, } be the set of alprimary simplices ofKC ordered by
increasing values of their indices, ii¢.= I(0;;) andi; < i if j < k. The following
proposition proves that the lower stars of the primary siogsl ofC is a partition of
the simplicial complex.

Proposition 15 The collection of subset§L(o;;) forms a partition ofC.

That is

(1) L(oy,) N L(03,) = 0if j # k, and

@ (JLloyy) =K
j=1

Proof (1) Assume thatL(c;;) N L(oy,) # 0. Then, by Lemma 2(4) there exists
B € K such thatl.(o;;) U L(oy,) C L(B) andI(3) < min (i, ix). Henceo,, or
0;, aresecondansimplices, which is a contradiction.

(2) Leto € K. If o is primary, theno = o, for somej ando € L(oy, ). Otherwise
o is secondanand therefore it is classified by Algorithm 2 as part of a logtar
L(3) of some simplex3 € K. But, thenj is primary and 3 = o, for somej.

icicn

Henceo € U L(oy;). It follows that
j=1
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We now give sufficient conditions so that a given functipefined onk is
an mdmfunction with a partial matching that coincides with the tirmatching
produced by Algorithm 2 foif. First, note that when;, is critical, its lower star is
reduced to the singletoh(o;,) = {04, }. Whena;; is not critical, theng;, is added
to Aat line 10 of Algorithm 2. Let us order the simplicesof L (o, ) increasingly as
they become classified by Algorithm 2, though placin@y) immediately beforex,
if o is added toA. ThusL(o;;) can be presented as

L(O‘ij) = {Oélj,OéQj,...Oéljj}, (8)
where the first two terms are;; = 0 = m(o;;) andaz; = o;;.

Definition 16 A functiong : K — R¥ is called f-conpat i bl e if for everya, 8 €
K it satisfies the conditions

(1) if f(a) 2 f(B) theng(a) 2 ¢g(B), and
(2) if a, B € L(oy,) for some primary simplex;, anda is classified earlier thar
as defined by equation (8), thefx) = g(5).

We prove in the following that any-conpat i bl e function is anmdmfunction
whose partial matching oki coincides with the one produced by Algorithm 2 ffir

Theorem 17 Letg : K — R* be anf-conpat i bl e function. Thery is a multidi-
mensional discrete Morse function whose partial matchingCocoincides with that
produced by Algorithm 2 whefiis used as input.

Proof We start with the case of critical simplices.

If o is primary and critical in the sense that Algorithm 2 assigns itCiathen
L.(a) = 0. If there exists3 € H,(a), theng() < g(«). The first condition in
Definition 16 allows us to conclude th#ta) = f(5) and hences € L. («), which
contradicts the fact that, (o) = 0. Hence,H,(«) = (0. Assume there existg €
T,(a). Thenwy is a facet ofw with g(a) < ¢(7y). Again, we must havg(vy) = f(a)
anda € L.(v), which contradicts the fact that is primary. Hence,T,(a) = 0.
Thus,« is a critical cell ofg.

If « is classified as critical by Algorithm 2 but nptimary, then there exists a
primary simplexo;, such thaiv € L.(o;;). This means: is classified as critical at
step 26 of Algorithm 2 in which case all the facetsooin L (o, ) are classified at an
earlier time thanv. Lety be a facet ofv. If f(v) = f(«) theny anda should belong
to the same lower star of sonpgimary simplex, i.e.y € L(o;;) and classified at
earlier time. Henceg(v) 2 g(«) andy ¢ Ty(a). If f(v) 2 f(a) theng(y) 2 g(a)
andy ¢ Ty(a). HenceTy(a) = 0. Let 8 be a coface ofv. If f(a) Z f(B) then
g(a) 2 g(B)andp ¢ H,y (o). Onthe other hand, if (o) = f(B) thena, 8 € L(oy;).
Then by Lemma 7¢ must have been classified at earlier time ti¥afotherwises
would be paired withn when g is popped frorPQone), and henceg(«) = ¢(3) and
B ¢ Hgy(a). Itfollows thatH,(«) = 0. Thus, also in this caseis a critical cell ofg.

Now we examine paired cellg, ) wheref is a coface ofv.

If « is aprimary cell, thena is paired with a cofacg at step 10 of Algorithm 2.
By definition of g, we havey(3) = g(«). It follows thatg € H,(«) anda € T,(5).
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Now, assume there existse T, («). Then sincey is a facet ofx andg(y) = g(a) it
follows thatf(v) = f(«) which contradicts the faet is primary. HenceT}; () = 0.

Let us prove now thatH,(«) = {8}. We know thats € H,(«). Assume that
some other coface of « is in Hy(«). This means we havg(r) < g(«) and hence
f(a) = f(r)and therefore € L.(«). If 7 # 3, thenr is classified (processed) later
thans anda and thereforg(a) 2 ¢(7), which is a contradiction. Hencd (o) =
{s}.

Proving thatH,(3) = 0 follows the same pattern. That is,7if € Hy(3), then
g(t) = ¢g(B) and thereforef (5) = f(7) meaning that- € L.(«). But thent is
processed later thahand henceg(5) = g(7) which is a contradiction. The fact that
T,(B8) = {a} is a direct result of Lemma 3.

If « is notprimary, thena, 8 € L. (o) for someprimary simplexo. Assume that €
H,(B), theng(r) = ¢g(8) and thereforef(5) = f(7) meaning that € L.(o). By
Definition 16 and Lemma &; is processed earlier thahiff 7 is paired with3, which

is not the case. Heneeis processed later thahandg(3) = g(7), which shows that
H,(B) = 0. Assume that € T,(«), theng(a) < g() and thereforef (o) = f(7)
meaning thaty € L.(c). By Definition 16 and Lemma &y is processed earlier than
~ iff « is paired with~y, which is not the case. Heneeis processed earlier than
andg(v) 2 g(«), which shows thafy, (o) = 0.

It remains to show thal,(5) = {a} andH,(«) = {B}. From Definition 16
(2), we can see immediately thate H,(a) anda € T,(8). If we assume that
T € Hy(a) and7 # f3, then sincey(7) < g(a) we must havef(a) = f(r) and
7 € L.(0). Using again Lemma 6, we deduce thés processed later thanwhich
contradicty(7) < g(«). ThusH () = {S}.

Assume thay € T,(8) andy # «, theng(3) < g(v) and thereforg (58) = f(7)
meaning thaty € L. (o). By Definition 16 and Lemma 67 is processed earlier than
~ iff S is paired with, which is not the case. Henegis processed earlier thah
andg(y) 2 g(58), which is a contradiction. Thug,(5) = {a}. Henceg satisfies
properties (1) and (2) of Definition 11.

Assumef ¢ H,(«). Then from what precedes in the proof, we can conclude
that («, 5) are not paired cells. If («) 2 f(5) then by Definition 16 we have also
g(a) 2 g(B). Otherwisef (a) = f(B) anda, 3 € L(oy;) for someprimary simplex
oy, By Definition 16 the values of are strictly increasing ith. (o4, ). If g(5) Z g(a)
then by Lemma 6¢ and 5 are paired which is a contradiction. Then, we must have
g(a) 2 g(B), which proves property (3) of Definition 11.

Property (4) of Definition 11 is proved by a similar argument. O

4.3 Existence of-Conpat i bl e Functions

In the following, we prove that there exisfsconpat i bl e functions by construct-
ing one specific example. Leb (o) andy be as defined in formulas (6) and (7). We
define

e=1/(v+1).
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Wheno;; is critical, its lower star is reduced to the singletofv;, ) = {o;, } and
we define

g1(03;) = ij, ©)
gi(oi;) = filoy;) ifi>1.

Consider the case whetg, is not critical. Then, we use equation (8) to express
the elements of.(o;,) on which we define the functiopas follows:

gi(as;) = ij + (s = 2)e, (10)
gias;) = fi(os,) ifi>1.

The same formula is used for all primary simplices to produftenctiong : £ —
R¥,

Theorem 18 The functiory : X — R* defined by equation (9) and equation (10) is
an f-conpat i bl e function.

Proof Itis clear thaty is well defined oriC since the lower stars of primary simplices
form a partition ofKC by Proposition 15. We now prove thasatisfies the conditions

of Definition 16. The second condition is trivially satisfieg construction since the
values ofgy, the first component of, are increasing on any given lower star of a
non-critical primary simplex while the other components are maintained constant
To prove the first condition, let and 5 be two simplices inC such thatf(«) =
f(B). It follows thata and 8 must belong to two different lower stars pfimary
simplices, that is there exisf andi, such thatx € L(o;;) andj € L(o;, ). Since
floi;) = f(a) and f(oy,) = f(B), we must have that; < i, that isiy —i; > 1.
For2 < i < k, we have

gi(a) = fi(os;) = fi(a) < fi(B) = filos,) = 9:(B).
On the other hand, there must existe {1,...,1;} andsy € {1,...,1;} such that
gi(e) =i+ (s1—2)e and g1(B) =ir + (s2 — 2)e.
Sinces; <[; < yandsy > 1, we have
91(B) —g1(a) =ix —ij + (s2 —s1)e > 14+ (1 —7)e>1—7e>0,
sincevye < 1. It follows thatg(a) 2 g(5). O

By combining Corollary 10, Theorem 17, and Theorem 18, welgefollowing
result:

Corollary 19 Letg : £ — R* be anf-conpat i bl e mimfunction andCthe set of
its critical cells. Then, for every < b € R¥, H*"(C) = H"(K).
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Fig. 2 (a): the gradient vector field of the scalar functipy(z, y) = e~ (@*+v*)/8 — e=(=*+v*)/4_(p):
the gradient vector field of the scalar functign(z, y) = e~ (**+¥*)/8_(c): the critical cells of dimension
0 in yellow, dimension 1 in blue, and dimension 2 in red, fa tector-valued functiorf = (f1, f2), as
retrieved by Algorithm 2 .

5 Experimental Results

We have successfully applied the algorithms from Sectiandfferent sets of trian-
gle meshes. In each case the input data is a 2-dimensior@lcahcomplexkC and
afunctionf defined on the vertices &f with values inR?. The first step is to slightly
perturbf in order to ensure injectivity on each component as destiibb&ection 2.
The second step is to construct an index function definedldheakimplices of the
complex and satisfying the properties of Lemma 1. Then wieliblné acyclic match-
ing m and the partitio{A, B, C) on the simplices of the complex using Algorithm 2.
In particular, the number of simplices @out of the total number of simplices &f

is relevant, because it determines the amount of reduchtaireed by our algorithm
to speed up the computation of multidimensional persigientology.

Our experiments are aimed at understanding different phena:

— Geometric interpretation of retrieved critical cells;
— Invariance under subdivision of the mesh;
— Comparison with previous algorithm [2];

5.1 Geometric Interpretation of Retrieved Critical Cells

Our first dataset is a synthetic example. We triangulate éotangle[—4, 4]? by a
triangle mesh with 81 vertices. We compute at each vertexahee of the scalar
function f1 (z,y) = e~ @ +v°)/8 _ ¢=(=*+v*)/4 and that of the functiorfs(z,y) =
e~(@*+v*)/8 These two functions have the property that their gradiagtse out-
side the circle centered &1, 0) with radius2, while they disagree inside such circle.
Next, we consider the vector-valued functin= (f1, f2) and follow the above de-
scribed procedure to apply Algorithm 2. The result of the patation is described in
Figure 2. The critical cells retrieved by Algorithm 2 locadithe region of the plane
where the gradient vector fields of the scalar functignand fs, that is the compo-
nents of the vector-valued functigh disagree. The above experiments suggests a re-
lationship between critical cells retrieved by our algomitand Pareto critical points.
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Pareto critical points for a vector-valued function aresthpoints at which the con-
vex hull of the gradients of the components of the functiontaims the null vector.

They may be regarded as a generalization of critical poorta Ecalar function form

the standpoint of optimization. It is important to noticatifareto critical points on
a surface generically form curves, and therefore they aresaated. Thus, our next
experiment concerns triangulations of well known surfgeesphere, a torus, a Klein
bottle), and compares the location of the retrieved cfitiedls with the curves of

Pareto critical points in the differentiable setting. Thedtions used for this exper-
iment are obvious projections on a coordinate plane. Thepeoison is illustrated

in Figure 3. The results are in accordance with the inteapicet of critical cells as

locations corresponding to Pareto critical points. a

5.2 Dependence on the Triangulation

This set of experiments aims at understanding the stalafityur algorithm under
changes of triangulations. More precisely, we aim at chegKithe location of crit-
ical cells remains roughly the same even if we change thegtikation for example
by subdivision. Moreover, we aim at checking if the ratio afmber of cells found to
be critical by the algorithm over the total number of cellsieéns roughly the same
when we consider finer and finer meshes. It is important tacadtat it is not to
be expected that the number of critical cells remains theeda@cause, as we have
already mentioned, Pareto critical points Rit-valued functions on a surface gener-
ically form curves. Therefore, we expect that a refinemettetriangle mesh corre-
sponds to a refinement of such curve of critical points. Thiadeed what we find in
Figure 4. However, our experiments also show that not alhgulations localize the
Pareto critical region with the same precision. This phesoom is shown in Figure 5
where a change in the spatial displacement of triangles phare allows to localize
much more precisely the Pareto critical curves of the famcfi(z, y, z) = (z, 2),
and at the same time to reduce the percentage of critical telih 10.2% to 2.5%.
We have also repeated the experiment using triangulaticthe same space that are
not subdivisions of each other. For the sphere, we condislériangulations of five
different sizes and we takg(x,y, z) = (z,y). The comparison with other triangu-
lations of the sphere is shown in Table 1: the second colurowshhe number of
simplices in each considered meshthe third column shows the number of critical
cells obtained by using our matching algorithm to redkicéhe fourth column shows
the ratio between the third and the second column in pergemgaints. In the cases
of the torus and of the Klein bottle we again consider tridagons of different sizes
and we takef (z,y, z) = (z,y). The numerical results are shown in the same table. In
conclusion, our experiments on synthetic data confirm tiattrrrent simplex-based
matching algorithm scales well with the size of the complé&ereas the precision in
the localization of the curves of Pareto critical pointselggbs on the triangulation.
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© ®

Fig. 3 (a), (b), (c): Curves of Pareto critical points for projectimaps ontdR? for a sphere, a torus, and
a Klein bottle are depicted by thick black lines. (d), (e); @ritical cells retrieved by Algorithm 2 on
triangle meshes. Critical vertices are in yellow, critiedges in blue, and critical triangles in red.
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(b) ©
Fig. 4 (a): Critical cells of a triangle mesh. (b), (c) Two Loop siMiglons of it.

(@) (b)

Fig. 5 Orientation of triangles impacts the precision of locdlma of Pareto critical curves.

5.3 Comparison with Previous Algorithms

Our experiments confirm that the current simplex-basedmrag@lgorithm produces

a fair rate of reduction for simplices of any dimension orht®tnthetic and real data.
As for synthetic data, the comparison between the third dtidddlumns of Ta-

ble 1 shows that our new algorithm achieves an improvemeheimate of reduction
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Table 1 Percentage of critical cells over the total number of cetlsieved by Algorithm 2 on some
triangulations of a sphere, a torus, and a Klein bottle, faioed by refinement, and comparison with
the performance of the algorithm in [2]. For the latter, thé&re between parenthesis shows the number of
residual critical cells.

K[ IO | % O | %[
sphere_1 38 4 10.53 22 (16) 57.89
sphere_2 242 20 8.26 162 (148) 66.94
sphere.3 962 | 98 10.19 650 (588) | 67.57
sphere_4 1538 | 178 11.57 986 (904) 64.11
sphere5 2882 | 278 9.65 1950 (1794) | 67.66
torus_96 96 8 8.33 72 (64) 75.00

torus.4608 | 4608 | 128 | 2.78 | 3030 (2822)| 65.75
torus_7200 | 7200 | 156 | 2.17 | 4592 (4308)| 63.77
kI ei n89 89 | 19 | 21.3483| 39(27) | 43.82
klein187 | 187 | 35 | 18.7166| 113(93) | 60.43
klein49l | 491 | 59 | 12.0163| 273(232) | 55.60
klein.1881 | 1881 | 257 | 13.6629| 861 (771) | 45.77

between 50% and 96% with respect to the vertex-based andsiezmatching al-
gorithm presented in [2]. Moreover, the fourth column of gaene table shows the
total number of cells classified as critical by Algorithm 8f32] followed, between
parentheses, by the number of those cells residually €ikdsis critical by the same
algorithm without actually processing them. We see thahtiveber of such residual
critical cells found by Algorithm 3.3 of [2] is always betwe&0% and 95%. We
underline that, on the contrary, our current algorithm psses all the cells making
its results much more reliable in terms of significance.

As for real data, we now consider four triangle meshes (abkglat [1]). For each
mesh the input 2-dimensional measuring functfdakes each vertexof coordinates
(x,y, z) to the pairf(v) = (|z|, ly|). In Table 2, the first row shows on the top line the
number of vertices in each considered mesh, and in the miidél¢he percentage of
critical vertices achieved by our algorithm. Finally, isaldisplays in the bottom line
the analogous ratio achieved by our previous algorithmTBg second and the third
rows show similar information for the edges and the facesalRj, the fourth row
shows the same information for the total number of cells cheansidered mesk.

Again the current simplex-based matching algorithm presu fair rate of re-
duction for simplices of any dimension also on real datageigilly in comparison to
the algorithm of [2].

The comparison with the analogous results obtained in [€]} véference to the
reduction of vertices and edges in multi-valued graphsystesimilar performance
for vertices and edge reduction. However, it has to be ndtibat the algorithm of
[9] is designed to reduce graphs, and not generally singblemmplexes, in such
a way that homology degree 0 multidimensional persistengeaserved. Hence, it
can discard also all those edges that are important for thpatation of homology
in degree 1, whereas we aim at preserving multidimensicgr@igtent homology in
any degree.
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Table 2 Percentage of critical cells over the total number of callseved by Algorithm 2 on some natural
triangle meshes compared to that of [2], and that of [9] whkenapplicable.

Dataset| tie spaceshuttle | x.wi ng | space_station
Ko 2014 2376 3099 5749
0 27.5 9.5 19.8 30.8
%[2] 11.3 5.1 5.6 32.7
%[9] 29.2 11.0 18.4 33.7
K1 5944 6330 9190 15949
% 20.1 3.8 13.4 16.0
%[2] 56.2 58.4 39.2 70.0
%[9] 13.9 5.2 9.2 17.4
[KCa| 3827 3952 6076 10237
% 14.1 0.4 9.9 8.0
%[2] 78.7 90.5 56.2 56.2
K| 11785 12658 18365 31935
% 19.4 3.8 13.3 16.1
%[2 55.9 58.4 39.2 70.0

5.4 Discussion

The experiments on synthetic data confirmed two aspect§h@liscrete case seems
to behave much as the differentiable case for two functidkljecause critical cells
are still localized along curves; (2) The number of criticalls scales well with the
total number of cells, indicating that we are not detectogrnany spurious critical
cells.

We should point here a fundamental difference between Mitrsery for one
function whose critical points are isolated and extensafidorse theory to vector-
valued functions where, even in the generic case, critioaltp form stratified sub-
manifolds. For example, for two functions on a surface, tf@yn curves. Hence
the topological complexity depends not on the number oicatipoints but on the
number of such curves. As a consequence, the finer the ttetiayy the finer the
discretization of such curves and the larger number ofcaligells we get.

On the other hand, experiments on real data show the imprevenith respect to
our previous matching algorithm [2] already observed inttlyeexample of Figure 1.
We think that the new algorithm performs better becausestnigplex-based rather
than vertex-based. So, the presence of many non-compaetilees has a limited
impact on it.

6 Conclusion

The point of this paper is the presentation of Algorithm 2 émstruct an acyclic
partial matching from which a gradient compatible with riplé functions can be
obtained. As such, it can be useful for specific purposes asamultidimensional
persistence computation, whereas it is not meant to be a efitimp algorithm to
construct an acyclic partial matching for general purposes
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Some questions remain open. First, since indexing map isimqtie, one may
ask what is the effect of its choice on the output. We belidad the size of the
resulting complex should be independent. This is a subjedtifure work.

A deeper open problem arises from the fact that the optiynafireductions is
not yet well defined in the multidimensional setting, altpbuthe improvement is
observed in practice. As commented earlier, even in thesiclalssmooth case, the
singularities of vector-valued functions on manifoldsaog¢isolated. An appropriate
application-driven extension of the Morse theory to muttiensional functions is
not much investigated yet. The definitions proposed in 8rectil are the first step
towards that extension. Some related work is that of [10]amobi sets and of [23]
on preimages of maps between manifolds. However there aemtal differences
between those concepts and our sublevel sets with respgbetpartial order relation.

The experiments presented in this paper show an improvesigntespect to the
algorithm in [2] that, to the best of our knowledge, is stiletonly other algorithm
available for this task. Such experiments were obtaineld avihon-optimized imple-
mentation. For an optimized implementation of it, we refex teader to [17], where
experiments on larger data sets can be found.
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