Standard Auslander-Reiten components and cluster structure of infinite Dynkin type

Shiping Liu (Université de Sherbrooke) Charles Paquette (University of New Brunswick)

> Algebra Seminar Tsinghua University

> > July 18, 2013

(D) (A) (A) (A) (A)

• k : algebraically closed field.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン イヨン イヨン イヨン

- k : algebraically closed field.
- A : Hom-finite Krull-Schmidt k-category.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

- 4 同 2 4 日 2 4 日 2

Setting

- k : algebraically closed field.
- \mathcal{A} : Hom-finite Krull-Schmidt *k*-category.
- For describing morphisms in \mathcal{A} , we apply Auslander-Reiten theory,

・ 同 ト ・ ヨ ト ・ ヨ ト

Setting

- k : algebraically closed field.
- \mathcal{A} : Hom-finite Krull-Schmidt *k*-category.
- For describing morphisms in \mathcal{A} , we apply Auslander-Reiten theory,
 - irreducible morphisms,
 - almost split sequences,
 - AR-quiver.

向下 イヨト イヨト

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Pseudo-exact sequences

Definition

A sequence
$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
 in \mathcal{A} is *pseudo-exact* if

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

・ロト ・日本 ・モート ・モート

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Pseudo-exact sequences

Definition

A sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is *pseudo-exact* if

• f is pseudo-kernel of g, and

イロン イヨン イヨン イヨン

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Pseudo-exact sequences

Definition

A sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is *pseudo-exact* if

- f is pseudo-kernel of g, and
- g is a pseudo-cokernel of f.

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Pseudo-exact sequences

Definition

A sequence
$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
 in \mathcal{A} is *pseudo-exact* if

- f is pseudo-kernel of g, and
- g is a pseudo-cokernel of f.

Example

Any sequence $X \longrightarrow 0 \longrightarrow Z$ is pseudo-exact.

・ロン ・回 と ・ ヨ と ・ ヨ と

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is almost split provided

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is *almost split* provided • $Y \neq 0$,

・ロン ・回と ・ヨン ・ヨン

AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence X → Y → Z in A is almost split provided
Y ≠ 0,
f is source morphism, and

・ロン ・回と ・ヨン ・ヨン

AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is almost split provided

- $Y \neq 0$,
- f is source morphism, and
- g is sink morphism.

・ロト ・回ト ・ヨト ・ヨト

AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Almost split sequences

Definition

A pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is almost split provided

- $Y \neq 0$,
- f is source morphism, and
- g is sink morphism.

REMARK. This unifies notions of almost split sequences in abelian categories and almost split triangles in triangulated categories.

Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type

Auslander-Reiten quiver

Definition

AR-quiver $\Gamma_{\!\scriptscriptstyle\mathcal{A}}$ of \mathcal{A} is translation quiver as follows:

- ${\scriptstyle \bullet}$ The vertices are the non-iso objects in ${\rm ind} {\cal A}.$
- For vertices X, Y, draw $d_{X,Y}$ arrows $X \to Y$, where

$$d_{X,Y} = \dim_k \operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y).$$

• If $X \longrightarrow Y \longrightarrow Z$ is almost split, then $\tau Z = X$.

・ロト ・回ト ・ヨト ・ヨト

Standard components

• Let Γ be a component of Γ_A .

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン イヨン イヨン イヨン

Standard components

- Let Γ be a component of Γ_A .
- $k(\Gamma)$: the mesh category of Γ over k.

Standard components

- Let Γ be a component of Γ_A .
- $k(\Gamma)$: the mesh category of Γ over k.
- A(Γ) : full subcategory of A generated by the objects in Γ.

・ロン ・回 と ・ ヨ と ・ ヨ と

Standard components

- Let Γ be a component of Γ_A .
- $k(\Gamma)$: the mesh category of Γ over k.
- A(Γ) : full subcategory of A generated by the objects in Γ.

Definition (Ringel)

$$\Gamma$$
 is *standard* if $\mathcal{A}(\Gamma) \cong k(\Gamma)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The module category case

• A : finite dimensional k-algebra.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

The module category case

- A : finite dimensional k-algebra.
- mod A : category of fin dim left A-modules.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

- 4 同 6 4 日 6 4 日 6

The module category case

- A : finite dimensional k-algebra.
- mod A : category of fin dim left A-modules.

Theorem

A component Γ of $\Gamma_{\mathrm{mod}A}$ is standard provided

・ロト ・日本 ・モート ・モート

The module category case

- A : finite dimensional k-algebra.
- mod A : category of fin dim left A-modules.

Theorem

A component Γ of $\Gamma_{\text{mod}A}$ is standard provided 1) (R, BG) A is rep-finite with chark $\neq 2$.

イロン イヨン イヨン イヨン

The module category case

- A : finite dimensional k-algebra.
- mod A : category of fin dim left A-modules.

Theorem

A component Γ of Γ_{modA} is standard provided
1) (R, BG) A is rep-finite with chark ≠ 2.
2) (Ringel) Γ is preprojective or preinjective.

(日) (周) (王) (王) (王)

A general description

Theorem (Skowronski)

Let Γ be standard component of $\Gamma_{\mathrm{mod}A}$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン イヨン イヨン イヨン

A general description

Theorem (Skowronski)

Let Γ be standard component of $\Gamma_{\mathrm{mod}A}$.

1) All but finitely many τ -orbits in Γ are periodic.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

A general description

Theorem (Skowronski)

- Let Γ be standard component of $\Gamma_{\mathrm{mod}A}$.
- 1) All but finitely many τ -orbits in Γ are periodic.
- 2) If Γ is regular, then Γ is stable tube or $\Gamma \cong \mathbb{Z}\Delta$, where Δ finite acyclic quiver.

Objective

Question

Let \mathcal{A} be Hom-finite Krull-Schmidt *k*-category.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

イロン イヨン イヨン イヨン

Objective

Question

Let \mathcal{A} be Hom-finite Krull-Schmidt *k*-category.

• How to decide a component of Γ_A is standard?

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Objective

Question

- Let \mathcal{A} be Hom-finite Krull-Schmidt *k*-category.
 - How to decide a component of Γ_A is standard?
 - Are there new types of standard components?

Objective

Question

- Let \mathcal{A} be Hom-finite Krull-Schmidt *k*-category.
 - How to decide a component of Γ_A is standard?
 - Are there new types of standard components?
 - We consider these questions for AR-components with a section.

Sections of a translation quiver

Definition

Let (Γ, τ) be translation quiver.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン イヨン イヨン イヨン

Sections of a translation quiver

Definition

Let (Γ, τ) be translation quiver. A full subquiver Δ of Γ is *section* if

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Sections of a translation quiver

Definition

Let (Γ, τ) be translation quiver. A full subquiver Δ of Γ is *section* if

• Δ is connected, acyclic, and convex in Γ .

・ロト ・日本 ・モート ・モート

Sections of a translation quiver

Definition

Let (Γ, τ) be translation quiver.

A full subquiver Δ of Γ is *section* if

- Δ is connected, acyclic, and convex in Γ .
- Δ meets each τ -orbit in Γ exactly once.

Example

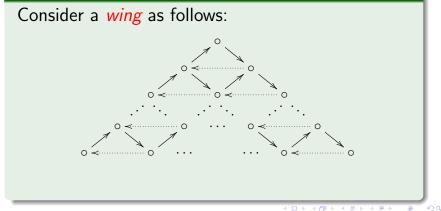
Example

Consider a *wing* as follows:

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

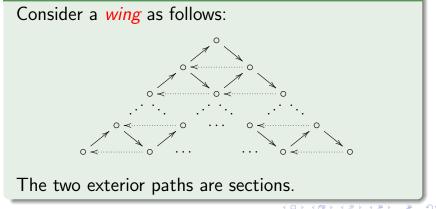
Example

Example



Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

Example



Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

Construction of translation quivers with sections

Let Δ be acyclic quiver.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

- (目) - (日) - (日)

Construction of translation quivers with sections

Let \varDelta be acyclic quiver.

Consider the translation quiver $\mathbb{Z}\Delta$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

向下 イヨト イヨト

Construction of translation quivers with sections

Let Δ be acyclic quiver. Consider the translation quiver $\mathbb{Z}\Delta$. For each $i \in \mathbb{Z}$, (Δ, i) is section of $\mathbb{Z}\Delta$.

伺い イヨト イヨト

Construction of translation quivers with sections

Let Δ be acyclic quiver. Consider the translation quiver $\mathbb{Z}\Delta$. For each $i \in \mathbb{Z}$, (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

•
$$\mathbb{N}\Delta = <(x,i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta.$$

- 4 回 と 4 き と 4 き と

Construction of translation quivers with sections

Let Δ be acyclic quiver. Consider the translation quiver $\mathbb{Z}\Delta$. For each $i \in \mathbb{Z}$, (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

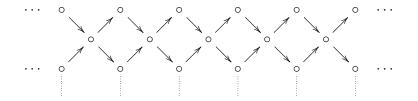
•
$$\mathbb{N}\Delta = < (x, i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta.$$

•
$$\mathbb{N}^{-}\Delta = \langle (x, -i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta.$$

Auslander-Reiten theory in additive categories Objective AR-components with sections Standardness Criterions Applications The bounded derived category of representations Cluster structure of infinite Dynkin type	

Example

The translation quiver $\mathbb{Z}\mathbb{A}_{\infty}$ is as follows:



Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

Example

If \mathbb{A}^+_∞ denotes a right infinite path

 $\circ \longrightarrow \circ \longrightarrow \cdots \longrightarrow \circ \longrightarrow \cdots,$

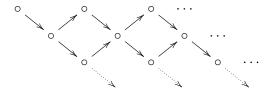
Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

Example

If \mathbb{A}^+_∞ denotes a right infinite path

 $\circ \longrightarrow \circ \longrightarrow \cdots \longrightarrow \circ \longrightarrow \cdots,$

then \mathbb{NA}^+_{∞} is follows:



Example

If \mathbb{A}_∞^- denotes a left infinite path

 $\cdots \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \to \circ,$

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

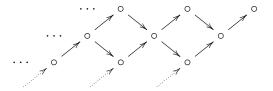
Auslander-Reiten theory in additive categories	
Objective AR-components with sections	
Standardness Criterions Applications	
The bounded derived category of representations Cluster structure of infinite Dynkin type	

Example

If \mathbb{A}_∞^- denotes a left infinite path

 $\cdots \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \circ \to \circ,$

then $\mathbb{N}^-\mathbb{A}^-_\infty$ is as follows:



→ Ξ → ...

Stable components

Theorem

Let Γ be τ -stable component of Γ_A .

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

Stable components

Theorem

Let Γ be τ -stable component of Γ_A . If Γ is not τ -periodic, then $\Gamma \cong \mathbb{Z}\Delta$, where Δ is locally finite acyclic quiver.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

Trisection of a component by a section

Let Γ be component of $\Gamma_{\mathcal{A}}$ with section Δ .

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

Trisection of a component by a section

Let Γ be component of Γ_A with section Δ . Objects in Γ uni. written as $\tau^n X$, $n \in \mathbb{Z}$, $X \in \Delta$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

Trisection of a component by a section

Let Γ be component of $\Gamma_{\mathcal{A}}$ with section Δ . Objects in Γ uni. written as $\tau^n X$, $n \in \mathbb{Z}$, $X \in \Delta$. This yields embedding $\Gamma \to \mathbb{Z}\Delta : \tau^n X \mapsto (-n, X)$.

Trisection of a component by a section

Let Γ be component of $\Gamma_{\mathcal{A}}$ with section Δ . Objects in Γ uni. written as $\tau^n X$, $n \in \mathbb{Z}$, $X \in \Delta$. This yields embedding $\Gamma \to \mathbb{Z}\Delta : \tau^n X \mapsto (-n, X)$.

Notation

•
$$\Delta^+ = < au^{-n}X \mid n > 0, X \in \Delta > X$$

Trisection of a component by a section

Let Γ be component of $\Gamma_{\mathcal{A}}$ with section Δ . Objects in Γ uni. written as $\tau^n X$, $n \in \mathbb{Z}$, $X \in \Delta$. This yields embedding $\Gamma \to \mathbb{Z}\Delta : \tau^n X \mapsto (-n, X)$.

Notation

•
$$\Delta^+ = < \tau^{-n}X \mid n > 0, X \in \Delta > .$$

• $\Delta^- = < \tau^nX \mid n > 0, X \in \Delta > .$

General standardness criterion

Theorem

Let Γ be component of Γ_A with a section Δ .

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

General standardness criterion

Theorem

Let Γ be component of Γ_A with a section Δ . If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

General standardness criterion

Theorem

Let Γ be component of Γ_A with a section Δ .

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

•
$$\mathcal{A}(\Delta) \cong k\Delta$$
,

General standardness criterion

Theorem

Let Γ be component of Γ_A with a section Δ .

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

•
$$\mathcal{A}(\Delta) \cong k\Delta$$
,
• $\operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta \cup \Delta^-) = 0$

General standardness criterion

Theorem

Let Γ be component of Γ_A with a section Δ .

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

•
$$\mathcal{A}(\Delta) \cong k\Delta$$
,
• $\operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta \cup \Delta^-) =$
• $\operatorname{Hom}_{\mathcal{A}}(\Delta, \Delta^-) = 0$.

Special standardness criterion

Theorem

Let \mathcal{A} abelian or triangulated, Γ component of $\Gamma_{\mathcal{A}}$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン イヨン イヨン イヨン

Special standardness criterion

Theorem

Let \mathcal{A} abelian or triangulated, Γ component of $\Gamma_{\mathcal{A}}$. Let Δ be section of Γ without infinite paths.

Special standardness criterion

Theorem

Let \mathcal{A} abelian or triangulated, Γ component of $\Gamma_{\mathcal{A}}$. Let Δ be section of Γ without infinite paths. If each object in Δ admits sink morphism and source morphism in \mathcal{A} , then

イロン イヨン イヨン イヨン

Special standardness criterion

Theorem

Let \mathcal{A} abelian or triangulated, Γ component of $\Gamma_{\mathcal{A}}$. Let Δ be section of Γ without infinite paths. If each object in Δ admits sink morphism and source morphism in \mathcal{A} , then Γ is standard $\Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta^-) = 0.$

Standardness criterion for quasi-serial components

• An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

- 4 同 6 4 日 6 4 日 6

Standardness criterion for quasi-serial components

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

(4月) (1日) (日)

Standardness criterion for quasi-serial components

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are *orthogonal* if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

Theorem

Let Γ be component of $\Gamma_{\mathcal{A}}$, which is a wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^{+}$, $\mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

Standardness criterion for quasi-serial components

- An object X is *brick* if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are *orthogonal* if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

Theorem

Let Γ be component of $\Gamma_{\mathcal{A}}$, which is a wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^{+}$, $\mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$.

 Γ is standard \Leftrightarrow the quasi-simple objects are orthogonal bricks.

Module category

Theorem

A be finite dimensional k-algebra.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

・ロト ・日本 ・モート ・モート

Module category

Theorem

A be finite dimensional k-algebra.

Let Γ be a component of $\Gamma_{\mathrm{mod}A}$ with section Δ .

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Module category

Theorem

A be finite dimensional k-algebra.

Let Γ be a component of $\Gamma_{\text{mod}A}$ with section Δ . The following are equivalent.

Module category

Theorem

A be finite dimensional k-algebra. Let Γ be a component of $\Gamma_{\text{mod}A}$ with section Δ .

The following are equivalent.

Γ is standard.

Module category

Theorem

A be finite dimensional k-algebra.

Let Γ be a component of Γ_{modA} with section Δ . The following are equivalent.

- Γ is standard.
- Hom_A $(\Delta, \tau \Delta) = 0.$

イロト イポト イヨト イヨト

Module category

Theorem

A be finite dimensional k-algebra.

Let Γ be a component of Γ_{modA} with section Δ . The following are equivalent.

- Γ is standard.
- Hom_A($\Delta, \tau \Delta$) = 0.
- Γ is a connecting component of Γ_{modB} , where B is a tilted factor algebra of A.

Representation categories of quivers

Q: connected, strongly locally finite quiver, that is,

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

- 4 同 6 4 日 6 4 日 6

Representation categories of quivers

- Q : connected, strongly locally finite quiver, that is,
 - locally finite, and

- 4 同 6 4 日 6 4 日 6

Representation categories of quivers

- Q : connected, strongly locally finite quiver, that is,
 - locally finite, and
 - for any $x, y \in Q_0$, number of paths $x \rightsquigarrow y$ is finite.

イロト イポト イヨト イヨト

Representation categories of quivers

- \boldsymbol{Q} : connected, strongly locally finite quiver, that is,
 - locally finite, and
 - for any $x, y \in Q_0$, number of paths $x \rightsquigarrow y$ is finite.

Proposition

 $\operatorname{rep}^+(Q)$, cat. of finitely presented representations, is Hom-finite, hereditary, abelian.

・ロン ・回 と ・ ヨ と ・ ヨ と

Types of AR-components of $\Gamma_{\text{rep}^+(Q)}$

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

イロン イヨン イヨン イヨン

Types of AR-components of $arGamma_{\mathrm{rep}^+(\mathcal{Q})_0}$

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

preprojective if *Γ* has some indecomposable projective representation *P_x*, *x* ∈ *Q*₀.

イロト イポト イヨト イヨト

Types of AR-components of $\Gamma_{\mathrm{rep}^+(Q)}$

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if *Γ* has some indecomposable projective representation *P_x*, *x* ∈ *Q*₀.
- preinjective if *Γ* has some indecomposable injective representation *I_x*, *x* ∈ *Q*₀.

・ロン ・回 と ・ ヨ と ・ ヨ と

Types of AR-components of $\Gamma_{\mathrm{rep}^+(Q)}$

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if *Γ* has some indecomposable projective representation *P_x*, *x* ∈ *Q*₀.
- preinjective if *Γ* has some indecomposable injective representation *I_x*, *x* ∈ *Q*₀.
- regular if Γ has no P_x , I_x , $x \in Q_0$.

(日) (部) (注) (注) (言)

Preprojective and preinjective components

Theorem

The unique preprojective component, and the preinjective components of Γ_{rep⁺(Q)} are all standard.

イロン イヨン イヨン イヨン

Preprojective and preinjective components

Theorem

- The unique preprojective component, and the preinjective components of Γ_{rep⁺(Q)} are all standard.
- If Q has no infinite path, then $\Gamma_{\operatorname{rep}^+(Q)}$ has unique preprojective component of shape $\mathbb{N}Q^{\operatorname{op}}$, unique preinjective component of shape $\mathbb{N}^-Q^{\operatorname{op}}$.

イロト イヨト イヨト イヨト

Regular components

Theorem

Suppose that Q is infinite.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロン 不同と 不同と 不同と

Regular components

Theorem

Suppose that Q is infinite.

 The regular components of Γ_{rep⁺(Q)} are wings or ZA_∞, NA_∞⁺, N⁻A_∞⁻.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

・ロト ・回ト ・ヨト ・ヨト

Regular components

Theorem

Suppose that Q is infinite.

- The regular components of Γ_{rep+(Q)} are wings or ZA_∞, NA_∞⁺, N⁻A_∞⁻.
- The regular components are all standard ⇔ Q of infinite Dynkin types A_∞, A_∞[∞], D_∞.

(日) (同) (E) (E) (E)

The bounded derived category $D^b(\operatorname{rep}^+(Q))$

• $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

The bounded derived category $D^b(\operatorname{rep}^+(Q))$

- $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.
- $\Gamma_{D^{b}(\operatorname{rep}^{+}(Q))}$ has a connecting component C_{Q} ,

The bounded derived category $D^b(\operatorname{rep}^+(Q))$

- $D^{b}(\operatorname{rep}^{+}(Q))$ is Hom-finite, Krull-Schmidt.
- Γ_{D^b(rep⁺(Q))} has a connecting component C_Q, obtained by gluing the preprojective component and the shift by -1 of all preinjective components of Γ_{rep⁺(Q)}.

イロン イボン イヨン イヨン

Standard components in $D^b(rep^+(Q))$

Theorem

• C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

Standard components in $D^b(rep^+(Q))$

Theorem

- C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- $C_Q \cong \mathbb{Z}Q^{\mathrm{op}} \Leftrightarrow Q$ has no infinite path.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Standard components in $D^b(rep^+(Q))$

Theorem

- C_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- $C_Q \cong \mathbb{Z}Q^{\mathrm{op}} \Leftrightarrow Q$ has no infinite path.
- The components of Γ_{D^b(rep⁺(Q))} are all standard
 ⇔ Q is infinite Dynkin quiver.

Cluster category of infinite Dynkin type

Q: infinite Dynkin quiver, no infinite path.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Univ Standard Auslander-Reiten components and cluster structure o

イロト イポト イヨト イヨト

Cluster category of infinite Dynkin type

Q : infinite Dynkin quiver, no infinite path. The cluster category

$$C(Q) = D^b(\operatorname{rep}^+(Q))/\tau[-1]$$

is Hom-finite, triangulated, 2-CY.

- 4 回 ト 4 ヨ ト 4 ヨ ト

AR-components of C(Q)

Theorem

Let Q be infinite Dynkin quiver, no infinite path.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université du Standard Auslander-Reiten components and cluster structure o

AR-components of C(Q)

Theorem

Let Q be infinite Dynkin quiver, no infinite path. The AR-quiver of C(Q) consists of the connecting component of shape $\mathbb{Z}Q^{\mathrm{op}}$, and r regular components of shape $\mathbb{Z}\mathbb{A}_{\infty}$, where

AR-components of C(Q)

Theorem

Let Q be infinite Dynkin quiver, no infinite path. The AR-quiver of C(Q) consists of the connecting component of shape $\mathbb{Z}Q^{\mathrm{op}}$, and r regular components of shape $\mathbb{Z}\mathbb{A}_{\infty}$, where

•
$$r = 0$$
 if Q of type \mathbb{A}_{∞} .

AR-components of C(Q)

Theorem

Let Q be infinite Dynkin quiver, no infinite path. The AR-quiver of C(Q) consists of the connecting component of shape $\mathbb{Z}Q^{\mathrm{op}}$, and r regular components of shape $\mathbb{Z}\mathbb{A}_{\infty}$, where

•
$$r = 0$$
 if Q of type \mathbb{A}_{∞}

•
$$r=1$$
 if Q of type \mathbb{D}_{∞} .

AR-components of C(Q)

Theorem

Let Q be infinite Dynkin quiver, no infinite path. The AR-quiver of C(Q) consists of the connecting component of shape $\mathbb{Z}Q^{\text{op}}$, and r regular components of shape $\mathbb{Z}\mathbb{A}_{\infty}$, where

•
$$r=0$$
 if Q of type \mathbb{A}_∞

•
$$r=1$$
 if Q of type \mathbb{D}_{∞}

r = 2 if Q of type A[∞]_∞. In this case, the regular components are orthogonal.

Notation

\mathcal{A} : triangulated *k*-category.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロト イヨト イヨト イヨト

Notation

 \mathcal{A} : triangulated *k*-category.

 \mathcal{T} : additive subcategory of $\mathcal{A},$ assumed to be full and closed under taking summands.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

・ 同 ト ・ ヨ ト ・ ヨ ト

Notation

 \mathcal{A} : triangulated *k*-category.

 ${\cal T}$: additive subcategory of ${\cal A},$ assumed to be full and closed under taking summands.

 \mathcal{T}_M : additive subcategory of \mathcal{T} obtained by deleting M, where $M \in \operatorname{ind} \mathcal{T}$.

- 4 同 2 4 日 2 4 日 2

Cluster structure

Definition

A collection \mathscr{C} of additive subcategories of \mathcal{A} is called *cluster* structure if, for any $\mathcal{T} \in \mathscr{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Cluster structure

Definition

A collection \mathscr{C} of additive subcategories of \mathcal{A} is called *cluster structure* if, for any $\mathcal{T} \in \mathscr{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

• The quiver $Q_{\mathcal{T}}$ of \mathcal{T} has no loop, no 2-cycle.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

Cluster structure

Definition

A collection \mathscr{C} of additive subcategories of \mathcal{A} is called *cluster structure* if, for any $\mathcal{T} \in \mathscr{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

- The quiver $Q_{\mathcal{T}}$ of \mathcal{T} has no loop, no 2-cycle.
- **②** $\exists ! M^* \in ind \mathcal{A}$ such that $\mathcal{T} \neq add(\mathcal{T}_M \cup M^*) \in \mathscr{C}$.

Cluster structure

Definition

A collection \mathscr{C} of additive subcategories of \mathcal{A} is called *cluster structure* if, for any $\mathcal{T} \in \mathscr{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

- The quiver $Q_{\mathcal{T}}$ of \mathcal{T} has no loop, no 2-cycle.
- $@ \exists ! M^* \in \operatorname{ind} \mathcal{A} \text{ such that } \mathcal{T} \neq \operatorname{add}(\mathcal{T}_M \cup M^*) \in \mathscr{C}.$
- The quiver of $\operatorname{add}(\mathcal{T}_M \cup M^*)$ is obtained from $Q_{\mathcal{T}}$ by mutation at M.

Cluster structure

Definition

A collection \mathscr{C} of additive subcategories of \mathcal{A} is called *cluster structure* if, for any $\mathcal{T} \in \mathscr{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

- The quiver $Q_{\mathcal{T}}$ of \mathcal{T} has no loop, no 2-cycle.
- $\exists ! M^* \in \mathrm{ind}\mathcal{A} \text{ such that } \mathcal{T} \neq \mathrm{add}(\mathcal{T}_M \cup M^*) \in \mathscr{C}.$
- The quiver of $\operatorname{add}(\mathcal{T}_M \cup M^*)$ is obtained from $Q_{\mathcal{T}}$ by mutation at M.
- \mathcal{A} has exact triangles

$$M\stackrel{f}{
ightarrow}N\stackrel{g}{
ightarrow}M^*
ightarrow M[1];\;\;M^*\stackrel{s}{
ightarrow}L\stackrel{t}{
ightarrow}M
ightarrow M^*[1],$$

イロト イヨト イヨト イヨト

where f, s are minimal left \mathcal{T}_M -approximations, g, t are minimal right \mathcal{T}_M -approximations.

Cluster tilting subcategories

Definition

An additive subcategory \mathcal{T} of \mathcal{A} is *cluster tilting* if

Shiping Liu (Université de Sherbrooke) Charles Paquette (Université de Sherbrooke) Charles Paq

イロト イポト イヨト イヨト

Cluster tilting subcategories

Definition

An additive subcategory \mathcal{T} of \mathcal{A} is *cluster tilting* if

• \mathcal{T} is functorially finite in \mathcal{A} ,

イロト イポト イヨト イヨト

Cluster tilting subcategories

Definition

An additive subcategory \mathcal{T} of \mathcal{A} is *cluster tilting* if

- \mathcal{T} is functorially finite in \mathcal{A} ,
- For $M \in \mathcal{A}$, $\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{T}, M) = 0 \Leftrightarrow M \in \mathcal{T}$.

・ロト ・日本 ・モート ・モート

Cluster tilting subcategories

Definition

An additive subcategory \mathcal{T} of \mathcal{A} is *cluster tilting* if

- \mathcal{T} is functorially finite in \mathcal{A} ,
- For $M \in \mathcal{A}$, $\operatorname{Ext}^{1}_{\mathcal{A}}(\mathcal{T}, M) = 0 \Leftrightarrow M \in \mathcal{T}$.
- For $N \in \mathcal{A}$, $\operatorname{Ext}^{1}_{\mathcal{A}}(N, \mathcal{T}) = 0 \Leftrightarrow N \in \mathcal{T}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Results

Theorem (BMRRT, HJ)

If Q is finite or of type \mathbb{A}_{∞} , then C(Q) admits a cluster structure formed by the cluster tilting subcategories.

イロト イポト イヨト イヨト

Main Results

Theorem (BMRRT, HJ)

If Q is finite or of type \mathbb{A}_{∞} , then C(Q) admits a cluster structure formed by the cluster tilting subcategories.

Theorem

Let Q infinite Dynkin quiver with no infinite path.

Shiping Liu (Université de Sherbrooke) Charles Paquette (Universit

Main Results

Theorem (BMRRT, HJ)

If Q is finite or of type \mathbb{A}_{∞} , then C(Q) admits a cluster structure formed by the cluster tilting subcategories.

Theorem

Let Q infinite Dynkin quiver with no infinite path. Then C(Q) admits a cluster structure formed by the cluster tilting subcategories.