
This is a pre-print of an article published in J Math Imaging Vis (2018).
The final authenticated version is available online at:
https://doi.org/10.1007/s10851-018-0843-8

Acyclic Partial Matchings for Multidimensional Persistence:
Algorithm and Combinatorial Interpretation

Madjid Allili · Tomasz Kaczynski · Claudia
Landi · Filippo Masoni

July 26, 2018

Abstract Given a simplicial complex and a vector-valued function on its vertices,
we present an algorithmic construction of an acyclic partial matching on the cells of
the complex compatible with the given function. This implies the construction can be
used to build a reduced filtered complex with the same multidimensional persistent
homology as of the original one filtered by the sublevel sets of the function. The
correctness of the algorithm is proved and its complexity isanalyzed. A combinatorial
interpretation of our algorithm based on the concept of a multidimensional discrete
Morse function is introduced for the first time in this paper.Numerical experiments
show a substantial rate of reduction in the number of cells achieved by the algorithm.
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1 Introduction

Persistent homology has been introduced in 2002 by [12]. It extends size functions
[15] which record changes in the number of connected components of sublevel sets
of measuring functions, thus they can be related to0-degree persistent homology.
Since then, persistent homology has been developed by many authors as an impor-
tant tool for the topological analysis of discrete data. We refer to surveys [11,6]. How-
ever, its effective computation remains a challenge due to the huge size of complexes
built from data. Some recent works focussed on algorithms that reduce the original
complexes generated from data to much smaller cellular complexes, homotopically
equivalent to the initial ones by means ofacyclic partial matchingsof discrete Morse
theory.

Although algorithms computing acyclic partial matchings have primarily been
used for persistence of one-dimensional filtrations, see e.g. [19,24,21], there is cur-
rently a strong interest in combining persistence information coming from multiple
functions in multiscale problems, e.g. to study photometric properties of textures in
[5] or in biological applications [28], which motivates extensions to generalized types
of persistence. The extension of persistent homology to multifiltrations is studied in
[7] and is the one of interest in this paper. Other related directions are explored e.g. by
the authors of [27] who do statistics on a set of one-dimensional persistence diagrams
varied as coordinate system rotates, and in [13], where persistence modules on quiver
complexes are studied.

Our attempt parallel to [13] is [2], where an algorithm givenby King et al. in
[19] is extended to multifiltrations. The algorithm produces a partition of the initial
complex into three sets(A,B,C) and an acyclic partial matchingm : A → B. Any
simplex which is not matched is added toC and defined as critical. The matching
algorithm of [2] is used for reducing a simplicial complex toa smaller one by elimi-
nation of matched simplices in a way that is guaranteed to preserve multidimensional
persistence. Reductions are derived from the works of [18,21,22].

First experiments on the algorithm of [2] with filtrations oftriangular meshes
show that there is a considerable amount of cells identified by the algorithm as critical
but which seem to be spurious, in the sense that they appear inclusters of adjacent
critical faces which do not seem to carry significant topological information.

The first contribution of this paper is a new algorithm that aims at improving
our previous matching method [2] for optimality, in the sense of reducing the num-
ber of spurious critical cells, while still returning an acyclic partial matching(A,B,C)
that allows for multidimensional persistent homology preserving reductions. Our new
matching algorithm extends the one given in [24] for cubicalcomplexes, which pro-
cesses lower stars rather than lower links. The major innovation of the matching al-
gorithm presented here with respect to that of [24] emerges from the observation that,
in the multidimensional setting, it is not enough to look at lower stars of vertices: one
should take into consideration the lower stars of simplicesof all dimensions, as there
may be vertices of a simplex which are not comparable in the partial order of the
multifiltration. Thus, the vector-valued function initially given on vertices of a sim-
plicial complex is first extended to simplices of all dimensions. Then the algorithm
processes the lower stars of all simplices, not only the vertices. The resulting acyclic
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partial matching can be used as in [2] to construct a reduced filtered Lefschetz com-
plex with the same multidimensional persistent homology asthe original simplicial
complex filtered by the sublevel sets of the function.

The second contribution of this paper is a combinatorial interpretation of the crit-
ical cells obtained by our new algorithm. As we said, until now, any simplex added
to C by our algorithm has been defined as critical. It was legitimate to do so, because
an application-driven extension of the Forman discrete Morse theory [14] to multidi-
mensional functions has not been carried out yet. Hence, there exists no definition of
a general combinatorial critical cell in this context. In the conference paper [3], we
state this as an open problem and a subject for future work. Atthis time, we have the
first step towards the appropriate extension of the Forman’stheory. We propose new
definitions of a multidimensional discrete Morse function (for short,mdm function),
of its gradient field, its regular and critical cells. We nextshow that the functionf
used as input for our algorithm gives rise to anmdm functiong with the same order of
sublevel sets and the same partition(A,B,C) as the one produced by the algorithm.

As a further contribution of this paper, we present experiments on synthetic data
aimed at the geometric interpretation of the critical cellsretrieved by our algorithm
as Pareto critical points of multiple functions. As such, critical cells in this setting
cannot be expected to be isolated but rather to form submanifolds. The fact that criti-
cal cells are located around the expected sets of Pareto critical points is an indication
of improvement for optimality of our new algorithm. This improvement with respect
to our previous algorithm is shown also by tests on real data sets. This is part of the
new material added to this paper which is an extension of the work published in [3].

The paper is organized as follows. In Section 2, the preliminaries are introduced.
In Section 3, the main Algorithm 2 is presented and its correctness is proved. Next,
the complementing reduction method is recalled from [2]. Atthe section end, com-
plexity of the algorithm is analyzed. In Section 4, we propose the new definition of an
mdm function and provide combinatorial interpretation of the algorithm. In Section 5,
experiments on synthetic and real 3D data are presented. In Section 6, we comment
on open questions and prospects for future work.

2 Preliminaries

Let K be a finite geometric simplicial complex, that is a finite set composed of ver-
tices, edges, triangles, and theirq-dimensional counterparts, called simplices. Aq-
dimensional simplex is the convex hull of affinely independent verticesv0, . . . vq ∈
Rn and is denoted byσ = [v0, . . . vq]. We will sometimes denote this byσ(q) to make
the dimension apparent in the notation. The set ofq-simplices ofK is denoted byKq.
A faceof a q-simplexσ ∈ K is a simplexτ whose vertices constitute a subset of
{v0, v1, . . . , vq}. If dim τ = q − 1, it is called afacetof σ. In this case,σ is called a
cofacetof τ , and we writeτ < σ.

A partial matching(A,B,C,m ) on K is a partition ofK into three setsA,B,C
together with a bijective mapm : A → B, also calleddiscrete vector field, such
that, for eachτ ∈ A, m (τ) is a cofacet ofτ . The intuition behind is that pro-
jection fromτ to the complementing part of the boundary ofm (τ) induces a ho-
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motopy equivalence betweenK and a smaller complex. Anm -path is a sequence
σ0, τ0, σ1, τ1, . . . , σp, τp, σp+1 such that, for eachi = 0, . . . , p, σi+1 6= σi, τi =
m (σi), andτi is a cofacet ofσi+1.

A partial matching(A,B,C,m ) on K is calledacyclic if there does not exist a
closedm -path, that is anm -path such that,σp+1 = σ0.

The main goal of this paper is to produce an acyclic partial matching which pre-
serves the filtration of a simplicial complexK by sublevel sets of a vector-valued
functionf : K0 → Rk given on the set of vertices ofK. We assume thatf : K0 → Rk

is a function which iscomponent-wise injective, that is, whose componentsfi are
injective. This assumption is used in Subsection 3.1 for proving correctness of the
algorithm.

Given any functionf̃ : K0 → Rk, we can obtain a component-wise injective
functionf which is arbitrarily close tõf via the following procedure. Letn denote
the cardinality ofK0. For i = 1, . . . , k, let us setηi = min{|f̃i(v)− f̃i(w)| : v, w ∈
K0∧ f̃i(v) 6= f̃i(w)}. For eachi with 1 ≤ i ≤ k, we can assume that then vertices in
K0 are indexed by an integer indexj, with 1 ≤ j ≤ n, increasing withf̃i. Thus, the
functionfi : K0 → R can be defined by settingfi(vj) = f̃i(vj)+jηi/n

s, with s ≥ 1

(the largers, the closerf to f̃ ). Finally, it is sufficient to setf = (f1, f2, . . . , fk). We
extendf to a functionf : K → Rk as follows:

f(σ) = (f1(σ), . . . , fk(σ)) with fi(σ) = max
v∈K0(σ)

fi(v). (1)

Any functionf : K → Rk that is an extension of a component-wise injective function
f : K0 → Rk defined on the vertices of the complexK in such a way thatf satisfies
equation (1) will be calledadmissible. In Rk we consider the following partial order.
Given two valuesa = (ai), b = (bi) ∈ Rk we seta � b if and only if ai ≤ bi for
every i with 1 ≤ i ≤ k. Moreover we writea � b whenevera � b anda 6= b.
The sublevel set filtrationof K induced by an admissible functionf is the family
{Ka}a∈Rk of subsets ofK defined as follows:

Ka = {σ = [v0, v1, . . . , vq] ∈ K | f(vi) � a, i = 0, . . . , q}.

It is clear that, for any parameter valuea ∈ Rk and any simplexσ ∈ Ka, all faces of
σ are also inKa. ThusKa is a simplical subcomplex ofK for eacha. The changes of
topology ofKa as we change the multiparametera permit recognizing some features
of the shape of|K| if f is appropriately chosen. For this reason, the functionf is
called in the literature ameasuring functionor, more specifically, amultidimensional
measuring function[4]. The lower starof a simplex is the set

L(σ) = {α ∈ K | σ face ofα and f(α) � f(σ)},

and thestrict lower staris the setL∗(σ) = L(σ) \ {σ}.

2.1 Indexing Map

An indexing mapon the simplices of the complexK of cardinalityN , compatible
with an admissible functionf , is a bijective mapI : K → {1, 2, . . . , N} such that,
for eachσ, τ ∈ K with σ 6= τ , if σ is a face ofτ or f(σ) � f(τ) thenI(σ) < I(τ).
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To build an indexing mapI on the simplices of the complexK, we will revisit
the algorithm introduced in [2] that uses the topological sorting of a Directed Acyclic
Graph (DAG) to build an indexing for vertices of a complex that is compatible with
the ordering of values of a given function defined on the vertices. We will extend
the algorithm to build an indexing for all cells of a complex that is compatible with
both the ordering of values of a given admissible function defined on the cells and the
ordering of the dimensions of the cells.

We recall that a topological sorting of a directed graph is a linear ordering of its
nodes such that for every directed edge(u, v) from nodeu to nodev, u precedesv in
the ordering. This ordering is possible if and only if the graph has no directed cycles,
that is, if it is a DAG. A simple well known algorithm (see [25]) for this task consists
of successively finding nodes of the DAG that have no incomingedges and placing
them in a list for the final sorting. Note that at least one suchnode must exist in a
DAG, otherwise the graph must have at least one directed cycle.

Algorithm 1 Topological sorting
1: Input: A DAG whose list of nodes with no incoming edges isI
2: Output: The listL containing the sorted nodes
3: while there are nodes remaining inI do
4: remove a nodeu from I
5: addu to L
6: for each nodev with an edgee from u to v do
7: remove edgee from the DAG
8: if v has no other incoming edgesthen
9: insertv into I

10: end if
11: end for
12: end while

When the graph is a DAG, there exists at least one solution forthe sorting prob-
lem, which is not necessarily unique. We can easily see that each node and each edge
of the DAG is visited once by the algorithm, therefore its running time is linear in the
number of nodes plus the number of edges in the DAG.

We can prove the following lemma which builds an indexing mapby means of
a topological sorting on a DAG given by the Hasse diagram of a suitable partial
ordering on the simplicial complexK.

Lemma 1 Let f : K → Rk be an admissible function. There exists an injective
functionI : K → N such that, for eachσ, τ ∈ K with σ 6= τ , if σ is a face ofτ or
f(σ) � f(τ) thenI(σ) < I(τ).

Proof The setK is partially ordered by the following relation:σ ⊑ τ if and only if
eitherσ = τ or σ 6= τ and, in the latter case,σ is a face ofτ or f(σ) � f(τ). Indeed,
it can be straightforwardly checked that this relation is reflexive, antisymmetric and
transitive. Hence(K,⊑) can be represented in a directed graph by its Hasse diagram
that is acyclic.

The topological sorting Algorithm 1 allows us to sort and store the simplices inK
in an arrayL of sizeN , with indexes that can be chosen from 1 toN . It follows that
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the mapI : K → {1, 2, . . . , N} that associates to every node its index in the array
L is bijective. Moreover, and due to the topological sorting,I satisfies the constraint
that forσ, τ ∈ K with σ 6= τ , if σ is a face ofτ or f(σ) � f(τ), thenI(σ) < I(τ).

⊓⊔

3 Matching Algorithm

The first contribution of this paper is the Matching Algorithm 2.

Algorithm 2 Matching
1: Input: A finite simplicial complexK with an admissible functionf : K → Rk and an indexing map

I : K → {1, 2, . . . , N} on its simplices compatible withf .
2: Output: Three listsA, B,C of simplices ofK, and a functionm : A → B.
3: for i = 1 to N do
4: σ := I−1(i)
5: if classified(σ)=false then
6: if L∗(σ) contains no cellsthen
7: addσ to C, classified(σ)=true
8: else
9: δ := the cofacet inL∗(σ) of minimal indexI(δ)

10: add σ to A and δ to B and define m (σ) = δ, classified(σ)=true,
classified(δ)=true

11: add allα ∈ L∗(σ) − {δ} with num unclass facetsσ(α) = 0 to PQzero
12: add allα ∈ L∗(σ) with num unclass facetsσ(α) = 1 andα > δ to PQone
13: while PQone 6= ∅ or PQzero 6= ∅ do
14: while PQone 6= ∅ do
15: α := PQone.pop front
16: if num unclass facetsσ(α) = 0 then
17: addα to PQzero
18: else
19: addλ ∈ unclass facetsσ(α) to A, addα to B and definem (λ) = α,

classified(α)=true, classified(λ)=true
20: removeλ from PQzero
21: add allβ ∈ L∗(σ) with num unclass facetsσ(β) = 1 and eitherβ > α or

β > λ to PQone
22: end if
23: end while
24: if PQzero 6= ∅ then
25: γ := PQzero.pop front
26: addγ to C, classified(γ)=true
27: add allτ ∈ L∗(σ) with num unclass facetsσ(τ ) = 1 andτ > γ to PQone
28: end if
29: end while
30: end if
31: end if
32: end for

It uses as input a finite simplicial complexK of cardinalityN , an admissible func-
tion f : K → Rk built from a component-wise injective functionf : K0 → Rk using
the extension formula given in equation (1), and an indexingmapI compatible with
f . It can be precomputed using the topological sorting in Algorithm 1 and explained
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(a) (b)

Fig. 1 In (a), the complex and output of Algorithm 3.3 of [2] are displayed. Gray-shaded triangles are
those which are present in the simplicial complex. Criticalsimplices are marked by red circles and the
matched simplices are marked by arrows. In (b), the complex is modified so to satisfy the coordinate-wise
injectivity assumption. Labeling of all simplices by the indexing function and the output of Algorithm 2
are displayed.

in the proof of Lemma 1. Given a simplexσ, we useunclass facetsσ(α) to de-
note the set of facets of a simplexα that are inL(σ) and have not been classified yet,
that is, not inserted in eitherA, B, orC, andnum unclass facetsσ(α) to denote
the cardinality ofunclass facetsσ(α). We initializeclassified(σ)=falsefor
everyσ ∈ K. We use priority queuesPQzero andPQone which store candidates
for pairings with zero and one unclassified facets respectively in the order given by
I. We initialize both as empty sets. The algorithm processes cells in the increasing
order of their indexes. Each cellσ can be set to the states ofclassified(σ)=true
or classified(σ)=falseso that if it is processed as part of a lower star of another
cell it is not processed again by the algorithm. The algorithm makes use of extra
routines to calculate the cells in the lower starL(σ) and the set of unclassified facets
unclass facetsσ(α) of α in L∗(σ) for each cellσ ∈ K and each cellα ∈ L∗(σ).

The goal of the process is to build a partition ofK into three listsA, B, andC
whereC is the list of critical cells and in which each cell inA is paired in a one-to-
one manner with a cell inB which defines a bijective mapm : A → B. When a cell
σ is considered, each cell in its lower starL(σ) is processed exactly once. The cellσ
is inserted into the list of critical cellsC if L∗(σ) = ∅. Otherwise,σ is paired with
the cofacetδ ∈ L∗(σ) that has minimal index valueI(δ). The algorithm makes addi-
tional pairings which can be interpreted topologically as the process of constructing
L∗(σ) with simple homotopy expansions or the process of reducingL∗(σ) with sim-
ple homotopy contractions. When no pairing is possible a cell is classified as critical
and the process is continued from that cell. A cellα is candidate for a pairing when
unclass facetsσ(α) contains exactly one elementλ that belongs toPQzero.
For this purpose, the priority queuesPQzero andPQone which store cells with
zero and one available unclassified faces respectively are created. As long asPQone
is not empty, its front is popped and either inserted intoPQzero or paired with its
single available unclassified face. WhenPQone becomes empty, the front cell of
PQzero is declared as critical and inserted inC.
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We illustrate the algorithm by a simple example. We use the simplicial complexS
from our first paper [2, Figure 2] to compare the outputs of theprevious matching al-
gorithm and the new one. Figure 1(a) displaysS and the output of [2, Algorithm 3.3].
The coordinates of vertices are the values of the function considered in [2]. Since
that function is not component-wise injective, we denote itby f̃ and we start from
constructing a component-wise injective approximationf discussed at the beginning
of Section 2. If we interpret the passage from̃f to f as a displacement of the coordi-
nates of vertices, the new complexK is illustrated by Figure 1(b). The partial order
relation is preserved when passing from̃f to f , and the indexing of vertices in [2,
Figure 2] may be kept forf . Hence, it is easy to see that [2, Algorithm 3.3] applied
to K gives the same result as that displayed in Figure 1(a). In order to apply our new
Algorithm 2, we need to index all14 simplices ofK. For convenience of presentation,
we label the verticeswi, edgesei, and trianglesti by the index valuesi = 1, 2, ..., 14.
The result is displayed in Figure 1(b). The sequence of vertices(v0, v1, v2, v3, v4) is
replaced by(w1, w2, w4, w8, w12).

Here are the main steps of the algorithm:

i = 1 L∗(w1) = ∅, w1 ∈ C
i = 2 L∗(w2) = {e3}, m (w2) = e3.
i = 3 e3 classified.
i = 4 L∗(w4) = {e5, e6, t7}, m (w4) = e5, e6 ∈ PQzero,

t7 ∈ PQone,
line 15: α = t7 leavesPQone,
line 19: λ = e6, m (e6) = t7, e6 leavesPQzero.

i = 5, 6, 7 e5, e6, t7 classified.
i = 8 L∗(w8) = {e9}, m (w8) = e9.
i = 9 e9 classified.
i = 10 L∗(e10) = {t11}, m (e10) = t11.
i = 11 t11 classified.
i = 12 L∗(w12) = {e13, e14}, m (w12) = e13, e14 ∈ PQzero,

PQone = ∅,
line 25: γ = e14 ∈ C.

i = 13, 14 e13, e14 classified.

The output is displayed in Figure 1(b). As it can be noticed inthe example of
Figure 1, Algorithm 2 processes all the simplices, and permits to perform all the ex-
pected matchings, since it is based on lower stars of simplices. In contrast, Algorithm
3.3 of [2], being vertex-based, does not process simplicese10 andt11 as they do not
belong to the lower star of any vertex. Thus,e10 andt11 are residually classified by
Algorithm 3.3 of [2] as critical at the end of the whole process. This phenomenon is
to be expected any time a simplex does not belong to the lower star of any vertex.
The more numerous are the non-comparable values of the function on the vertices,
the more numerous simplices are residually classified as critical by Algorithm 3.3 of
[2], while they have the chance of being matched by our present Algorithm 2. That
this is really the case in practical situations can be checked in Table 1.
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3.1 Correctness

We now prove that our algorithm is correct in the sense that italways terminates, and
produces an acyclic partial matching compatible with the filtration by sublevel sets
induced by the input function.

Recall thatf = (f1, . . . , fk) : K0 → Rk is a function whose componentsfi are
injective on the vertices ofK; moreover,f is extended tof = (f1, . . . , fk) : K → Rk

defined on cellsσ of any dimension by using formula (1). The assumption thatf is
component-wise injective on the vertices is not sufficient to obtain disjoint lower
stars, but when two lower stars meet, then they get classifiedat the same time. This
is expressed by the following statements.

Lemma 2 The following statements hold:

(1) If τ ∈ L(σ), thenf(τ) = f(σ).
(2) If τ ∈ L∗(σ), thenI(σ) < I(τ).
(3) If f(σ) = f(τ) then there existsα face ofσ ∩ τ with f(α) = f(σ) = f(τ).
(4) Assume thatσ1 andσ2 are two simplices ofK such thatL(σ1) ∩ L(σ2) 6= ∅.

Then, there exists a simplexβ ∈ K such thatL(σ1)∪L(σ2) ⊆ L(β) andI(β) ≤
min{I(σ1), I(σ2)}.

Proof (1) If τ ∈ L(σ), thenf(τ) � f(σ) by definition of lower star. On the other
hand, sinceσ is a face ofτ , by definition off , f(σ) � f(τ). Thusf(σ) = f(τ).
(2) If τ ∈ L∗(σ), thenσ is a face ofτ and the conclusion follows from the definition
of the indexing map.
(3) If f(σ) = f(τ), then, for everyi, maxv∈K0(σ) fi(v) = maxv∈K0(τ) fi(v). By
the injectivity offi, the two maxima must be attained at the same vertex. Therefore
σ andτ have a common face.
(4) If there exists a simplexγ ∈ L(σ1) ∩L(σ2), then we getf(γ) = f(σ1) = f(σ2)
from (1). By (3), there exists a simplexβ face ofσ1 ∩ σ2 such thatf(β) = f(σ1) =
f(σ2). It is now clear that for anyδ ∈ L(σ1)∪L(σ2), β face ofδ andf(δ) = f(σ1) =
f(σ2) = f(β), thusδ ∈ L(β). By (2), I(β) ≤ min{I(σ1), I(σ2)}. ⊓⊔

In the next two lemmas we show that, if a cellσ is unclassified when Algorithm 2
reaches line 5, then eitherL∗(σ) is empty for which caseσ is classified as critical, or
L∗(σ) contains at least one cofacet ofσ that hasσ as a unique facet inL(σ). Then
σ is paired with the cofacet with minimal index and the remainder of its cofacets in
L∗(σ) have no unclassified facets inL∗(σ) and hence they must enterPQzero at line
11 of Algorithm 2. Moreover, if for every cellα with I(α) < I(σ), L(α) consists
only of classified cells, then all cells inL(σ) are also unclassified.

Lemma 3 Assume thatσ is a cell inK. If α ∈ L∗(σ) is a cofacet ofσ then, at any
stage of the algorithm,num unclass facetsσ(α) ≤ 1, and it is equal to 1 if and
only if σ is still unclassified. In this case, the unclassified face ofα is exactlyσ.

Proof Let us assume thatnum unclass facetsσ(α) ≥ 1. For any unclassified
faceγ of α such thatγ ∈ L(σ), it holds thatdim γ = dimσ. Indeed,dim γ <
dimα = dimσ + 1, anddim γ ≥ dimσ becauseγ ∈ L(σ). Thus, if γ 6= σ,
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the assumptionγ ∈ L(σ) is contradicted. As a consequence, ifγ 6= σ for all γ,
num unclass facetsσ(α) = 0; if γ = σ, thennum unclass facetsσ(α) =
1. ⊓⊔

Lemma 4 Assume thatσ ∈ K is unclassified when Algorithm 2 reaches line 5 for
i = I(σ), and thatclassified(γ)= true for all simplexesβ ∈ K with I(β) <
I(σ) and all cellsγ ∈ L(β). Then the following statements hold true:

(i) All simplexes inL(σ) are also unclassified at step 5 wheni = I(σ);
(ii) If Algorithm 2 gets to line 9, then there exists at least one cofacet ofσ. Moreover,

the one with minimal index, sayδ, has exactlyσ as unclassified facet, and it is
still unclassified. Thusσ andδ get classified at line 10.

(iii) If α ∈ L∗(σ) andnum unclass facetsσ(α) = 0 at line 11 of Algorithm 2,
thenα is a facet ofσ.

Proof (i) If L(σ) = {σ} the claim is true by assumption. Let us assume thatσ
has at least one cofaceα ∈ L∗(σ). If α is classified it belongs to the lower star
of another cellβ different fromσ with I(β) < I(σ). By Lemma 2(4), alsoσ
belongs toL(β) and, therefore,σ is already classified by assumption. This gives
a contradiction. Henceα is not classified.

(ii) If σ had no cofaces, thenL∗(σ) would be empty. Therefore line 9 would not be
reached, contradicting the hypothesis. Soσ has at least one cofaceα ∈ L∗(σ).
By Lemma 2(1),f(α) = f(σ). Assumingdimσ = p anddimα = p + r, there
exists a sequence of simplicesα1, . . . αr−1 of dimensionsp + 1, . . . , p + r − 1
such that

σ < α1 < α2 < . . . < αr−1 < α.

By definition off , f(σ) � f(αh) � f(α) for h = 1, . . . r − 1. Recalling that
f(α) = f(σ) we see thatf(α1) = . . . = f(αr−1) = f(σ). Thusαh ∈ L∗(σ) for
h = 1, . . . r − 1. In particular,α1 is a cofacet ofσ that belongs toL∗(σ). Every
cofacet ofσ in L∗(σ) has onlyσ as unclassified facet inL(σ) by Lemma 3. Let
δ be the cofacet ofσ with minimal index. Statement(i) implies thatδ is still
unclassified.

(iii) Let dimσ = p anddimα = p+ r. If r > 1 then there are at least two sequences
σ < α1 < . . . < αr−1 < α andσ < α′

1 < . . . < α′
r−1 < α of cells belonging

to L(σ) with αr−1 6= α′
r−1. These cellsαr−1 andα′

r−1 need to be already clas-
sified at line 11 because of the assumptionnum unclass facetsσ(α) = 0.
By (i), they had not been classified wheni < I(σ). Since we are at line 11, it has
necessarily occurred wheni = I(σ) at line 9. But the cofaceδ of σ with minimal
index is unique so only one betweenαr−1 andα′

r−1 has been classified at line 9,
giving a contradiction. Thus,r = 1.

⊓⊔

We shall prove by induction on the index of the cells that every cell is classified
in a unique fashion by the algorithm. The proof is simple whenthe index takes values
1 and 2 since the cells can be only vertices or edges:

Lemma 5 Letσ ∈ K such thatI(σ) = i with i ≤ 2. Then,σ is a vertex. Moreover,
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1. if i = 1, then Algorithm 2 classifiesσ as critical at line 7;
2. if i = 2, then eitherL(σ) = {σ} or L(σ) = {σ, δ} whereδ is an edge whose

vertices are the cells with indexes 1 and 2. Moreover, ifL(σ) = {σ}, thenσ is
classified as critical at line 7; ifL(σ) = {σ, δ}, thenδ is an edge andσ is paired
with δ at line 9.

Proof If I(σ) ≤ 2, thenσ needs to be a vertex. Indeed, if we assumedimσ ≥ 1, then
it can be written asσ = 〈v0, v1, . . . , vk〉 with k ≥ 1. It follows thatσ has at least two
faces of lower dimension and lower value byf which should also have lower indexes
than that ofσ. This contradicts the fact thatI(σ) ≤ 2.

Let us now prove separately statements1 and2.
1. We note thatclassified(σ)=false at line 5 because of the initialization.

Moreover,L∗(σ) is empty. To see this, let us observe that, for any cofaceγ of σ, it
must hold thatfi(σ) < fi(γ) for at least one indexi = 1, . . . , k. Indeed,σ is a vertex
of γ and at any other vertex ofγ the value offi must be greater thanfi(σ) because
fi is injective andσ has minimal index. Henceσ gets classified at line 7 and there is
no other cell inL(σ) to classify.

2. If α ∈ L∗(σ), then all the vertices inα other thanσ should havef values lower
thanσ. They should therefore have lower indexes too. The only possibility left is to
haveα = 〈v, w〉 whereI(v) = 1 andI(w) = 2. ⊓⊔

For the general index, we first prove the following property:

Lemma 6 Letα ∈ L∗(σ) be such that when it is popped fromPQone at line15 of Al-
gorithm 2,unclass facetsσ(α) is a singleton{λ}. Thenλ belongs toPQzero.
Therefore all cellsα popped out fromPQone at line15 of Algorithm 2 for which this
condition holds get paired at line 19.

Proof We reason by induction onr ≥ 2 wheredimα = p+ r. Note that forr = 1, α
is a cofacet ofσ with 0 unclassified faces inL(σ) after step 9 is executed. Therefore
α cannot enterPQone. Forr = 2, λ is a primary facet ofσ with 0 unclassified faces
in L(σ) after step 9 is executed. Thereforeλ ∈ PQzero. Assume by induction that
for each natural numberj from 2 up to valuer − 1, whenα with dimα = p + j is
popped fromPQone with num unclass facetsσ(α) = 1, its unique unclassified
faceλ belongs toPQzero and thereforeα andλ get paired at line 19. Let now
j = r, anddimα = p + j. Let us assume thatλ is not inPQzero. Then there are
two cases. Ifλ has enteredPQone, then it has been processed beforeα. Sinceλ is
not inPQzero, by the induction hypothesis, it must have been paired with some cell
in PQzero. This is a contradiction to the statementnum unclass facetsσ(α) =
1. If λ did not enterPQone, then the number of unclassified faces ofλ in L(σ) is
greater than or equal to 1. Thus, sinceλ is of dimensionp+ r− 1, there must exist a
faceτ (p+r−2) of λ of dimensionp+ r − 2 in L∗(σ) that is not paired and not added
to C. This process can be carried out until we get a(p+ 1)-cell τ (p+1) in L∗(σ) that
is not classified by the algorithm. In general, we get sequences inL(σ) such that

σ(p) < τ (p+1) < τ (p+2) < . . . < τ (p+r−2) < λ(p+r−1) < α(p+r+2)

with τ (p+1) not classified by the algorithm. By Lemma 3 the number of unclassi-
fied faces ofτ (p+1) is 0, implying thatτ (p+1) has enteredPQzero. Let us fix the
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sequence for whichτ (p+2) is of minimal index and has only one unclassified face,
hence it has enteredPQone beforeα. It exists becauseδ has been classified andK
is a simplicial complex. We deduce thatτ (p+1) andτ (p+2) have been paired, contra-
dicting the assumption thatτ (p+1) has not been classified by the algorithm. Hence,λ
should belong toPQzero, which completes the proof. ⊓⊔

We next state that each cell that is still unclassified after line 10 of the algorithm
ultimately entersPQone or PQzero and gets classified. This requires an argument
based on the dimension of the cell and the number of its unclassified faces in the
considered lower star. Moreover, we prove that if a cell is already classified, it cannot
be considered again for classification or enter the priorityqueuesPQone orPQzero.

Lemma 7 Letσ ∈ K. Each cell inL(σ) is processed exactly once by the algorithm
and it is paired with some other cell or classified as critical. Hence Algorithm 2
classifies all cells ofK and always terminates.

Proof We break the conclusion into three statements:

(a) Each cell in the lower star eventually entersPQone or PQzero.
(b) Each cell that has enteredPQone orPQzero is eventually classified.
(c) A cell that has already been classified cannot enterPQone orPQzero again.

We simultaneously prove the three statements by induction on i = I(σ). For
i = 1, 2 the claim is proved by Lemma 5. Let us now assume by induction that the
claim is true from 2 up toi − 1. Let I(σ) = i. If classified(σ)=true, thenσ
has already been classified as part ofL(β) for some cellβ that is a face ofσ. Thus,
I(β) < I(σ) = i andL(σ) ⊂ L(β). By induction hypothesis, every cell ofL(σ)
is processed once by the algorithm and it is paired with some other cell or classified
as critical. Ifclassified(σ)=false, σ is either declared critical at line 7 or, by
Lemma 4(ii) , paired with some other cellδ in L∗(σ) at line 10. The cellsσ andδ are
no further processed.

Let γ be a cell left inL∗(σ), if any. Suppose that

num unclass facetsσ(γ) ≤ 1. (2)

Thenγ is either added toPQzero or toPQone and it is ultimately either paired or
classified as critical. More precisely, ifγ is added toPQone, then it is either moved
to PQzero at line 17, or paired at line 19 by Lemma 6. Ifγ is added toPQzero, it
is either paired at line 20 or declared critical at line 26. This also shows that, when
i = I(σ), every cell inL∗(σ) enters at most once inPQzero andPQone.

It remains to show that (a) also holds for cellsγ with

num unclass facetsσ(γ) ≥ 2. (3)

We prove (a) by induction on the dimensionn of cells inL∗(σ). The initial step is
dim γ = dim σ+1. But thenγ is a cofacet ofσ and, by Lemma 3, (2) holds. Assume
by induction that all cells ofL∗(σ) with dimension smaller thann have entered either
PQzero or PQone.

Let γ be a cell of dimensionn in L∗(σ). If (2) holds, we are done. Suppose that
(3) holds. We show thatγ eventually entersPQone. By induction, all faces ofγ
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eventually enterPQzero or PQone. We have earlier shown that those which enter
PQone are classified or moved toPQzero. So all faces ofγ which are not classified
enterPQzero. All such faces which have a coface inPQone or get a coface in
PQone at line 21 are classified at line 19-20. We remain with the faces of γ which
are inPQzero but have no coface inPQone. Let r be the number of such faces.
Necessarilyr > 1, otherwiseγ is in PQone. At lines 25-26 one of those faces is
classified as critical, so we remain withr − 1 such faces. After passing otherr − 2
times through lines 25-26,γ remains with only one unclassified face and it is added
to PQone at line 27.

So we have proved that every cell inL(σ) is processed exactly once by the algo-
rithm while i = I(σ) and it is paired with some other cell ofL(σ) or classified as
critical.

Finally, since the number of cells in the complexK is finite and the union of
L(σ)’s covers the complex, the proof is complete. ⊓⊔

The correctness proof is concluded by proving that the algorithm produces an
acyclic partial matching of the complex compatible with thefiltration of K induced
by f .

Proposition 8 A,B,C is a partition of the complexK andm is a bijective function
fromA to B. Moreover, ifσ ∈ Kα ∩ A thenm (σ) ∈ Kα.

Proof By Lemma 7,A∪B∪C = K. We show thatA∩B = ∅. This statement is trivial
for vertices since they cannot belong toB. Assume on the contrary that there exists a
cellα(p) with p ≥ 1 such thatα ∈ A∩B. Thus, there exist cellsδ(p−1) < α < γ(p+1)

such thatm (α) = γ andm (δ) = α. This means thatα is paired twice by processing
two different lower starsL(σ1) andL(σ2). By Lemma 2(4), there exists a cellβ such
that the cellsδ, α andγ are all processed withinL(β). Thusα is processed twice
within L(β), which contradicts Lemma 7. If we assume thatA∩C 6= ∅ and contains a
cell α, thenα has been declared critical either at line 7 or at line 26. In the first case,
α was not previously assigned toA because of line 5; on the other hand it cannot be
assigned toA later because of Lemma 7. In the second case, whenα is added toC, it
comes fromPQzero andPQone is empty. The only cells that may enterPQzero
or PQone later are cofaces ofα (see line 27). Thereforeα cannot be added again to
PQzero, and as a consequence it cannot be added toA. The proof thatB ∩ C = ∅
can be handled in much the same way. It follows thatA,B,C is a partition ofK.

By construction, the mapm is onto. We will show thatm is injective. If two
cellsσ1 andσ2 are paired with the same cellα, it follows thatα must belong to the
intersection of two lower stars. Therefore, again by Lemma 2(4), there must exist
a β such thatα is processed twice by the algorithm withinL(β) which is again a
contradiction to Lemma 7. Thusm is bijective.

By construction,σ is a face ofm (σ) and they both belong to someL(β). Thus,
by Lemma 2(1),f(σ) = f(m (σ)), and therefore ifσ ∈ Kα∩A thenm (σ) ∈ Kα. ⊓⊔

Theorem 9 Algorithm 2 produces a partial matching(A,B,C,m ) that is acyclic.

Proof A partial matching is acyclic if and only if there are no nontrivial closedm –
paths. We prove this by contradiction. Assume that

σ0
m
−→ τ0

>
−→ σ1

m
−→ τ1

>
−→ . . .

>
−→ σn

m
−→ τn

>
−→ σ0 (4)
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is a directed loop in the modified Hasse diagram. In particular, all σi in the loop have
the same dimension, say,p and allτi have the same dimensionp+ 1. The indexi of
σi is not the value of the indexing functionI but it simply displays its position in the
loop. From Lemma 2(1), it follows that

f(σ0) = f(τ0) � f(σ1) = f(τ1) � . . . � f(σn) = f(τn) � f(σ0). (5)

If any of the inequalitiesf(τi−1) � f(σi) is strict, then there exists a coordinatej
such thatfj(τi−1) > fj(σi) and sofj(σ0) > fj(σ0), a contradiction. Hencef is
constant on all the elements of the loop. Let us setσ̄ equal to the cell such that

I(σ̄) = min

{

I(α) ∈ N : α ⊆
n
⋂

i=0

σi ∩
n
⋂

i=0

τi

}

.

The simplex̄σ exists by Lemma 2(3). This implies thatσi andτi belong toL(σ̄) for
i = 0, . . . , n. Now we have two cases: eitherσ̄ = σj for somej, 0 ≤ j ≤ n, or σ̄ is
a face ofσj for everyj. In the first case, without a loss of generality, we may assume
thatσ̄ = σ0. Sinceσn has the same dimension asσ0, it is inL(σ0) if and only ifσn =
σ0, implying that the loop is trivial, a contradiction. In the second case, note that Al-
gorithm 2 produces a pairingm (σi) = τi only whennum unclass facetsσ̄(τi)
= 1, and in that case the unclassified face ofτi is exactlyσi. Therefore, we have that
σ0 is paired toτ0 after thatσ1, also a face ofτ0, has been paired toτ1.

Iterating this argument fori = 1, . . . , n, we deduce thatσ0 is paired toτ0 after
thatσn has been paired toτn. But sinceσ0 is also a face ofτn, andσ0 is still un-
classified whenσn is paired toτn, it follows thatσn = σ0, implying that the loop is
trivial, again a contradiction. ⊓⊔

3.2 Filtration Preserving Reductions

Lefchetz complexes introduced by Lefschetz in [20] are developed further in [22] un-
der the nameS-complex. In our context, these complexes are produced by applying
the reduction method [18,22,21] to an initial simplicial complexK, with the use of
the matchings produced by our main Algorithm 2. Both concepts of partial matchings
andsublevel set filtrationof K induced byf : K → Rk introduced in Section 2 natu-
rally extend to Lefschetz complexes as proved in [2]. We denote byH∗(S) the graded
homology module ofS with respect to a given principal ideal domainR. A choice of
a ground ringR is made in applications. The dependence of persistent homology on
that choice is discussed in [7]. As the computation of invariants based on ranks of ho-
mology modules is of concern, such as rank invariants in [8],it is sufficient to assume
thatR is a field, and most oftenR = Z2 is chosen. Persistence is based on analyzing
the homological changes occurring along the filtration as the multiparametera ∈ Rk

varies. This analysis is carried out by considering, fora � b, the homomorphism
H∗(j

(a,b)) : H∗(Sa) → H∗(Sb) induced by the inclusion mapj(a,b) : Sa →֒ Sb.
The image of the mapHq(j

(a,b)) is known as theq-th multidimensional persistent
homology groupof the filtration at(a, b) and we denote it byHa,b

q (S). It contains the
homology classes of orderq born not later thana and still alive atb.
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If we assume that(A,B,C,m ) is an acyclic matching on a filtered Lefschetz com-
plexS obtained from the original simplicial complexK by reduction, the following
result holds which asserts that the multidimensional persistent homology of the re-
duced complex is the same as of the initial complex (see [2]).

Corollary 10 For everya � b ∈ Rk, Ha,b
∗ (C) ∼= Ha,b

∗ (K).

The collection of homology groups{Ha,b
∗ (K) | a � b ∈ Rk} together with the

mapsH∗(j
(a,b)) induced by inclusionsj(a,b) may be phrased in terms of multidimen-

sional persistence modules introduced by [7]. Algorithms and programs computing
such modules are constantly being improved and we refer for instance to [16] for
recent contributions.

3.3 Complexity Analysis

We first describe the computational complexity of Algorithm2 and then establish
some comparisons with Algorithm 3.3 in [2]. We use the following definitions and
parameters in estimating the computational cost of Algorithm 2.

1. Given a simplexσ ∈ K, the coboundary cells ofσ are given by

cb(σ) := {τ ∈ K |σ is a face ofτ}. (6)

It is immediate from the definitions thatL∗(σ) ⊂ cb(σ).
2. We define the coboundary massγ of K as

γ = max
σ∈K

cardcb(σ), (7)

where card denotes cardinality. Whileγ is trivially bounded byN , the number of
cells inK, this upper bound is a gross estimate ofγ for many simplicial complexes
such as simplicial manifolds or approximating surface boundaries of objects.

3. For the simplicial complexK, we assume that the boundary and coboundary cells
of each simplex are computed offline and stored in such a way that access to every
cell is done in constant time.

4. Given an admissible functionf : K → Rk, the values byf of simplicesσ ∈ K
are stored in the structure that stores the complexK in such a away that they are
accessed in constant time.

5. We assume that adding cells to the listsA, B, andC is done in constant time.

Algorithm 2 processes every cellσ of the simplicial complexK and checks
whether it is classified or not. In the latter case, the algorithm requires a function that
returns the cells in the strict lower starL∗(σ) which is read directly from the structure
storing the complex. In the best case,L∗(σ) is empty and the cell is declared critical.
SinceL∗(σ) ⊂ cb(σ), it follows that cardL∗(σ) ≤ γ. By Lemma 7, we can see
that every cell inL∗(σ) enters at most once inPQzero andPQone. It follows that
the while loops in the algorithm are executed all together inat most2γ steps. We
may consider the operations such as finding the number of unclassified faces of a cell
to have constant time except for the priority queue operations which are logarithmic
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in the size of the priority queue when implemented using heaps. Since the sizes of
PQzero andPQone are clearly bounded byγ, it follows thatL∗(σ) is processed
in at mostO(γ log γ) steps. Therefore processing the whole complex incurs a worst
case cost ofO(N · γ log γ).

Algorithm 3.3 in [2] is based on processing recursively lower links of vertices
to achieve a partial classification of the cells of the complex. The cells that are not
classified at the end of the process are added to the list of critical cells. We have
established in [2] that given a simplicial complexK with vertex setK0 of sizeN0,
the computational cost of Algorithm 3.3 for processing all the cells of the complex
is bounded above by2γd

0 (d + 1)!N0 whered is the dimension of the complex and
γ0 = maxv∈K0

cardcb(v). It is easily seen thatγ = γ0 andN ≤ γN0, whereγ and
N are as defined above. Unlike Algorithm 3.3, Algorithm 2 processes and classifies
all the cells of the complex with a computational cost that cannot exceed2Nγ log γ ≤
2γ3N0. It follows that whend ≥ 3, we have2Nγ log γ ≤ 2γ3N0 ≤ 2γd(d+ 1)!N0.
This suggests a possible improvement in the computational complexity of the second
algorithm when the dimension of the complex is high. This comparison does not take
into account the number of residual cells, which are the cells that are not classified
by Algorithm 3.3 and added by default to the critical cells. This number is example
dependent and can represent an important proportion when compared to the total
number of cells of the complex as shown in column 4 of Table 1, where the number
of residual critical cells for several complexes is displayed between parentheses. For
example, the proportions of residual cells with respect to the original number of cells
represent42% for sphere 1, 61% for sphere 2 andtorus 4608, and50% for
Klein 187.

4 Combinatorial Interpretation of the Matching Algorithm

4.1 Multidimensional Discrete Morse Function

As commented in Introduction, we provide here the first stepstowards an extension
of the Forman discrete Morse theory [14] to multidimensional functions. We relate
the new definitions to the acyclic partial matching providedby Algorithm 2.

Given a functiong : K → Rk, for anyα ∈ Kp, we introduce the notation

Hg(α) = {β ∈ Kp+1 | β > α andg(β) � g(α)};

Tg(α) = {γ ∈ Kp−1 | γ < α andg(α) � g(γ)}.

The letterH stands forheadsandT for tails.

Definition 11 A functiong : K → Rk is amultidimensional discrete Morse function,
in short, anmdm function, if the following conditions hold for everyα ∈ Kp:

(1) cardHg(α) ≤ 1;
(2) cardTg(α) ≤ 1;
(3) If β(p+1) > α is not inHg(α), theng(α) � g(β);
(4) If γ(p−1) < α is not inTg(α), theng(γ) � g(α).
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Proposition 12 For any simplexα ∈ K, one of the setsHg(α) or Tg(α) must have
cardinality zero. That is, for anyα,

cardHg(α) · cardTg(α) = 0.

Proof We recall that any simplicial complex has the property that wheneverγ(p−1) <
α(p) < β(p+1), necessarily there existsα′(p) 6= α such thatγ < α′ < β.

Let us assume that bothHg(α) andTg(α) are nonempty for someα ∈ Kp. Then
there exists a cofaceβ(p+1) and a faceγ(p−1) of the simplexα such thatg(β) �
g(α) � g(γ). Let α′ 6= α be a different face ofβ that containsγ. It follows from
Definition 11 thatg(γ) � g(α′) � g(β), which is a contradiction. ⊓⊔

Definition 13 Let g : K → Rk be a multidimensional discrete Morse function. A
simplexγ ∈ K is critical if both Hg(γ) andTg(γ) are empty. A simplex that is not
critical is calledregular.

Essentially, discrete Morse functions are functions onK that increase with the
dimension of the simplices, with at most one exception for each simplexα. The
simplest example of a multidimensional discrete Morse function is the one given by
the formulag(α) = (dim(α), . . . , dim(α)) ∈ Rk. In this case, all simplices ofK
are critical. Any classical Forman’s Morse functionf : K → R gives rise to anmdm
functiong : K → Rk defined byg(σ) = (f(σ), . . . , f(σ)) ∈ Rk.

Recall that adiscrete vector fieldV onK is a collection of pairs
(

α(p), β(p+1)
)

of simplices ofK with α(p) < β(p+1) such that each simplex ofK is in at most one
pair ofV .

Let now g : K → Rk be anmdm function. It follows from Definition 11 and
Proposition 12 that the sets

A = {α ∈ K | cardHg(α) = 1}, B = {β ∈ K | cardTg(β) = 1},

and
C = {γ ∈ K | cardHg(γ) = 0 = cardTg(γ)}

form a partition ofK. Next, a mapm : A→ B defined by

m (α) = β ∈ Hg(α),

whereβ is the unique element ofHg(α), defines a discrete vector field{(α,m (α))}α∈A
which will be called thegradient fieldof g. It also follows that(A,B,C,m ) is a partial
matching as defined in Section 2.

4.2 Linking MultiD Discrete Morse Functions to the MatchingAlgorithm

Let nowf : K → Rk be the function used as input in Algorithm 2 and(A,B,C,m ) is
the partial matching produced by that algorithm. It is instantly seen that, in general,
f does not satisfy the assumptions of Definition 11. Indeed, the lower starL(α) of a
simplexα(p) may contain more than one simplexβ(p+1) so the condition (1) of the
definition fails. Condition (2) may fail as well. We do however have this:
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Proposition 14 Any functionf : K → Rk used as input in Algorithm 2 satisfies
conditions (3) and (4) of Definition 11.

Proof Letβ = β(p+1) > α be any cofacet of a givenα ∈ Kp. Sincef is an extension
of the data values on vertices:

fi(α) = max
v∈K0(α)

fi(v),

we havef(α) � f(β). Hence suchβ is inHf (α) if and only if f(α) = f(β). Thus a
cofacetβ of α is not inHf (α) if and only if f(α) � f(β) and (3) follows. Condition
(4) follows by the same argument. ⊓⊔

We now proceed toward the construction of anmdm functiong from the function
f obtained so that the partial matching produced by the algorithm for f coincides
with the one forg.

Any simplexσ ∈ K is either classified by Algorithm 2 at the beginning of pro-
cessing its own lower star (lines 7 or 10), that is when its indexI(σ) is considered in
the algorithm, or as an element of a lower star of a distinct simplex. In the first case,
we callσ a primary simplex of lower star processingor shortlyprimary. Otherwise,
it is calledsecondary. In particular, every vertex isprimary. It is easily seen that a
simplex isprimary if and only if it is not contained in a lower star of another simplex
with smaller index. Any such simplex is always classified either at line 7 or at line 10
of Algorithm 2.

Let P = {σi1 , σi2 , . . . , σin} be the set of allprimary simplices ofK ordered by
increasing values of their indices, i.e.ij = I(σij ) andij < ik if j < k. The following
proposition proves that the lower stars of the primary simplices ofK is a partition of
the simplicial complexK.

Proposition 15 The collection of subsets{L(σij )}1≤j≤n
forms a partition ofK.

That is

(1) L(σij ) ∩ L(σik) = ∅ if j 6= k, and

(2)
n
⋃

j=1

L(σij ) = K

Proof (1) Assume thatL(σij ) ∩ L(σik ) 6= ∅. Then, by Lemma 2(4) there exists
β ∈ K such thatL(σij ) ∪ L(σik) ⊂ L(β) andI(β) < min (ij , ik). Henceσij or
σik aresecondarysimplices, which is a contradiction.

(2) Letσ ∈ K. If σ is primary, thenσ = σij for somej andσ ∈ L(σij ). Otherwise
σ is secondaryand therefore it is classified by Algorithm 2 as part of a lowerstar
L(β) of some simplexβ ∈ K. But, thenβ is primary andβ = σij for somej.

Henceσ ∈
n
⋃

j=1

L(σij ). It follows that

n
⋃

j=1

L(σij ) = K.

⊓⊔
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We now give sufficient conditions so that a given functiong defined onK is
an mdm function with a partial matching that coincides with the partial matching
produced by Algorithm 2 forf . First, note that whenσij is critical, its lower star is
reduced to the singletonL(σij ) = {σij}. Whenσij is not critical, then,σij is added
to A at line 10 of Algorithm 2. Let us order the simplicesα of L(σij ) increasingly as
they become classified by Algorithm 2, though placingm (α) immediately beforeα,
if α is added toA. ThusL(σij ) can be presented as

L(σij ) = {α1j , α2j , . . . αljj}, (8)

where the first two terms areα1j = δ = m (σij ) andα2j = σij .

Definition 16 A functiong : K → Rk is calledf -compatible if for everyα, β ∈
K it satisfies the conditions

(1) if f(α) � f(β) theng(α) � g(β), and
(2) if α, β ∈ L(σij ) for some primary simplexσij andα is classified earlier thanβ

as defined by equation (8), theng(α) � g(β).

We prove in the following that anyf -compatible function is anmdm function
whose partial matching onK coincides with the one produced by Algorithm 2 forf .

Theorem 17 Let g : K → Rk be anf -compatible function. Theng is a multidi-
mensional discrete Morse function whose partial matching on K coincides with that
produced by Algorithm 2 whenf is used as input.

Proof We start with the case of critical simplices.
If α is primary and critical in the sense that Algorithm 2 assigns it toC, then

L∗(α) = ∅. If there existsβ ∈ Hg(α), theng(β) � g(α). The first condition in
Definition 16 allows us to conclude thatf(α) = f(β) and henceβ ∈ L∗(α), which
contradicts the fact thatL∗(α) = ∅. Hence,Hg(α) = ∅. Assume there existsγ ∈
Tg(α). Thenγ is a facet ofα with g(α) � g(γ). Again, we must havef(γ) = f(α)
andα ∈ L∗(γ), which contradicts the fact thatα is primary. Hence,Tg(α) = ∅.
Thus,α is a critical cell ofg.

If α is classified as critical by Algorithm 2 but notprimary, then there exists a
primary simplexσij such thatα ∈ L∗(σij ). This meansα is classified as critical at
step 26 of Algorithm 2 in which case all the facets ofα in L(σij ) are classified at an
earlier time thanα. Letγ be a facet ofα. If f(γ) = f(α) thenγ andα should belong
to the same lower star of someprimary simplex, i.e.γ ∈ L(σij ) and classified at
earlier time. Henceg(γ) � g(α) andγ /∈ Tg(α). If f(γ) � f(α) theng(γ) � g(α)
andγ /∈ Tg(α). HenceTg(α) = ∅. Let β be a coface ofα. If f(α) � f(β) then
g(α) � g(β) andβ /∈ Hg(α). On the other hand, iff(α) = f(β) thenα, β ∈ L(σij ).
Then by Lemma 7,α must have been classified at earlier time thanβ (otherwiseβ
would be paired withα whenβ is popped fromPQone), and henceg(α) � g(β) and
β /∈ Hg(α). It follows thatHg(α) = ∅. Thus, also in this caseα is a critical cell ofg.

Now we examine paired cells(α, β) whereβ is a coface ofα.
If α is aprimary cell, thenα is paired with a cofaceβ at step 10 of Algorithm 2.

By definition ofg, we haveg(β) � g(α). It follows thatβ ∈ Hg(α) andα ∈ Tg(β).
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Now, assume there existsγ ∈ Tg(α). Then sinceγ is a facet ofα andg(γ) � g(α) it
follows thatf(γ) = f(α) which contradicts the factα is primary. HenceTg(α) = ∅.

Let us prove now thatHg(α) = {β}. We know thatβ ∈ Hg(α). Assume that
some other cofaceτ of α is in Hg(α). This means we haveg(τ) � g(α) and hence
f(α) = f(τ) and thereforeτ ∈ L∗(α). If τ 6= β, thenτ is classified (processed) later
thanβ andα and thereforeg(α) � g(τ), which is a contradiction. HenceHg(α) =
{β}.

Proving thatHg(β) = ∅ follows the same pattern. That is, ifτ ∈ Hg(β), then
g(τ) � g(β) and thereforef(β) = f(τ) meaning thatτ ∈ L∗(α). But thenτ is
processed later thanβ and henceg(β) � g(τ) which is a contradiction. The fact that
Tg(β) = {α} is a direct result of Lemma 3.
If α is notprimary, thenα, β ∈ L∗(σ) for someprimarysimplexσ. Assume thatτ ∈
Hg(β), theng(τ) � g(β) and thereforef(β) = f(τ) meaning thatτ ∈ L∗(σ). By
Definition 16 and Lemma 6,τ is processed earlier thanβ iff τ is paired withβ, which
is not the case. Henceτ is processed later thanβ andg(β) � g(τ), which shows that
Hg(β) = ∅. Assume thatγ ∈ Tg(α), theng(α) � g(γ) and thereforef(α) = f(γ)
meaning thatγ ∈ L∗(σ). By Definition 16 and Lemma 6,α is processed earlier than
γ iff α is paired withγ, which is not the case. Henceγ is processed earlier thanα
andg(γ) � g(α), which shows thatTg(α) = ∅.

It remains to show thatTg(β) = {α} andHg(α) = {β}. From Definition 16
(2), we can see immediately thatβ ∈ Hg(α) andα ∈ Tg(β). If we assume that
τ ∈ Hg(α) andτ 6= β, then sinceg(τ) � g(α) we must havef(α) = f(τ) and
τ ∈ L∗(σ). Using again Lemma 6, we deduce thatτ is processed later thanα which
contradictsg(τ) � g(α). ThusHg(α) = {β}.

Assume thatγ ∈ Tg(β) andγ 6= α, theng(β) � g(γ) and thereforef(β) = f(γ)
meaning thatγ ∈ L∗(σ). By Definition 16 and Lemma 6,β is processed earlier than
γ iff β is paired withγ, which is not the case. Henceγ is processed earlier thanβ
andg(γ) � g(β), which is a contradiction. ThusTg(β) = {α}. Henceg satisfies
properties (1) and (2) of Definition 11.

Assumeβ /∈ Hg(α). Then from what precedes in the proof, we can conclude
that (α, β) are not paired cells. Iff(α) � f(β) then by Definition 16 we have also
g(α) � g(β). Otherwisef(α) = f(β) andα, β ∈ L(σij ) for someprimarysimplex
σij . By Definition 16 the values ofg are strictly increasing inL(σij ). If g(β) � g(α)
then by Lemma 6,α andβ are paired which is a contradiction. Then, we must have
g(α) � g(β), which proves property (3) of Definition 11.

Property (4) of Definition 11 is proved by a similar argument. ⊓⊔

4.3 Existence off -Compatible Functions

In the following, we prove that there existsf -compatible functions by construct-
ing one specific example. Letcb(σ) andγ be as defined in formulas (6) and (7). We
define

ǫ = 1/(γ + 1).
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Whenσij is critical, its lower star is reduced to the singletonL(σij ) = {σij} and
we define

g1(σij ) = ij, (9)

gi(σij ) = fi(σij ) if i > 1.

Consider the case whereσij is not critical. Then, we use equation (8) to express
the elements ofL(σij ) on which we define the functiong as follows:

g1(αsj) = ij + (s− 2)ǫ, (10)

gi(αsj) = fi(σij ) if i > 1.

The same formula is used for all primary simplices to producea functiong : K →
Rk.

Theorem 18 The functiong : K → Rk defined by equation (9) and equation (10) is
anf -compatible function.

Proof It is clear thatg is well defined onK since the lower stars of primary simplices
form a partition ofK by Proposition 15. We now prove thatg satisfies the conditions
of Definition 16. The second condition is trivially satisfiedby construction since the
values ofg1, the first component ofg, are increasing on any given lower star of a
non-criticalprimary simplex while the other components are maintained constant.
To prove the first condition, letα andβ be two simplices inK such thatf(α) �
f(β). It follows thatα andβ must belong to two different lower stars ofprimary
simplices, that is there existij andik such thatα ∈ L(σij ) andβ ∈ L(σik). Since
f(σij ) = f(α) andf(σik) = f(β), we must have thatij < ik, that isik − ij > 1.
For2 ≤ i ≤ k, we have

gi(α) = fi(σij ) = fi(α) ≤ fi(β) = fi(σik) = gi(β).

On the other hand, there must exists1 ∈ {1, . . . , lj} ands2 ∈ {1, . . . , lk} such that

g1(α) = ij + (s1 − 2)ǫ and g1(β) = ik + (s2 − 2)ǫ.

Sinces1 ≤ lj ≤ γ ands2 ≥ 1, we have

g1(β)− g1(α) = ik − ij + (s2 − s1)ǫ > 1 + (1 − γ)ǫ > 1− γǫ > 0,

sinceγǫ < 1. It follows thatg(α) � g(β). ⊓⊔

By combining Corollary 10, Theorem 17, and Theorem 18, we getthe following
result:

Corollary 19 Letg : K → Rk be anf -compatible mdm function andC the set of
its critical cells. Then, for everya � b ∈ Rk, Ha,b

∗ (C) ∼= Ha,b
∗ (K).
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Fig. 2 (a): the gradient vector field of the scalar functionf1(x, y) = e−(x2+y2)/8 − e−(x2+y2)/4. (b):

the gradient vector field of the scalar functionf2(x, y) = e−(x2+y2)/8. (c): the critical cells of dimension
0 in yellow, dimension 1 in blue, and dimension 2 in red, for the vector-valued functionf = (f1, f2), as
retrieved by Algorithm 2 .

5 Experimental Results

We have successfully applied the algorithms from Section 3 to different sets of trian-
gle meshes. In each case the input data is a 2-dimensional simplicial complexK and
a functionf defined on the vertices ofK with values inR2. The first step is to slightly
perturbf in order to ensure injectivity on each component as described in Section 2.
The second step is to construct an index function defined on all the simplices of the
complex and satisfying the properties of Lemma 1. Then we build the acyclic match-
ing m and the partition(A,B,C) on the simplices of the complex using Algorithm 2.
In particular, the number of simplices inC out of the total number of simplices ofK
is relevant, because it determines the amount of reduction obtained by our algorithm
to speed up the computation of multidimensional persistenthomology.

Our experiments are aimed at understanding different phenomena:

– Geometric interpretation of retrieved critical cells;
– Invariance under subdivision of the mesh;
– Comparison with previous algorithm [2];

5.1 Geometric Interpretation of Retrieved Critical Cells

Our first dataset is a synthetic example. We triangulate the rectangle[−4, 4]2 by a
triangle mesh with 81 vertices. We compute at each vertex thevalue of the scalar
functionf1(x, y) = e−(x2+y2)/8 − e−(x2+y2)/4 and that of the functionf2(x, y) =
e−(x2+y2)/8. These two functions have the property that their gradientsagree out-
side the circle centered at(0, 0) with radius2, while they disagree inside such circle.
Next, we consider the vector-valued functionf = (f1, f2) and follow the above de-
scribed procedure to apply Algorithm 2. The result of the computation is described in
Figure 2. The critical cells retrieved by Algorithm 2 localize the region of the plane
where the gradient vector fields of the scalar functionsf1 andf2, that is the compo-
nents of the vector-valued functionf , disagree. The above experiments suggests a re-
lationship between critical cells retrieved by our algorithm and Pareto critical points.
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Pareto critical points for a vector-valued function are those points at which the con-
vex hull of the gradients of the components of the function contains the null vector.
They may be regarded as a generalization of critical points for a scalar function form
the standpoint of optimization. It is important to notice that Pareto critical points on
a surface generically form curves, and therefore they are not isolated. Thus, our next
experiment concerns triangulations of well known surfaces(a sphere, a torus, a Klein
bottle), and compares the location of the retrieved critical cells with the curves of
Pareto critical points in the differentiable setting. The functions used for this exper-
iment are obvious projections on a coordinate plane. The comparison is illustrated
in Figure 3. The results are in accordance with the interpretation of critical cells as
locations corresponding to Pareto critical points. a

5.2 Dependence on the Triangulation

This set of experiments aims at understanding the stabilityof our algorithm under
changes of triangulations. More precisely, we aim at checking if the location of crit-
ical cells remains roughly the same even if we change the triangulation for example
by subdivision. Moreover, we aim at checking if the ratio of number of cells found to
be critical by the algorithm over the total number of cells remains roughly the same
when we consider finer and finer meshes. It is important to notice that it is not to
be expected that the number of critical cells remains the same because, as we have
already mentioned, Pareto critical points forR2-valued functions on a surface gener-
ically form curves. Therefore, we expect that a refinement ofthe triangle mesh corre-
sponds to a refinement of such curve of critical points. This is indeed what we find in
Figure 4. However, our experiments also show that not all triangulations localize the
Pareto critical region with the same precision. This phenomenon is shown in Figure 5
where a change in the spatial displacement of triangles of a sphere allows to localize
much more precisely the Pareto critical curves of the function f(x, y, z) = (x, z),
and at the same time to reduce the percentage of critical cells from 10.2% to 2.5%.
We have also repeated the experiment using triangulations of the same space that are
not subdivisions of each other. For the sphere, we consider its triangulations of five
different sizes and we takef(x, y, z) = (x, y). The comparison with other triangu-
lations of the sphere is shown in Table 1: the second column shows the number of
simplices in each considered meshK; the third column shows the number of critical
cells obtained by using our matching algorithm to reduceK; the fourth column shows
the ratio between the third and the second column in percentage points. In the cases
of the torus and of the Klein bottle we again consider triangulations of different sizes
and we takef(x, y, z) = (x, y). The numerical results are shown in the same table. In
conclusion, our experiments on synthetic data confirm that the current simplex-based
matching algorithm scales well with the size of the complex whereas the precision in
the localization of the curves of Pareto critical points depends on the triangulation.
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(a) (d)

(b) (e)

(c) (f)

Fig. 3 (a), (b), (c): Curves of Pareto critical points for projection maps ontoR2 for a sphere, a torus, and
a Klein bottle are depicted by thick black lines. (d), (e), (f): Critical cells retrieved by Algorithm 2 on
triangle meshes. Critical vertices are in yellow, criticaledges in blue, and critical triangles in red.
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(a)

(b) (c)

Fig. 4 (a): Critical cells of a triangle mesh. (b), (c) Two Loop subdivisions of it.

(a) (b)

Fig. 5 Orientation of triangles impacts the precision of localization of Pareto critical curves.

5.3 Comparison with Previous Algorithms

Our experiments confirm that the current simplex-based matching algorithm produces
a fair rate of reduction for simplices of any dimension on both synthetic and real data.

As for synthetic data, the comparison between the third and fifth columns of Ta-
ble 1 shows that our new algorithm achieves an improvement inthe rate of reduction
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Table 1 Percentage of critical cells over the total number of cells achieved by Algorithm 2 on some
triangulations of a sphere, a torus, and a Klein bottle, not obtained by refinement, and comparison with
the performance of the algorithm in [2]. For the latter, the value between parenthesis shows the number of
residual critical cells.

|K| |C| % |C| [2] % [2]
sphere 1 38 4 10.53 22 (16) 57.89
sphere 2 242 20 8.26 162 (148) 66.94
sphere 3 962 98 10.19 650 (588) 67.57
sphere 4 1538 178 11.57 986 (904) 64.11
sphere 5 2882 278 9.65 1950 (1794) 67.66
torus 96 96 8 8.33 72 (64) 75.00
torus 4608 4608 128 2.78 3030 (2822) 65.75
torus 7200 7200 156 2.17 4592 (4308) 63.77
klein 89 89 19 21.3483 39 (27) 43.82
klein 187 187 35 18.7166 113 (93) 60.43
klein 491 491 59 12.0163 273 (232) 55.60
klein 1881 1881 257 13.6629 861 (771) 45.77

between 50% and 96% with respect to the vertex-based and recursive matching al-
gorithm presented in [2]. Moreover, the fourth column of thesame table shows the
total number of cells classified as critical by Algorithm 3.3of [2] followed, between
parentheses, by the number of those cells residually classified as critical by the same
algorithm without actually processing them. We see that thenumber of such residual
critical cells found by Algorithm 3.3 of [2] is always between 30% and 95%. We
underline that, on the contrary, our current algorithm processes all the cells making
its results much more reliable in terms of significance.

As for real data, we now consider four triangle meshes (available at [1]). For each
mesh the input 2-dimensional measuring functionf takes each vertexv of coordinates
(x, y, z) to the pairf(v) = (|x|, |y|). In Table 2, the first row shows on the top line the
number of vertices in each considered mesh, and in the middleline the percentage of
critical vertices achieved by our algorithm. Finally, it also displays in the bottom line
the analogous ratio achieved by our previous algorithm [2].The second and the third
rows show similar information for the edges and the faces. Finally, the fourth row
shows the same information for the total number of cells of each considered meshK.

Again the current simplex-based matching algorithm produces a fair rate of re-
duction for simplices of any dimension also on real data, especially in comparison to
the algorithm of [2].

The comparison with the analogous results obtained in [9] with reference to the
reduction of vertices and edges in multi-valued graphs, shows a similar performance
for vertices and edge reduction. However, it has to be noticed that the algorithm of
[9] is designed to reduce graphs, and not generally simplicial complexes, in such
a way that homology degree 0 multidimensional persistence is preserved. Hence, it
can discard also all those edges that are important for the computation of homology
in degree 1, whereas we aim at preserving multidimensional persistent homology in
any degree.
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Table 2 Percentage of critical cells over the total number of cells achieved by Algorithm 2 on some natural
triangle meshes compared to that of [2], and that of [9] whenever applicable.

Dataset tie space shuttle x wing space station
|K0|

%
%[2]
%[9]

2014
27.5
11.3
29.2

2376
9.5
5.1

11.0

3099
19.8
5.6

18.4

5749
30.8
32.7
33.7

|K1|
%

%[2]
%[9]

5944
20.1
56.2
13.9

6330
3.8

58.4
5.2

9190
13.4
39.2
9.2

15949
16.0
70.0
17.4

|K2|
%

%[2]

3827
14.1
78.7

3952
0.4

90.5

6076
9.9

56.2

10237
8.0

56.2
|K|
%

%[2]

11785
19.4
55.9

12658
3.8

58.4

18365
13.3
39.2

31935
16.1
70.0

5.4 Discussion

The experiments on synthetic data confirmed two aspects: (1)The discrete case seems
to behave much as the differentiable case for two functions [26] because critical cells
are still localized along curves; (2) The number of criticalcells scales well with the
total number of cells, indicating that we are not detecting too many spurious critical
cells.

We should point here a fundamental difference between Morsetheory for one
function whose critical points are isolated and extensionsof Morse theory to vector-
valued functions where, even in the generic case, critical points form stratified sub-
manifolds. For example, for two functions on a surface, theyform curves. Hence
the topological complexity depends not on the number of critical points but on the
number of such curves. As a consequence, the finer the triangulation, the finer the
discretization of such curves and the larger number of critical cells we get.

On the other hand, experiments on real data show the improvement with respect to
our previous matching algorithm [2] already observed in thetoy example of Figure 1.
We think that the new algorithm performs better because it issimplex-based rather
than vertex-based. So, the presence of many non-comparablevertices has a limited
impact on it.

6 Conclusion

The point of this paper is the presentation of Algorithm 2 to construct an acyclic
partial matching from which a gradient compatible with multiple functions can be
obtained. As such, it can be useful for specific purposes suchas multidimensional
persistence computation, whereas it is not meant to be a competitive algorithm to
construct an acyclic partial matching for general purposes.



28 Allili, Kaczynski, Landi , Masoni

Some questions remain open. First, since indexing map is notunique, one may
ask what is the effect of its choice on the output. We believe that the size of the
resulting complex should be independent. This is a subject for future work.

A deeper open problem arises from the fact that the optimality of reductions is
not yet well defined in the multidimensional setting, although the improvement is
observed in practice. As commented earlier, even in the classical smooth case, the
singularities of vector-valued functions on manifolds arenot isolated. An appropriate
application-driven extension of the Morse theory to multidimensional functions is
not much investigated yet. The definitions proposed in Section 4.1 are the first step
towards that extension. Some related work is that of [10] on Jacobi sets and of [23]
on preimages of maps between manifolds. However there are essential differences
between those concepts and our sublevel sets with respect tothe partial order relation.

The experiments presented in this paper show an improvementwith respect to the
algorithm in [2] that, to the best of our knowledge, is still the only other algorithm
available for this task. Such experiments were obtained with a non-optimized imple-
mentation. For an optimized implementation of it, we refer the reader to [17], where
experiments on larger data sets can be found.
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