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Abstract

A model based on the concept of topological suspension is con-
structed with the purpose of testing and comparing different shape
similarity measures in computer vision and graphics. This model gives
an automatic way to produce interesting shapes of arbitrarily high
dimension as quality tests of algorithms that have been used in low di-
mensions, but are now intended for comparing multidimensional data
sets. The analysis of the matching distance method is provided for
one and two-parameter measuring functions on closed curves and sur-
faces, whose suspension is defined, respectively, on surfaces in R3 and
3D objects in R4. Perspectives for applying this model to other shape
descriptors used for digital images are pointed out.
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1 Introduction

In this paper, we present a model based on the concept of topological sus-
pension for testing and comparing different shape similarity measures. This
model shall give an automatic way to produce interesting shapes of arbitrar-
ily high dimension as quality tests of algorithms that have been successfully
used in the lowest dimensions, but are now intended for comparing multi-
dimensional data sets. Data of arbitrarily high dimension arise in compu-
tational dynamics, in particular in PDEs of evolutionary type as a result
of Fourier series projection or of discretization of the space variable. See,
for example, [8, 16, 12] and references therein. Another example of high-
dimensional data comes from considering the time index in streams of images
as an additional dimension. In this way a stream of 2D images can be in-
terpreted as a 3D image [17, 20]. One of the authors of [20] is currently
working on applying this principle to pattern analysis of streams of 3D im-
ages interpreted as 4D images. Such data may be huge and thus numerically
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challenging, but since we do not know a priori the expected output of the
topology algorithm, we cannot be sure if it gives the right results. Hence,
unless the data and its structure is already well-known, it may not be suit-
able for testing. Conversely, high-dimension examples constructed by hand
are typically not very demanding from a numerical standpoint. The suspen-
sion process allows the construction of models with the desired topological
characteristics in any dimension.

Let us outline this procedure which will be presented in detail in Sec-
tion 2. Let M be an n-dimensional triangulated manifold representing a
given shape, and let f be a continuous function on M with values in R

which measures a feature of interest of M . In papers on applications to
shape comparison such a function is called measuring function (e.g. [11]),
and is often interpolated from its values on vertices of a given mesh.

The topological descriptor of shapes we will focus our attention on is
the homology rank invariant, one of many ways of measuring how the topol-
ogy of the sublevel set changes as we pass through a critical value of the
function f . This shape descriptor permits measuring the persistence or,
in other words, the robustness of homology generators, thus distinguish-
ing those which may appear due to noise in the data from structural ones.
The term rank invariant was perhaps first introduced in [4] in the context
of multidimensional persistence, but in case of one-dimensional persistence,
the information given by the rank invariant can be graphically displayed in
two equivalent ways: either as the persistence diagram [9] or as a barcode
[5]. Given two different shapes M and N , and their measuring functions f
and g, a distance between rank invariants is a measure of similarity between
the shapes. We focused our attention on the matching distance [11] but our
model carries over to any other known distance with the stability property,
for instance, to the Wasserstein distance [10].

We construct a measuring function S1f on the topological suspension
SM , also with values in R, and with the property that its rank invariants
are basically those of f with the homology dimension q shifted by one (The-
orem 2.3). In particular, the 0-dimensional rank invariant, also called the
size function [15, 23] of S1f is quasi-trivial, and the one-dimensional rank
invariant of S1f provides about the same information as the size function
of f . Note that by iterating this construction, we can produce shapes of ar-
bitrary dimensionality whose interesting features are shifted to the highest
dimension.

Our next result is Theorem 2.5 showing the relation between the match-
ing distances of two measuring functions and their suspensions. We then
extend the construction to suspensions Skf of multiparameter functions
f : M → R

k, also called multidimensional measuring functions. The mul-
tidimensional persistent homology was first introduced in [4] in the context
of discrete filtrations. Its motivation is that a multifiltration may detect
geometric features which separate k coordinate-wise tests cannot detect.
Multidimensional 0th order rank invariants were first applied to the shape
similarity analysis based on continuous measuring functions in [3]. A bridge
between the discrete and continuous settings is established in [6].

Our construction was motivated by the fact that current numerical ex-
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perimentation seems to suggest that in some cases, shape comparison using
homology rank invariants can be reduced in practice to that of multidimen-
sional 0th order rank invariants provided the dimension of the parameter
space is increased. Our goal is not to object to this experimental assertion,
but rather to indicate that the exchange of the method cannot be done
blindly, that is, without knowing the shape of the object we want to study,
and that it may induce a higher computational cost than computing rank
invariants for higher homology dimensions.

In Section 3, the analysis of the matching distance method is provided
for two-parameter measuring functions on closed curves and surfaces, whose
suspension is defined, respectively, on surfaces and on 3D objects in 4D
space.

In Section 4, perspectives for applying our construction to other known
shape descriptors in digital imaging are suggested. We give two examples:
one is the Morse descriptor introduced in [1] and another one is the method of
image matching by transformation maps introduced in [13]. In applications
to digital imaging, where pixels and voxels are of concern, cubical grids are
the most convenient geometric structure. However, the geometric realization
of the suspension is clearly easier in simplicial meshes. Nevertheless, our
model can be applied to cubical grids arising in digital imaging, by using
the concept of relative homology, as we show.

Section 5 is an appendix containing the proofs of the main mathematical
statements, which are our original results.

2 The model

Since the homological rank invariants are only defined for homology with
coefficients in a field F, we will use the notation H∗(X) forH∗(X;F) through-
out this paper.

The suspension of a topological space X is the quotient space SX := X×
[−1, 1]/ ∼, where ∼ is the identification (x, 1) ∼ (y, 1) and (x,−1) ∼ (y,−1)
for all x, y ∈ X [21, § 33]. This space can be visualized as a double cone
over X with vertices at the parameter values s = ±1. It is known that S
is a functor on the category of topological spaces, with its value on maps
F : X → Y given by SF (x, s) := (F (x), s). This functor shifts the reduced
homology dimension by one [21, Th. 33.2], that is

H̃q+1(SX) ∼= H̃q(X), q ≥ −1. (1)

In terms of non-reduced homology, this is equivalent to writing

Hq+1(SX) ∼= Hq(X), for q ≥ 1,

H1(SX) ⊕ F ∼= H0(X), and H0(SX) ∼= F.

Let x0 ∈ X. The based suspension of the pointed space (X,x0) is the
pointed space (ΣX, (x0, 0)), where ΣX is the quotient space of SX obtained
by the additional identification (x0, s) ∼ (x0, 0) for all s ∈ [−1, 1]. Figure 1
shows an example of a topological space and its suspension.
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Let us note that if X is a triangulable space, then its suspension SX
is also triangulable, and given K a triangulation of X we can construct
S(K), also called the suspension of the complex K, as the join S(K) =
K ⋆ {w0, w1}, where {w0, w1} is a complex composed of two vertices. That
is, the simplices of S(K) are composed of every simplex [a0, a1, . . . , an] of K,
as well as [w0, a0, a1, . . . , an] and [w1, a0, a1, . . . , an]. The suspension S(K)
can be seen as the union of two cones over K, and if K is a triangulation of
X, then S(K) is also a triangulation of SX. In this case, it is known that
ΣX is homotopy equivalent to SX [18, § 4.3].

M

x0

SM

x0

Figure 1: Left: a manifold M homeomorphic to S1, with a base point x0
which can be interpreted as the global minimum of a measuring function.
Right: the suspension SM . In the reduced suspension ΣM , the segment
{x0} × [−1, 1] (in bold) would additionally be reduced to a point.

We now pass to measuring functions on topological spaces. In literature
on Morse theory and its applications, we usually assume that X = M is a
connected smooth compact manifold of dimension d and that f : M → R

is a Morse function, that is, a C2 function whose critical points are nonde-
generate and have distinct critical values. Among other consequences, this
hypothesis permits the definition of the Morse index of a critical point p of
f as the dimension of the negative eigenspace of the Hessian matrix of f at
p. However, in this paper we will only assume that f is of class C1 unless
otherwise stated. Let m0 be the global minimum of f attained at x0.

Define Ef : M × [−1, 1] → R by

Ef(x, s) := s2m0 + (1 − s2)f(x). (2)

Note that Ef assumes the global minimum at the union of {x0} × [−1, 1]
with M × {−1, 1}. Along each line s 7→ (x, s), Ef assumes a maximum at
(x, 0). By simple differential calculus, we get the following statement.

Proposition 2.1. A point (p, s) is a critical point of Ef if and only if
either p is a critical point of f and s = 0, or s = ±1. Moreover, if p is
a nondegenerate critical point of f of Morse index λ, then (p, 0) is also a
nondegenerate critical point of Ef of Morse index λ+ 1.

Define the maps S1f : SM → R, respectively, Σ1f : ΣM → R, as the
compositions of the inverse of the quotient map of M × [−1, 1] onto SM ,
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f(x)

α
1

−1

x

s

x0 ∼ x0
x

s

Figure 2: Left: Ef : M × [−1, 1] → R for the same manifold M as in
Figure 1, with end points both identified as x0 and with measuring function
f : M → R reaching its global minimum in x0. The global minimum of Ef
is ({x0} × [−1, 1]) ∪ (M × {−1, 1}) (in bold). Middle: Ef seen from above.
E(Mα) is in dark grey, (EM)α in dark and pale grey (see Lemma 2.2).
Right: S(Mα) is in dark grey, (SM)α in dark and pale grey. M ×{−1} and
M × {1} are both reduced to a single point.

respectively, ΣM , with Ef . These applications are well-defined since Ef is
constant on the subsets of M × [−1, 1] which are sent to a point by quotient
maps. The statement of Proposition 2.1 extends to S1f except for the non-
degeneracy conditions at points on {x0}× [−1, 1] with the critical value m0.
By passing to Σ1f , we gain the isolation condition for the equivalence class
of (x0, 0).

Given any α ∈ R, we consider the sublevel sets

Mα := {x ∈M | f(x) ≤ α}

and
(SM)α := {(x, s) ∈ SM | S1f(x, s) ≤ α}.

It is easy to see that S(Mα) ⊂ (SM)α but the reverse inclusion does not hold
true. However, the following result holds. Proof can be found in appendix,
along with other long proofs of results in this article.

Lemma 2.2. The set S(Mα) is homotopy equivalent to (SM)α.

We now discuss the effect of the suspension operation on rank invariants.
We assume that M is triangulated so that the critical points of f are vertices
of the triangulation, and in particular, that x0 is a vertex. More precisely,
in practical computations, f is usually known only on vertices of a given
mesh and a function fǫ is interpolated from f in such a way that its critical
values occur only on vertices. The stability theorems [7, 6] guarantee the
existence of a distance (such as the matching distance) in which the rank
invariants of f and fǫ can be made as close as desired.
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Given any α < β in R, we consider the map

H∗(j
(α,β)) : H∗(Mα) → H∗(Mβ)

induced by the inclusion map j(α,β) : Mα →֒ Mβ. Recall that the q–th
persistent homology space of (M,f) at (α, β) is the image of Hq(Mα) under
the map Hq(j

(α,β)) and the q–th rank invariant of (M,f) at (α, β) is the
number

ρqf (α, β) = rank imHq(j
(α,β)). (3)

The rank invariant function is ρqf : ∆+ → N defined on

∆+ := {(α, β) ∈ R
2 | α < β}.

Analogously, we define the reduced rank invariant function as the one on the
reduced homologies:

ρ̃qf (α, β) = rank im H̃q(j
(α,β)). (4)

Here is our first result.

Theorem 2.3. Let f : M → R be a C1 function on a connected compact
manifold M . For any (α, β) ∈ ∆+,

ρ̃q+1
S1f

(α, β) = ρ̃qf (α, β), q ≥ −1. (5)

For the non-reduced rank invariant, we have

ρq+1
S1f

(α, β) = ρqf (α, β), q ≥ 1, (6)

ρ1S1f
(α, β) =

{

ρ0f (α, β) if α < m0,

ρ0f (α, β) − 1 otherwise
, (7)

and

ρ0S1f
(α, β) =

{

0 if α < m0,
1 otherwise

. (8)

The same formulas hold for Σ1f .

We can use Theorem 2.3 to prove results about the matching distance
between rank invariants [11]. The previous reference discusses the use of the
matching distance in size theory, which is in essence the study of the 0th
rank invariant. These results can be generalized in a natural and common
way to the q–th rank invariant. Recall the definition of a cornerpoint of the
rank invariant function ρf :

Definition 2.4. For a point p = (α, β) ∈ ∆+, define its multiplicity µ(p)
as the minimum, over all ǫ > 0 such that α+ ǫ < β − ǫ, of

ρf (α+ ǫ, β − ǫ) − ρf (α− ǫ, β − ǫ) − ρf (α+ ǫ, β + ǫ) + ρf (α− ǫ, β + ǫ).

If µ(p) > 0, then p is called a proper cornerpoint of ρf . In addition, for
a vertical line r of equation x = α, define its multiplicity µ(r) to be the
minimum, over all ǫ > 0 such that α+ ǫ < 1/ǫ, of

ρf (α+ ǫ, 1/ǫ) − ρf (α− ǫ, 1/ǫ).
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If µ(r) > 0, then r is called a cornerpoint at infinity of ρf , and we identify it
with the pair (α,∞). The rank invariant function ρf is uniquely determined
by the multiset of its cornerpoints together with their multiplicities, called
its persistence diagram Dgm(ρf ).

The matching distance d between the rank invariants ρf and ρg is the
bottleneck distance between the multisets of their cornerpoints. Technical
details can be found in [11, Def. 3.4-3.6] and we do not wish to encumber
this article by repeating them, but generally speaking, its definition is the
following:

d(ρf , ρg) = min
σ

max
p∈Dgm(ρf )

δ(p, σ(p)),

where σ varies among the bijections between Dgm(ρf ) and Dgm(ρg), and
where

δ((u, v), (u′ , v′)) = min

{

max{|u− u′|, |v − v′|},max

{

v − u

2
,
v′ − u′

2

}}

.

The main idea is that d(ρf , ρg) is the cost of the optimal bijection moving the
cornerpoints of the persistence diagram of ρf to those of ρg. However, it also
recognizes that if a cornerpoint of one or both of these persistence diagrams
is close to the diagonal ∆ := {(α,α) | α ∈ R}, or cannot be matched
to another cornerpoint due to differing cardinalities of the diagrams, the
optimal bijection might entail moving it to the diagonal. This corresponds
to smoothing out small topological noise in f or g.

Theorem 2.5. Let M , N be homeomorphic connected compact manifolds,
and let f : M → R and g : N → R be C1 measuring functions. Denote by
m0 and n0 the minima, respectively, of f on M and g on N . Then

d(ρ̃q+1
S1f

, ρ̃q+1
S1g

) = d(ρ̃qf , ρ̃
q
g), q ≥ −1. (9)

For the matching distance between non-reduced rank invariants:

d(ρq+1
S1f

, ρq+1
S1g

) = d(ρqf , ρ
q
g), q ≥ 1, (10)

d(ρ1S1f
, ρ1S1g

) ≤ d(ρ0f , ρ
0
g), (11)

and
d(ρ0S1f

, ρ0S1g
) = |m0 − n0|. (12)

Furthermore, if m0 = n0, then we have

d(ρq+1
S1f

, ρq+1
S1g

) =

{

d(ρqf , ρ
q
g) if q ≥ 0,

0 if q = −1
. (13)

The same formulas hold for Σ1f and Σ1g.

From this point on, let us consider simplicial complexes K and L, as-
sumed to be the triangulations of homeomorphic compact connected man-
ifolds M and N . We equip these complexes with k-dimensional measuring
functions ϕ : V(K) → R

k and ψ : V(L) → R
k, where V refers to the vertex
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set of the complex under consideration. The functions may be obtained by
sampling measuring functions f : M → R

k and g : N → R
k of class C1. For

a complex K equipped with a measuring function ϕ : V(K) → R
k, and a

value α ∈ R
k we further define the sublevel complex Kα as the complex com-

posed of all simplices of K whose vertices v all verify the relation ϕ(v) � α,
where � is the usual partial order on R

k. We shall define, for ϕ : V(K) → R
k,

the measuring function Skϕ = (S1ϕ1, . . . , S1ϕk) : V(S(K)) → R
k on the ver-

tices of the suspension S(K) = K ⋆ {w0, w1}, where S1ϕi(v) = ϕi(v) for
all vertices v of K, and S1ϕi(wj) = mi,0, j = 0, 1, mi,0 being the absolute
minimum of ϕi over V(K).

We can define the rank invariants for the discrete model. Consider the
map

H∗(j
(α,β)) : H∗(Kα) → H∗(Kβ)

induced by the inclusion map j(α,β) : Kα →֒ Kβ, where α ≺ β and where
Kα and Kβ denote the supports of the sublevel complexes Kα and Kβ . We
define the q–th rank invariant of (K,ϕ) at (α, β) to be

ρqϕ(α, β) = rank imHq(j
(α,β)).

As proved in [6], the rank invariant functions ρϕ are identical to the rank
invariant functions ρϕq , where ϕq : K → R

k is the axis-wise interpolation of
ϕ.

In [3] a foliation method was introduced to reduce the computation of
multidimensional rank invariants to that of a parametrized family of rank
invariants for one-dimensional measuring functions. Algorithms were then
developed to allow arbitrarily precise computation of the multidimensional
matching distance on a finite subset of this family. In short, for every pair
(~l,~b) ∈ R

k × R
k where li > 0,

∑

li = 1 and
∑

bi = 0, called an admissible
pair and representing a line where ~l is a unit direction vector oriented toward
higher values in the partial order on R

k and where ~b is a starting point, we
define a reduced one-dimensional measuring function on vertices as

redϕ
(~l,~b)

(v) = min
i=1,...,k

li max
i=1,...,k

ϕi(v) − bi
li

.

It has been shown in [3] that if α ≺ β are values found on the line in R
k×R

k

generated by (~l,~b), and more precisely, if α = s~l + ~b, β = t~l + ~b, then we
have equality of rank invariants:

ρϕ(α, β) = ρredϕ
(~l,~b)

(s, t).

This property has been used to define a k-dimensional matching distance
between rank invariants:

D(ρϕ, ρψ) = sup
(~l,~b)∈Admk

d(ρredϕ
(~l,~b)

, ρ
redψ

(~l,~b)

)

where Admk is the set of admissible pairs.
It should be noted that k-parameter persistence provides more informa-

tion on the structure of a shape than k separate tests using single-parameter
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persistence. To convince oneself of this fact, we may take a look at Fig-
ure 3. The two curves pictured cannot be distinguished by the rank invariant
method using one or other of the coordinate functions. Indeed, their persis-
tence diagrams will be identical, and the matching distance between them
will be zero. However, using the reduction method, we find directions where
topological properties are not born at the same point for both curves. We
can therefore conclude that the 2-dimensional matching distance between
their rank invariants will be positive.

Figure 3: Two curves in R
2. We consider as measuring functions the coor-

dinate functions. The arrow is a direction corresponding to an admissible
pair of Adm2, while the lines represent a level set of the reduced function.
We see that, at the value of interest, the sublevel set for the second curve
has two connected components, while that for the first one has a single con-
nected component. The persistence diagrams for the reduced function will
therefore be different.

Theorem 2.6. Let K, L be simplicial complexes, and let ϕ : V(K) → R
k

and ψ : V(L) → R
k be k-dimensional measuring functions. Then

D(ρ̃q+1
Skϕ

, ρ̃q+1
Skψ

) = D(ρ̃qϕ, ρ̃
q
ψ), q ≥ 0. (14)

For the k-dimensional matching distance between non-reduced rank invari-
ants:

D(ρq+1
Skϕ

, ρq+1
Skψ

) = D(ρqϕ, ρ
q
ψ), q ≥ 1, (15)

and
D(ρ1Skϕ, ρ

1
Skψ

) ≤ D(ρ0ϕ, ρ
0
ψ). (16)

Remark 2.7. We believe that Theorem 2.6 is probably also true in the
continuous case, that is, with manifolds M , N equipped with continuous
measuring functions f : M → R

k and g : N → R
k. However, the proof

appears to be more complicated in this case. Since our interest is in the
numerics, assuming the simplicial framework was sufficient.

3 Numerical examples

The numerical examples described in this section have been produced with
two-dimensional measuring functions. In this case, we note that the set
of admissible pairs Adm2 is the set of pairs ((a, 1 − a), (b,−b)) where a ∈
(0, 1) and b ∈ R. For a measuring function ϕ : V(K) → R

2, we will de-
note the reduced one-dimensional functions redϕ((a,1−a),(b,−b)) by Φ(a,b), and
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redS2ϕ

((a,1−a),(b,−b)) as S2Φ(a,b). Our examples are intended to provide experi-
mental support for the theory described in the previous section. We have
used two pairs of models, each of which are 1 or 2-dimensional simplicial
complexes homeomorphic to connected and compact manifolds, as well as
their simplicial suspensions as previously defined.

We have used an implementation of the algorithm of [2] to compute
lower bounds for the two-dimensional matching distance between their rank
invariants of various orders with decreasing error tolerance. This algorithm,
given pairs (X,ϕ) and (Y, ψ), computes d(ρΦ(a,b)

, ρΨ(a,b)
), with (a, b) chosen

on increasingly fine grids, until the desired tolerance ǫ, that is, the worst
case error between the computed and exact 2-dimensional matching dis-
tances, is attained. Its total complexity depends on the complexity of the
persistence and one-dimensional matching distance algorithms. It is known
that computing persistent homology has complexity O(m3) in the worst
case, where m is the number of simplices in the complex [24]. The com-
plexity of one-dimensional matching distance computation is O(p2.5), where
p is the maximal number of cornerpoints allowed [11]. The grid algorithm
of [2] requires in the worst case a number of computations proportional to
1/ǫ2, representing the number of grid points. Our implementation (coded
in Java with help from N. Cavazza, co-author of [6] along with this paper’s
authors) computes the persistence diagrams for these rank invariants using
the persistent homology software JPlex [22]. In addition, constructing the
suspension of a simplicial complex is linear on the number of simplices of
the original complex.

Example 3.1. The contour model example is the pair of models (K,ϕ) and
(L,ψ) shown in Figure 4, along with the persistence diagrams for ρ0ϕ2

and
ρ0ψ2

. Its suspension is a two-dimensional simplicial complex embedded in

R
3; sort of a simplicial version of the curve and surface seen in Figure 1.

As shown, both ϕ1 and ψ1, and ϕ2 and ψ2, take the same global minimum
(in both cases 0), so we expect Equation (13) to hold. The 2D matching
distances have been computed with a tolerance ǫ = 0.01, but given the sim-
plicity of the example their exactness is easy to show. The results of our
computations can be found in the following two tables:

ρ ρ̃

d(ρ0ϕ1
, ρ0ψ1

) 0.05 0.05

d(ρ0ϕ2
, ρ0ψ2

) 0.15 0.15

D(ρ0ϕ, ρ
0
ψ) 0.2 0.15

q = 0 q = 1

d(ρqS1ϕ1
, ρqS1ψ1

) 0 0.05

d(ρqS1ϕ2
, ρqS1ψ2

) 0 0.15

D(ρqS2ϕ
, ρqS2ψ

) 0.1 0.15

As seen above, D(ρ0S2ϕ
, ρ0S2ψ

) cannot be assumed to equal 0, even if ϕi
and ψi take the same global minimum for i = 1, 2. We haven’t included the
results for the reduced rank invariants for the suspended models, since they
are equal to that of the non-reduced rank invariants. This isn’t however
expected to be true in general. Figure 5 further shows d(ρqΦ(a,b)

, ρqΨ(a,b)
)

and d(ρq
S2Φ(a,b)

, ρq
S2Ψ(a,b)

) plotted in function of a and b, for a few interesting

choices of q.

10



ϕ1

ϕ2

0

1

1
ψ1

ψ2

0

1

1

0
1

2

2

0
1

Figure 4: Top row: pair of models for the contour model example. The
measuring functions are the x and y coordinate functions. Bottom row:
persistence diagrams for the rank invariant functions ρ0ϕ2

and ρ0ψ2
. First

function has one cornerpoint at infinity (bold line at (0,∞)) and two proper
cornerpoints (marked points at (0, 0.3) and (0.7, 0.9)), second function has
only one cornerpoint at infinity at (0,∞). Matching distance is 0.15, that
is, cost of moving cornerpoint (0, 0.3) onto ∆. Numbers represent the value
of the rank invariant function on subsets of ∆+.

Example 3.2. The surface mesh model is shown in Figure 6. Its suspension
is a three-dimensional simplicial complex embedded in R

4, which cannot be
accurately shown without playing a video with the fourth dimension mapped
to time. The measuring function ϕ : V(K) → R

2 is defined in the following
way: assuming that V(K) = {v1, . . . , vn} and that c is the centre of mass of
K defined by taking the weighted average of the centres of each triangle, we
define the principal vector

~w =

∑n
i=1(vi − c)‖vi − c‖2
∑n

i=1 ‖vi − c‖22

where ‖ · ‖2 refers to the Euclidean norm. Then, let d be the line passing
through c having ~w as direction vector, and π be the plane passing through
c having ~w as normal vector. The function ϕ is defined as

ϕ1(vi) = 1 −
dist (vi, d)

maxj=1,...,n dist (vj , d)

11



Figure 5: First image: plot of d(ρ0Φ(a,b)
, ρ0Ψ(a,b)

). Second image: plot of

d(ρ̃0Φ(a,b)
, ρ̃0Ψ(a,b)

) and d(ρ1
S2Φ(a,b)

, ρ1
S2Ψ(a,b)

). They are identical, as expected

by Equation (9). Horizontal axis is a, vertical axis is b.

and

ϕ2(vi) = 1 −
dist (vi, π)

maxj=1,...,n dist (vj, π)
,

where dist refers to the Euclidean distance between a point and the line
d or plane π. The measuring function ψ is defined equivalently on the
vertex set V(L). By the definition of the measuring functions, the absolute
minima of ϕ1, ϕ2, ψ1 and ψ2 will all be 0. Table 1 shows the results of our
computations. All lower bounds for the 2D matching distance are shown,
in order to illustrate the comparability of results between the original and
suspended models at every step in the algorithm.

4 Perspectives of applications to digital images

Our focus in this paper is on the use of the topological suspension as a
model in shape comparison by persistent homology methods. We finish
with remarks showing that the main ideas can also be applied to many other
topological methods in imaging with the same aim: to give an automatic
way of producing examples of interesting shapes for providing quality tests of
algorithms and programs that have been successfully used in low dimensions
but which we now want to use with high-dimensional spaces. In this section
we invite the readers to use their imagination in inventing similar models in
their field of study, by pointing out examples of potential applications.

Our first example is the Morse descriptor introduced by [1] with the
same aim as persistent homology, that is, to provide topological analysis and
comparison of shapes. The authors directly apply their descriptors to digital
images generated from photographs of hand gestures in a sign language, and
to other digital objects. Rather than looking at the rank of inclusion maps
of a lower sublevel set into an upper one, they consider an invariant based on
the concept of the rank of the relative homology of one set modulo another.
More precisely, the Morse descriptor MDf : ∆+ × N → N is defined by

MDf (α, β, q) := rankHq(Mβ,Mα).

12



Figure 6: First row: model K along with measuring functions ϕ1 and ϕ2.
Second row: model L along with measuring functions ψ1 and ψ2. Models
are courtesy of the authors of [2].

This descriptor provides somewhat different information about the shape of
interest than the rank invariant studied in this paper. Indeed, it focuses
on the non-trivial homology cycles remaining or created in the upper level
set Mβ after contracting the lower level set Mα to a point, while the rank
invariant focuses only on the cycles of the lower level set remaining non-
trivial after immersing Mα to Mβ.

We may want to investigate data of higher dimension than the initial
2D objects studied in [1] and test results on our suspension models. The
suspension functor can be applied similarly as in Section 2 by the following
theorem which can be proved using the relative Mayer-Vietoris sequence [21,
Exercise 2 page 145] and Lemma 2.2.

Theorem 4.1. Under the terminology of Section 2, the isomorphism

Hq+1((SM)β , (SM)α) ∼= Hq(Mβ,Mα) (17)

holds for all q ∈ Z provided that (SM)α 6= ∅. If (SM)α = ∅, (17) holds for
all q > 0, while for q = 0 and q = −1 we have:

H0(Mβ , ∅) = H0(Mβ) ∼= H1((SM)β) ⊕ F,

H0((SM)β , ∅) = H0((SM)β) ∼= F.

Our next example is an image matching method presented in [13]. The
method consists of estimating a transformation map between block struc-
tures (pixels, voxels, windows) of given binary images analyzed for topolog-
ical correspondence, using the concept of homology of maps. The idea is

13



ǫ

d(ρ0ϕ1
, ρ0ψ1

) 0.118165

d(ρ0ϕ2
, ρ0ψ2

) 0.032043

9/8 0.194217
D(ρ0ϕ, ρ

0
ψ) 9/16 0.224227

9/32 0.225394
9/64 0.225394

ǫ

d(ρ̃0ϕ1
, ρ̃0ψ1

) 0.118165

d(ρ̃0ϕ2
, ρ̃0ψ2

) 0.032043

9/8 0.118165
D(ρ̃0ϕ, ρ̃

0
ψ) 9/16 0.127301

9/32 0.135530
9/64 0.144274

ǫ

d(ρ1ϕ1
, ρ1ψ1

) 0.031129

d(ρ1ϕ2
, ρ1ψ2

) 0.039497

9/8 0.039497
D(ρ1ϕ, ρ

1
ψ) 9/16 0.046150

9/32 0.046150
9/64 0.046150

ǫ

d(ρ1S1ϕ1
, ρ1S1ψ1

) 0.118165

d(ρ1S1ϕ2
, ρ1S1ψ2

) 0.032043

9/8 0.118165
D(ρ1S2ϕ

, ρ1S2ψ
) 9/16 0.127301

9/32 0.135530
9/64 0.144274

ǫ

d(ρ2S1ϕ1
, ρ2S1ψ1

) 0.031129

d(ρ2S1ϕ2
, ρ2S1ψ2

) 0.039497

9/8 0.039497
D(ρ2S2ϕ

, ρ2S2ψ
) 9/16 0.046150

9/32 0.046150
9/64 0.046150

ǫ

d(ρ0S1ϕ1
, ρ0S1ψ1

) 0.000000

d(ρ0S1ϕ2
, ρ0S1ψ2

) 0.000000

9/8 0.155527
D(ρ0S2ϕ

, ρ0S2ψ
) 9/16 0.171368

9/32 0.179821
9/64 0.194217

Table 1: First two tables show results for the original models with 0th
order ordinary and reduced rank invariants. Third table contains results for
the original models with 1st order rank invariants. Last three tables show
results for the suspended models with 1st, 2nd and 0th order rank invariants.
Results for suspended models with 0th order reduced rank invariants are not
shown due to being similar to the sixth table. The choice of initial ǫ follows
from the algorithm of [2].

to use the structure of cubical sets to represent the image data of the two
compared images, respectively X and Y . One next generates the cubical
chain complexes C(X) and C(Y ). The authors perform experiments with
three types of transformations of 2D binary images: translation, rotation,
and homothety. They provide an algorithm that generates a chain map
ϕ : C(X) → C(Y ) and computes the map H∗(ϕ) it induces in homology.
That map carries the information on locations where important topologi-
cal features (connected components or cycles) of X are carried to Y by the
transformation. We believe that it is an interesting idea which has the po-
tential of leading to algorithms for comparing shapes whose calculation time
may compete with our matching distance methods.

Our model easily adapts to the described method of [13] due to the
functoriality of the suspension map. Once we define the chain complexes
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of the suspended images SX and SY and the suspended chain map Sϕ :
C(SX) → C(SY ), we get the homology map

H∗(Sϕ) : H∗(SX) → H∗(SY ).

The only practical issue is in suitable choice of combinatorial structures. In
[13, 1, 20], and in many other works on applications of topology to digital
imaging, one uses cubical sets and cubical complexes. We refer the reader to
[19, Chapter 2] for a detailed presentation of those structures as well as of the
cubical homology theory. There are three main reasons behind this choice.
First, it is the most appropriate for representing image pixels, voxels or, more
generally, n-dimensional pixels. Second, the calculation of homology based
on cubical sets is by far more efficient than that based on triangulations.
Third, elementary cubes have this nice property that the product of two
elementary cubes is also an elementary cube of higher dimension, while the
product of two simplices is not in general a simplex. However, the suspension
operation is based on contracting a subset of a cylinder to a single point (a
vertex of a cone), and thus it produces a polyhedral set which is no longer
a cubical set. Luckily, the efficient cubical homology algorithms may still
be applied by using relative homology, thus one may avoid triangulating the
suspended set. In brief, the relative homology of a pair of cubical sets gives
the same information as the homology of the set obtained by contracting
a subset to a single point, so the actual contraction does not need to be
realized in practice. The idea is illustrated by Figure 7. More explicitly, we
have the isomorphism:

H̃∗(SX) ∼= H∗(ΣX, [x0]) ∼= H∗(X × [−1, 1], [x0]) (18)

where [x0] = X × {−1, 1} ∪ {x0} × [−1, 1] is the equivalence class of the
chosen base point x0 of X under the relation defining ΣX. Given a pair of
cubical sets A ⊂ X, we get

H∗(SX,SA) ∼= H∗(ΣX,ΣA) ∼= H∗(X × [−1, 1],X × {−1, 1} ∪A× [−1, 1]).
(19)

Similarly, one can deal with the relative homology of sublevel sets of the
suspended space.

We leave up to the reader’s imagination further examples of problems
where our model can be applied. We also believe that other topological
operations than the suspension might also be found to be of interest in
imaging.

5 Appendix: Proofs of main mathematical state-

ments

We now sketch, for the interested reader, proofs for some of the theorems
we used in this paper. These proofs are original work by the authors.

Proof of Lemma 2.2 If α = m0 is the absolute minimum of f , then we
obviously have S(Mα) = (SM)α.
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Figure 7: Left: the suspension of a cubical set (in light grey). Right: the
product of this same cubical set with the interval [−1, 1]. Assuming that the
lower left vertex is the chosen base point x0, the set (X × [−1, 1]) ∪ ({x0}×
[−1, 1]) is in dark grey.

Let EM = M × [−1, 1] and (EM)α be the sublevel set of Ef . We
first assume that α is a regular value and construct a strong deformation
h : X × [0, 1] → X of the set

X = (EM)α ∪ (M × {−1, 1})

onto
A = E(Mα) ∪ (M × {−1, 1}).

These sets are illustrated in Figure 2. Forcingly, we must have h((x, s), λ) =
(x, s) for all (x, s) ∈ A and all λ ∈ [0, 1]. Hence, it is enough to continuously
extend h to (X \ A) × [0, 1]. By the hypothesis that α is regular, the gra-
dient vector field −∇Ef defines a flow t 7→ ϕ((x, s), t) on X \ A such that
the values of Ef decrease along its trajectories. In the absence of critical
points, any (x, s) ∈ X \ A is sent by ϕ to A in a finite time t(x, s). By stan-
dard arguments from the dynamical systems theory, t(x, s) is a continuous
function of (x, s).

We extend h to (X \ A) × [0, 1] by the formula

h((x, s), λ) := ϕ((x, s), λt(x, s)).

It is easily verified that h is a strong deformation retraction of X onto A.
Since, for each λ, h(·, λ) is the identity map on M × {−1, 1} ⊂ A, h

extends to the deformation h̃ : (SM)α × [0, 1] → (SM)α by applying the
quotient map. In particular, we have the homotopy equivalence S(Mα) ∼=
(SM)α for a regular value α.

Now let α be a critical value, other than the absolute minimum m0 which
is already taken care of. Since it is isolated, there exists ǫ > 0 such that all
values in (α,α + ǫ] are regular. It is known from the classical Morse theory
that Mα is a strong deformation retract of Mα+ǫ. Therefore, Mα

∼= Mα+ǫ,
hence S(Mα) ∼= S(Mα+ǫ). By the same argument, (SM)α ∼= (SM)α+ǫ. By
the preceding construction, S(Mα+ǫ) ∼= (SM)α+ǫ. By transitivity, S(Mα) ∼=
(SM)α.
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Proof of Theorem 2.3 Equation (5) is a consequence of (1), Lemma 2.2,
and the functoriality of the suspension operation. Equation (6) is an obvious
consequence. Equation (8) follows from the fact that m0 is the absolute
minimum of the function at which a 0th order homological generator of
infinite persistence is born. For proving Equation (7), the above arguments
carry over to prove the commutativity of the diagram:

H0(Mα)
H0(j

(α,β)
f

)
−→ H0(Mβ)





y

∼=





y

∼=

H1(SMα) ⊕ F
H1(j

(α,β)
S1f

)
−→ H1(SMβ) ⊕ F

To complete the proof, let x0, v1, . . . , vn be representative vertices of a
basis of H0 homology generators for Mα, and x0, w1, . . . , wm be those of a
basis for Mβ. We have

H0(Mα) = ⊕n
k=1F[vk − x0] ⊕ F[x0] = H̃0(Mα) ⊕ F[x0]

and the same holds true for H0(Mβ) with respect to wk’s. The conclusion is
reached by carrying the presented direct sum decomposition of the spaces to
the isomorphisms shown by vertical arrows in the diagram and comparing
their ranks.

Since ΣMα is homotopy equivalent to SMα for each α, the arguments
carry over to Σ1f .

Proof of Theorem 2.5 Equations (9) and (10) are direct corollaries, re-
spectively, of (5) and (6). Now Equation (12) derives from (8), which signifies
that the rank invariant function ρ0S1f

has a single cornerpoint (m0,∞). Sim-

ilarly, ρ0S1g
has only one cornerpoint (n0,∞). It follows that d(ρ0S1f

, ρ0S1g
) =

|m0 − n0|.
To prove Equation (11), see that from (7), the rank invariant functions

ρ0f and ρ1S1f
differ only in that the former has one cornerpoint at infinity with

the value m0 which the latter does not have. Similarly, ρ0g has a cornerpoint
(n0,∞) not present in ρ1S1g

. Therefore, the computation of d(ρ1S1f
, ρ1S1g

)
requires computing the bottleneck distance between two proper subsets of
the points involved in the computation of d(ρ0f , ρ

0
g). Equation (11) follows.

However, in the case where m0 = n0, these two cornerpoints at infinity,
differing by 0, will be matched in the optimal bijection between the sets of
cornerpoints of ρ0f and ρ0g and will not influence the value of d(ρ0f , ρ

0
g). From

this, and Equations (10) and (12), (13) follows.

Proof of Theorem 2.6 D(ρSkϕ, ρSkψ) is obtained as the supremum over
admissible pairs of d(ρ

red
Skϕ

(~l,~b)

, ρ
red

Skψ

(~l,~b)

) (with the obvious change for the re-

duced rank invariants). Let us fix a particular pair (~l,~b) ∈ Admk. It is
obvious from definitions that redSkϕ

(~l,~b)
(v) = S1(redϕ

(~l,~b)
)(v) = redϕ

(~l,~b)
(v) for all
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v ∈ V(K). Now, S1(redϕ
(~l,~b)

)(wj) ≥ redSkϕ
(~l,~b)

(wj) = mini li maxi(mi,0 − bi)/li,

j = 0, 1.
However, the appearance of w0 and w1 in the sublevel filtration for the

function redSkϕ
(~l,~b)

before their appearance for the function S1(redϕ
(~l,~b)

) does

not affect their rank invariants of order 1 or greater, which will be identical.
This along with Theorem 2.5 and the application of linear interpolation to
redϕ

(~l,~b)
and redψ

(~l,~b)
allows us to show that

d(ρ̃q+1

red
Skϕ

(~l,~b)

, ρ̃q+1

red
Skψ

(~l,~b)

) = d(ρ̃q+1
S1(red

ϕ

(~l,~b)
)
, ρ̃q+1

S1(red
ψ

(~l,~b)
)
) = d(ρ̃q

redϕ
(~l,~b)

, ρ̃q
redψ

(~l,~b)

), q ≥ 0,

d(ρq+1

red
Skϕ

(~l,~b)

, ρq+1

red
Skψ

(~l,~b)

) = d(ρq+1
S1(red

ϕ

(~l,~b)
)
, ρq+1

S1(red
ψ

(~l,~b)
)
) = d(ρq

redϕ
(~l,~b)

, ρq
redψ

(~l,~b)

), q ≥ 1,

and

d(ρ1
red

Skϕ

(~l,~b)

, ρ1
red

Skψ

(~l,~b)

) = d(ρ1S1(red
ϕ

(~l,~b)
), ρ

1
S1(red

ψ

(~l,~b)
)
) ≤ d(ρ0redϕ

(~l,~b)

, ρ0
redψ

(~l,~b)

),

yielding Formulas (14), (15) and (16).
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