We denote the order by \(\order \). Representations of the circle have already appeared in several areas of mathematics. Given representations of \(\hat{\Lambda} \), quivers are string algebras; the study of “continuous string algebras” remains largely unexplored territory.

\[|S| = 0 \quad |s_0 = s_2 = s_1 = s_3| = 2 \quad |s_1 = s_2| = 4 \]

Definition. Choose an even number of points \(S \) in \(\mathbb{S}^1 \) (possibly 0). If \(S \neq \emptyset \), index the elements counterclockwise starting with \(s_0 \). Additinally, set \(s_0 = s_1 \).

1. If \(S = \emptyset \) we give \(\mathbb{S}^1 \) the cyclic counterclockwise order.
2. If \(S \neq \emptyset \) the even-indexed elements of \(S \) are sinks and the odd-indexed elements are sources, inducing a partial order on \(S^1 \).
3. We denote the order by \(\succeq \) and call this our orientation.

Example.

Definition. Given \(S \) and \(\succeq \) a continuous quiver of type \(\hat{\Lambda} \) is a category \(Q \).

The objects of \(Q \) are the points of \(S^1 \).

If \(S = \emptyset \) then \(Q \) is the category \(S^1 \).

If \(S \neq \emptyset \) we define \(Q \) as follows:

Let \(g \) be the unique morphism from \(x \) to \(y \) that travels counterclockwise less than one rotation.

If \(|S| \geq 2 \) then we allow two distinct points \(x, y \in S^1 \).

Hom\(_{Q}(x, y) = \{ g_{x,y} \circ \omega_{x} \circ \cdots \circ \omega_{y} : n \in \mathbb{N} \} = \{ \omega_{n} \circ g \circ y \circ u : n \in \mathbb{N} \} \)

Thus we may “lift” \(V \) to a representation \(\hat{M} \) of a quiver \(Q \).

Example.

Partition \(Q \)

\[\text{String} \quad \text{Band} \]

We then examine the structure of \(\hat{M} \) and “push it down.”

Lemma (Hanson-R. [4]). A pointwise finite-dimensional representation \(V \) partitions the continuous quiver \(Q \) in finitely-many pieces. On each piece \(V \) is constant up to isomorphism.

We now have enough to understand the summands of a pf representation of \(S^1 \).

Theorem (Hanson-R. [4]). Let \(V \) and \(W \) be representations of a continuous quiver \(Q \) of type \(\hat{\kappa} \).

1. Suppose \(V \) and \(W \) are strings. Then \(V \cong W \) if and only if they lift to the same interval of \(\mathbb{R} \) modulo \(2\pi \).
2. Suppose \(V \) and \(W \) are bands; let \(\hat{V} \) and \(\hat{W} \) be the “traveling around” maps for \(V \) and \(W \), respectively. Then \(V \cong W \) if and only if there is a matrix \(A \) such that \(\hat{V} = A \hat{W} \).
3. If \(V \) is a string and \(W \) is a band then \(V \not\cong W \).

4. Finistic Representations

- If \(|S| \geq 2 \), for each \(0 \leq i < |S| \) let \(\Pi_i \) be the closed region on \(S^1 \) from \(s_i \) to \(s_{i+1} \). The interior of the region is denoted \(R_i \). Then \(W \) is a summand of \(V \) restricted to \(\Pi_i \) and the support of \(W \) is contained in \(R_i \).

Lemma (Hanson-R. [4]). Suppose \(W \) is a summand of \(V \) restricted to \(\Pi_i \) and the support of \(W \) is contained in \(R_i \). Then \(W \) is a summand of \(V \).

- Each \(\Pi_i \) is totally-ordered.
- Crawley-Boevey proved that representations of totally-ordered sets decompose into intervals indecomposables [2] (in our case, strings).
- Applied to each \(\Pi_i \), we have \(V \cong \bigoplus_{i=0}^{n} W_i \), where each \(W_i \) is the sum of summands of \(V \) whose support is contained in \(R_i \).

Definition. A representation \(V \) is called finistic if each \(W_i \) as described is 0.