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BI-FILTRATIONS AND PERSISTENCE PATHS FOR 2-MORSE

FUNCTIONS

RYAN BUDNEY
TOMASZ KACZYNSKI

Abstract. This paper studies the homotopy-type of bi-filtrations of compact manifolds
induced as the pre-image of filtrations of R2 for generic smooth functions f : M → R

2. The
primary goal of the paper is to allow for a simple description of the multi-graded persistent
homology associated to such filtrations. The main result of the paper is a description of the
evolution of the bi-filtration of f in terms of cellular attachments. An analogy of Morse-
Conley equation and Morse inequalities along so called persistence paths are derived. A
scheme for computing path-wise barcodes is proposed.

1. Introduction

In the past two decades, the Morse theory of smooth functions on manifolds, and singu-
larity theory, its extension to functions with multi-dimensional values, have driven a lot of
attention in the applied mathematics and theoretical computer science communities due to
their applications in Imaging, Visualisation and, most recently, Topological Data Analysis
(TDA). As those theories has been extensively developed for nearly one century, the new
and potential applications bring different perspectives.

Morse theory is a tool that allows one to use real-valued functions on a manifold to
give a combinatorial description of that manifold, in the language of handle decompositions
or CW-complexes. A topological model for M is built following changes in sublevel sets
Mg≤y = g−1((−∞, y]) of a Morse function (i.e. smooth and generic) g :M → R. The central
theorem [18] about the filtration of M by sublevel sets is that:

(1) The homotopy-type of Mg≤y does not change for y ∈ [a, b] provided there are no
critical values of g in the interval [a, b].

(2) If there is precisely one critical value in [a, b] then the Mg≤b is obtained from Mg≤a

by a handle attachment, which up to a homotopy-equivalence, is a cell attachment.

In Imaging, TDA, and related techniques of persistent homology, the interest shifts to the
function itself. Its domain comes from interpolation of data and is most often a fairly well
understood space such as Rn or, if we seek compactness, a triangulated sphere Sn. That is a
typical setting in works on the shape similarity by size function methods such as in [3]. When
it comes to the study of functions with multi-dimensional values, there are new challenges
and more differences between the classical singularity theory setting and the applied context.
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Given the success of Morse theory, the study of generic smooth mappings from manifolds
to surfaces f :M → Σ is a natural next-step. The most basic elements of the theory involves
the description of the stratification of the manifold M by the singularity types, together with
the local properties of the mapping around singular points. This was first worked out by
Whitney [25] (see also [13]) when M is a surface, and fully generalized in the subsequent
decades [24, 22]. Perhaps the main difference between the study of functions taking values
in R vs. in a surface is that the set of fibers {f−1(a) | a ∈ Σ} lack a linear order on them: a
poset relation has to be taken into account. In contrast, the real numbers have the relatively
canonical poset {(∞, a] | a ∈ R} of half-infinite intervals.

To be specific, let us state the posets studied in this paper. Consider f :M → R
2, where

M is an m-manifold of dimension m ≥ 2, and the plane R2 is endowed with the poset relation

(a, b) � (a′, b′) ⇐⇒ a ≤ a′ and b ≤ b′.

Any such function gives rise to a bi-filtration of M defined as the family Mf = {M(a,b)}(a,b)∈R2

of subsets of M given by
M(a,b) = {p ∈ M | f(p) � (a, b)}.

Equivalently, the sets M(a,b) are the preimages of the quadrants C(a,b) = (−∞, a] × (−∞, b]
under f . They are nested with respect to inclusions, that is: M(a,b) ⊆ M(a′,b′), for every
(a, b) � (a′, b′).

Persistence consists of analyzing homological changes occurring along the bi-filtration
as the point (a, b) varies. Note that the boundary ∂C(a,b) of the quadrant C(a,b) is not a
submanifold of R2: it can be viewed as a manifold with a corner. The problem of bi-filtration
has been addressed in the presented setting by Smale in 1975 [23] and further investigated
by Wan [24]. As it is pointed out by Smale, the study is historically motivated by the Pareto
optimal problem of simultaneously maximizing several functions. Our work is an extension
of the work done in [23, 24], with the same topic viewed from a different perspective.

There has been a lot of progress in computing persistent homology for multi-filtrations
which include function g : M → Rk as a special case, for any 1 < k < dimM . We refer
the reader to [6, 8, 7] and references therein. However, most of dimension-independent work
on computing persistent homology, often in a discrete setting, is in a sense ‘geometry-blind’,
that is not giving much insight to the particular types of singularities one may encounter.
Providing that insight is the main motivation for this paper. In particular, in [1], a Forman-
type discrete analogy of multidimensional Morse functions is investigated. In the conclusion
of that paper, it is pointed that an appropriate application-driven extension of the Morse
theory to multifiltrations for smooth functions is not much investigated yet, and it would
help in understanding the discrete analogy. The present work is a step in that direction.
Moreover, Section 3 shows prospects for practical implementations. A study of discrete
Forman type multidimensional Morse functions is currently under way by Landi at. al. for
instance in [15].

This paper follows the above outline. We begin Section 2 with the definition of a 2-Morse
function f : M → R

2, following [24, 11]. This allows us to define the (oriented) signature
invariant (see Definition 2.2). We follow this definition with a few simple examples where
one can explicitly compute the homotopy-types of the filtration M(a,b) for all (a, b) ∈ R

2.
The main result of the paper follows.
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Theorem 1.1. If f : M → R
2 is a 2-Morse function then the bi-filtration Mf has singular

points consisting entirely of corner and tail singular points.

In short, this theorem gives us a stratification of the plane R
2 such that the homotopy-

type of M(a,b) is constant in the connected co-dimension zero strata. We follow that up by a
description of how the homotopy-type of M(a,b) changes as (a, b) crosses a co-dimension one
stratum.

Our Lemma 2.8 is the analogue of (1), in that it tells us that generically the homotopy-type
of the manifolds M(a,b) = f−1(C(a,b)) is locally-constant. The nature of the proof of Lemma
2.8 is significant to the rest of the paper, describing a rather flexible technique of vector
field flows, allowing us to construct conjugate isotopies (i.e. fiber-preserving isotopies, also
known as isotopies that are horizontal diffeomorphisms with respect to the map f) in both
M and the plane R

2. This allows us the freedom to frame our remaining arguments in the
language of how the homotopy-type of f−1(Ct) changes when Ct is an arbitrary ’smoothly-
varying’ 2-manifold in the plane. There are however some points in the plane where the
homotopy-type of M(a,b) does change, this is described in Theorem 2.9. The main feature of
Theorem 2.9 is that the homotopy-type of M(a,b) changes via handle (or cell) attachments.
In the proof we see one of the handle attachments comes directly from a classical Morse
theory argument. The second type of handle attachment uses global features of the singular
point set of f , and is perhaps best thought of as a Bott-style handle attachment. We give
a brief account of Bott’s variant of Morse theory. Proposition 2.10 summarizes elements
of the proof of Theorem 2.9, describing the dimension of the cell attachments in terms of
the oriented signature invariant. One last feature of Section 2 is the observation that at
’cubic’ points (a, b) ∈ R

2, while the homotopy-type of M(a,b) generally does not change, the
fibrewise homotopy-type (with respect to the map f) does change. Roughly speaking these
cubic points correspond to pairs of cancelling handles (or cells).

In Section 3, we turn our attention to the consequences of our study for the bi-filtered
persistent homology. We briefly review the known its goals and a technique of reducing
its computation to one-dimensional persistence. In particular, the foliation method that
has been introduced in [3] for size functions, used in [4, 8] for multidimensional persistent
homology and later named as fibered barcode in the context of persistence modules [17]. As
it is visible in examples of Section 2, in the presence of the poset relation, there are multiple
ways of building the topology of M by crossing different arcs of the critical value set while
respecting the poset relation. That leads us the Definition 3.1 of persistence paths. It is a new
concept which is somewhat analogous to the mentioned foliation method of [8]. It also can be
viewed as an analogy of a flow induced by the generalized gradient in [24] with this that our
persistence paths apply to functions f which may have cycles in the sense of [24, Definition
6.4 and 6.5]. We prove an analogy of the Morse-Conley equation [21] (Theorem 3.2), and
derive from it Corollary 3.4 on strong Morse inequalities for persistence paths. This gives
us a flexible family of Morse inequalities associated to f , extending the work of Wan [24].
We conclude Section 3 by introducing path-wise barcodes in Definition 3.5 and describing
a scheme for computing the barcodes based on a small representable subfamily Rep(f) of
all persistence paths. While Carlsson and Zomorodian outline an argument that there is no
complete and discrete invariant of multi-graded persistent homology [6], the primary result
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of this paper strikes a more optimistic note in the case of multi-filtrations induced by smooth
functions.

In Section 4 we discuss some possible future research directions.

The authors would like to thank Hyam Rubinstein, Marian Mrozek, and Michael Lesnick
for helpful suggestions.

2. Fold and cubical singularities

In the classical Morse theory of smooth real-valued functions and, respectively, singularity
theory of functions with values either in a 2-dimensional manifold Σ, a critical point or
singular point is a point p ∈M at which Df(p) is not of maximal rank. The corresponding
point c = f(p) in the target space is called a critical, respectively, singular value of f .
The terminology found in the literature is not consistent: sometimes the terms critical and
singular are interchanged.

In computational topology, we deal with non-smoothness and degeneracy, so a topolog-
ical definition is more appropriate. It is also helpful in describing handle attachments. In
addition, in the presence of the poset structure of bi-filtrations, as we shall see soon, there
is a substantial difference between singularity in the differential sense and criticality in the
topological sense. We shall adopt the following definition.

Definition 2.1. A homotopy regular value of f with respect to the bi-filtration of M is a point
(a, b) ∈ R

2 such that in some neighbourhood U(a,b) of (a, b), for all (a′, b′), (a′′, b′′) ∈ U(a,b)

with

(a′, b′) � (a′′, b′′),

the inclusion M(a′,b′) →֒ M(a′′,b′′) is a homotopy equivalence. If this condition fails, (a, b) is
called a homotopy critical value.

A weakening of this definition suited to persistent homology is the notion of homologi-
cal regular and critical values defined by replacing homotopy equivalence by isomorphism
induced in homology. This coincides with the definition of given in [7, Definition 3.4].

When f : M → R is a Morse function, the sets of critical points and values in the
differential and topological sense coincide. For R

2-valued functions, even the generic ones,
they are substantially different. We shall adopt the terms of singular points and values for
those given by differential definition and critical to those given by Definition 2.1. Given
f :M → R

2. we consider the following sets:

Singp = {p ∈M | rankDf(p) < 2}, Singv = f(Singp),

Critv = {(a, b) ∈ R
2 | (a, b) is homotopy critical}, Critp = f−1(Critp).

We shall soon see that the arcs of Singv along which both coordinates (a, b) increase are
homotopy regular, so they are not subsets of Critv. The topologically significant arcs are
those whose normal vectors have both coordinates of the same sign. Conversely, Critv
contains horizontal or vertical half-lines passing through the vertex of C(a,b) and ‘kissing’
points on the singularity Singv but not contained in it. In Proposition 2.10 we give a
classification of different types of criticality.
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As we just noticed, Definition 2.1 also applies to points (a, b) ∈ R
2 which are not necessarily

the values of f , that is, are not in the image f(M). For that reason we will refer to them
as to points rather than values and whether we speak about points in M or in R

2 should be
made clear from the context.

We begin with a definition from Gay and Kirby [12, 11], and earlier Wan [24].

Definition 2.2. A 2-Morse function (also called Morse 2-function) is a smooth function

f :M → Σ

where M is an m-manifold, m ≥ 2 and Σ is a 2-manifold satisfying a local condition. For any
point p ∈M there are neighbourhoods Up ⊂M of p in M and Vf(p) ⊂ Σ of f(p) in Σ together
with diffeomorphisms φ : Up → U ′

0 ⊂ R
m and ψ : Vf(p) → V ′

0 . with φ(p) = 0, ψ(f(p)) = 0
making the diagram below commute

Up
f|Up

//

φ

��

Vf(p)

ψ

��

U ′
0

// V ′
0

where the bottom horizontal arrow must be one of the three:

• (x1, x2, · · · , xm) 7−→ (x1, x2) for this, p is a regular point.
• (x1, x2, · · · , xm) 7−→ (x1,±x

2
2 + · · ·+±x2m) for this, p is a fold point.

• (x1, x2, · · · , xm) 7−→ (x1, x
3
2 + x1x2 +±x23 + · · ·+±x2m) for this p is a cubic point.

Just like with Morse functions there are elementary transversality conditions equivalent to
Definition 2.2 [24] §1. This allows the conclusion that for any smooth function f : M → Σ
where Σ is a 2-manifold, via a small perturbation of f we may convert f into a 2-Morse
function, i.e. 2-Morse functions form an open and dense subset of the space of smooth
functions M → Σ.

The curves of the fold singularities come equipped with transverse-oriented indices. This
is analogous to the index of a critical point of a Morse function, but made slightly more
complex by the codomain of our function being R

2.
The index has the form of a triple (v, i, j) where v is a vector transverse to the singular

value set, and i is the dimension of the eigenspace that is folded into the v direction, while j is
the dimension of the eigenspace that is folded into the −v direction. Thus i+j = m−1. Due
to this convention we need the equivalence relation (v, i, j) ∼ (−v, j, i). Further notice that
due to the nature of the cubic singularity there are two fold-type singularities that merge,
with one fold being of type (v, i, j) and the other fold being of the type (v, i+ 1, j − 1). In
our diagrams we will typically draw the v vectors, and only plot the pair (i, j). In general
i is an integer in the set {0, 1, 2, · · · , m− 1}, see Figure 1. Our oriented index makes sense
only on the fold points. We give a more precise definition in the next paragraph.

Definition 2.3. Given a Morse 2-function f : M → R
2, and a point p ∈ M in the fold

singular points, then
Hfp : TpM ⊗ TpM → R

2

is a bilinear function taking values in a 1-dimensional subspace of R2, complimentary to the
image of Dfp. Choosing v ∈ R

2 spanning this subspace, we can treat Hfp as real-valued
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PSfrag replacements

(i, j)

(j, i)

Figure 1. Depiction of the symmetry of the index of fold points.

bilinear function, i.e. by considering Hfp · v : TpM ⊗ TpM → R. As this is a symmetric
bilinear function, Sylvester’s law of inertia gives us a well-defined signature invariant, (i, j),
that can be thought of as the dimensions of the maximal subspaces where the form is positive
or negative-definite respectively.

Notice that at a cubic singular point the Hessian is degenerate, i.e. i+ j = m−2 < m−1,
with the null space together with the image of Dfp spanning the cusp’s plane of curvature.

Before we begin the examples, it is important to be aware that a Morse function f :M → R

gives rise to a cell decomposition of M [18]. These cell decompositions are computable in
terms of flow lines of vector fields conditioned by the derivative of f . The cellular descriptions
of M in their most natural state are homotopy-theoretic in nature, i.e. these techniques
give homotopy-equivalences between M and CW-complexes, not homeomorphisms. That
said, CW-complexes are far from ideal tools to describe manifolds. The adaptation of CW-
complexes to smooth manifolds are called handle decompositions, developed by Smale in his
proof of the h-cobordism theorem. A k-cell for an m-manifold M is a map Dk → M that
satisfies various properties, such as being an embedding on the interior. A k-handle for
an m-manifold is a smooth embedding Dk × Dm−k → M , i.e. handles are not only fully-
embedded, but they contain the data of both the cell and a tubular neighbourhood of the
cell. This allows handle decompositions to not just describe the homotopy-type of M , but
also its smooth structure. A sublety of handle attachments is that a k-handle is attached
only on part of its boundary, i.e. (∂Dk) × Dm−k, thus there is a risk that we are entering
the class of manifolds with cubical corners. The exposition of Kosinski [14] gives careful
consideration to this problem, keeping the constructions purely in the language of manifolds
with boundary. A Morse function f :M → R gives a handle decomposition of M , moreover
this handle decomposition describes the smooth structure on M .

Starting from illustrative examples, we investigate the relation between bi-filtration and
the classical singularity theory.

Example 2.4. If g :M → R is a Morse function, then

f : S1 ×M → R
2

given by f(z, p) = z · g(p) is a 2-Morse function with only fold singularity types.
If the singular values of g consist of positive real numbers 0 < c1 < c2 < · · · < ck then the

singular values of f consist of the circles of radius c1, c2, · · · , ck centred at the origin.
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(m− Ik, Ik)

HI1

HI1+1

HI1+1

Hm−I1

HIk

HIk+1

HIk+1

Hm−Ik

Figure 2. Singular values for f in Example 2.4 (left) and persistence diagram (right)

If the singular value ci (of g) has index Ii, then the circle of f at radius ci is also a fold-type
singular value set of index (r̂, m− Ii, Ii) where r̂ is the unit outward-pointing radial vector.

The persistence diagram for the preimages M(a,b) is a union of the descending part of the
singular values of f together with some vertical and horizontal lines at the end-points.

In Figure 2, the diagram on the left depicts the singular values of the function f . These
are the circles of rotation of the singular values of g. Say the red circle corresponds to a
singular point of index Ii. An alternative way of saying this is that the homotopy-type of
the space g−1 ((−∞, t]) as t transitions through the point ci changes by a Ii-cell attachment.

In the figure on the right, we describe how the preimages M(a,b) change as the points
(a, b) ∈ R

2 vary.
Let us take the blue circle for example, on the left. This is the singular value c1 of index

I1. On the right, this singular circle gives us two singular arcs. The lower blue arc is properly
embedded in R

2, and transitioning through it corresponds to a m − I1 handle attachment.
This should be thought of as a dual handle to c1 (of g). The other singular value is a
‘fishtail’, divided into three properly embedded arcs. The round arc corresponds to a handle
attachment of index I1, while the two straight lines correspond to handle attachments of
index I1 + 1 respectively. The handles of index I1 + 1 should be thought of as cancelling
handles to the index I1 handle. Thus attachment of all three handles of index I1, I1+1, I1+1
respectively has the same effect on the homotopy-type as a single attachment of a handle of
index I1 + 1.

Example 2.5. Given a round sphere S2 ⊂ R
3, the orthogonal projection map π : R3 → R

2

when restricted to S2 has singular values the unit circle, corresponding to an equatorial circle
in S2 of singular points. Imagine the sphere being made of rubber. We grab a small section
of the sphere (away from the equator) and fold it over itself, creating a cupped sphere. This
introduces an eye singularity in the projection map, as depicted below.
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(1, 0)

(1, 0)

(0, 1)

H0

H0

H1

H1

H2

H2

0

1

2

1 + t

1 + t2

Figure 3. Cupped sphere projection

The pure fold singularity, the equator, is in blue. The red singularity is an ’eye’ type
singularity, with precisely two cubic (cusp) points. This is depicted on the left. In the
central figure we describe the handle attachments of the bi-filtration. In the figure on the
right we describe the Poincaré polynomials of the bi-filtration, i.e. the bi-filtration is regular
at the white points, with transitions only at the red and blue points.

We give a fairly general example with cubic singularities.

Example 2.6. Cerf theory tells us that a 1-parameter family of real-valued functions on
a manifold is not (generically) Morse at all parameter times. There will be finitely many
times where the Morse singularities devolve into cubic singularities. Thus take a generic
1-parameter family of functions on M , F : S1 → C(M,R), and form the function

f : S1 ×M → R
2

given by f(v, p) = F (v)(p) · v. The function f is 2-Morse. The bi-filtration M(a,b) will be
described in Theorem 2.9.

Notice Example 2.6 is a direct generalization of Example 2.4, i.e. Example 2.4 can be
derived by setting F to be the constant function.

Example 2.7. A rather colourful example comes from orthogonal projection R
4 → R

2 pre-
composed with one of the standard embeddings of the Klein bottle K2 → R

4. This example
appears in [24]. The singularity theory for mappings of 2-manifolds into the plane, of which
this is a good demonstration, was originally discovered by Whitney [25].

We have seen in the previous examples that the singular points of the filtration consist of
a subset of the singular points of the mapping f , together with some regular points of the
original mapping – these were a collection of vertical and horizontal rays. We divide singular
points of the filtration into two classes corner singular points, and tail singular points.

• We say a point (a, b) ∈ R
2 is a corner singular point, if for all suitably-small neigh-

bourhoods U of (a, b) in R
2 there are points (a′, b′) ∈ U such that U∩C(a′,b′) intersects

the singular set of f in both the horizontal and vertical boundary edges of C(a′,b′). If
we write the coordinates of R2 as (x, y) then this happens when locally writing the
singular values of f as the graph of a function y(x), then the function y(x) would be
decreasing at x = a. A corner singular point is demonstrated in Figure 5 (G).
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0
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1 + t

2 + t

1 + 2t
1 + 3t
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Figure 4. Klein bottle projection

• For (a, b) to be a tail singular point, we require that C(a,b) intersects the singular
values of f tangentially, on either the interior of the horizontal or vertical boundary
curve. In a neighbourhood of the tangential intersection we require the singular set
to be on one side of the cube, i.e. either contained in the cube or in the closure of
its exterior. Thus it is a ’kissing’ tangency. The two tail singular point types are
demonstrated in Figure 5 (B).

Notice that Figure 5 (R) describes a regular point (a, b) of the filtration Mf . We should
note that while it is true a point can be both corner singular and tail singular at the same
time, this is a codimension two condition, thus it is relatively rare. On the other hand, tail
and corner singular points are codimension one conditions.

The proof of Theorem 2.9 has several special cases, but there is one elemental argument
that is common to all cases. We put this in the next lemma.

Lemma 2.8. If f :M → R
2 is a 2-Morse function, provided the point (a, b) ∈ R

2 is regular
for f , and the boundary of C(a,b) intersects the singular values of f transversely then (a, b) is
not only a regular point for the filtration Mf , but the filtration is locally trivial near (a, b).

Proof. We can prove something considerably stronger when (a, b) ∈ R
2 is regular – the

filtration is locally trivial near (a, b). Precisely, there is a neighbourhood U of (a, b) ∈ R
2

such that for any (a′, b′) ∈ U there is a diffeomorphism φ̃ :M → M covering a diffeomorphism

φ : R2 → R
2 such that φ̃(f−1(C(a,b))) = f−1(C(a′,b′)) and φ(C(a,b)) = C(a′,b′). When we say φ̃

’covers’ φ we mean the following diagram commutes.
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(a, b)(a, b)(a, b)

(R) (B) (G)

Figure 5. Three intersection types with dimension 1 stratum of the singu-
lar values. Type (R) consists of transverse intersections with the 0 and 1-
dimensional strata of the singular value set for f . Type (B) consists of both
transverse intersections and simple ’kissing’ non-transverse intersections with
the 1-strata of the singular value set. Type (G) consists of transverse inter-
sections together with a corner-type intersection. Thus (R) is generic, i.e.
codimension 0 in the filtration, while types (B) and (G) are of higher codi-
mension.

PSfrag replacements

(a, b)(a, b)

(a, b)

(R) (B) (G)

Figure 6. Three intersection types with dimension 0 stratum of the singular
values. Type (R) consists of generic outward and inward intersections with
the 0-dimensional stratum of the singular value set for f . Type (B) consists
non-generic intersections with the 0-dimensional stratum. Type (G) consists
of a generic corner-type intersection with the 0-dimensional stratum. In the
filtration parameters, (G) is of codimension two. Type (B) is of codimension
one if it exists, but for a generic 2-Morse function these singularity types are
avoidable, i.e. one can convert them into type (R) after a small isotopy applied
to f .

M
φ̃

//

f

��

M

f

��

R
2 φ

// R
2
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The map φ̃ is sometimes called a fibre-preserving diffeomorphism of f , or a horizontal
diffeomorphism. A consequence of our proof will be that φ̃ and φ are close to the identity
diffeomorphism, where ’close’ is controlled by the size of the neighbourhood U . That such a
neighbourhood exists can be deduced from the Transversality Stability Theorem [13].

The idea of the proof is to find a vector field in the plane whose flow maps C(a,b) to C(a′,b′)

provided (a′, b′) is near-enough to (a, b). We construct the vector field in a manner that allows
us to lift it to a vector field on M , thus the flow of this vector field will send f−1(C(a,b)) to
f−1(C(a′,b′)). Given that the derivative of f is not an epi-morphism at singular points of f ,
we have to take some care defining the vector field. At fold points of f the derivative of f
is only onto the tangent space of the singular-value set. Thus our neighbourhood U will be
constrained by the sole demand that the singular value set needs to be transverse to ∂C(a′,b′)

for all (a′, b′) ∈ U . An example illustration of a valid U is depicted in the figure below. The
green region illustrated is the set of points UC = {p ∈ ∂C(a′,b′) : (a

′, b′) ∈ U}.
For the sake of argument, let’s assume b′ = b, i.e. we break the proof into two steps, i.e.

step 1 with b′ = b and step 2 with a′ = a. We further assume a′ > a as the a′ < a case
is analogous. Let Singv(f) denote the singular values of f , i.e. Singv(f) ⊂ R

2. Consider
the curves of Singv(f) ∩ UC. On the path-components of Singv(f) ∩ UC that live in the
vertical portion of UC, we define the vector field to be the unique vector field that is tangent
to Singv(f), and whose x-component unit, in particular positive. On the path components of
Singv(f)∩UC that are in the horizontal portion of UC we define the vector field to be zero.
In the horizontal portion of UC we extend the vector field to be zero. In the vertical portion
of UC we interpolate between the definition on Singv(f) ∩ UC and the vector field (1, 0),
using a tubular neighbourhood of Singv(f) in UC. Doing this we can ensure the vector field
in the vertical portion of UC always has unit x-component. We extend the vector field to
all of R2, choosing any extension that keeps the length of the vector field bounded, i.e. so
that its flow is complete. This gives us a flow on R

2 that sends C(a,b) to C(a′,b). Our vector
field lifts to M since the derivative of f is onto the tangent spaces of Singv(f), and for
regular points, the derivative has rank two. By the existence and uniqueness theorem for
solutions to ODEs, the flow of an f -lifted vector field is conjugated (by f) to the flow of the
original vector field on R

2. Thus the flow on M is fiber-preserving and sends f−1(C(a,b)) to
f−1(C(a′,b)).

PSfrag replacements
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�
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Figure 7. Rounding C(a,b) to produce C ′
(a,b).

Lemma 2.8 has several natural generalizations. For example, let C and C ′ be compact
2-dimensional submanifolds of R2. Then provided there is an isotopy between C and C ′ such
that ∂C is transverse to the singular value set of f through the entire isotopy (technically
one needs to include intersections pairs of Singv(f) curves as 0-strata in Singv(f) for this
statement to be true), then f−1(C) and f−1(C ′) are fiberwise diffeomorphic. The condition
that the isotopy is transverse to the singular value set through all parameter times guarantees
that the boundary of C does not pass over a cubic point, or ever become tangent to the
singular value set. These are the events that can trigger changes in the fibrewise homotopy-
type of the preimage.

Similarly, provided (a, b) is a regular value of f we can round the corner, turning C(a,b)

into a smooth manifold C ′
(a,b) such that f−1(C(a,b)) and f−1(C ′

(a,b)) are homotopy-equivalent.

We choose to let C be a compact submanifold of R2 for the following arguments, i.e. rather
than working with quadrants C(a,b) we choose to work with compact smooth manifolds, as it
exposes the essential features of the argument.

The next theorem states that if the boundary of C (or quadrant C(a,b)) passes over a cubic
point in the isotopy, the fiberwise homotopy-type changes but the homotopy-type does not.
Moreover, if the boundary of C passes across the singular value set (at a tangency or corner,
i.e. Figure 5 (B) and (G)) then the homotopy-type changes via a cell attachment. We also
give enough details that allow the computation of the attaching maps.

Theorem 2.9. If f : M → R
2 is a 2-Morse function then the bi-filtration Mf has singular

points consisting entirely of corner and tail singular points. Further, provided the two height
functions πi : R

2 → R given by π1(x, y) = x and π2(x, y) = y restrict to Morse function
on the fold singular values of f , with distinct critical heights then the transitions to the
homotopy-type of M(a,b) when (a, b) is either a corner or tail singular point are given by
individual cell attachments.

Proof. Rather than using the restrictive language of quadrants, let C be a compact subman-
ifold of R2 and we investigate the change in homotopy-type of f−1(C) through an isotopy of
C. We have two cases to consider.

Case 1 is a regular tangency – analogous to a type-2 Reidemeister move of the planar
diagram, in that it creates two points of intersection between the boundary of C and the
singular value set. Roughly speaking there are two types of regular tangency moves. This
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move can be described via a ’bigon modification’ where one appends a bigon to the manifold
C, attaching along one of the edges. The second edge of the bigon belongs to Singv(f). In
the ’non-engulfing’ move, Singv(f) points out of C after the bigon is appended, while in the
engulfing version, Singv(f) points into C as one departs the bigon.

In the non-engulfing version of case 1, the move corresponds to a cell attachment of index
i provided the index of Singv(f) is of the form (v, i, j) where v is in the direction of ∂C as
it sweeps over Singv(f).

Let C ′ denote the submanifold of R2 after the isotopy of C has been applied, i.e. as in the
right hand side of the figure above. Using an argument analogous to Lemma 2.8 we see that
f−1(C ′) has the same homotopy-type as f−1(C) ∪ f−1(B) where B is the blue arc below.

PSfrag replacements

C

C ′

Singv(f)

Case 1, non-engulfing

The restriction of f to f−1(B), and after identifying B with an interval in R, is a 1-Morse
function, thus f−1(B) has the homotopy-type of f−1(B ∩ C) attach an i-cell, by the Morse
Lemma. More specifically, this is proven in Theorem 3.2 of [18].

PSfrag replacements
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Singv(f)

Case 1, non-engulfing

For the engulfing version of case 1, the cell attachment is of index i + 1 provided the
index of Singv(f) is (v, i, j), and the attaching map is analogous to the previous case, but it
should be thought of as an unbased version of a Whitehead product of the attaching map in
the previous case, with the red interval disjoint from C in the diagram below. Specifically,
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the characteristic map will be a product Di × I where the Di maps transversely to the red
interval, and I can be identified with the red interval.

PSfrag replacements

C

C ′

Singv(f)

Case 1, engulfing

The above figure indicates the rationale. Specifically, f−1(C ′) is f−1(C) union a relative
Bott-type handle. This handle should be thought of as I×Di×Dm−i−1 where (v, i, j) is the
index of Singv(f). This is because πv ◦ f is a Bott-style Morse function on f−1(B) (see the
figure below). The function πv : R

2 → R · v is orthogonal projection onto the line spanned
by v. The ’box’ B is diffeomorphic to a product B ≃ I × I where the first interval factor
corresponds to the red arc of Singv(f) disjoint from C in the figure below, while the second
interval I is in the transverse direction (i.e. can be taken to be parallel to v). Thus f−1(B)
is an interval cross an i-handle, being attached to f−1(C) along (I × ∂Di)∪ ((∂I)×Di), i.e.
∂(I ×Di). This could be thought of as an unbased version of a Whitehead product.

For details on Bott-style Morse functions, and how they give disc-bundle adjunctions for
manifolds see the paper of Bott [5] (below item 3.6). For a gentler introduction, see [2].

PSfrag replacements
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Singv(f)

Case 1, engulfing
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Case 2 is the case where the boundary of C passes over a cubic point. We will see that the
homotopy-type of f−1(C) does not change in this instance. Like Case 1 there is are ’engulfing’
and ’non-engulfing’ sub-cases. We restrict to the non-engulfing case, as the engulfing case
is similar. The main idea of the proof is that this transition corresponds to a 1-parameter
family of cancelling i and (i + 1)-handle attachments, thus we are attaching a ball along a
hemi-sphere, which results in no change in the homotopy-type.

PSfrag replacements

C

Singv(f)

Case 2
�

We should point out that Case 2 has one special case that does result in a homotopy-type
change. This is depicted in Figure 6 (B). These types of 2-Morse functions are not generic.
A small isotopy of f allows one to ensure the tangent vectors at the cusps are neither vertical
or horizontal, i.e. this at least codimension 1 in the space of smooth functions M → R

2,
thus this situation is avoidable.

Theorem 2.9 allows us to draw the singular point set of the filtration Mf from the singular
values of f , allowing automatic deduction of Examples 2.4, 2.5, and Figure 2.7.

Proposition 2.10. We summarize the cell attachments at the singular values of the filtration
Mf .

• For corner singular points, the index of the cell attachment for Mf is the same as the
index for f .

• For tail singular points, if the singular values of f near the kissing tangency are exte-
rior to the cube, then the cell attachment has the same index as f . This corresponds
to Wan terminating a Pareto arc with a positive sign [24].

• For a tail singular point, if the singular values of f near the kissing tangency are in
the interior of the cube then the index of the cell attachment is one greater than that
of the corresponding singular value for f . This correspond’s to Wan terminating a
Pareto arc with a negative sign [24].

We should note, Wan [24] gives a filtration of the manifold M when f : M → R
2 is

2-Morse, provided the 2-Morse function satisfies the no cycle condition (see Proposition 6.3
[24]). Central to Wan’s construction is the usage of flowlines of ’generalized gradient’ vector
fields – roughly these are vector fields where both coordinates are increasing (away from the
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Pareto points). When one has a cycle, one can loop endlessly between Pareto points, but
when there are no cycles, the process of connecting Pareto points via paths of generalized
gradients exhausts the manifold M and linearly orders the critical intervals of Pareto sets. In
our work there are a multitude of filtrations whether or not f has cycles. All the examples
provided so far in this paper (and all examples in Wan’s work [24]) satisfy the no cycle
condition.

The simplest example of a 2-Morse function with a cycle in Wan’s sense is a function of
the form f : S1 × D2 → R

2 having two critical arcs of index (1, 1), with the critical arcs
being properly embedded in S1 ×D2. There are generalized gradient flows on the endpoints
connecting the arcs in a cyclic ordering. While this function is only defined on a manifold
diffeomorphic to S1 × D2, with a little work one can embed this 2-Morse function into a
closed 3-manifold, but one needs to add additional critical values. There is a rather simple
cyclic example if one allows the use of 2-Morse functions of the sort f : S3 → S2. We
obtain this map as the composite of the 2-sheeted branched cover S3 → S3 over the Hopf
link together with the Hopf fibration S3 → S2, provided the Hopf fibration projection of the
Hopf link is a 2-crossing diagram in S2.

3. Persistence paths and path-wise barcodes

In a 1-D persistent homology, barcodes represent collections of parameter intervals at which
homology generators are born and killed. In multi-filtered persistent homology, in particular,
in our 2-D case, there is no simple barcode analogy, and, as Carlsson et al. pointed out in
[6], there is no complete discrete invariant. Many authors have studied rank invariants in
a module theory setting [6, 16]. A somewhat more elementary notion of persistent Betti
number (PBN) functions is presented in Cerri et al. [8, Definition 2.2]. These are collections
of functions {βf,q : ∆

+ → N ∪∞}q∈Z,

βf,q((a, b), (a
′, b′)) = rankHq(i

((a,b),(a′ ,b′)))

where

∆+ = {((a, b), (a′, b′)) ∈ R
2 × R

2 | (a, b) � (a′, b′)},

and i((a,b),(a
′,b′)) :M(a,b) →֒ M(a′,b′) is the inclusion of sublevel sets.

For computational purposes, the authors of [8] use a reduction to one-dimensional persis-
tence diagrams via so called foliation method. It consists of applying the one-dimensional
rank invariant along the lines defined by positive coordinate vectors in chosen finite grids.
That method is restated as a fibered barcode in the context of persistence modules by Lesnick
in [16, Definition 13.6].

As we observed in Section 2 on our 2-Morse function examples, although there are un-
countably many singular points, the changes in topology can be finitely characterised. They
either occur when we cross an arc of the singularity Singv in the poset-increasing direction,
or when we cross a horizontal or vertical half-line passing through the vertex (a, b) of C(a,b)

and ‘kissing’ the singularity. We will refer to both types of components of Critv as to Pareto
critical value arcs or, for short, Pareto arcs. Note that in [24], the term Pareto set refers
to a subset of Singp ⊂ M and critical intervals to its components, while our Pareto arcs
are the corresponding subsets of Critv ⊂ R

2. There are finitely many homotopically distinct
paths, with M(a,b) starting with an empty set and ending with the whole manifold. Each one
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Figure 8. Klein bottle projection, with Poincaré polynomials

can give a different sequence of handle attachments creating new generators of homology or
cancelling previous ones, all giving H∗(M) at the end of the day.

This observation leads to the notion of persistence paths which is a substitute for either
Cerri’s foliation method [8] or Lesnick’s fibered barcode [16]. It can be also be viewed as
a discrete analogy of Wan’s generalized gradient (whose choice is also not unique) in [24].
Before we proceed, let us introduce some terminology. As far as rank invariants or persistent
Betti numbers are of concern, a convenient way to record the homological information carried
in sublevel sets is the Poincaré polynomial

P (t,M) =

n
∑

k=0

βk t
k,

where βk = rankHk(M) and n is the dimension of M .
In the figure of Example 2.5, and Figure 8 on the left, we see the Poincaré polynomials

P (t,M(a,b)) for points (a, b) located in regions bounded by Pareto arcs. We are also interested
in increments ∆P (t, Hj) arising as we cross a Pareto arc increasingly in (a, b). A j-handle
can either create a j generator (new component, closing a hole or a cavity) or kill a (j −
1) generator (merging components, filling a hole or a cavity). In the first case, we get
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Figure 9. Left: Two persistence paths for the function in Example 2.5. Right:
Their corresponding barcodes in rectangles marked with the same color as the
corresponding path. β0 barcodes displayed by green lines, β1 by brown lines,
and β2 by cyan lines.

∆P (t, Hj) = tj , in the second case we get ∆P (t, Hj) = −tj−1. Thus the index of a handle
can be read out from ∆P . If it is tk, we have a crating k-handle and if it is −tk, we have a
cancelling (k + 1)-handle.

The term Pareto arc includes half-lines defined by quadrants C(a,b), Crossing their vertex
(a, b) may create ‘multiple handles’ where ∆P is not just one term. For example in the
vertex of fish tail visible in Figure 9, ∆P = −t + t2. A point at which a single handle is
attached will be called generic.

We choose a generic point (a, b) on each Pareto arc and let H(a,b) be the corresponding
handle. At this time, the choice is arbitrary but we may want to chose endpoints of an arc,
when we study metric sensitive barcodes.

We let T = [0, 1] and R = [r1, R1]× [r2, R2] be a fixed rectangle in R
2 containing f(M) in

its interior.

Definition 3.1. Let {(ai, bi)}i=0,1,...m ⊂ R be a sequence of generic points on Pareto arcs,
such that M(a,b) = ∅ for all (a, b) downward-left of (a0, b0), (ai+1, bi+1) can be reached from
(ai, bi) going upward-right through the region enclosed by the two arcs, and M(am,bm) = M .
A persistence path is a continuous function ρ : I → R with ρ(0) = (r1, r2), ρ(1) = (R1, R2)
which is non-decreasing in both coordinates, and joins the points of the sequence.

It can be seen that one can find sequences on the arcs so to get piecewise linear persistence
(PL) paths with line segments between two consecutive points. This is useful in showing
that we get a discrete characterization. For simplicity of notation, we let Hi = H(ai,bi) and
Mi =M(ai,bi). We have a linear filtration M0 ⊂ M1 ⊂ · · · ⊂Mm =M .

Figure 9 (left) shows two persistence paths for the cupped sphere presented in Example 2.5.
The path displayed in dark green avoids the pocket, the one in orange passes through it.
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Note that [24] needs a no-cycle condition to apply the generalized gradient. Our persistence
paths can be defined even in the presence of Wan’s cycles, because they are more restrictive
than Wan’s admissible curves [24, Definition 6.3]: A persistence path leaves a Pareto arc
at the same point as it enters it. Along the path, there may be no cycles, because it is
increasing with respect to the poset relation.

We now shift our attention to a multidimentional analogy of the Morse inequalities. Our
results may be useful for the continuation of the work on the discrete multidimesional Morse-
Forman theory initiated in [1].

The following result is an analogy of the Morse equation in the Conley index theory [21, 19].

Theorem 3.2 (Morse-Conley equation for persistence paths). Let ρ be a persistence path
for ((ai, bi))i=0,1,...m and let cj be the number of j-handles associated to its points. Then there
exists a polynomial Q with non-negative integer coefficients such that

(1)

n
∑

j=0

cj t
j = P (t,M) + (1 + t)Q(t)

Proof. The following equation is a direct consequence of the definition of ∆P and that of
persistence path:

(2)
m
∑

i=0

∆P (t, H(ai,bi)) =
n
∑

k=0

βk t
k = P (t,M).

If all handles of ρ create new generators, than, in the light of the preceding discussion,
the left-hand side of equation 2 is exactly the left-hand side of equation 1. Thus (1) holds
with Q(t) = 0. If a j-handle kills a (j − 1) generator, then the sum on the left-hand
side of (2) misses two terms tj−1 and tj contributing the sum on the left-hand side of (1).
By adding all these missing terms to both sides of (2), we get (1) with Q built by terms
tj−1 + tj = (1 + t)tj−1. �

By taking t = −1 in (1), we get the following corollary.

Corollary 3.3 (Euler characteristics). For any persistence path ρ,

(3)
n
∑

j=0

(−1)j cj = χ(M),

where χ(M) =
∑n

k=0(−1)k βk is the Euler-Poincaré characteristics of M .

Equation 3 is a part of the set of classical Morse inequalities. Since two polynomials are
equal is and only if all its coefficients are equal, (1) also gives weak Morse inequalities :

(4) cj ≥ βj for all j = 1, 2, . . . n.

We conclude this section by deriving a classical result of Morse theory on strong Morse
inequalities. The reader is referred to the book by Milnor [18] for the classical formulation.
For the sake of completeness, we present a neat and short proof of an unknown source we
have been told about by Marian Mrozek.

Corollary 3.4 (Strong Morse inequalities). For any persistence path ρ and any k ≥ 0,

(5) ck − ck−1 + ck−2 + · · · ± c0 ≥ βk − βk−1 + βk−2 + · · · ± β0.
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Proof. Knowing that cj = βj = 0 for all j > n, we can treat Equation (1) as a power series
equation

(6)

∞
∑

j=0

cj t
j =

∞
∑

j=0

βj t
j + (1 + t)Q(t).

Multiplying both sides of (6) by Σ∞
i=0(−1)iti, the power series inverse of (1 + t), we get

∞
∑

k=0

(

k
∑

i=0

(−1)ick−i

)

tk =

∞
∑

k=0

(

k
∑

i=0

(−1)iβk−i

)

tk +Q(t).

Since two power series are equal if and only if all their coefficients are equal and the coeffi-
cients of Q(t) are non-negative, we get (5). �

Our Morse inequalities should be compared with the work of Wan [24]. Perhaps the main
difference between our work and his, is that we convert functions f : M → R

2 into families
of filtrations of the manifold M . Wan uses essentially all of the Pareto arcs to define his
filtration, which is often larger than our filtrations. Moreover he requires special ’acyclic’
Morse 2-functions to even define a filtration of M , while any Morse 2-function works for us.

We now turn our attention to the computability of persistent homology via persistence
paths. We associate path-wise barocodes to any persistence path ρ as follows. First, we want
to normalise lengths of persistence paths so to have them all of length 1. Given a point
(a, b) ∈ ρ(I), let s(a, b) be the euclidean distance from (r1, r2) to (a, b) along the path ρ

divided by the total length of ρ.

Definition 3.5. The ρ-barcode in homology of dimension k is a function on representatives
of the Hk generators, whose values are subintervals of [0, 1]. When a Hk generator is born by
a handle attachment at the point (ai, bi) and it is killed at the point (aj, bj) with i < j < m,
the corresponding barcode interval is [s(ai, bi), s(aj, bj)]. The life-time of that generator is
s(aj , bj) − s(ai, bi). If a generator persists until the point (R1, R2) of the chosen rectangle,
it will also persist if the values of (R1, R2) increase. Thus it is reasonable to declare that its
life-time is infinite and the corresponding barcode interval is [s(ai, bi),∞).

Figure 9 (right) shows barcodes of the two persistence paths displayed on the right. It
is visible that the life-time of the second generator of H0 created when crossing the pocket
is short and it may be null, if we choose the path in dark green that avoids the pocket.
Similarly, the life-time of the H1 generator is short.

We shall now briefly discuss prospects for numerical implementations of path-wise bar-
codes. We should emphasize that the aim of our paper is to only provide a theoretical
background for computation.

Following predecessors [6, 8] who set up computing methods for multi-filtrations, we should
consider the family of all piece-wise linear persistence paths ρ built on points (ai, bi) in a given
finite grid. However, that is a huge family and this choice is likely to lead to computational
complexity issues. The size of the family of such paths is most likely similar to that of Young
diagrams [10]. Moreover, the number of nodes to join by paths, decisive for the size of the
family, increases quadratically with grid subdivisions.
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For path-wise barcodes, we postulate that it should be sufficient to consider a representable
family Rep(f) of persistence paths built of specific points on Pareto curves: center points,
nearly lower-right and upper-left endpoints of Pareto curves, as well as their intersections
with horizontal and vertical lines passing through or touching other endpoints. We claim
that Rep(f) is a small and exhaustive representation. Moreover, the size of Rep(f) does not
increase with grid subdivisions.

By exhaustive representation, we mean here that any additional paths give rise to equivalent
barcodes. That, in turn, means that their barcodes have the same number of intervals for each
homology dimension, they may vary by length but appear in the same sequence according
to birth and death dates.

We are conscious of the fact that, proceeding this way, we are missing the postulate that
the persistence should be computed blindly from data, without knowing the exact manifold
M and exact function f . But it may also be interesting to consider the case when we have
M and f given by formulas that enable computing singularities.

4. Extensions

When applying path-wise barcodes to functions which do not satisfy the Wan’s no-cycle
property [24, Definitions 6.4 and 6.5], it would be interesting to see what is the information
carried by the barcodes of those persistence paths of Rep(f) which cross and go about the
cycles of f .

The filtration of R2 by quadrants C(a,b) has a complementary filtration by quadrant exte-
riors

E(a,b) = {(x, y) ∈ R
2 : x ≥ a or y ≥ b}.

Provided the boundary of C(a,b) is transverse to the singular points of f : M → R
2, one

has that f−1(C(a,b)) is a manifold with corners. This allows us to use a Poincaré Duality
isomorphism

Hk(f
−1(C(a,b))) ≃ Hm−k(M, f−1(E(a,b))).

Given that quadrant exteriors are the union of three quadrants, this gives a fairly de-
tailed relationship between the persistent homologies of filtrations corresponding to the four
quadrant families:

Cf1≤a,f2≤b = C(a,b), Cf1≥a,f2≤b, Cf1≤a,f2≥b, Cf1≥a,f2≥b.

This technique could be thought to be a strong parallel to the theory of trisections of
4-manifolds [11, 12] as developed by Gay and Kirby. It also gives a formal setup analogous
to Extended Persistence of Morse functions, considered in [9].

Another direction one could take to extrapolate this research would be using smooth
functions M → R

k for k > 2. This topic is of a great interest to the topological data analysis
community. The computational methods of multi-parameter persistent homology such as
those in [6, 7, 1, 16] are dimension-independent but, on the other hand, they do not have
the same insight into the geometry of the encountered singularities as the one we present
here for the R

2-valued functions. There are a variety of useful ’Morse theory’ type tools to
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describe the singularities of functions of this kind. The analogous theory of multisections of
manifolds is developed by Rubinstein and Tillman [20].

Yet another direction to undertake is the practical implementation of our suggested method
for computing path-wise barcodes on the basis of representable family Rep(f).
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