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UNIVERSITÉ DE SHERBROOKE
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Sommaire

Dans ce mémoire, soit A une catégorie triangulée et soit C une sous-

catégorie de A qui est stable pour les extensions. D’abord, nous donnerons

quelques nouvelles descriptions de triangles d’Auslander-Reiten dans C. Cela
nous donne des conditions nécessaires et suffisantes pour que C ait des trian-

gles d’Auslander-Reiten. Ensuite, nous étudierons quand un triangle d’Aus-

lander-Reiten dans A induit un triangle d’Auslander-Reiten dans C. Comme

une première application de ces résultats, nous étudierons les triangles d’Aus-

lander-Reiten dans une catégorie triangulée ayant une t-structure. Dans le

cas où le cœur de la t-structure est t-héréditaire, nous établirons le lien en-

tre les triangles d’Auslander-Reiten dans A et les suites d’Auslander-Reiten

dans le cœur. Enfin, nous appliquerons nos résultats dans la catégorie dérivée

bornée de tous les modules d’une algèbre noethérienne sur un anneau commu-

tatif local noethérien complet. Notre résultat généralise le résultat correspon-

dant de Happel dans la catégorie dérivée bornée des modules de dimension

finie d’une algèbre de dimension finie sur un corps algébriquement clos.
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Abstract
In this dissertation, let A be a triangulated category and let C be an

extension-closed subcategory of A. First, we give some new characterizations

of an Auslander-Reiten triangle in C, which yields some necessary and suf-

ficient conditions for C to have Auslander-Reiten triangles. Next, we study

when an Auslander-Reiten triangle inA induces an Auslander-Reiten triangle

in C. As an application, we study Auslander-Reiten triangles in a triangu-

lated category with a t-structure. In case the t-structure has a t-hereditary

heart, we establish the connection between the Auslander-Reiten triangles in

A and the Auslander-Reiten sequences in the heart. Finally, we specialize

to the bounded derived category of all modules of a noetherian algebra over

a complete local noetherian commutative ring. Our result generalizes the

corresponding result of Happel’s in the bounded derived category of finite

dimensional modules of a finite dimensional algebra over an algebraically

closed field.
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Introduction

The notions of Auslander-Reiten sequences, also known as almost split

sequences, was introduced by M. Auslander et I. Reiten in the 1970s. Since

then, it has been playing a fundamental role in the representation theory of

artin algebras. Later on, M. Auslander et S. O. Smalø developed a theory of

Auslander-Reiten sequences in subcategories of abelian categories.

Another later advance was Happel’s theory of Aulander-Reiten triangles,

which plays the same role in triangulated categories as Auslander-Reiten

sequences in abelian categories. It is natural to study when a subcategory

of a triangulated category having Auslander-Reiten triangles has Auslander-

Reiten triangles. A pioneering work in this direction by P. Jørgensen shows

us some results in non-triangulated subcategories of triangulated categories;

see [16].

It is a long standing problem to determine which categories have Auslander-

Reiten sequences or Auslander-Reiten triangles. Recently, one can charac-

terize an Auslander-Reiten sequence in terms of linear forms on the stable

endomorphism algebras of its end terms in an exact category; see [22]. In this

dissertation, motivated by the work in [16], [22] and [24], we give some new

characterizations of Auslander-Reiten triangles in extension-closed subcate-

gories of a triangulated category, which yield some new existence theorems

for Auslander-Reiten triangles in such a subcategory. Finally, we show an

application of these results in the bounded derived category of all modules

of a noetherian algebra over a complete local noetherian commutative ring.

Next, we introduce more details of this dissertation chapter by chapter.
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In Chapter 1, we shall recall some terminology and basic facts on trian-

gulated categories and complete local noetherian rings.

In Chapter 2, we shall characterize an Auslander-Reiten triangle in terms

of linear forms on the endomorphism algebras of its end terms. This yields

necessary and sufficient conditions for an extension-closed subcategory to

have Auslander-Reiten triangles. Specializing to Hom-finite triangulated cat-

egories, we recover the result in [24] by I. Reiten and M. Van Den Bergh, who

characterized the existence of Auslander-Reiten triangles by the existence of

a Serre duality. The result in the second section of Chapter 2, says that if

a triangulated category has Auslander-Reiten triangles, then the Auslander-

Reiten triangles in a Hom-finite Krull-Schmidt extension-closed subcategory

are given by the minimal approximations of the Auslander-Reiten triangle in

the ambient category. In fact, this result is due to Jørgensen in [16], but we

give a much shorter proof.

In Chapter 3, our main objective is to apply the results obtained in Chap-

ter 2 to triangulated categories with a t-structure. We will give the connection

between the Auslander-Reiten triangles in the ambient category and those

in the torsion or torsion-free subcategories determined by the t-structure. If

the t-structure is bounded with a t-hereditary heart, inspired by the work in

[9], we will prove that all the Auslander-Reiten triangles in the triangulated

category are the shifts of the Auslander-Reiten sequences in the heart and

those of the connecting Auslander-Reiten triangles.

In Chapter 4, we show an application of the results obtained in the previ-

ous chapters to the bounded derived category of all modules over a noetherian

algebra over a complete local noetherian commutative ring. In the bounded

derived category of finite dimensional modules over a finite dimensional alge-

bra over an algebraically closed field, as shown by Happel in [15], the ending

terms of Auslander-Reiten triangles are precisely the indecomposable perfect

complexes. We will prove that this result also holds in the bounded derived

category of all modules over a noetherian algebra. And also, we give the

necessary and sufficient conditions when an Auslander-Reiten sequence in

the category of all modules over a noetherian algebar induces an Auslander-

Reiten triangle in derived category of all modules over a noetherian algebra.
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Chapter 1

Preliminaries

In this chapter, we have two objectives: the first one is to recall some basic

facts on triangulated categories, and the second one is to recall the notion

of a complete local noetherian commutative ring and some basic properties.

Considering the context of the dissertation, we shall omit some details. The

reader is referred to [12], [13], [23] and [26].

1.1 Triangulated Categories

In this section, we recall the notion of a triangulated category and collect

some basic facts in triangulated categories.

Throughout this section, we let A stand for an additive category. An

object in A is called strongly indecomposable if its endomorphism algebra is

local. Moreover, a non-zero object is called Krull-Schmidt if it is a finite

direct sum of strongly indecomposable objects. One says that an idempotent

e : X → X in A splits if there exist morphisms f : X → Y and g : Y → X

in A such that e = gf and fg = 1Y .

Let T be an additive automorphism of A, called translation functor on

A. If X is an object in A, we shall use the notation T n(X) = X[n] for all
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n ∈ N. A triangle in A is a diagram

X
u // Y

v // Z
w // X[1].

A morphism of triangles is a commutative diagram

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

X[1]

f [1]

��
X ′ u′ // Y ′ v′ // Z ′ w′

// X ′[1],

which is called an isomorphism if f, g, h are isomorphisms.

1.1.1 Definition. An additive category A is called a triangulated category

if it is equipped with a translation functor T and a family of triangles, called

exact triangles, satisfying the following properties:

(1) A triangle isomorphic to an exact triangle is an exact triangle.

(2) For any object X in A, the triangle X
1X // X // 0 // X[1] is an

exact triangle.

(3) Each morphism f : X → Y in A embeds in an exact triangle

X
f // Y

g // Z h // X[1].

(4) A triangle X
f // Y

g // Z
h // X[1] is an exact triangle if and only

if Y
g // Z

h // X[1]
−f [1] // Y [1] is an exact triangle.

(5) Each diagram

X
u //

f

��

Y
v //

g

��

Z
w // X[1]

f [1]

��
X ′ u′ // Y ′ v′ // Z ′ w′

// X ′[1],
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where the rows are exact triangles and the left square is commutative,

can be completed to a morphism of exact triangles

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

X[1]

f [1]
��

X ′ u′ // Y ′ v′ // Z ′ w′
// X ′[1].

(6) For any morphisms f, g in A, the diagram

X
f //

1X
��

Y a //

g

��

Z ′ // X[1]

1
X[1]

��
X

gf //

f

��

Z
b //

1Z
��

Y ′ // X[1]

f [1]

��
Y

g // Z
c // X ′ // Y [1],

where the rows are exact triangles, can be completed to the following

commutative diagram

X
f //

1X
��

Y
a //

g

��

Z ′ r //

u

��

X[1]

1X[1]

��
X

gf //

f

��

Z b //

1Z
��

Y ′ s //

v

��

X[1]

f [1]
��

Y
g //

a

��

Z
c //

b
��

X ′

1X′
��

t // Y [1]

a[1]
��

Z ′ u // Y ′ v // X ′ w //// Z ′[1],

where all the rows are exact triangles. This property is called the octa-

hedral axiom.

For the reader’s convenience, here we collect some properties of triangu-

lated categories from [13] and [23], which will be used later.
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1.1.2 Lemma ([23]). Let A be a triangulated category. If

X
f // Y

g // Z
h // X[1]

is an exact triangle, then g ◦ f = h ◦ g = f [1] ◦ h = 0.

1.1.3 Definition. Let A be a triangulated category and B be an abelian

category. An additive functor F : A → B is called a cohomological functor

if, for any exact triangle

X
f // Y

g // Z h // X[1]

in A, we have a long exact sequence

· · · // F (Z[−1])
F (h[−1])// F (X)

F (f) // F (Y )
F (g) // F (Z)

F (h) // F (X[1]) // · · ·

in case F is covariant, or a long exact sequence

· · · // F (X[1])
F (h) // F (Z)

F (g) // F (Y )
F (f) // F (X)

F (h[−1])// F (Z[−1]) // · · ·

in case F is contravariant.

1.1.4 Proposition ([23]). Let A be a triangulated category. For any object

U in A, both HomA(U,−) and HomA(−, U) are cohomological.

1.1.5 Proposition ([23]). Let A be a triangulated category with an exact

triangle

X
f // Y

g // Z h // X[1].

(1) If u : U → Z is a morphism in A, then hu = 0 if and only if u = gu′ for

some morphism u′ : U → Y .

(2) If v : X → V is a morphism in A, then v ◦ h[−1] = 0 if and only if

v = v′f for some morphism v′ : Y → V .
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1.1.6 Proposition ([23]). Let A be a triangulated category with an exact

triangle

X
f // Y

g // Z
h // X[1].

The following statements are equivalent.

(1) h = 0.

(2) f is a section.

(3) g is a retraction.

1.1.7 Proposition ([23]). Let A be a triangulated category with a commu-

tative diagram

X //

f

��

Y //

g

��

Z //

h
��

X[1]

f [1]
��

X ′ // Y ′ // Z ′ // X ′[1],

where the rows are exact triangles. If any two of the morphisms f, g, h are

isomorphisms, then the third one is also an isomorphism.

The following result, which plays the same role as a push-out in abelian

categories, is well known; see, for example, the proof of Lemma 2.6 in [17].

1.1.8 Lemma. Let A be a triangulated category with an exact triangle

X
f // Y

g // Z
h // X[1].

For any morphism ϕ : X → X ′ in A, there exists a commutative diagram

X
f //

ϕ

��

Y
g //

ψ

��

Z
h // X[1]

ϕ[1]
��

X ′ f ′ // Y ′ g′ // Z h′ // X ′[1]

with rows being exact triangles; and in any such commutative diagram, h′ = 0

if and only if ϕ factors through f .
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Proof. Let h′ = ϕ[1] ◦ h. There exists an exact triangle

X ′ f ′ // Y ′ g′ // Z
h′ // X ′[1]

which is based on h′. Consider the following commutative diagram

X
f //

ϕ

��

Y
g // Z

h // X[1]

ϕ[1]
��

X ′ f ′ // Y ′ g′ // Z h′ // X ′[1].

It can be completed to a morphism of triangles

X
f //

ϕ

��

Y
g //

ψ

��

Z
h // X[1]

ϕ[1]
��

X ′ f ′ // Y ′ g′ // Z
h′ // X ′[1].

Moreover, since h′ = ϕ[1] ◦h, we have h′ = 0 if and only if ϕ◦h[−1] = 0, and

by Lemma 1.1.5, this is equivalent to have ϕ factoring through f. The proof

of the lemma is completed.

Here we state the dual result of Lemma 1.1.8 without a proof.

1.1.9 Lemma. Let A be a triangulated category with an exact triangle

X
f // Y

g // Z
h // X[1].

For each morphism ϕ : Z ′ → Z in A, there exists a commutative diagram

X
f ′ // Y ′ g′ //

ψ

��

Z ′ h′ //

ϕ

��

X[1]

X
f // Y

g // Z
h // X[1],

where the first row is an exact triangle. Moreover, h′ = 0 if and only if ϕ

factors through g.
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1.2 Complete Local Notherian Commutative

Rings

Throughout this section, we let R be a local commutative ring with a

unique maximal ideal m. Let (Rn, pn)n≥1 be a family of R-modules and R-

linear maps, where Rn = R/mn and

pn : Rn+1 → Rn : x+mn+1 7→ x+mn

is the canonical projection.

1.2.1 Definition. The m-completion of R is the submodule of the product∏
n≥1Rn defined as follows:

R̂ = {(a1 +m, . . . , an +mn, . . . ) | pn(an+1 +mn+1) = an +mn for all n ≥ 1}

One says that R is complete if the canonical map

σ : R → R̂ : a 7→ (a+m, . . . , a+mn, . . . )

is an isomorphism.

Example. Let K be a field. The formal power series ring K[[X]] is a

complete local noetherian commutative ring.

For the rest of this section, we assume that R is complete local noetherian

commutative with maximal ideal m. Let I be an injective envelope for R/m.

Observe that I is an injective cogenerator of ModR, the category of all left

R-modules. In particular, there exists an exact endofunctor

D = HomR(−, I) : ModR → ModR.

Let A be an R-algebra. One says that A is semiperfect if it has a complete

set {e1, . . . , en} of orthogonal primitive idempotents such that eiAei is a local

ring, for all 1 ≤ i ≤ n. Moreover, A is called a noetherian R-algebra if A is

finitely generated as an R-module. For instance, R is a noetherian algebra
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over itself. Denote by ModA the category of all left A-modules, by noe(A) the

category of noetherian left A-modules, and by art(A) the category of artinian

left A-modules. The following result is well known; see, for example, [12].

1.2.2 Proposition (Matlis). Let A be a noetherian R-algebra with R being

complete local noetherian.

(1) A is semiperfect.

(2) The categories noe(A) and art(A) are Krull-Schimidt.

(3) The functor D = HomR(−, I) : ModA → ModAop induces a duality,

called the Matlis duality, as follows :

D : noe(A) → art(Aop).
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Chapter 2

Auslander-Reiten Theory in

Triangulated Categories

Throughout this dissertation, let R stand for a commutative ring. An

R-category is a category in which the morphism sets are R-modules and

the composition of morphisms is R-bilinear. An R-category will be called

Hom-finite if all its morphism set are finitely generated as R-modules.

We shall recall briefly the Auslander-Reiten theory from [5, 6]. Let B be

an additive R-category. One says that f is left almost split if f is not a section

and every non-section morphism g : X → L factors through f ; left minimal

if any endomorphism h : Y → Y such that hf = f is an automorphism; and

minimal left almost split if it is left minimal and left almost split. Dually,

we define right almost split, right minimal and minimal right almost split

morphisms. The following result is well known; see [6, (2.3)].

2.0.1. Lemma. Let B be an additive R-category and f : X → Y a morphism

in B.
(1) If f is left almost split in B, then X is strongly indecomposable.

(2) If f is right almost split in B, then Y is strongly indecomposable.

2.0.2. Definition. Let η : 0 // X
f // Y

g // Z // 0 be an exact

sequence in an abelian category B. One says that η is an Auslander-Reiten

sequence if f is left almost split and g is right almost split.
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The following result is probably well known; compare [18, (2.6)]. It

slightly generalizes Theorem 2.14 in [7, Section 4].

2.0.3. Theorem. Let B be an abelian R-category with an exact sequence

η : 0 // X
f // Y

g // Z // 0.

If f : X → Y is minimal left almost split, then η is an Auslander-Reiten

sequence.

Proof. Suppose that f is minimal left almost split. Let α :M → Z be a non-

retraction morphism. Pulling-back α along with g, we obtain a commutative

diagram

0 // X
u // N

v //

β
��

M

α
��

// 0

0 // X
f // Y

g // Z // 0.

Assume that α does not factor through g. This yields that v is not a retrac-

tion. Hence, u is not a section. Since f is left almost split, we have the

following commutative diagram

0 // X
f // Y

g //

β′

��

Z

α′

��

// 0

0 // X
u // N

v //

β
��

M

α
��

// 0

0 // X
f // Y

g // Z // 0.

That is, f = (ββ′)f. Since f is left minimal, ββ′ is an automorphism, so is

αα′. It shows that α is a retraction which is a contradiction. Therefore, g is

right almost split, and hence η is an Auslander-Reiten sequence. The proof

of the theorem is completed.

2.1 Auslander-Reiten Triangles

In this section, we shall characterize an Auslander-Reiten triangle in terms

of linear forms on the endomorphism algebras of its end terms. This yields
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some sufficient and necessity conditions to have an Auslander-Reiten triangle.

There results are analogous to those in [22] for exact categories.

Throughout this section, let A be a triangulated R-category, and denote

by C an extension-closed subcategory of A, that is a full subcategory such

that, for any exact triangle X // Y // Z // X[1] in A, if X,Z are in

C, then Y ∈ C. Note that C is closed under direct sums, that is, it is additive.

By abuse of terminology, an exact triangle X // Y // Z // X[1] in

A with X,Y, Z ∈ C will be called an exact triangle in C.

Now, we state some basic terminology for the Auslander-Reiten theory in

an extension-closed subcategory C of a triangulated R-category A.

2.1.1 Definition. Let C be an extension-closed subcategory of a triangu-

lated R-category A. An exact triangle

X
u // Y

v // Z
w // X[1]

in A is called an Auslander-Reiten triangle in C starting in X and ending in

Z if it satisfies the following conditions:

(1) u is left almost split in C; and

(2) v is right almost split in C.

Remark. Even if X u // Y v // Z w // X[1] is an Auslander-Reiten tri-

angle in C, the object X[1] does not necessarily belong to C.

The following two results are well known; see, for example, [18]. Since

they are slightly different from the almost split sequences, we include proofs

for self-completeness.

2.1.2 Lemma. Let C be an extension-closed subcategory of a triangulated

R-category A, and let

η : X
u // Y

v // Z
w // X[1]

be an exact triangle in C with w ̸= 0. If X is strongly indecomposable, then

v is right minimal in C.

13



Proof. Assume that X is strongly indecomposable. Then we get X[1] is also

strongly indecomposable. Since η is an Auslander-Reiten triangle, w ̸= 0.

We claim that w is left minimal in A. In fact, let g : X[1] → X[1] be a

morphism in C such that gw = w. Thus, (1 − g)w = 0. Since EndA(X[1])

is local, 1− g is in the radical of EndA(X[1]). Thus, g is an automorphism.

The claim is true. Now let f : Y → Y be a morphism such that vf = v.

Then we can obtain the following commutative diagram

X u //

h[−1]

��

Y v //

f

��

Z w // X[1]

h
��

X
u // Y

v // Z
w // X[1]

and we get hw = w. Hence, h is an isomorphism, so is f. Thus, v is right

minimal in C. The proof of the lemma is completed.

2.1.3 Lemma. Let C be an extension-closed subcategory of a triangulated

R-category A. Let

η : X
u // Y

v // Z
w // X[1]

be an exact triangle in A with X,Z ∈ C. The following statements are

equivalent.

(1) η is an Auslander-Reiten triangle in C.

(2) X is strongly indecomposable and v is right almost split in C.

(3) Z is strongly indecomposable and u is left almost split in C.

Proof. By Lemma 2.0.1, we know that (1) implies (2) and (3). Also, it is

clear that (2) and (3) imply (1).

We still need to show that (2) and (3) are equivalent. Suppose that

(2) holds. Since v is right almost split, by Lemma 2.0.1, Z is strongly in-

decomposable. Since X is strongly indecomposable, by Lemma 2.1.2, v is

right minimal. Since v is not a retraction, u is not a section. Now suppose

that ϕ : X → X ′ is not a section. By Lemma 1.1.8, we get the following

14



commutative diagram:

X
u //

ϕ

��

Y
v //

ψ

��

Z
w // X[1]

ϕ[1]
��

X ′ u′ // Y ′ v′ // Z
w′

// X ′[1].

We claim that u′ is a section. If not, v′ is not a retraction and factors

through v. That is, there exists a morphism ψ′ : Y ′ → Y such that v′ = vψ′.

Moreover, we obtain another commutative diagram:

X ′ u′ //

ϕ′

��

Y ′ v′ //

ψ′

��

Z w′
// X ′[1]

ϕ′[1]
��

X
u // Y ′ v // Z

w // X[1].

Hence, we get v = vψ′ψ. By minimality, ψ′ψ is an isomorphism. Therefore,

ϕ′ϕ is an isomorphism which implies that ϕ is a section. It is a contradiction

to our assumption. Therefore, u′ is a section and w′ = 0. Again, by Lemma

1.1.8, ϕ factors through u and u is left almost split. This shows that (2)

implies (3). Dually, we can prove that (3) implies (2). The proof of this

lemma is completed.

The following result is stated by Reiten and Van Den Bergh in [24] for

Hom-finite triangulated categories. However, we observe that it holds in our

general setting with the same proof.

2.1.4 Proposition. Let C be an extension-closed subcategory of a triangu-

lated R-category A, and let

X u // Y v // Z w // X[1]

be an Auslander-Reiten triangle in C.

(1) If w′ : L→ X[1] with L ∈ C is a non-zero morphism in A, then w = w′f

for some f : Z → L.

(2) If w′ : Z → L[1] is a non-zero morphism in A with L ∈ C, then there

exists some g : L→ X such that w = w′g[1].
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Proof. We shall prove only (1), since (2) is the dual statement of (1). Assume

that w′ : L→ X[1] is a non-zero morphism with L ∈ C. Then we can obtain

an exact triangle

X
h // N // L

w′
//// X[1]

inA, which is based on w′. Since w′ ̸= 0, h is not a section. By the hypothesis,

N ∈ C, and since u is left almost split in C, there exists a morphism t : Y → N

such that h = tu. Then we have a commutative diagram

X
u // Y

v //

t

��

Z
w //

f

��

X[1]

X
h // N // L

w′
//// X[1].

Thus, we get f such that w = w′f. The proof of the proposition is completed.

In order to strengthen the above results, we shall say that a full subcat-

egory C of A is triangle-stable provided that, for any exact triangle

X // Y // Z // X[1]

in A, if any two of X,Y, Z are in C, then so is the third one. Clearly, a

triangle-stable subcategory is extension-closed.

The following result is another characterization of an Auslander-Reiten

triangle, which extends a result of Reiten and Van den Bergh stated in [24].

2.1.5 Proposition. Let C be a triangle-stable subcategory of a triangulated

R-category A, and let

δ : X
u // Y

v // Z
w // X[1]

be an exact triangle in A, where X, Y, Z ∈ C. The following conditions are

equivalent :

(1) δ is an Auslander-Reiten triangle in C.

(2) The object X is strongly indecomposable, and for any non-zero morphism

f : Z → L in C, there exists some morphism w′ : L → X[1] in A such

that w = w′f .
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(3) The object Z is strongly indecomposable, and for any non-zero morphism

w′ : L → X[1] in A with L ∈ C, there exists some morphism f : Z → L

in C such that w = w′f .

Proof. First we show that (1) implies (2). First, by Lemma 2.0.1, X is

strongly indecomposable. Assume now that 0 ̸= f ∈ HomC(Z,L). If f is a

section, then there exists a morphism f ′ such that f ′f = 1Z . Setting w
′ =

wf ′, We have w′f = wf ′f = w. Otherwise, by the assumption on C, we can

obtain an exact triangle

(∗) L[−1] // N
s // Z

f // L,

where 0 ̸= N ∈ C, by Proposition 1.1.6. Since f is non-zero, s is not a

retraction. Consider the following diagram

N

s

��
X // Y // Z

w //

f
��

X[1]

L

Since s is not a retraction and v is right almost split in C, we have ws = 0.

Now, by the exactness of the triangle (∗), there exists w′ : L → X[1] in A
such that w = w′f.

Suppose now that (2) is true. Let g : M → Z be a non-retraction in

C. Then we obtain an exact triangle M
g // Z

f // L //M [1], where f

is non-zero. By (2), there exists w′ : L → X[1] such that w = w′f. By

Proposition 1.1.5, wg = 0. Thus, δ is an Auslander-Reiten triangle in C.
By Proposition 2.1.4, we know (1) implies (3). Now, suppose (3) holds.

Let g : X → M be a non-section morphism in C. Then we obtain an exact

triangle X
g //M // L

w′
// X[1] with w′ ̸= 0. By (3), there exists f :

Z → L such that w = w′f. And we obtain a commutative diagram

X
u // Y

v //

h

��

Z
w //

f

��

X[1]

X
g //M // L

w′
// X[1].
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That is, g = hu. Hence δ is an Auslander-Reiten triangle, by Lemma 2.1.3.

The proof of the proposition is completed.

The following statement is a dual result of the preceding result.

2.1.6 Proposition. Let C be a triangle-stable subcategory of a triangulated

R-category A, and let

δ : X
u // Y

v // Z
w // X[1]

be an exact triangle in A, where X, Y, Z ∈ C. The following conditions are

equivalent.

(1) δ is an Auslander-Reiten triangle in C.

(2) The object Z is strongly indecomposable, and for any non-zero morphism

g : L → X in C, there exists some morphism w′ : Z[−1] → L in A such

that w[−1] = gw′.

(3) The object X is strongly indecomposable, and for any non-zero morphism

w′ : Z[−1] → L in A with L ∈ C, there exists some morphism g : L→ X

in C such that w[−1] = gw′.

As the first application of the preceding result, we obtain the following

well-known result, which is stated in [16] in the Hom-finite context.

2.1.7 Corollary. Let C be an extension-closed subcategory of a triangu-

lated R-category A, and let

X u // Y v // Z w // X[1]

be an Auslander-Reiten triangle in C. Then HomA(Z,X[1]), as a right mo-

dule over EndC(Z), has an essential simple socle generated by w.

Proof. Let S be the submodule of HomA(Z,X[1]) generated by w. Let M be

an arbitrary submodule of HomA(Z,X[1]) with a non-zero element w′. Then

by Proposition 2.1.4, there exists a morphism f : Z → Z such that w =
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w′f ∈M. Hence, S is a submodule of M and S∩M ̸= 0. By arbitrariness, S

is essential submodule of HomA(Z,X[1]). Specializing M to a submodule of

S, we get M = S. Thus, we know S is the unique and smallest submodule of

HomA(Z,X[1]). By the definition of socle, we know S is the essential simple

socle of HomA(Z,X[1]) as right EndC(Z)-module . The proof of the corollary

is completed.

Now we state the dual result without a proof.

2.1.8 Corollary. Let C be an extension-closed subcategory of a triangulated

R-category A, and let

X
u // Y

v // Z
w // X[1]

be an Auslander-Reiten triangle in C. Then HomA(Z,X[1]) as a left EndC(X)-

module has an essential simple socle generated by w.

From now on, we fix an injective co-generator I for ModR, the category

of all R-modules. Then we have an exact endofunctor

D = HomR(−, I) : ModR → ModR.

2.1.9 Definition. Consider an R-bilinear form

< − ,− >: U × V → I

with U, V ∈ ModR. It is called left non-degenerate provided that, for any

non-zero element u ∈ U, there exists some v ∈ V such that < u, v ≯= 0;

and right non-degenerate provided that, for any non-zero v ∈ V, there exists

some u ∈ U such that < u, v > ̸= 0; and non-degenerate if it is both left and

right non-degenerate.

The following result follows immediately from the definition.

2.1.10 Lemma. Let < −,− >: U × V → I be an R-bilinear form with

U, V ∈ ModR.
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(1) If < −,− > is left non-degenerate, then there exists a monomorphism

ΦU : U → DV : u 7→< u,− > .

(2) If < −,− > is right non-degenerate, then there exists a monomorphism

ΦV : V → DU : v 7→< −, v > .

Let X,Z ∈ C. Every R-linear form ϕ : HomA(Z,X[1]) → I determines,

for each L ∈ C, an R-bilinear form

< − ,− >ϕ: HomA(L,X[1])× HomC(Z,L) → I : (f, g) 7→ ϕ(fg);

and an R-bilinear form

ϕ < − ,− >: HomC(L,X)× HomA(Z[−1], L) → I : (f, g) 7→ ϕ((fg)[1]).

Observe that, for each non-zero morphism h ∈ HomA(Z,X), since I is

an injective co-generator, there exists an R-linear form ϕ : HomA(Z,X) → I

such that ϕ(h) ̸= 0.

2.1.11 Lemma. Let C be an extension-closed subcategory of a triangulated

R-category A, which admits an Auslander-Reiten triangle

X
u // Y

v // Z
w // X[1] .

Fix an R-linear form ϕ : HomA(Z,X[1]) → I such that ϕ(w) ̸= 0.

(1) For any L ∈ C, the R-bilinear form

< − ,− >ϕ: HomA(L,X[1])× HomC(Z,L) → I : (f, g) 7→ ϕ(fg)

is left non-degenerate.

(2) For every L ∈ C, the R-bilinear form

ϕ < − ,− >: HomC(L,X)× HomA(Z[−1], L) → I : (f, g) 7→ ϕ((fg)[1])

is right non-degenerate.
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(3) If C is a triangle-stable subcategory of A, then both < − ,− >ϕ and

ϕ < − ,− > are non-degenerate for any L ∈ C.

Proof. We shall prove the lemma only for the firstR-bilinear form< − ,− >ϕ.

Fix an object L ∈ C. Let f ∈ HomA(L,X[1]) be a non-zero morphism. By

Proposition 2.1.4, there exists a morphism g : Z → L such that w = fg.

Obviously, < f, g >ϕ= ϕ(fg) = ϕ(w) ̸= 0. This shows that < − ,− >ϕ is left

non-degenerate.

Assume that C is triangle-stable. Let 0 ̸= g ∈ HomC(Z,L). By Proposi-

tion 2.1.5, there exists a morphism f : L → X[1] such that w = fg. As a

consequence, < f, g >ϕ= ϕ(fg) = ϕ(w) ̸= 0. That is, < − ,− >ϕ is right

non-degenerate. The proof of the lemma is completed.

The following statements are analogous to the results of Liu, Ng and

Paquette for exact subcategories of abelian categories; see [22].

2.1.12 Definition. Let F : A → ModR and G : A → ModR be covariant

R-linear functors. A functorial monomorphism φ : F → G is a natural

transformation such that φX : F (X) → G(X) is a monomorphism for all

X ∈ A.

2.1.13 Definition. Let Λ be an R-algebra. A non-zero R-linear form φ :

Λ → I is called almost vanishing if it vanishes on the Jacobson radical of Λ.

2.1.14 Theorem. Let C be an extension-closed subcategory of a triangulated

R-category A, and let

η : X // Y // Z
w // X[1]

be an exact triangle in A, where X,Z ∈ C are strongly indecomposable. Then

the following statements are equivalent.

(1) The exact triangle η is an Auslander-Reiten triangle in C.

(2) There exists a functorial monomorphism

φ : HomA(−, X[1])|C → DHomC(Z,−)

such that φZ(w) is almost vanishing on EndC(Z).
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(3) There exists a functorial monomorphism

ψ : HomA(Z[−1],−)|C → DHomC(−, X)

such that ψX(w[−1]) is almost vanishing on EndC(X).

Proof. We shall only prove the equivalence of Statement (1) and (2). Assume

that η is an Auslander-Reiten triangle in C. Since w ̸= 0, there exists an R-

linear form ϕ : HomA(Z,X[1]) → I such that ϕ(w) ̸= 0. Fix L ∈ C. By

Lemma 2.1.11, we have a left non-degenerate R-bilinear form

< − ,− >ϕ: HomA(L,X[1])× HomC(Z,L) → I : (f, g) 7→ ϕ(fg).

By Lemma 2.1.10, this induces an R-linear monomorphism

φL : HomA(L,X[1]) → DHomC(Z,L) : f 7→< f,− >ϕ .

We claim that φ is natural in L. Let g : N → L be a morphism in C. Consider
the diagram

HomA(L,X[1])
HomA(g,X[1])//

φL

��

HomA(N,X[1])

φN

��
DHomC(Z,L)

DHomC(Z,g) // DHomC(Z,N).

Let f ∈ HomA(L,X[1]). For any h ∈ HomC(Z,N), we have

(DHomA(Z, g) ◦ φL(f))(h) = (φL(f))(gh) =< f, gh >ϕ= ϕ(fgh).

On the other hand,

(φN ◦ (HomA(g,X[1])(f)))(h) = (φN(fg))(h) =< fg, h >ϕ= ϕ(fgh).

Thus, the above diagram commutes, that is, the claim is true.

Since φZ is injective, φZ(w) ̸= 0. If f ∈ rad(EndC(Z)), then f is not a

retraction. By the properties of Auslander-Reiten triangles, we have wf = 0,

and therefore,

φZ(w)(f) =< w, f >ϕ= ϕ(wf) = 0.
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Thus, φZ(w) is almost vanishing on EndC(Z).

Conversely, let φ : HomA(−, X[1])|C → DHomC(Z,−) be a functorial

monomorphism such that φZ(w) is almost vanishing on EndC(Z). In partic-

ular, φZ(w) ̸= 0, and thus, w ̸= 0. Let u : L → Z is a morphism in C which

is not a retraction. For any morphism v : Z → L, since EndC(Z) is local,

uv ∈ rad(EndC(Z)). Thus φZ(w)(uv) = 0, that is, DHomC(Z, u)◦φZ(w) = 0.

Consider the commutative diagram

HomA(Z,X[1])
HomA(u,X[1])//

φZ

��

HomA(L,X[1])

φL

��
DHomC(Z,Z)

DHomC(Z,u) // DHomC(Z,L),

we have (φL ◦ HomC(u,X[1]))(w) = (HomC(Z, u) ◦ φZ)(w) = 0. Since φL is

injective, wu = HomA(u,X[1])(w) = 0. Hence,

X // Y // Z
w // X[1]

is an Auslander-Reiten triangle in C. The proof of the theorem is completed.

IfX,Y ∈ A, thenDHomA(X, Y ) is an EndA(X)-EndA(Y )-bimodule with

multiplications defined, for f ∈ EndA(X), θ ∈ DHomA(X,Y ), g ∈ EndA(Y ),

by

fθg : HomA(X,Y ) → I : h 7→ θ(ghf).

The following result is an existence theorem for Auslander-Reiten trian-

gles.

2.1.15 Theorem. Let C be an extension-closed subcategory of a triangulated

R-category A. If X,Z are strongly indecomposable objects in C, then the

following statements are equivalent.

(1) There exists an Auslander-Reiten triangle X // Y // Z // X[1] in C.

(2) The EndC(Z)-socle of HomA(Z,X[1]) is non-zero, and there exists a

functorial monomorphism φ : HomA(−, X[1])|C → DHomC(Z,−).
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(3) The EndC(X)-socle of HomA(Z[−1], X) is non-zero, and there exists a

functorial monomorphism ϕ : HomA(Z[−1],−)|C → DHomC(−, X).

Proof. We shall only prove the equivalence of (1) and (2). First assume that

C has an Auslander-Reiten triangle

X
u // Y

v // Z
w // X[1] .

Thus, w ̸= 0. By the previous theorem, we have a functorial monomorphism

φ : HomA(−, X[1])|C → DHomA(Z,−). By Lemma 2.1.7, we know w is a

non-zero element in the EndC(Z)-socle of HomA(Z,X[1]).

Conversely, assume that w : Z → X[1] is a non-zero element in the

EndC(Z)-socle of HomA(Z,X[1]). Then we can get an exact triangle

η : X
u // Y

v // Z
w // X[1] .

Let φ : HomA(−, X[1])|C → DHomC(Z,−) be a functorial monomor-

phism. Since φ is natural, φZ : HomA(Z,X[1]) → DHomC(Z,Z) is EndC(Z)-

linear. Hence, φZ(w) is a non-zero element ofDEndC(Z). If g ∈ rad(EndC(Z)),

then (φZ(w))(g) = φ(wg) = 0. Thus, φZ(w) is almost vanishing on EndC(Z).

By Theorem 2.1.14, η is an Auslander-Reiten triangle in C. The proof of the
theorem is completed.

As another application of Theorem 2.1.14, we have the following suffi-

ciency condition for the existence of Auslander-Reiten triangles in an extension-

closed subcategory of a triangulated category.

2.1.16 Proposition. Let C be an extension-closed subcategory of a trian-

gulated R-category A, and let X,Z be strongly indecomposable objects in C.
If there exists a functorial isomorphism

HomA(−, X[1])|C ∼= DHomC(Z,−) or HomA(Z[−1],−)|C ∼= DHomC(−, X),

then there exists an Auslander-Reiten triangle X // Y // Z // X[1] in C.
Proof. We assume that φ : HomA(−, X[1])|C ∼= DHomC(Z,−) is a functo-

rial isomorphism. In particular, φZ : HomA(Z,X[1]) → DEndC(Z) is an
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isomorphism. Let p : EndC(Z) → EndC(Z)/rad(EndC(Z)) be the canoni-

cal projection. Since I is an injective cogenerator, there exists a non-zero

morphism θ : EndC(Z)/rad(EndC(Z)) → I. Setting ϕ = θp, it is easy to see

that ϕ is almost vanishing on EndC(Z). Since φZ is an isomorphism, there

exists w ∈ HomA(Z,X[1]) such that φZ(w) = ϕ. By Theorem 2.1.14, we

obtain an Auslander-Reiten triangle X // Y // Z // X[1]. The proof of

the proposition is completed.

Next, we shall study when the sufficient condition stated in the above

proposition is also necessary.

The following result is well known. Here, we give a proof for self-completeness.

2.1.17 Lemma. Let R be a complete local noetherian commutative ring. Let

U, V ∈ ModR and consider an R-bilinear form

< −,− >: U × V → I.

(1) If < −,− > is left non-degenerate and V is noetherian or artinian, then

ΦV : V → DU : v 7→< −, v >

is an epimorphism.

(2) If < −,− > is right non-degenerate and U noetherian or artinian, then,

ΦU : U → DV : u 7→< u,− >

is an epimorphism.

Proof. We shall prove only (1). Suppose V is noetherian or artinian. By

Proposition 1.2.2, there exists an isomorphism

Ψ : V → D2V : v 7→ Ψv,

where Ψv : DV → I : ψ → ψ(v). Suppose that < −,− > is left non-

degenerate. By Lemma 2.1.10, we have a monomorphism

ΦU : U → DV : u 7→ φu :=< u,− > .
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Applying the duality D, we obtain an epimorphism

D(ΦU) : D
2V → DU : θ 7→ θ · ΦU .

Hence, for each ϕ ∈ DU, there exists some v ∈ V such that

ϕ = D(Φ)(Ψ(v)) = ΨvΦU .

For any u ∈ U , we have

ϕ(u) = (ΨvΦU)(u) = Ψv(φu) = φu(v) =< u, v > .

That is, ϕ =< −, v > . The proof of the lemma is completed.

2.1.18 Corollary. Let R be a complete local noetherian commutative ring.

Consider a non-degenerate R-bilinear form

< −,− >: U × V → I,

where U, V are R-modules. If one of U and V is noetherian or artinian, then

ΦV : V → DU : v 7→< − , v > and ΦU : U → DV : u 7→< − , u >

are R-linear isomorphisms.

Proof. Since the R-bilinear form < −,− > is non-degenerate, by Lemma

2.1.10, both ΦV and ΦU are monomorphisms. If one of U and V is noetherian

or artinian, then so is the other one. Now the result follows from Lemma

2.1.17. The proof of the corollary is completed.

2.1.19 Theorem. Let C be a triangle-stable subcategory of a triangulated R-

category A, where R is complete local noetherian. Let C have an Auslander-

Reiten triangle X // Y // Z // X[1] and an object L ∈ C.

(1) If one of HomA(L,X[1]) and HomC(Z,L) is noetherian or artinian, then

HomA(L,X[1]) ∼= DHomC(Z,L).
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(2) If one of HomA(Z[−1], L) and HomC(L,X) is noetherian or artinian,

then

HomA(Z[−1], L) ∼= DHomC(L,X).

Proof. We shall only prove Statement (1). By Lemma 2.1.11, there exists a

non-degenerate R-bilinear form

< − ,− >: HomA(L,X[1])× HomC(Z,L) → I.

If one of HomA(L,X[1]) and HomC(Z,L) is noetherian or artinian, by Corol-

lary 2.1.18, we get HomA(L,X[1]) ∼= DHomC(Z,L). The proof of this theo-

rem is completed.

The following result generalizes slightly the well-known result by Reiten

and Van den Bergh stated in [24].

2.1.20 Theorem. Let C be a Hom-finite triangle-stable subcategory of a

triangulated R-category A, where R is a complete local noetherian ring. If

X,Z are strongly indecomposable objects in C, then the following conditions

are equivalent.

(1) C has an Auslander-Reiten triangle X // Y // Z // X[1].

(2) There exists an isomorphism DHomC(Z,−) ∼= HomA(−, X[1])|C.

(3) There exists an isomorphism DHomC(−, X) ∼= HomA(Z[−1],−)|C.

Proof. We only prove that (1) and (2) are equivalent. We can get that (2)

implies (1) from Proposition 2.1.16. Conversely since HomC(Z,L) is Hom-

finite, for all L ∈ C, we know that HomC(Z,L) is noetherian. By Theorem

2.1.19, we know that (1) implies (2). The proof of the corollary is completed.

2.2 Minimal Approximations

Throughout this section, A stands for a triangulated R-category, where

R is a commutative ring, and C stands for an extension-closed subcategory
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of A. In this section, our objective is to study when an Auslander-Reiten

triangle in A induces an Auslander-Reiten triangle in C.

Now we introduce some terminology.

2.2.1 Definition. Let C be an extension-closed subcategory of a triangu-

lated R-category A, and let X be an object in A.

(1) A morphism f : M → X in A with M ∈ C is called a right C-
approximation ofX if the map HomA(L, f) : HomC(L,M) → HomA(L,X)

is surjective for any L ∈ C.

(2) A morphism g : X → N ∈ A with N ∈ C is called a left C-approximation

of X if the map HomA(g, L) : HomC(N,L) → HomA(X,L) is surjective

for any L ∈ C.

2.2.2 Definition. Let C be an extension-closed subcategory of a triangu-

lated R-category A, and let X be an object in A.

(1) A morphism f : M → X in A with M ∈ C is called a minimal right

C-approximation of X if f is right minimal and a right C-approximation

of X.

(2) A morphism f : X → M in A with M ∈ C is called a minimal left

C-approximation of X if f is left minimal and a left C-approximation of

X.

The following result is stated by Jørgensen in [16] in the Hom-finite con-

text. However, we observe that it holds in the general context.

2.2.3 Lemma. Let C be an extension-closed subcategory of a triangulated

R-category A, and let X // Y // Z // X[1] be an Auslander-Reiten

triangle in A. Suppose that Z ∈ C and f : M → X is a minimal right

C-approximation of X.

(1) For L ∈ C, the map HomA(L, f [1]) : HomA(L,M [1]) → HomA(L,X[1])

is a monomorphism.
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(2) M is zero or indecomposable.

Proof. (1) Suppose that there exists a morphism g ∈ HomA(L,M [1]) such

that f [1] ◦ g = 0. Then A has two exact triangles

M
r // E // L

g //M [1]

and

X
s // F // L

0 // X[1].

where the first one is based on g and the second one is based on 0 : L→ X[1].

Since f [1] ◦ g = 0, we can get a commutative diagram

M
r //

f

��

E //

h

��

L
g //M [1]

f [1]
��

X s // F // L 0 // X[1].

Obviously, s is a section. Hence there exists t : F → X such that ts = 1X
and f = (th)r. Since E ∈ C and f is a right approximation of X, there exists

u : E → M such that fu = th. Then, we know f = (th)r = fur. Since f

is right minimal, ur is an isomorphism and r is a section. Therefore, g = 0.

That is, HomA(L, f [1]) is injective.

(2) By (1), we know that

HomA(Z, f [1]) : HomA(Z,M [1]) → HomA(Z,X[1])

is injective. By Corollary 2.1.7, HomA(Z,X[1]) has an essential simple socle

as an End(Z)C-module, and thus, each of its End(Z)C-submodules is inde-

composable. In particular, HomA(Z,M [1]) is indecomposable.

Assume now that M = M1 ⊕ M2, with non-zero canonical injections

qi : M1 → M , i = 1, 2. Setting fi = fqi, since f : M → X is right minimal,

fi ̸= 0, for i = 1, 2. Now we claim that HomA(Z,Mi[1]) ̸= 0, for 1 = 1, 2. In

fact, applying Lemma 2.1.11(3) to the Auslander-Reiten triangle in A stated

in the lemma, we obtain a non-degenerate R-bilinear form

HomA(Mi, X)× HomA(Z[−1],Mi) → I.
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Since 0 ̸= fi ∈ HomA(Mi, X), we know HomA(Z[−1],Mi) ̸= 0, that is,

HomA(Z,Mi[1]) ̸= 0, for i = 1, 2. Therefore,

HomA(Z,M [1]) = HomA(Z,M1[1])⊕ HomA(Z,M2[1])

is decomposable, a contradiction. The proof of the lemma is completed.

2.2.4 Definition. Let C be an extension-closed subcategory of a triangu-

lated category A. An object X in C is called Ext-projective in C provided

that HomA(X, Y [1]) = 0, for any Y ∈ C. Dually, X is called Ext-injective in

C provided that HomA(Y,X[1]) = 0, for any Y ∈ C.

Remark. If X // Y // Z // X[1] is an Auslander-Reiten triangle in

C, then Z is not Ext-projective and X is not Ext-injective in C.

The following result is also stated by Jørgensen in [16] in the Hom-finite

context. Our statement is a little more general with a much shorter proof.

2.2.5 Proposition. Let C be an extension-closed subcategory of a triangu-

lated R-category A, and let Z be an object in C, which admits an Auslander-

Reiten triangle X // Y // Z
w // X[1] in A. Suppose that X has a

minimal right C-approximation f :M → X.

(1) The object Z is not Ext-projective in C if and only if f ̸= 0.

(2) If Z is not Ext-projective in C, then we have a commutative diagram

M //

f

��

N //

��

Z //M [1]

f [1]
��

X // Y // Z // X[1],

where the rows are exact. If, moreover, M is Krull-Schmidt, then the

upper row in any such commutative diagram is an Auslander-Reiten tri-

angle in C.

Proof. (1) Assume that f ̸= 0. By the non-degeneracy stated in Lemma

2.1.11(3), HomA(Z,M [1]) ̸= 0. Hence, Z is not Ext-projective in C. Con-

versely, assume that Z is not Ext-projective in C. That is, there exists an
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object L ∈ C such that HomA(Z,L[1]) ̸= 0. By Lemma 2.1.11(3), there ex-

ists a non-zero element h ∈ HomA(L,X) ̸= 0. Since f is a minimal right

C-approximation, there exists g :M → L such that h = fg. Hence, f ̸= 0.

(2) Assume that Z is not Ext-projective, by (1), we know f ̸= 0. Then by

Proposition 2.1.6, there exists a morphism g : Z →M [1] such that w = f [1]g.

Thus, there exists a commutative diagram

M //

f

��

N
t //

��

Z
g //M [1]

f [1]
��

X // Y // Z
w // X[1],

where the upper row is an exact triangle based on g with M,N ∈ C.
Assume now M is Krull-Schmidt. By Lemma 2.2.3, M is strongly in-

decomposable. Let h : L → Z be a non-retraction morphism in C. Then

wh = 0, and hence, f [1]gh = 0. By Lemma 2.2.3, we know that the map

HomA(L, f [1]) : HomA(L,M [1]) → HomA(L,X[1])

is a monomorphism. Thus, we get gh = 0. By Proposition 1.1.5, h factors

through t. By Lemma 2.1.3, M // N t // Z
g //M [1] is an Auslander-

Reiten triangle in C. The proof of the proposition is completed.

The following result extends slightly a result of Jørgensen stated in [16].

We give a complete proof for self-completeness.

2.2.6 Theorem. Let R be a complete local noetherian ring. Let

X
u // Y

v // Z
w // X[1]

be an Auslander-Reiten triangle in A, and M
r // N

t // Z
s //M [1] be

an Auslander-Reiten triangle in C. If HomC(L,M) ∈ modR for any L ∈ C,
then there exists a commutative diagram

M
r //

f

��

N
t //

g

��

Z
s //M [1]

f [1]

��
X

u // Y
v // Z

w // X[1],
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where f is a minimal C-approximation of X and g is a right C-approximation

of Y.

Proof. Since s ̸= 0, by Proposition 2.1.5, we know there exists a morphism

f :M → X such that w = f [1]s. Hence, we establish a commutative diagram

as follows :

M
r //

f

��

N
t //

g

��

Z
s //M [1]

f [1]
��

X
u // Y

v // Z
w // X[1].

We claim that f : M → X is a right C-approximation of X. Indeed, let

f0 : L → X be a non-zero morphism in A with L ∈ C. Fix an R-linear form

φ : HomA(Z[−1], X) → I such that φ(w[−1]) ̸= 0. By Lemma 2.1.11(3), we

have a non-degenerate R-bilinear form

φ < − ,− >: HomA(L,X)× HomA(Z[−1], L) → I : (q, i) 7→ φ(qi).

Now, consider the R-linear form

ψ : HomA(Z[−1],M) → I : u 7→ φ(fu),

which is such that ψ(s[−1]) = φ(fs[−1]) = φ(w[−1]) ̸= 0. By Lemma

2.1.11(2), we have a right non-degenerate R-bilinear form

ψ < − ,− >: HomC(L,M)× HomA(Z[−1], L) → I : (p, j) 7→ ψ(pj).

Using f0 : L→ X, we obtain a R-linear map

φ< f0,− >: HomA(Z[−1], L) → I : i 7→ φ< f0, i > .

Suppose that HomC(L,M) is finitely generated, and hence noetherian.

Applying Lemma 2.1.17(2) to the R-bilinear form ψ < − ,− >, we get some

p ∈ HomC(L,M) such that φ < f0,− >= ψ < p,− > . That is, for any

i ∈ HomA(Z[−1], L), we have

φ< f0, i >= ψ < p, i >= ψ(pi) = φ(fpi) = φ < fp, i > .

Since φ < − ,− > is non-degenerate, f0 = fp. This shows that f is a right C-
approximation of X. SinceM is strongly indecomposable, f is right minimal.
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Finally, consider a morphism h : L → Y in A with L ∈ C. Since v is

not a retraction, neither is vh. Thus, there exists i : L → N such that

vh = ti = vgi. That is, v(h − gi) = 0. By Proposition 1.1.5, there exists

j : L → X such that uj = h − gi. Since we have just proved that f is a

right C-approximation of X, we can obtain k : L → M such that j = fk.

Therefore, we have h− gi = uj = ufk = grk. Thus, h = g(i + rk). That is,

g is a right C-approximation of Y . The proof of the theorem is completed.

We will say that C has right Auslander-Reiten triangles if each of its

strongly indecomposable non-Ext-projective objects is the ending term of an

Auslander-Reiten triangle in C; and it has left Auslander-Reiten triangles if

each of its strongly indecomposable non-Ext-injective objects is the starting

term of an Auslander-Reiten triangle in C.We know that an Auslander-Reiten

triangle

X
u // Y

v // Z
w // X[1]

in C is unique up to isomorphism for X and for Z, we shall write X = τAZ

and Z = τ−AX. The uniqueness is well known; see, for example [15, (3.5)].

2.2.7 Theorem. Let A be a triangulated R-category where R is complete

local noetherian ring, and let C be an extension-closed subcategory of A which

is Hom-finite and Krull-Schmidt.

(1) If A has right Auslander-Reiten triangles, then C has right Auslander-

Reiten triangles if and only if τAZ has a right minimal C-approximation,

for any indecomposable non-Ext-projective object Z in C.

(2) If A has left Auslander-Reiten triangles, then C has left Auslander-Reiten

triangles if and only if τ−AX has a left minimal C-approximation, for any

indecomposable object non-Ext-injective X in C.

Proof. We shall only prove (1). Let Z ∈ C be indecomposable and non-

Extprojective. Since A is Krull-Schmidt, Z is strongly indecomposable. We

assume that C has right Auslander-Reiten triangles. Then there exists an

Auslander-Reiten triangle M // N // Z //M [1] in C. For any L ∈ C,
HomC(L,M) is of finite length. By Theorem 2.2.6, τAZ has a minimal right

C-approximation.

33



Conversely, by assumption, there exists an Auslander-Reiten triangle

τAZ // Y // Z // τAZ[1] in A and a right minimal C-approximation

f : M → τAZ of τAZ. By Proposition 2.2.5, C has an Auslander-Reiten

triangle ending with Z. The proof of the theorem is completed.
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Chapter 3

Auslander-Reiten Triangles in

Triangulated Categories with a

t-structure

In this chapter, our main objective is to study Auslander-Reiten triangles

in a triangulated category with a t-structure. One part of this chapter is

to show an application of some results obtained in Chapter 2 on Auslander-

Reiten triangles in subcategories, and the other one is to study the Auslander-

Reiten triangles in a triangulated category which possesses a particular prop-

erty called t-hereditary.

3.1 The t-structure

Now we recall some terminology and basic facts from [23].

Let D be a triangulated category with translation functor T. We say that

a full subcategory of D is strictly full if it is closed under isomorphisms. If

(D≤0,D≥0) is a pair of strictly full subcategories of D, then we put D≤n =

T−n(D≤0) and D≥n = T−n(D≥0), for any n ∈ Z.
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3.1.1 Definition. Let D be a triangulated category. A pair (D≤0,D≥0) of

strictly full subcategories ofD is called a t-structure if the following conditions

are verified:

(1) D≤0 ⊆ D≤1 and D≥0 ⊇ D≥1.

(2) HomD(X,Y ) = 0, for any X ∈ D≤0 and Y ∈ D≥1.

(3) For any object X in D, there exists an exact triangle

A // X // B // A[1],

where A ∈ D≤0 and B ∈ D≥1.

The following result is well known; see, for example, [1, (1.1)]

3.1.2 Theorem. Let D be a triangulated category with a t-structure (D≤0,D≥0).

(1) For any n ∈ Z, the subcategory D≤n is stable under T and the subcategory

D≥n is stable under T−1.

(2) The canonical inclusion D≤n → D has a right adjoint τ≤n, and the canon-

ical inclusion D≥n → D has a left adjoint τ≥n such that, for any X ∈ D,

we have X ∈ D≤n if and only if τ≥n+1(X) = 0; and X ∈ D≥n if and only

if τ≤n−1(X) = 0.

(3) For any n ∈ Z, the subcategories D≤n and D≥n+1 are extension-closed

subcategories such that HomD(X,Y ) = 0 for X ∈ D≤n and Y ∈ D≥n+1.

The following result is well know; see, for example, [23, Chapter 4, (1.2.1),

(2.1.1)].

3.1.3 Theorem. Let D be a triangulated category, and let (D≤0,D≥0) be a

t-structure on D.

(1) H = D≤0 ∩ D≥0 is an abelian category, called the heart of (D≤0,D≥0).
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(2) Any short exact sequence 0 // X
f // Y

g // Z // 0 in H induces an

exact triangle X
f // Y

g // Z // X[1] in D, in such a way that we

have an isomorphism of abelian groups

Ext1H(Z,X) ∼= HomD(Z,X[1]).

The following result is a reformulation of a well-known result; see, for

example, [23, Chapter 4, (1.2.5)].

3.1.4 Proposition. Let D be a triangulated category with a t-structure

(D≤0,D≥0). For any X ∈ D and n ∈ Z, there exists a canonical exact triangle

τ≤n(X)
q // X

p // τ≥n+1(X) // τ≤n(X)[1],

where q is a minimal right D≤n-approximation of X, and p is a minimal left

D≥n+1-approximation of X.

Proof. The existence of the exact triangle is well-known. We shall prove

only that q : τ≤n(X) → X is a right minimal D≤n-approximation of X.

Let f : Y → X be a morphism in D with Y ∈ D≤n. Then we obtain a

commutative diagram as follows:

Y
1
Y //

τ≤n(f)

��

Y

f

��

// 0

��

// Y [1]

��
τ≤n(X)

q // X
p // τ≥n+1(X) π // τ≤n(X)[1].

In particular, f = q◦τ≤n(f). This shows that q is a right D≤n–approximation

of X. Let g : τ≤n(X) → τ≤n(X) such that q = qg. Then, q(1 − g) = 0.

Therefore, 1− g = π[−1]h for some h : τ≤n(X) → τ≥n+1(X)[−1]. But, since

τ≥n+1(X)[−1] ∈ D≥n+1, we get h = 0. That is 1 − g = 0. The proof of the

proposition is completed.

We shall need the following statement.
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3.1.5 Lemma. Let D be a triangulated category with an object X. If D has an

exact triangle Y
u // X

v // Z
w // Y [1] with Y ∈ D≤n and Z ∈ D≥n+1,

then there exists a commutative diagram

Y
u //

f

��

X
v // Z

w //

h
��

Y [1]

f [1]

��
τ≤n(X)

q // X
p // τ≥n+1(X) // τ≤n(X)[1],

which is an isomorphism of triangles.

Proof. Let Y u // X v // Z w // Y [1] be an exact triangle in D with

Y ∈ D≤n and Z ∈ D≥n+1. By Theorem 3.1.2(3), HomD(Y, τ≥n+1(X)) = 0.

Therefore, pu = 0 and there exists a commutative diagram

Y
u //

f

��

X
v // Z

w //

h
��

Y [1]

f [1]

��
τ≤n(X)

q // X
p // τ≥n+1(X) // τ≤n(X)[1].

On the other hand, since HomD(τ≤n(X), Z) = 0, we obtain another commu-

tative diagram

τ≤n(X)
q //

f ′

��

X
p // τ≥n+1(X) //

h′

��

τ≤n(X)[1]

f ′[1]
��

Y
u // X

v // Z
w // Y [1].

Composing these two diagrams, we obtain a commutative diagram

Y
u //

f ′f

��

X
v // Z

w //

h′h
��

Y [1]

(f ′f)[1]
��

Y
u // X

v // Z
w // Y [1].

This yields (1 − f ′f)u = 0, and hence 1 − f ′f factors through Z[−1].

However, since Z[−1] ∈ D≥n+1, we know that HomD(Y, Z[−1]) = 0. There-

fore, 1 − f ′f = 0, that is, f ′f = 1. Similarly, ff ′ = 1. This shows that f is

an isomorphism, and hence, so is h. The proof of the lemma is completed.
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We can obtain the following result by applying Proposition 2.2.5 in the

previous chapter.

3.1.6 Theorem. Let D be a triangulated category with t-structure (D≤0,D≥0),

and let D have an Auslander-Reiten triangle

X u // Y v // Z w // X[1].

(1) If Z ∈ D≤n is not Ext-projective for some n ∈ Z, then D≤n has an

Auslander-Reiten triangle :

τ≤n(X) // τ≤n(Y ) // Z // τ≤n(X)[1].

(2) If X ∈ D≥n is not Ext-injective for some n ∈ Z, then D≥n has an

Auslander-Reiten triangle :

X // τ≥n(Y ) // τ≥n(Z) // X[1].

Proof. We shall only prove Statement (1). Suppose that Z ∈ D≤n is not

Ext-projective. Consider the exact triangle

(∗) τ≤n(X)
q // X

p // τ≥n+1(X) // τ≤n(X)[1].

By the adjunction stated in Theorem 3.1.2(2), there exists an isomorphism

φ : HomD(τ≤n(X), X) → EndD(τ≤n(X))

On the other hand, since Z ∈ D≤n, HomD(Z, τ≥n+1(X)) = 0. By Lemma

2.1.11(3), HomD(τ≥n+1(X), X[1]) = 0. Thus, applying HomD(−, X) to (∗)
gives rise to an epimorphism

HomD(q,X) : EndD(X) → HomD(τ≤n(X), X).

Composing this with φ, we get an epimorphism

ϕ : EndD(X) → EndD(τ≤n(X)),

which is a ring morphism. Since Z is not Ext-projective, by Proposition

2.2.5(1), τ≤n(X) ̸= 0. Since EndD(X) is local, EndD(τ≤n(X)) is also local.
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Thus, τ≤n(X) is strongly indecomposable. By Proposition 2.2.5, we have a

commutative diagram

τ≤n(X)

q

��

u′ // N
v′ //

g

��

Z
w′

// τ≤n(X)[1]

q[1]

��
X

u // Y
v // Z

w // X[1]

in D, where the upper row is an Auslander-Reiten triangle in D≤n. Consid-

ering w = w′q[1], by the octahedral axiom, we get a commutative diagram

Z[−1]
−w′[−1]// τ≤n(X) u′ //

q

��

N
v′ //

��

Z

Z[−1]
−w[−1] //

−w′[−1]
��

X u // Y v //

��

Z

��
τ≤n(X)

q //

u′

��

X
p //

��

τ≥n+1(X) // τ≤n(X)[1]

��
N // Y // τ≥n+1(X) // N [1],

where all the rows are exact triangles. Since N ∈ D≤n and τ≥n+1(X) ∈
D≥n+1, by Lemma 3.1.5, we getN ∼= τ≤n(Y ). Thus, there exists an Auslander-

Reiten triangle

τ≤n(X) // τ≤n(Y ) // Z // τ≤n(X)[1].

The proof of the theorem is completed.

3.2 t-structure with a t-hereditary Heart

In this section, our main objective is to study the Auslander-Reiten trian-

gles in a triangulated category which possesses a property called t-heredity.
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Throughout this section, letD be a triangulated category, and let (D≤0,D≥0)

on D be a t-structure and H be its heart. First we define an additive functor

H0 : D → H by

H0(X) = τ≤0(τ≥0(X));

and, for any p ∈ Z, we define an additive functor Hp : D → H by

Hp(X) = H0(X[p]).

3.2.1 Definition. LetD be a triangulated category. A t-structure (D≤0,D≥0)

on D is called bounded if it satisfies the following conditions.

(1) For any X ∈ D, if Hp(X) = 0 for all p ∈ Z, then X = 0.

(2) Hp(X) = 0, for all but finitely many p ∈ Z.

3.2.2 Definition. LetD be a triangulated category, and let (D≤0,D≥0) be a

t-structure with heart H. We say that H is t-hereditary if HomD(M,N [n]) =

0, for all M,N ∈ H and n ≥ 2.

The following result is well known; see, for example, [23, Chapter 4,

(2.3.1)].

3.2.3 Theorem. Let D be a triangulated category, and let (D≤0,D≥0) be a

bounded t-structure with a t-hereditary heart H. For any object X in D,

X ∼=
⊕

p∈ZH
p(X)[−p].

By this theorem, we obtain the following lemma.

3.2.4 Lemma. Let D be a triangulated category, and let (D≤0,D≥0) be a

bounded t-structure with a t-hereditary heart H. Then HomD(X, Y [p]) = 0,

for any X, Y ∈ H and p ∈ Z\{0, 1}.
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Proof. Let X,Y be two objects in H. If p ≥ 2, since H is t-hereditary,

HomD(X, Y [p]) = 0. Now consider p ≤ −1. That is, −p ≥ 1. We know that

Y [p] ∈ D≤−p ∩ D≥−p. In particular, X ∈ D≤0 and Y [p] ∈ D≥1. Therefore,

HomD(X, Y [p]) = 0. The proof of the lemma is completed.

3.2.5 Corollary. Let D be a triangulated category, and let (D≤0,D≥0) be

a bounded t-structure with a t-hereditary heart H. Then

HomD(X, Y ) ∼= HomD(H
0(X)⊕H1(X)[−1], Y ),

for any X ∈ D and Y ∈ H.

Proof. Suppose that X ∈ D and Y ∈ H. By Theorem 3.2.3, we know that

X ∼=
⊕
p∈Z

Hp(X)[−p].

Then by Lemma 3.2.4, HomD(X,Y ) ∼= HomD(H
0(X)⊕H1(X)[−1], Y ). The

proof of the lemma is completed.

The following result tells us how the minimal almost split morphisms in

D are related to those in H, which is inspired from [9, (7.1)].

3.2.6 Lemma. Let D be a triangulated category, and let (D≤0,D≥0) be a

bounded t-structure with a t-hereditary heart H. Let X, Y, Z ∈ H.

(1) If (f, η)T : X → Y ⊕ Z[1] is a minimal left almost split morphism in D,

then f : X → Y is a left almost split morphism in H.

(2) If (g, ς) : Y ⊕ Z[−1] → X is a minimal right almost split morphism in

D, then g : Y → X is a minimal right almost split morphism in H.

Proof. Let (f, η)T : X → Y ⊕ Z[1] be a minimal left almost split morphism

in D. It is evident that f : X → Y is left minimal and is not a section.

Suppose that u : X → M is a non-section morphism in H. Then u factor

through (f, η)T in D. By Lemma 3.2.4, HomD(Z[1],M) = 0. We see that u

factor through f in H. This proves Statement (1). In a dual manner, we can

establish Statement (2). The proof of the lemma is completed.

For later use, we quote the following result from [9, (2.1)].
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3.2.7 Lemma. Let H be an abelian category with a short exact sequence

0 // X
q // Y

p // Z // 0 .

(1) The morphism q is minimal right almost split if and only if Z is simple

and p is its projective cover. In this case, we write X = radP.

(2) The morphism p is minimal left almost split if and only if X is simple

and q is its injective envelope.

Now we are ready to obtain our main result of this section, which is

analogous to a result by Bautista, Liu and Paquette for the bounded derived

category of an abelian category with a similar argument; see [9, (7.4)].

3.2.8 Theorem. Let D be a triangulated category, and let (D≤0,D≥0) be a

bounded t-structure with a t-hereditary heart H.

(1) If 0 // X // Y // Z // 0 is an Auslander-Reiten sequence in H,
then X // Y // Z // X[1] is an Auslander-Reiten triangle in D.

(2) If S is a simple object in H having a projective cover P and injective hull

I in H, then D has an Auslander-Reiten triangle as follows:

I[−1] // (I/S)[−1]⊕ radP // P // I.

(3) Every Auslander-Reiten triangle in D is a shift of an Auslander-Reiten

triangle as stated in the above two statements.

Proof. (1) Let η : 0 // X
f // Y

g // Z // 0 be an Auslander-Reiten

sequence in H. Then, by Theorem 3.1.3(2),

X
f // Y

g // Z
η // X[1]

is an exact triangle in D. Let U be an object in D. By Corollary 3.2.5, we

get

HomD(U, Y ) ∼= HomD(H
0(U)⊕H1(U)[−1], Y ).
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It is enough to show that for any non-zero non-retraction morphism

u = (u0, u1) : H
0(U)⊕H1(U)[−1] → Z ∈ D,

u factors through g. Since D is t-hereditary,

Hom(H1(U)[−1], X[1]) ∼= Hom(H1(U), X[2]) = 0.

Thus, u1 factors through g. Now consider u0 : H0(U) → Z. It is obvious

that u0 is not a retraction. Since g is right almost split in H, there exists a

morphism v : H0(U) → Y such that u0 = gv. Therefore,

X
f // Y

g // Z // X[1]

is an Auslander-Reiten triangle in D.
(2) Let S be a simple object in H with projective cover ε : P → S and

injective envelope ι : S → I. In view of Lemma 3.2.7, we deduce that P and

I are strongly indecomposable. Setting h = ιε, we get an exact triangle

I[−1]
f //M

g // P
h //// I

in D. Let µ : X → P be a non-zero non-retraction morphism in D. By
Corollary 3.2.5, we may assume that u = (u0, u1) : H

0(X)⊕H1(X)[−1] → P.

Then u0 is a non-retraction in H. Thus εu0 = 0, and hence hu0 = 0. On the

other hand, by Theorem 3.1.3(3),

HomD(H
1(X)[−1], I) ∼= HomD(H

1(X), I[1]) ∼= Ext1H(H
1(X), I) = 0.

In particular, hu1 = 0, and consequently, hu = 0. Therefore, g is right almost

split in D. Since I[−1] is strongly indecomposable,

I[−1]
f //M

g // P
h //// I ∈ D

is an Auslander-Reiten triangle in D. Again, by Corollary 3.2.5, we may

assume that M = H0(M)⊕H1(M)[−1]. Write

f = (f1, f2[−1])T and g = (g1, g2),
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where f2 : I → H1(M) and g1 : H
0(X) → P are morphism in H. By Lemma

3.2.6, f2 is minimal right almost split, and g1 is minimal right almost split.

By Lemma 3.2.7, we get H0(X) ∼= radP and H1(X) ∼= I/S.

(3) Let δ : X
f // Y

g // Z
h // X[1] be an Auslander-Reiten triangle

in D. In particular, X,Z are strongly indecomposable. In view of Theorem

3.2.3, up to a shift, we may assume that X ∈ H. Since f is left minimal, we

may assume that Y = M ⊕ N [1] with M,N ∈ H. Write f = (u, ζ)T : X →
M⊕N [1] with u : X →M a morphism in H, and g = (ξ, v) :M⊕N [1] → Z.

By Lemma 3.2.6, u is minimal left almost split in H.
First, we suppose that X is not injective in H. Then there exists a non-

section monomorphism X → L in H, which factors through u. Thus, u is a

monomorphism. Hence, H has a short exact sequence

0 // X //M // N // 0

which is an Auslander-Reiten sequence by Lemma 2.0.3. By statement (1),

X //M // N // X[1] is an Auslander-Reiten triangle in D, which
is isomorphic to the Auslander-Reiten triangle δ. That is, δ is the form of

statement (1).

Next, we suppose that X = I, an injective object in H. Then u : I →M

is a minimal left almost split epimorphism in H. Let q : S → I be the kernel

of u. By Lemma 3.2.7, S is simple with q being its injective envelope and

M ∼= I/S. Suppose that Z ∈ H. Then v = 0 and ξu = −vζ = 0. Since u is an

epimorphism in H, we get ξ = 0, and hence g = (ξ, v) = 0. As a consequence,

h : Z → I[1] is a section, which contradicts HomD(Z, I[1]) ∼= Ext1H(I, Z) = 0.

Therefore, Z is not in H. Since h ̸= 0 and Z is strongly indecomposable,

Z = P [1] for some P ∈ H. Then, h = s[1] and v = j[1], where s : P → I and

j : N → P are morphisms in H. Now,

δ[−1] : I[−1]
f [−1] // Y [−1]

g[−1] // P s // I,

where g[−1] = (ξ[−1], j) : M [−1]⊕N → P, is an Auslander-Reiten triangle

in D. By Lemma 3.2.7, j : N → P is minimal right almost split in H. If
P is not projective, as argued in the case where X is not injective, we can

show that δ[−1] is isomorphic to an Auslander-Reiten triangle induced from
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an Auslander-Reiten sequence in H ending with P. In particular, I[−1] is

isomorphic to an object in H, which is a contradiction. Thus, P is projective.

Therefore, j : N → P is a minimal right almost split monomorphism. Let

ε : P → T be the cokernel of j. By Lemma 3.2.7, T is simple with ε being its

projective cover, and N ∼= radP.Moreover, since s◦g[−1] = 0 and fs = 0, we

have sj = 0 and us = 0. This yields a factorization s = qpε, where p : T → S

is a non-zero morphism in H. Since T, S are simple, p is an isomorphism.

That is, δ is of the form stated in Statement (2). The proof of the theorem

is completed.
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Chapter 4

Auslander-Reiten Theory in

Derived Categories

In this chapter, our main objective is to generalize a well-known result of

Happel on the existence of Auslander-Reiten triangles in the bounded derived

category of finite dimensional modules over a finite dimensional algebra. We

shall show that a similar result holds in the bounded derived category of all

modules of a noetherian algebra over a complete local noetherian commuta-

tive ring.

4.1 Derived Categories

In this section, we introduce the derived category of an additive full sub-

category of an abelian category and collect some basic facts. Throughout

this section, A stands for an additive full subcategory of an abelian category

A .

4.1.1 Definition. A complex (X., d.X ), or simply X., over A is a double

infinite chain

· · · // Xn−1
dn−1
X // Xn

dnX // Xn+1 // · · · , n ∈ Z
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of morphisms in A such that dn+1
X dnX = 0, for all n, where Xn is an object

called the component of degree n of X., and dnX is a morphism called the

differential of degree n.

4.1.2 Definition. A complex X. over A is called bounded-above if Xn = 0

for all but finitely many positive integers n, and bounded if Xn = 0 for all

but finitely many integers n.

4.1.3 Definition. Let X. be a complex over A. For each n ∈ Z, the n-th
cohomology of X. is defined to be

Hn(X.) = Ker(dn
X
)/Im(dn−1

X
) ∈ A .

One says that X. has bounded cohomology if Hn(X.) = 0 for all but finitely

many integers and that X. is acyclic if Hn(X.) = 0 for all integers n.

4.1.4 Definition. A morphism f . : X. → Y. of complexes over A consists

of morphisms fn : Xn → Y n, n ∈ Z, such that dnY f
n = fn+1dnX for all n ∈ Z.

The complexes over A form an additive category C(A). For X. ∈ C(A)

and s ∈ Z, the shift of X. by s, denoted by X.[s], is the complex of which the

component of degree n is Xn+s and the differential of degree n is (−1)sdn+sX .

4.1.5 Definition. The automorphism of C(A) sending X. to X.[1] is called
the shift functor of C(A).

4.1.6 Definition. A morphism f . : X. → Y. in C(A) is called a quasi-

isomorphism if fn induces an isomorphism Hn(f) : Hn(X.) → Hn(Y.) for

every n ∈ Z; and null-homotopic if there exist hn : Xn → Y n−1, n ∈ Z, such
that fn = hn+1dnX + dn−1

Y hn, for all n ∈ Z.

4.1.7 Lemma. Let f . : X. → Y., g. : Y. → Z. and h. : Z. → U . be mor-

phisms in C(A). If g.f . and h.g. are quasi-isomorphisms, then g. is a quasi-

isomorphism.
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Proof. Suppose that g.f . and h.g. are quasi-isomorphisms. It follows that

Hn(g.f .) and Hn(h.g.) are isomorphisms, for all n ∈ Z. Therefore, there exist
morphisms αn and βn such that 1

Hn(Z.) = Hn(g.f .)αn = Hn(g.)Hn(f .)αn and

1
Hn(Y.) = βnH

n(h.g.) = βnH
n(h.)Hn(g.), for all n ∈ Z. Hence, Hn(g.) is an

isomorphism for all n ∈ Z. That is, g. is a quasi-isomorphism. The proof of

the lemma is completed.

4.1.8 Lemma. Let f . : X. → Y. and g. : Y. → Z. be two morphisms in

C(A). If h.= g.f . is a quasi-isomorphism, then f . is a quasi-isomorphism if

and only if g. is a quasi-isomorphism.

Proof. Suppose that h. = g.f . is a quasi-isomorphism in C(A). Then

Hn(h.) = Hn(g.)Hn(f .) is an isomorphism for all n ∈ Z. If Hn(f .) is an

isomorphism for all n ∈ Z, then Hn(g.) is an isomorphism for all n ∈ Z.
Conversely, if Hn(g.) is an isomorphism for all n ∈ Z, then Hn(f .) is an

isomorphism for all n ∈ Z. The proof of the lemma is completed.

The following result is well known; see, for example, [23, Chapter 3,

(1.3.1), (1.3.2)].

4.1.9 Lemma. The class of null-morphisms forms an ideal in C(A).

The full subcategory of C(A) generated by the bounded-above complexes

and by the bounded complexes will be denoted by C−(A) and Cb(A), respec-

tively. Moreover, C−,b(A) denotes the full subcategory of C−(A) generated

by the complexes of bounded cohomology.

From now on, we fix ∗ ∈ {∅,−, b, {−, b}}.

4.1.10 Definition. Let f . : X.→ Y. be a morphism of complexes in C∗(A).

The mapping cone of f ., denoted by C.
f
, is the complex of which the com-

ponent of degree n is given by Y n ⊕Xn+1 and the differential of degree n is

given by

dn
Cf

=

(
dn

Y
fn+1

0 −dn+1
X

)
, n ∈ Z.
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The mapping cone of f . fits into a short exact sequence

0 // Y.
i.
f // C .

f

p.
f // X .[1] // 0

in C∗(A), where i.
f
: Y.→ C .

f
is the canonical injection, given by

inf =

(
1
Y n

0

)
: Y n → Y n ⊕Xn+1, n ∈ Z;

and p.
f
: C.

f
→ X.[1] is the canonical projection given by

pn
f
= ( 0 1

Xn+1 ) : Y
n ⊕Xn+1 → Xn+1, n ∈ Z.

4.1.11 Definition. The homotopy category K∗(A) is the quotient category

of C∗(A) modulo the ideal of null-homotopic morphisms.

The canonical projection functor P ∗
A : C∗(A) → K∗(A) is an additive

functor. For a morphism u.∈ C∗(A), we write ū. = P ∗
A(u

.) ∈ K∗(A). Given

a morphism f . : X.→ Y. in C∗(A), the diagram

X.
f̄ . // Y.

ī.
f // C .

f

p̄.
f // X .[1]

is called a standard triangle in K∗(A).

The following result is well-known; see, for example, [23, Chapter 3,

(2.1.1)].

4.1.12 Theorem. The homotopy category K∗(A) is a triangulated category

whose translation functor is the shift functor and whose exact triangles are

the diagrams which are isomorphic to standard triangles.

A quasi-isomorphism in K∗(A) is the image of a quasi-isomorphism in

C∗(A) under P ∗
A. It is well known that the quasi-isomorphisms in K∗(A)

form a localizing class compatible with the triangulation, see, for example,

Chapter 3, Proposition 3.1.2, [23].

50



4.1.13 Definition. The derived category D∗(A) of A is the localization of

K∗(A) with respect to the quasi-isomorphisms.

Recall that the morphisms in D∗(A) are the equivalence classes f̄ ./s̄. :

X.→ Y. of the diagrams of morphisms

Z.
f̄ .

  B
BB

BB
BB

B
s̄.

}}||
||
||
||

X. Y.

in K∗(A) with s. a quasi-isomorphism. We have a canonical functor

L∗
A : K∗(A) → D∗(A),

call the localization functor, which sends f̄ . to f̃ .= f̄ ./1̄.

4.1.14 Lemma. Let f . : X. → Y . be a morphism in C(A). Then f̃ . is an

isomorphism in D(A) if and only if f . is a quasi-isomorphism.

Proof. We only need to show the sufficiency. Assume that f̃ . is an isomor-

phism. Then there exists a morphism ḡ./t̄. : Y . → X . such that (ḡ./t̄.)f̃ . =

1̃X.. In particular, there exits a morphism h̄. and a quasi-isomorphism s.

such that (ḡ./t̄.)f̃ .= ḡ .̄h./s̄.= 1̃X.. In view of the second equation, we have

a commutative diagram

M.
ḡ .̄h.

!!C
CC

CC
CC

C
s̄.

}}{{
{{
{{
{{

X . N .

ū.
OO

s̄.̄u.
��

Y.

X .
1

=={{{{{{{{1

aaCCCCCCCC

such that s̄.ū. is a quasi-isomorphism. Since s̄. is a quasi-isomorphism, by

Lemma 4.1.8, so is ū.. Therefore, ḡ.(h̄.ū.) is a quasi-isomorphism. On the

other hand, since f̃ .(ḡ./t̄.) = f̄ .̄g./t̄. = 1̃Y ., using a similar argument, we

obtain a quasi-isomorphism v̄. such that f̄ .̄g .̄v. = t̄.̄v.. By Lemma 4.1.8, we

know that f .g. and g.h. are quasi-isomorphisms. Then, by Lemma 4.1.7,
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g. is a quasi-isomorphism. Using Lemma 4.1.8 again, we see that f . is a

quasi-isomorphism. The proof of the lemma is completed.

4.1.15 Corollary. Let θ.= f̄ ./s̄. : X.→ Y . be a morphism in D(A). Then

θ. is an isomorphism in and only if f is a quasi-isomorphism, and in this

case, Hn(X.) ∼= Hn(Y .) for all n ∈ Z.
Proof. By definition, θ.= f̃ .(s̃.)−1 and f̃ .= θ .̃s.. If f is a quasi-isomorphism,

then f̃ is an isomorphism in D(A), and so is θ.. Conversely, if θ. is an

isomorphism, then so is f̃ . By Lemma 4.1.14, f is a quasi-isomorphism.

Finally, write s. : X. → Z. and f . : Z. → Y.. If s. and f . are quasi-

isomorphisms, then Hn(X.) ∼= Hn(Z .) ∼= Hn(Y .), for all n ∈ Z. The proof of

the corollary is completed.

The following result is well known; see, for example, [23, Chapter 2,

(1.6.1), Chapter 3, (3.2)].

4.1.16 Theorem. The derived category D∗(A) is a triangulated category,

whose translation functor is the shift functor and whose exact triangles are

the diagrams which are isomorphic to the images of the exact triangles in

K∗(A) under the localization functor L∗
A.

We denote by EA : A → D∗(A) the canonical functor EA = L∗
A◦P ∗

A which

sends an object X to the stalk complex of which the component of degree

zero is X and other components are zero, and sends a morphism f : X → Y

to f̃ : X → Y. It is well known that EA : A → D∗(A) is fully faithful; see,

for example, [23, Chpter 3, (3.4.7)].

Suppose that A has a short exact sequence

δ : 0 // X
f // Y

g // Z // 0.

It is easy to verify that the cone of the morphism f : X → Y in C∗(A) is the

complex

C.
f
: · · · // 0 // X

f // Y // 0 // · · · ,
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where Y is of degree 0. Let p. : C.
f
→ X[1] be the canonical projection as

follows:

· · · // 0 //

��

X
f //

1
X

��

Y //

��

0 //

��

· · ·

· · · // 0 // X // 0 // 0 // · · ·

.

Moreover, we have a quasi-isomorphism s. : C.
f
→ Z as follows:

· · · // 0 //

��

X
f //

��

Y //

g
��

0 //

��

· · ·

· · · // 0 // 0 // Z // 0 // · · ·

.

This yields a morphism δ : Z → X[1] in D∗(A) represented by the following

diagram

C.
f

s̄.

����
��
��
� p̄.

!!D
DD

DD
DD

D

Z X[1].

4.1.17 Proposition. Let A have a short exact sequence

δ : 0 // X
f // Y

g // Z // 0.

Then it determines an exact triangle in D∗(A) as follows :

X
f̃ // Y

g̃ // Z δ // X[1].

Proof. By definition, we have an exact triangle

X
f̃ // Y

ĩ. // C.
f

p̃. // X[1]

in D∗(A), where i. : Y → C.
f
is the canonical injection as follows :

· · · // 0 //

��

0 //

��

Y //

1
Y

��

0 //

��

· · ·

· · · // 0 // X
f // Y // 0 // · · ·

.
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By the definition of δ, we have δ◦s̃.= p̃. inD∗(A). This yields a commutative

diagram

X
f̃ // Y

ĩ. // C.
f

p̃. //

s̃.
��

X[1]

X
f̃ // Y

g̃ // Z
δ // X[1]

in D∗(A). Since s̃. is an isomorphism in D∗(A), the lower row is an exact

triangle in D∗(A). The proof of the proposition is completed.

Remark. Although the above result is well known, the explicit description

of the morphism δ seems to be new.

Now we introduce truncations of complexes. Consider a complex

X. : · · · // Xp−1 dp−1
// Xp dp // Xp+1 // · · ·

in C∗(A). For each n ∈ Z, we define two kinds of truncation of complexes as

follows :

δ≥n(X
.) : · · · // 0 // Xn dn // Xn+1 dn+1

// Xn+2 // · · ·

and

δ<n(X
.) : · · · // Xn−3 dn−3

// Xn−2 dn−2
// Xn−1 // 0 // · · · .

Immediately, we obtain a morphism of complexes

µ.n : δ≥n(X
.) → X.

such that µpn = 1
Xp , for p ≥ n and µpn = 0, for p ≤ n− 1; and a morphism of

complexes

π.n : X.→ δ<n(X
.)

such that πpn = 1
Xp , for p ≤ n− 1 and πpn = 0, for p ≥ n.

Moreover, we see that the mapping cone C.µn of µn is the following com-

plex:

· · · // Xn−3 dn−3
// Xn−2

(d
n−2

0 )
// Xn−1 ⊕Xn

dn−1
Cn // Xn ⊕Xn+1

dnCn // Xn+1 ⊕Xn+2 // · · · ,
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where dpCµn
with p ≥ n− 1 is given by

dpCµn
=

(
dp 1Xp+1

0 −dp+1

)
.

The following result is stated in [14, (1.3)] without a proof. Hence, we

include a proof here.

4.1.18 Theorem. Let A be a full additive subcategory of an abelian category

A . For any complex X. in C∗(A) and n ∈ Z, there exists an exact triangle

δ≥n(X
.)

µ̄.n // X.
π̄.n // δ<n(X

.)
ω̄.n // δ≥n(X

.)[1]

in K∗(A), where ωpn = 0, for p ̸= n− 1; and ωpn = −dp, for p = n− 1.

Proof. First, we claim that, for any X. ∈ C∗(A) and n ∈ Z, there exists in

K∗(A) an isomorphism

q̄.n : C.µn → δ<n(X
.),

where C.µn is the mapping cone of the truncation µ.n : δ≥n(X
.) → X..

In fact, let q.n : C.µn → δ<n(X
.) be the following morphism :

· · · // Xn−3 dn−3
// Xn−2

(d
n−2

0 )
// Xn−1 ⊕Xn

(1,0)

��

dn−1
Cµn // Xn ⊕Xn+1 //

��

· · ·

· · · // Xn−3 dn−3
// Xn−2 dn−2

// Xn−1 // 0 // · · · .

Then consider this morphism t.n : δ<n(X
.) → C.µn

· · · // Xn−3 dn−3
// Xn−2 dn−2

// Xn−1

( 1
−dn−1)

��

// 0 //

��

· · ·

· · · // Xn−3 dn−3
// Xn−2

(d
n−2

0 )
// Xn−1 ⊕Xn

dn−1
Cµn // Xn ⊕Xn+1 // · · · .

We get a morphism t.n q
.
n − 1Cµn

: C.µn → C.µn

· · · // Xn−3

0

��

dn−3
// Xn−2

0

��

(d
n−2

0 )
// Xn−1 ⊕Xn

( 0 0
−dn−1 −1)

��

dn−1
Cµn // Xn ⊕Xn+1

( −1 0
0 −1)

��

// · · ·

· · · // Xn−3

dn−3

// Xn−2

(d
n−2

0 )
// Xn−1 ⊕Xn

dn−1
Cµn

// Xn ⊕Xn+1 // · · ·
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Now we define a family of morphisms (hp)p∈Z in A, where hp : Cp
µn → Cp−1

µn

such that hp = 0, for p < n; and

hp =

[
0 0

−1
Xp 0

]
, for p ≥ n.

Thus, we know

hndn−1
Cn

=

[
0 0

−dn−1 −1

]
and for all p ≥ n we have

hpdp−1
Cn

+ dp
Cµn

hp+1 = −1
C
p
n
.

Hence, we get that tnqn− 1
Cµn

is homotopic to zero. Therefore, t̄.n q̄
.
n = 1

Cµn

in K∗(A). Analogously, we can get q̄.n t̄
.
n = 1

Cµn
in K∗(A). Thus, the claim

is true.

Moreover, we know that there is an exact triangle

δ≥n(X
.)

µ̄.n // X.
ī.n // C.µn

p̄.n // δ≥n(X
.)[1] ∈ K∗(A),

where i.n is the canonical injection and p.n is the canonical projection. Since

ω̄.n = p̄.n t̄
.
n and t̄.n q̄

.
n = 1 in K∗(A), we get ω̄.n q̄

.
n = p̄.n t̄

.
n q̄

.
n = p̄.n . And

knowing q̄.n ī
.
n = π̄.n , we can obtain a commutative diagram

δ≥n(X
.)

µ̄.n // X.
ī.n // C.µ.n

p̄.n //

q̄.n
��

δ≥n(X
.)[1]

δ≥n(X
.)

µ̄.n // X.
π̄.n // δ<n(X

.)
ω̄.n // δ≥n(X

.)[1]

Since q̄.n is an isomorphism in K∗(A), we know

δ≥n(X
.)

µ̄.n // X.
π̄.n // δ<n(X

.)
ω̄.n // δ≥n(X

.)[1]

is an exact triangle in K∗(A). The proof of the theorem is completed.

For any X. ∈ Cb(A), we denote by w(X.) the number of the non-zero

objects in X..
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Now we introduce other two kinds of complexe truncation. Consider a

complex

X. : · · · // Xp−1 dp−1
// Xp dp // Xp+1 // · · ·

in C∗(A). For each n ∈ Z, we define

τ≥n(X
.) : · · · // 0 // cokerdn−1 // Xn+1 dn+1

// Xn+2 // · · · ;

τ≤n(X
.) : · · · // Xn−2 dn−2

// Xn−1 // kerdn // 0 // · · · .

The following result is well known. Here we include a proof for self-

completeness.

4.1.19 Lemma. Let A be a full additive subcategory of an abelian category

A , and let X. be a complex in D(A). If X. has bounded cohomology, then it

is isomorphic to a bounded complex Y. in D(A).

Proof. We may assume that there exists an integer n > 0 such that Hp(X.) =
0 in case p ̸∈ [0, n]. Write Y. = τ≤n(τ≥0(X

.)) is in Cb(A). It is easy to see

Hp(Y.) = Hp(X.), for p ∈ Z. The proof of the lemma is completed.

4.2 Auslander-Reiten Triangles in Derived Cat-

egories

In this section, let A be an R-algebra, where R is a commutative ring.

We denote by ModA the category of all left A-modules, and by modA the

category of finitely generated left A-modules. Similarly, ModAop stands for

the category of all right A-modules, and A-mod for the category of finitely

generated right A-modules. We fix an injective cogenerator I for ModR.

Then we have two contravariant exact functors such that

D : ModA→ A-Mod :M 7→ HomR(M, I)
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and

D : A-Mod → ModA : N 7→ HomR(N, I).

This yields the Nakayama functor

ν = DHomA(−, A) : ModA→ ModA :M 7→ DHomA(M, A).

4.2.1 Definition. Let A be an R-algebra, and let P be a left A-module.

Consider ui ∈ P and φi ∈ HomA(P,A) with i ∈ I. One says that {ui;φi}i∈I
is a projective basis of P if u =

∑
i∈I φi(u)ui, for any u ∈ P , where φi(u) = 0

for all but finitely many i ∈ I.

The following result is well known; see, for example, [25]. For the conve-

nience of the reader, we present here the proof.

4.2.2 Lemma. Let A be an R-algebra. A left A-module P is (finitely generated)

projective if and only if it has a (finite) projective basis.

Proof. Assume that P is projective. There exists a free left A-module F

and a surjective A-linear map ψ : F → P. By the projectivity of P , there is

an A-linear map φ : P → F such that ψφ = 1. Let {ei : i ∈ I} be a basis

of F , and define ui = ψ(ei). If u ∈ P , then there is a unique expression

φ(u) =
∑

i aiei, where ai ∈ A and almost all ai = 0. Define φi(u) = ai. Of

course, given u, we have φi(u) = 0 for almost all i. Finally,

u = ψφ(u) = ψ(
∑

i aiei) =
∑

i aiψ(ei) =
∑

i(φ(u))ψ(ei) =
∑

i(φ(u))ui.

Since ψ is surjective, P is generated by {ui : i ∈ I}.
Conversely, given {ui ∈ P} and a family of A-linear maps (φi : P → A)i∈I

as a projective basis {ui, φi}i∈I of P, define F to be the free A-module with

basis {ei : i ∈ I}, and define an A-linear map ψ : F → P by ψ : ei → ui.

It suffices to find an A-linear map φ : P → F with φψ = 1, for then P is

(isomorphic to) a direct summand of F, and hence P is projective. Define φ

by φ(u) =
∑

i(φi(u))ei, for u ∈ P. By definition of projective basis, the sum

is finite, and so φ is well defined. By definition of projective basis, for each

u ∈ P, we have

ψφ(u) = ψ(
∑

i(φi(u)ei)) =
∑

i(φi(u))ψ(ei) =
∑

(φ(u))ui = u.
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That is, ψφ = 1. The proof of the lemma is completed.

4.2.3 Lemma. Let A be an R-algebra, and let P be a left A-module. If

{ui;φi}1≤i≤n is a finite projective basis of P , then {φi; ûi}1≤i≤n is a projective

basis of HomA(P,A), where

ûi : HomA(P,A) → A : ϕ 7→ ϕ(ui).

Proof. We know that HomA(P,A) is a right A-module such that, for any

v ∈ P and a ∈ A,

(φia)(v) = φi(v) a, 1 ≤ i ≤ n.

Therefore, for any ϕ ∈ HomA(P,A), v ∈ P, we have

(
∑n

i=1 φi ûi(ϕ))(v) = (
∑n

i=1 φiϕ(ui))(v)

=
∑n

i=1 (φiϕ(ui)) (v)

=
∑n

i=1 φi(v)ϕ(ui)

= ϕ(
∑n

i=1 φi(v)ui)

= ϕ(v).

That is, ϕ =
∑n

i=1 φi ûi(ϕ). The proof of the lemma is completed.

Remark. The above results say in particular that if P is a finitely generated

projective left A-module, then HomA(P,A) is a finitely generated projective

right A-module. Observe that the result fails if the projective basis is infinite.

The following well-known result is usually proved by applying adjoint

isomorphisms. Here, we include a new elementary proof.

4.2.4 Theorem. Let A be an R-algebra, and let P be a finitely generated

projective A-module. For any X ∈ ModA, there exists an R-linear isomor-

phism

α
P,X

: DHomA(P,X) → HomA(X, νP ),

which is functorial in P and X.

59



Proof. By Lemma 4.2.2, P has a finite projective basis {u1, . . . , un;φ1, . . . , φn}.
For any h ∈ HomA(P,A) and x ∈ X, we define a map

hx : P → X : u 7→ h(u)x,

which is is A-linear. Indeed, for any a ∈ A, u ∈ P, we have

hx(au) = h(au)x = (ah(u))x = a(h(u)x) = ahx(u).

Now, we define

α
P,X

: DHomA(P,X) → HomA(X, νP ) : θ 7→ (x 7→ (h 7→ θ(hx)))

and

βP,X : HomA(X, νP ) → DHomA(P,X) : f 7→ (g 7→
∑n

i=1
(f(g(ui))(φi)).

Since HomA(P,A) is a right A-module, νP = HomR(HomA(P,A), I) is

a left A-module such that (aψ)(φ) = ψ(φa), for any a ∈ A,ψ ∈ νP, and

φ ∈ HomA(P,A).

We first claim that α
P,X
βP,X = 1. Indeed, for each f ∈ HomA(X, νP ),

we verify that (α
P,X

(βP,X(f)))(x) = f(x). Indeed, for h ∈ HomA(P,A), by

definition, we have

[(α
P,X

(βP,X(f)))(x)](h) = βP,X(f)(hx)

=
∑n

i=1(f(hx(ui)))(φi)

=
∑n

i=1 f(h(ui)x)(φi)

=
∑n

i=1(h(ui)f(x))(φi)

=
∑n

i=1 f(x)(φih(ui))

= f(x)(
∑n

i=1 φih(ui))

= f(x) (
∑n

i=1 φi ûi(h))

= (f(x))(h),

where the last equation follows from Lemma 4.2.3. This establishes our first

claim.

Next, we claim that βP,XαP,X
= 1. For this end, consider θ ∈ DHomA(P,X)

and g ∈ HomA(P,X). By definition, we have
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(βP,X(αP,X
(θ)))(g) =

∑n
i=1

(
(α

P,X
(θ)(g(ui))

)
(φi)

=
∑n

i=1 θ((φi) g(ui))

= θ
(∑n

i=1(φi) g(ui)
)

= θ(g),

where the last equation can be deduced as follows. For any u ∈ P, we have∑n
i=1((φi) g(ui))(u) =

∑n
i=1 φi(u)g(ui)

=
∑n

i=1 g(φi(u)ui)

= g (
∑n

i=1 φi(u)ui)

= g(u).

Therefore, our second claim also holds. That is, α
P,X

is an isomorphism. It

remains to verify the naturality of α
P,X

in P and X. First, let t : X → Y be

a morphism in ModA. Consider the following diagram

DHomA(P, Y )
α
P,Y //

DHomA(P,t)
��

HomA(Y, νP )

HomA(t,νP )
��

DHomA(P,X)
α
P,X // HomA(X, νP ).

Let θ ∈ DHomA(P, Y ), for any x ∈ X, h ∈ HomA(P,A), we have

(HomA(t, νP ) ◦ αP,Y
(θ))(x)(h) = α

P,Y
(θ)(t)(x)(h) = θ(ht(x)).

On the other side,

(α
P,X

◦DHomA(P, t)(θ))(x)(h) = θ(thx).

Moreover, for any u ∈ P we have

ht(x)(u) = h(u)t(x) = t((h(u))x) = thx(u).

Therefore, the above diagram commutes. Similarly, let P,Q ∈ PA and a

morphism s : P → Q. Consider the following diagram

DHomA(P,X)
α
P,X //

DHom(s,X)

��

HomA(X, νP )

Hom(X,νs)

��
DHomA(Q,X)

α
Q,X // HomA(X, νQ).
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Let θ ∈ DHomA(P,X). For any x ∈ X, h ∈ HomA(Q,A), we have

(HomA(X, νs) ◦ αP,X
(θ))(x)(h) = α

P,X
(θ)(x)(hs) = θ((hs)x).

On the other side,

(α
Q,X

◦DHomA(s,X)(θ))(x)(h) = α
Q,X

(θ′)(x)(h) = θ′(hx) = θ(hxs),

where θ′ = DHomA(s,X)(θ). For any u ∈ Q, we have

hxt(u) = h(t(u))x = (ht)(u)x = (ht)x(u).

Therefore, the above diagram commutes. The proof of the theorem is com-

pleted.

4.2.5 Corollary. Let A be an R-algebra. If P is a finitely generated pro-

jective A-module, then νP is an injective A-module.

Proof. In view of Theorem 4.2.4, we see that HomA(−, νP ) ∼= DHomA(P,−).

Since both HomA(P,−) and D are exact, so is HomA(−, νP ). That is, νP is

injective. The proof of the corollary is completed.

Let PA denote the category of finitely generated projective leftA-modules.

The following result is probably well know. Here we give a detailed proof.

4.2.6 Lemma. Let A be an R-algebra. If P.∈ Cb(PA) then, for any complex

X. ∈ Cb(ModA), there is a morphism

βP.,X. : HomCb(ModA)(X
., νP.) −→ DHomCb(ModA)(P

., X.)

ξ. −→ βP.,X.(ξ.) : η. 7→
∑

i∈Z (−1)iβP iXi(ξi)(ηi).

(1) If ξ. or η. is null-homotopic, then βP.,X.(ξ.)(η.) = 0.

(2) The map βP.,X. is functorial in P. and X..

Proof. For proving (1), we may assume that there exists an integer n > 0

such that P i = 0 and X i = 0 in case i ̸∈ [0, n]. Let ξ.∈ HomCb(ModA)(X
., νP.)

and η. ∈ HomCb(ModA)(P
., X.). Suppose first that ξ. is null-homotopic. Let
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hi : X i → ν(P i−1), 1 ≤ i ≤ n, be morphisms such that ξ0 = h1d0X , and

ξi = hi+1diX + ν(di−1
P )hi, for 1 ≤ i < n, and ξn = ν(dn−1

P )hn. This yields

βP.,X.(ξ.)(η.)

=
∑n

i=0(−1)iβP i,Xi(ξi)(ηi)

= βP 0,X0(h1d0X)(η
0) + (−1)nβPn,Xn(ν(dn−1

P )hn)(ηn)

+
∑n−1

i=1 (−1)iβP iXi(hi+1diX + ν(di−1
P )hi)(ηi)

= βP 0,X0(h1d0X)(η
0) +

∑n−1
i=1 (−1)iβP i,Xi(hi+1diX)(η

i)

+
∑n−1

i=1 (−1)iβP i,Xi(ν(di−1
P )hi)(ηi) + (−1)nβPn,Xn(ν(dn−1

P )hn)(ηn)

=
∑n−1

i=0 (−1)iβP i,Xi(hi+1diX)(η
i) +

∑n
i=1(−1)iβP i,Xi(ν(di−1

P )hi)(ηi)

=
∑n

i=1(−1)i−1βP i−1,Xi−1(hidi−1
X )(ηi−1) +

∑n
i=1(−1)iβP i,Xi(ν(di−1

P )hi)(ηi)

=
∑n

i=1(−1)i−1βP i−1,Xi(hi)(di−1
X ηi−1) +

∑n
i=1(−1)iβP i−1,Xi(hi)(ηidi−1

P )

=
∑n

i=1(−1)i−1βP i−1,Xi(hi)(ηidi−1
P ) +

∑n
i=1(−1)iβP i−1,Xi(hi)(ηidi−1

P )

= 0,

where the sixth equation follows from the naturality of βP,X in P and in X.

Similarly, one can show that βP.,X.(ξ.)(η.) = 0 if η. is null-homotopic.

(2) Fix X. ∈ Cb(ModA). Let g : P.→ Q. be a morphism in Cb(PA). For
any morphisms ξ ∈ HomCb(ModA)(X

., νP.) and η ∈ HomCb(ModA)(Q
., X.), we

have

(DHomCb(ModA)(g,X
.) ◦ βP.,X.(ξ))(η) =

∑
(−1)iβP iXi(ξi)(ηigi)

and

(βQ.,X. ◦ HomCb(ModA)(X
., ν(g))(ξ))(η) = βQ.,X.(ν(g)ξ)(η)

=
∑

(−1)iβQi,Xi(ν(gi)ξi)(ηi).

Since βP,X is functorial in P and X, for each i, we have

βP i,Xi(ξi)(ηigi) = βQi,Xi(ν(gi)ξi)(ηi).
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Thus, we get a commutative diagram

(X., νP.)
βP.,X. //

(X·,ν(g))
��

D(P., X.)

D(g,X.)
��

(X., νQ.)
βQ.,X. // D(Q., X.),

where (−,−) denotes HomCb(ModA)(−,−).

Fix P.∈ Cb(PA). Let f : X.→ Y. be a morphism in Cb(ModA). Consider

this diagram

(Y., νP.)
βP.,Y. //

(f,νP.)
��

D(P., Y.)

D(P.,f)
��

(X., νP.)
βP.,X. // D(P., X.),

where (−,−) denotes HomCb(ModA)(−,−). For any ξ ∈ HomCb(ModA)(Y
., νP.)

and η ∈ HomCb(ModA)(P
., X.), we have

(DHomCb(Mod(A)(P
., f) ◦ βP.,Y.(ξ))(η) =

∑
(−1)iβP i,Y i(ξi)(f iηi)

and

(βP.,X. ◦ HomCb(Mod(A)(f, νP
.)(ξ)))(η) = βP.,X.(ξf)(η)

=
∑

(−1)iβP i,Xi(ξif i)(ηi).

Using again the naturality of βP,X , for each i, we know that

βP i,Y i(ξi)(f iηi) = βP i,Xi(ξif i)(ηi).

Thus, the above diagram commutes. The proof of the lemma is completed.

Let PA be the full subcategory of modA of projective A-modules and IA

the full subcategory of art(A) of injective modules.

4.2.7 Proposition. Let A be a noetherian R-algebra with R being complete

local noetherian. Then the Nakayama functor induces an equivalence

ν : PA // IA : P 7→ DHomA(P,A).
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Proof. Suppose that P,Q are two modules in PA. By Theorem 4.2.4, we have

HomA(νQ, νP ) ∼= DHomA(P, νQ) ∼= D2HomA(Q,P ).

Observing that HomA(Q,P ) is a finitely generated R-module, we obtain

HomA(Q,P ) ∼= D2HomA(Q,P ) ∼= HomA(νQ, νP ).

That is, ν is fully faithful. Now, suppose that I is in IA. In particular,

I ∈ art(A). Hence, I = I1 ⊕ · · · ⊕ In, where Ii is indecomposable injective,

i = 1, . . . , n. Since Ii is artinian and indecomposable, it has an essential

simple socle Si, and hence, the inclusion fi : Si → Ii is an injective envelope.

Observing thatD(Si) is a simple module in noe(A), we have a projective cover

gi : Pi → D(Si). Applying the duality D, we obtain an injective envelope

D(gi) : D
2(Si) → D(Pi) in art(A). Since D2(Si) ∼= Si, we know D(Pi) ∼= Ii.

Thus, ν is dense. The proof of the proposition is completed.

4.2.8 Proposition. Let A be an additive R-category in which idempotents

split, where R is a complete local noetherian commutative ring. If A is Hom-

finite, then it is Krull-Schmidt.

Proof. Assume that X is an object in A. By the assumption, EndA(X)

is finitely generated as an R-module, that is, EndA(X) is noetherian R-

algebra. Since R is complete local noetherian, EndA(X) is semiperfect; see,

for example, [4, Section 5]. Therefore, A is Krull-Schmidt; see, for example,

[22, (1.1)]. The proof of the proposition is completed.

4.2.9 Proposition. Let A be a noetherian R-algebra with R being complete

local noetherian.

(1) The Nakayama equivalence ν : PA → IA induces a triangle equivalence

ν : Kb(PA) → Kb(IA).

(2) Kb(PA) and Kb(IA) are Krull-Schmidt.

Proof. The statement (1) is an immediate consequence of Proposition 4.2.7.

For proving (2), we only need to prove that Kb(PA) is Krull-Schmidt. Since
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PA is Hom-finite and R is noetherian, so is Kb(PA). By Proposition 4.2.8,

it remains to show that the idempotents in Kb(PA) is split. Firstly, by

Proposition 1.2.2, the idempotents in modA split and since PA is closed

under taking direct summands, the idempotents in PA split.

Let P. be a complex in Kb(PA). We claim that the idempotents of

EndKb(PA)(P
.) split in Kb(PA). Suppose that w(P.) = 1. By our previous

remark, the claim is true. Assume now that w(P.) = n > 1. We may assume

that P i = 0 for any i ̸∈ [1, n]. By Theorem 4.1.18, there exists an exact

triangle

δ≥n(P
.)

µ̄n // P. π̄n // δ<n(P
.) // δ≥n(P

.)[1],

where w(δ≥n(P
.)) ≤ 1 and w(δ<n(P

.)) < n. Let e be an idempotent in

EndKb(PA)(P
.), and let u be the restriction of e to δ≥n(P

.), and v the restric-

tion of e to δ<n(P
.). Then we obtain a commutative diagram

δ≥n(P
.)

µn //

u

��

P. πn //

e

��

δ<n(P
.)

v

��

// δ≥n(P
.)[1]

u[1]

��
δ≥n(P

.)
µn // P. πn // δ<n(P

.) // δ≥n(P
.)[1]

By the induction hypothesis, u and v split in Kb(PA), and hence, so does e;

see [20, 2.3]. The proof of the proposition is completed.

The following result is well known; see, for example, [27, (10.4.7)].

4.2.10 Lemma. Let A be an abelian category, and let X., Y . be complexes

over A . If X. is bounded-above of projective objects or Y. is bounded-below of

injective objects, then the localization functor LA : Kb(A ) → Db(A ) induces

an isomorphism

LX.,Y. : HomKb(A )(X
., Y.) → HomDb(A )(X

., Y.) : f̄ .→ f̃ ..

The above result enables us to obtain the following important isomor-

phism theorem.
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4.2.11 Proposition. Let A be a noetherian R-algebra with R being com-

plete local noetherian, and let X., P. be complexes in Db(ModA). If P. is of

projective objects, then there exists an R-linear isomorphism

βP.,X. : HomDb(ModA)(X
., νP.) → DHomDb(ModA)(P

., X.)

in Db(ModA), which is functorial in P. and X..

Proof. By Lemma 4.2.6, we have an R-linear morphism

βP.,X. : HomKb(ModA)(X
., νP.) −→ DHomKb(ModA)(P

., X.)

ξ̄. 7→
(
η̄. 7→

∑
i∈Z (−1)iβP iXi(ξi)(ηi)

)
,

which is natural in P. and X.. We shall proceed by a double induction

to show that βP.,X. is an isomorphism. First, we consider the case where

w(X.) = 1. With no loss of generality, we may assume that the non-

zero component is of degree zero. Moreover, assume that w(P.) = 1. If

the non-zero component of P. is of degree zero, since the canonical functor

P : ModA → Kb(ModA) is fully faithful, βP.,X. is an isomorphism. Oth-

erwise, both HomKb(modA)(X
., P.) = 0 and DHomKb(ModA)(P

., X.) = 0, and

hence, βP.,X. is trivially an isomorphism. Assume now that w(P.) = n > 1.

Since P.∈ Kb(PA), in view of Theorem 4.1.18, there is an exact triangle

P.1 // P. // P.2 // P.1[1]

in Kb(PA) with w(P.1) < n and w(P.2) ≤ 1. In view of Proposition 4.2.9, we

deduce that

νP.1 // νP. // νP.2 // νP.1[1]

is an exact triangle in Kb(ModA). Therefore, we have the following commu-

tative diagram with exact rows,

(X., νP.2[−1])

βP.2[−1],X.
��

// (X., νP.1)
βP.1X.
��

// (X., νP.)

βP.,X.
��

// (X., νP.2)
βP.2,X.
��

// (X., νP.1[1])
βP.1[1],X.
��

D(P2[−1]., X.) // D(P.1, X.) // D(P., X.) // D(P.2, X.) // D(P.1[1], X.)

where (−,−) denotes HomKb(ModA)(−,−). By the induction hypothesis, we

know that βP.2[−1],X., βP.1,X., βP.2,X., βP.1[1],X. are isomorphisms, and so is βP.,X..
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By the induction on w(P.), we have shown that βP.,X. is an isomorphism in

case w(X.) = 1.

Assume that w(X.) = m > 1. Using Theorem 4.1.18 again, we obtain an

exact triangle

Z. // X. // Y. // Z.[1]

in Kb(ModA) with w(Z.) < m and w(Y.) ≤ 1. Then we have the following

commutative diagram with exact rows,

(Z.[−1], νP.)

βP.,Z.[−1]

��

// (Y., νP.)

βP.,Y.
��

// (X., νP.)

βP.,X.
��

// (Z., νP.)

βP.,Z.
��

// (Y.[1], νP.)

βP.,Y.[1]
��

D(P., Z.[−1]) // D(P., Y.) // D(P., X.) // D(P., Z.) // D(P., Y.[1])

where (−,−) denotes HomKb(ModA)(−,−).Using the induction hypothesis, we

deduce that βP.,X. are an isomorphism. By Lemma 4.2.10, the isomorphism

βP.,X. : HomKb(ModA)(X
., νP.) → DHomKb(ModA)(P

., X.) induces an isomor-

phism HomDb(ModA)(X
., νP.) → DHomDb(ModA)(P

., X.) which, by abuse of

notation, is denoted again by βP.,X., making the following diagram commu-

tative:

HomKb(ModA)(X
., νP.)

βP.,X. //

LX.,νP.
��

DHomKb(ModA)(P
., X.)

DLP.,X.
��

HomDb(ModA)(X
., νP.)

βP.,X. // DHomDb(ModA)(P
., X.).

Since DLX.,νP. and DLP.,X. are natural in P. and X., so is βP.,X.. The proof
of the proposition is completed.

The following result is well known for abelian categories with enough

projective objects; see, for example, [11]. Here, we provide a detailed proof.

4.2.12 Theorem. Let A be a noetherian R-algebra with R being complete

local noetherian. For any X. ∈ C−(modA), there exists a quasi-isomorphism

s. : P.→ X., where P.∈ C−(PA).
Proof. First of all, since A is noetherian, modA is an abelian category.

Suppose that X. ∈ C−(modA). We may assume that X i = 0, for i ≥ 0.
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For each i ≥ 0, set P i = 0, and diP = 0 : P i → P i+1, and si = 0 : P i → X i,

and ji : Ki → P i the kernel of diP . It is easy to see that the following

conditions are satisfied for every i ≥ 0.

(1) There exists a pullback diagram:

Li ui //

vi

��

Ki+1

si+1◦ji+1

��
X i

diX // X i+1,

where vi is an epimorphism.

(2) diP = ji+1 ◦ ui ◦ pi, where pi : P i → Li is a projective cover of Li.

(3) si = vi ◦ p t.
Let t ≥ 0 be an integer for which we have defined finitely generated

projective A-modules P i, and A-linear maps diP : P i → P i+1, and also A-

linear epimorphisms si : P i → X i, for all i ≥ t, such that the conditions (1),

(2), (3) as stated above are satisfied for every i ≥ t.

Now, let jt : Kt → P t be the kernel of dtP : P t → P t+1. Being abelian,

modA admits a pullback diagram

(∗) Lt−1 ut−1
//

vt−1

��

Kt

st◦jt
��

X t−1
dt−1
X // X t.

We claim that vt−1 is an epimorphism. Indeed, by assumption, we have a

pullback

Lt
ut //

vt

��

Kt+1

st+1◦jt+1

��
X t

dtX // X t+1.

where (Kt+1, jt+1) is the kernel of dt+1
P : P t+1 → P t+2. This yields a short

exact sequence

0 // Lt
(u

t

vt) //Kt+1 ⊕X t
(st+1jt+1,−dtX)

// X t+1 .
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Now, let x ∈ X t−1. Then dt−1
X (x) ∈ X t such that

(st+1jt+1, −dtX)
(

0

dt−1
X (x)

)
= −dtXdt−1

X (x) = 0,

there exists y ∈ Lt such that(
0

dt−1
X (x)

)
=

(
ut

vt

)
(y) =

(
ut(y)

vt(y)

)
.

That is, ut(y) = 0 and vt(y) = dt−1
X (x).

By assumption, we have the following commutative diagram

Lt
ut //

vt

��

Kt+1

jt+1

��
jt+1

��
P t

pt
==|||||||| dtP //

st

!!

P t+1

st+1

��

dt+1
P // P t+2

st+2

��

// · · ·

· · · // X t
dtX // X t+1

dt+1
X // X t+2 // · · ·

where pt : P t → Lt is a projective cover of Lt, and dtP = jt+1utpt, st+1 = vtpt.

Since pt is an epimorphism, there exists z ∈ P t such that pt(z) = y. Thus,

dtP (z) = jt+1utpt(z) = jt+1ut(y) = 0. Hence z ∈ Kt. And dt−1
X (x) = vt(y) =

vtpt(z) = st(z) = (st ◦ jt)(z).
In view of the pullback diagram (∗), we have a short exact sequence

0 // Lt−1
(u

t−1

vt−1)
// Kt ⊕X t−1

(stjt,−dt−1
X )

// X t

Since (st ◦ jt,−dt−1
X )

(
z
x

)
= (st ◦ jt)(z) − dt−1

X (x) = 0, there exists y′ ∈ Lt−1

such that vt−1(y′) = x. Hence vt−1 is an epimorphism.

Since A is noetherian, Lt−1 is finitely generated, and hence, it admits a

projective cover pt−1 : P t−1 → Lt−1 with P t−1 being finitely generated. Set

dt−1
P = jt ◦ ut−1 ◦ pt−1 and st−1 = vt−1 ◦ p t−1.

By induction, we have constructed finitely generated A-modules P i, and

A-linear maps diP : P i → P i−1 and also A-linear epimorphisms si : P i → X i,

for all i ∈ Z, such that the conditions (1), (2), and (3) as stated above are
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satisfied for every i ∈ Z. In particular, by Condition (2), we have di+1
P ◦diP =

0; and by Conditions (2) and (3), we obtain

diXs
i = diXv

ipi = si+1ji+1uipi = si+1diP ,

for all i ∈ Z. That is, we have a bounded above complex (P., d.P ) of finitely

generated projective A-modules and a morphism s. : P.→ X. of complexes.

It remains to show that H i(s.) : H i(P.) → H i(X.) is an isomorphism, for

every i ∈ Z. Indeed, let p′ ∈ ker(diP ) = Ki be such that si(p′) ∈ im(di−1
X ).

That is, there exists x′ ∈ X i−1 such that si(p′) = di−1
X (x′). Since vi−1 is an

epimorphism, there exists y′ ∈ Li−1 such that vi−1(y′) = x′. This yields

(siji)(p′) = si(p′) = di−1
X (x′) = di−1

X vi−1(y′) = sijiui−1(y′).

Thus, (p′ − ui−1(y′), 0)T lies in the kernel of
(
siji,−di−1

X

)
. By the exactness

of the sequence

0 // Li−1
(u

i−1

vi−1)
// Ki ⊕X i−1

(siji,−di−1
X )

// X i,

we see that p′ − ui−1(y′) = ui−1(z′), for some z′ ∈ Li−1. That is, p′ =

ui−1(z′ + y′). Since pi−1 is an epimorphism, there exists q ∈ P i−1 such that

z′ + y′ = pi−1(q). Hence,

p′ = ui−1(z′ + y′) = (ui−1pi−1)(q) = (jiui−1pi−1)(q) = di−1
P (q) ∈ im(di−1

P ).

This shows that H i(s.) is an monomorphism.

Finally, let x ∈ ker(diX). Then, (0, x)
T is in the kernel of (si+1ji+1,−diX).

Using again the exactness of the sequence

0 // Li
(u

i

vi) // Ki+1 ⊕X i
(si+1ji+1,−diX)// X i+1 ,

we get y ∈ Li such that vi(y) = x and ui(y) = 0. Since pi is an epimor-

phism, y = pi(p) for some p ∈ P i. Hence, x = vipi(p) = si(p) and diP (p) =

ji+1uipi(p) = ji+1ui(y) = 0. That is, p ∈ ker(diP ) such that H i(s.)(p +

im(di−1
P )) = x + im(di−1

X ). This shows that H i(s.) is an epimorphism. The

proof of the theorem is completed.
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A complex over ModA is called perfect if it is a bounded complex of

finitely generated projective modules. The following result extends a well

known result of Happel for the bounded derived category of finite dimensional

modules over a finite dimensional algebra; see [14].

4.2.13 Theorem. Let A be a noetherian R-algebra with R being complete lo-

cal noetherian, and let Z. be a bounded complex over modA. Then Db(ModA)

has an Auslander-Reiten triangle ending in Z. if and only if Z. is isomorphic

to an indecomposable perfect complex P., and in this case, the Auslander-

Reiten triangle is of the following form

νP.[−1] // E. // P. // νP..

Proof. By Theorem 4.2.12, there exists no loss of generality in assuming that

Z. = P. with P. ∈ C−,b(PA). Suppose that Db(ModA) has an Auslander-

Reiten triangle

X. u. // Y. v. // P.
η. // X. [1].

In particular, η. ̸= 0. Write W. = X. [1]. We may assume that there exists

some n < 0 such that W i = 0 for all i ̸∈ [n, 0]. By Lemma 4.2.10, there exists

a morphism w. : P. → W. ∈ C−(ModA) such that η. = w̃.. By Theorem

4.1.18, we have an exact triangle

δ≥n(P
.)

µ̄.n // P. π̄.n // δ<n(P
.) ω̄.n // δ≥n(P

.)[1]

in K−,b(PA). Suppose that µ̄.n is not a retraction in K−,b(PA). By Lemma

4.2.10, µ̃.n is not a retraction in Db(ModA). Hence, η.µ̃.n = w̃µ̃.n = 0, and

hence, w̄.µ̄.n = 0. Therefore, there exist morphisms hi : δ≥n(P
i) → W i−1,

i ∈ Z, such that wiµin = hi+1diP + di+1
W hi for all i ≥ n. Since µin = 1P i for

i ≥ n, we have wi = hi+1diP + di+1
W hi for all i ≥ n. If i < n, since W i = 0,

we also have wi = hi+1diP + di+1
W hi. That is, w̄. = 0, and hence, η. = 0, a

contradiction. This shows that µ̄.n is not a retraction in K−,b(PA). Thus,

δ≥n(P
.) ∼= δ<n(P

.)[−1] ⊕ P.. Since δ≥n(P.) lies in Kb(PA), which is Krull-

Schmidt by Proposition 4.2.9, it follows that P. is isomorphic to a complex

in Kb(PA). Thus, Z. is isomorphic to a perfect complex in Db(ModA).
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Conversely, assume that Z . = P. with P . ∈ Kb(PA). By Proposition

4.2.9(2), P. is strongly indecomposable in Kb(PA), and hence, by Lemma

4.2.10, it is strongly indecomposable in Db(ModA). By Lemma 4.2.10,

EndKb(PA)(P
.) ∼= EndDb(ModA)(P

.) and EndKb(IA)(νP
.) ∼= EndDb(ModA)(νP

.).
Moreover, in view of Proposition 4.2.11,

EndDb(ModA)(νP
.) ∼= DHomDb(ModA)(P

., νP.) ∼= D2HomDb(ModA)(P
., P.)

∼= EndDb(ModA)(P
.).

Therefore, νP. is also strongly indecomposable inDb(ModA). By Proposition

4.2.11, we have a functorial isomorphism

φ : DHomDb(ModA)(P
.,−) → HomDb(ModA)(−, νP.).

By Theorem 2.1.16, Db(ModA) has an Auslander-Reiten triangle

νP.[−1] // E. // P. // νP..

The proof of the theorem is completed.

4.3 Auslander-Reiten Triangles induced from

Auslander-Reiten Sequences

Throughout this section, let A be a noetherian R-algebra with R being

complete local noetherian. Let

δ : 0 // X
f // Y

g // Z // 0

be an exact sequence in modA. As described in Section 4.1, this sequence

determines a morphism δ ∈ HomDb(modA)(Z,X[1]). Here we shall give another

interpretation of this morphism. Let

· · · // P2
d2 // P1

d1 // P0
ε // Z // 0
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be a projective resolution of Z. Then we can get the following commutative

diagram

· · · // P2
d2 // P1

u1
��

d1 // P0

u0
��

ε // Z //

1Z
��

0

0 // X
f // Y

g // Z // 0

By t. we denote the quasi-isomorphism

P. : · · · // P2

��

// P1

��

// P0

ε

��

// 0

��

// · · ·

· · · // 0 // 0 // Z // 0 // · · · ,

and by b. we denote the morphism

P. : · · · // P2

��

// P1

u1
��

// P0

��

// 0

��

// · · ·

· · · // 0 // X // 0 // 0 // · · · .

This yields another morphism δ′ ∈ HomDb(modA)(Z,X[1]) represented by

P.

b̄.

!!D
DD

DD
DD

D
t̄.

����
��
��
��

Z X[1]

4.3.1 Lemma. Let δ : 0 // X
f // Y

g // Z // 0 be a short exact se-

quence in modA. If δ, δ′ are previously described morphisms in Db(modA),

then δ = δ′.

Proof. Recall that δ is represented by

C.
f

p̄.

!!D
DD

DD
DD

D
s̄.

����
��
��
�

Z X[1],
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where C.
f
is the mapping cone of f and p. is the canonical projection, s. is

the quasi-isomorphism given by g. Denote by e. the following morphism

P. : · · · // P2

��

d2 // P1

u1

��

d1 // P0

u0

��

// 0 //

��

· · ·

C.
f
: · · · // 0 // X

f // Y // 0 // · · ·

Obviously, t.= s.e. and b.= p.e.. This yields a commutative diagram

P.

b.

""E
EE

EE
EE

E
t.

~~}}
}}
}}
}}

e.

��

Z X[1]

C.f

p.

==zzzzzzzz
s.

__????????

As a consequence, δ = δ′. The proof of the lemma is completed.

If Z is an indecomposable non-projective module in noe(A), then it admits

a minimal projective presentation

P1
f // P0

// Z // 0

in noe(A). Applying the functor HomA(−, A), we obtain an exact sequence

HomA(P0, A)
Hom(f,A) // HomA(P1, A) // TrZ // 0

in noe(Aop). Applying the duality D, we obtain another exact sequence

0 // DTrZ // ν(P1)
ν(f) // ν(P0)

in art(A), which is a minimal injective co-presentation of DTrZ. The follow-

ing result is due to Auslander; see [4, (6.3)].
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4.3.2 Theorem ([4]). Let A be a noetherian R-algebra with R being complete

local noetherian. If Z ∈ noe(A) is indecomposable and non-projective, then

there exists an Auslander-Reiten sequence

0 // DTrZ // E // Z // 0

in ModA with DTrZ ∈ art(A).

4.3.3 Lemma. Let δ : 0 // X
f // Y

g // Z // 0 be an Auslander-Reiten

sequence in ModA with Z ∈ noe(A). If δ induces an Auslander-Reiten tri-

angle

X
f // Y

g // Z
δ // X[1]

in Db(ModA), then pdim(Z) ≤ 1 and idim(X) ≤ 1.

Proof. By Theorem 4.2.13, there exists an isomorphism θ. : P.→ Z where

P. is a bounded complex as follows,

P. : · · · // 0 // Pn // · · · // P2
d2 // P1

d1 // P0
// 0 // · · · ,

with Pi ∈ PA for i ≥ 0. By Proposition 4.2.10, θ. = f̃ ., for some morphism

f . : P. → Z. By Lemma 4.1.14, we know that f is a quasi-isomorphism.

Therefore, it is easy to see that

(∗) · · · // 0 // Pn // · · · // P1
d1 // P0

f0 // Z // 0

is a projective resolution of Z in modA, which we may assume to be a mini-

mal projective resolution. By Theorem 4.2.13, there is an Auslander-Reiten

triangle

νP.[−1] // E. // P. // νP. .

By the uniqueness of Auslander-Reiten triangle, we can get a commutative

diagram

νP.[−1] //

��

E. //

��

P.

��

// νP.

��
X

f // Y
g // Z

σ // X[1],
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where the vertical morphisms are isomorphisms. In particular, X[1] ∼= νP.

in Db(ModA). Using an argument dual to the previous one, we obtain a

quasi-isomorphism

· · · // 0

��

// X //

��

0 //

��

0

��

// · · ·

· · · // νP2
ν(d2) // νP1

ν(d1) // νP0
// 0 // · · ·

in Cb(ModA), where X is the component of degree −1. Hence we have

X ∼= H−1(νP.) = ker(ν(d1))/im(ν(d2)).

Moreover, since 0 // X
f // Y

g // Z // 0 is an Auslander-Reiten se-

quence in ModA, by Theorem 4.3.2, we know X = DTrZ = ker(ν(d1)).

Therefore, ν(d2) = 0. By Proposition 4.2.7, d2 = 0. Thus the projective

dimension of Z is less than or equal to 1. Moreover, we have a short exact

sequence

0 // X // νP0
// νP1

// 0,

which means that injective dimension of X is less than or equal to 1. The

proof of the lemma is completed.

4.3.4 Theorem. Let A be a noetherian R-algebra with R being complete local

noetherian commutative, and let ModA have an Auslander-Reiten sequence

δ : 0 // X
f // Y

g // Z // 0

with Z ∈ noe(A). Then X
f // Y

g // Z
σ // X[1] is an Auslander-Reiten

triangle in Db(ModA) if and only if pdim(Z) ≤ 1 and idim(X) ≤ 1.

Proof. We need only to show the sufficiency. Assume that pdim(Z) ≤ 1.

Then there exists a minimal projective resolution of Z

· · · // 0 // P1
d1 // P0

ε // Z // 0.

By P. we denote the complex

· · · // 0 // P1
d1 // P0

// 0 // · · · .
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As a consequence, we obtain a quasi-isomorphism c. : P.→ Z

· · · // 0 //

��

P1

��

d1 // P0

ε
��

// 0 //

��

· · ·

· · · // 0 // 0 // Z // 0 // · · · .

By Theorem 4.2.13, Db(ModA) has an Auslander-Reiten triangle

νP.[−1] // E. // P.
γ. // νP..

Moreover, we can complete the following commutative diagram

0 // P1

u1
��

d1 // P0

u0
��

ε // Z //

1Z
��

0

0 // X
f // Y

g // Z // 0.

By b. we denote the morphism

· · · // 0 //

��

P1

u1
��

d1 // P0

��

// 0 //

��

· · ·

· · · // 0 // X // 0 // 0 // · · · .

By Lemma 4.3.1, we know that X
f // Y

g // Z
δ // X[1] is an exact

triangle in Db(ModA), where δ = b̄./c̄.. Since δ ̸= 0, we have b̄. ̸= 0.

Since 0 // X // Y // Z // 0 is an Auslander-Reiten sequence,

X ∼= DTrZ. That is, 0 // X
s // νP1

ν(d1) // νP0
// 0 is a short exact

sequence, which yields a quasi-isomorphism e. : X[1] → νP.

· · · // 0 //

��

X //

s
��

0 //

��

· · ·

· · · // 0 // νP1
ν(d1) // νP0

// · · ·

Denote h. = e.b. : P. → νP.. Now we claim that h̃. : P. → νP. is in

the EndDb(ModA)(P
.)-socle of HomDb(ModA)(P

., νP.). In view of Proposition

4.2.10, we see that this claim is equivalent to h̄. : P. → νP. being in the
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EndKb(ModA)(P
.)-socle of HomKb(ModA)(P

., νP.). Let w̄. : P.→ P. be a non-

retraction morphism in Kb(ModA) as follows :

· · · // 0 //

��

P1
d1 //

w1

��

P0
//

w0

��

0 //

��

· · ·

· · · // 0 // P1
d1 // P0

// 0 // · · · .

This induces a commutative diagram with exact rows in ModA

0 // P1
d1 //

w1

��

P0
ε //

w0

��

Z //

w2

��

0

0 // P1
d1 //

u1
��

P0

u0
��

ε // Z

1Z
��

// 0

0 // X
f //

1X
��

Y
g //

v1
��

Z

v0
��

// 0

0 // X s // νP1
ν(d1) // νP0

// 0.

Sine w̄ is not a retraction, neither is w2. Hence, there exists a morphism α :

Z → P0 such that w2 = gα. Write k = u0w0−αε. Then gk = gu0w0− gαε =

gu0w0 − w2ε = 0. We get a morphism β : P0 → X such that fβ = k. We

know fu1w1 = u0w0d1 = (αε + fβ)d1 = fβd1. Since f is a monomorphism,

u1w1 = βd1. Now consider h.w.= e.d.w.,

· · · // 0

��

// P1
d1 //

w1

��

P0
//

w2

��

0 //

��

· · ·

· · · // 0

��

// P1
d1 //

u1
��

P0

��

// 0

��

// · · ·

· · · // 0

��

// X //

s
��

0 //

��

0

��

// · · ·

· · · // 0 // νP1
ν(d1) // νP0

// 0 // · · · .
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We know

· · · // 0

��

// P1
d1 //

su1w1

��

P0

sβ

||yy
yy
yy
yy

//

0
��

0 //

��

· · ·

· · · // 0 // νP1
ν(d1) // νP0

// 0 // · · ·

commutes, that is h̄.w̄. = 0. This establishes our claim. Moreover, since e.

is a quasi-isomorphism and b̄ ̸= 0, we know h̄ ̸= 0. By Corollary 2.1.7, we

have h̃.= γ.θ. for some automorphism of P.. As a consequence, we have an

Auslander-Reiten triangle

νP.[−1] // E. // P. h̃. // νP.

inDb(ModA). Furthermore, we establish a commutative diagram inDb(ModA).

νP.[−1] //

ẽ.−1[−1]

��

E. //

��

P.

c̃.
��

h̃. // νP.

ẽ.−1

��
X

f // Y
g // Z

σ // X[1],

where the vertical arrows are isomorphisms. Therefore, X
f // Y

g // Z
σ // X[1]

is an Auslander-Reiten triangle in Db(modA). The proof of the theorem is

completed.
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Conclusion

In this dissertation, by using non-degenerate bilinear forms, we give some

new description of Auslander-Reiten triangles which lead to some existence

theorems of Auslander-Reiten triangles in extension-closed subcategory of

triangulated categories. Applying the existence theorem to the bounded de-

rived category of all modules of a noetherian algebra over a complete noethe-

rian local commutative ring, we establish a sufficient and necessary condition

to have an Auslander-Reiten triangle. There is still a lot to do along this

direction. For example, we could continue to work on the following problems.

1. The notion of an Auslander-Reiten sequence is introduced to a general

additive category; see [21]. Up to now, there exists no existence theorem

of Auslander-Reiten sequences in an additive category. We notice that a

weakly abelian category is an additive category in which each morphism has

a pseudo kernel and a pseudo cokernel. On the other hand, abelian categories

and triangulated categories are weakly abelian categories. Therefore, it would

be interesting to find an existence theorem of almost sequence in a weakly

abelian category, which unifies the existence theorems for abelain categories

and triangulated categories.

2. Let A be a noetherian R-algebra with R being complete local noethe-

rian commutative. If Db(ModA) has an Auslander-Reiten triangle

X . // Y . // Z . // X .[1] ,

we conjecture that Z is necessarily in Db(modA), and hence, a perfect com-

plex by Theorem 4.2.13.
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