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Motivation

Let Λ be artin algebra.

mod Λ: finitely generated right Λ-modules.

Problem

Find easy invariants to determine whether gdim Λ is
finite or infinite.
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Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Extension quiver

Definition

The extension quiver E (Λ) of Λ has

vertices the non-isomorphic simple Λ-modules,

single arrows S → T with Ext1(S , T ) 6= 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

No Loop Conjectures

Proposition

If E (Λ) has no oriented cycle, then gdim(Λ) <∞.

The converse of the above result is not true.

No Loop Conjecture (Zacharia, 1985)

If gdim(Λ) <∞, then E (Λ) has no loop.

Since gdim(Λ) = sup{pdim(S) | S simple Λ-modules }, we have

Strong No Loop Conjecture (Zacharia, 1990)

If S simple with pdim(S) <∞, then E (Λ) has no
loop at S .
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Cartan determinant

P1, . . . , Pn the non-iso indec projectives in mod Λ.

Si = Pi/rad Pi , i = 1, . . . , n, the non-iso simples.

mij : multiplicity of Si as composition factor of Pj .

Definition

1) The Cartan matrix of Λ is

C (Λ) = (mij)n×n

2) The Cartan determinant of Λ is

cd(Λ) = detC (Λ)
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Cartan determinant conjecture

Proposition (Eilenberg, 1954)

If gdim Λ <∞, then C (Λ) is invertible over Z,

and consequently, cd(Λ) = ±1.

Cartan Determiant Conjecture (Auslander)

If gdim Λ <∞, then cd(Λ) = 1.
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Status quo for artin algebras

Theorem

1 No Loop Conjecture and Cartan Determinant
Conjecture are Morita invariant and hold in case

1) (GGZ , Z ) gdim Λ = 2;

2) (BFVZ ) Λ left serial.

2) (BF , Wick) Λ standardly stratified.

2 Cartan Determinant Conjecture holds if Λ graded.

Remark

None of the two conjectures is established for
general artin algebras.
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Brief history of NLC in algebracially closed case

Theorem

Let A finite dimensional algebra over k = k̄ .

1 (Lenzing, 1969; Igusa, 1990) NLC holds.

2 (Skorodumov, 2010) SNLC holds if A is
representation-finite.

3 Other partial solutions of SNLC obtained by
Burgess-Saorin, Diracca-Koenig,
Green-Sølberg-Zacharia, Mamaridis-Papista,
Paquette, Liu-Morin, Igusa, Zacharia.
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Objective of this talk

1 Establish Strong No Loop Conjecture for finite
dimensional algebras over an algebraically closed
field (Liu, Igusa, Paquette, 2011).

2 Establish Cartan Determinant Conjecture for
quasi-stratified artin algebras (Liu, Paquette,
2006).
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Zeroth Hochschild homology group

Fix artin algebra Λ with radical J .

Definition

1) [Λ, Λ] = {
∑

i (ai bi − bi ai ) | ai , bi ∈ Λ}.

2) HH0(Λ) = Λ/[Λ, Λ].

3) Say HH0(Λ) is radical-trivial if J ⊆ [Λ, Λ].
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Trace of matrices

Definition

For A = (aij) ∈ Mn(Λ), one defines

tr(A) = (a11 + · · ·+ ann) + [Λ, Λ] ∈ HH0(Λ).

Proposition

If A ∈ Mm×n(Λ) and B ∈ Mn×m(Λ), then

tr(AB) = tr(BA).
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Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

1 Let P = e1Λ⊕ · · · ⊕ enΛ, with ei idempotents.

2 Given ϕ ∈ EndΛ(P).

3 Write ϕ = (ϕij)n×n, where ϕij ∈ ei Λej .

4 Define

tr(ϕ) = tr ((ϕij)n×n) ∈ HH0(Λ).
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Trace of endomorphisms of modules of fin proj dimension

Given ϕ ∈ EndΛ(M) with finite projective resolution

0 // Pn
// Pn−1

// · · · // P0
// M // 0.

Construct commutative diagram

0 // Pn
//

ϕn
��

Pn−1
//

ϕn−1
��

· · · // P0
//

ϕ0
��

M //

ϕ
��

0

0 // Pn
// Pn−1

// · · · // P0
d0 // M // 0.

Define
tr(ϕ) =

∑n
i=0(−1)i tr(ϕi ) ∈ HH0(Λ).

Theorem (Lenzing)

If gdim(Λ) <∞, then HH0(Λ) is radical-trivial.
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e-trace of endomorphisms of projective modules

Fix primitive idempotent e2 = e, and set Λe = Λ/Λ(1− e)Λ.

∃ algebra morphism pe : Λ→ Λe : x 7→ x + Λ(1− e)Λ.

This induces group morphism

He : HH0(Λ)→ HH0(Λe) : x + [Λ, Λ] 7→ pe(x) + [Λe , Λe ].

For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand of
P, then tre(ϕ) = 0.

Shiping Liu On the global dimension of an algebra
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For ϕ ∈ EndΛ(P) with P projective, define e-trace by

tre(ϕ) = He(tr(ϕ)) ∈ HH0(Λe).

Lemma

Let ϕ ∈ EndΛ(P) with P projective. If eΛ is not summand of
P, then tre(ϕ) = 0.
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e-bounded modules

Se = eΛ/e rad Λ, simple supported by e.

Say MΛ is e-bounded if Exti(M , Se) = 0, for i >> 0,

that is, M has e-bounded projective resolution

· · · // Pi
// Pi−1

// · · · // P0
// M // 0,

where eΛ not summand of Pi , for i >> 0.

A filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M

is e-bounded if Mi/Mi+1 is e-bounded, for i = 0, 1, . . . , r .

If idim Se <∞, then every MΛ is e-bounded.
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e-trace of endomorphisms of e-bounded modules

Given ϕ ∈ EndΛ(M) with e-bounded projective resolution

· · · // Pi
// Pi−1

// · · · // P0
// M // 0.

Construct commutative diagram

· · · // Pi
//

ϕi
��

Pi−1
//

ϕi−1
��

· · · // P0
//

ϕ0
��

M //

ϕ
��

0

· · · // Pi
di // Pi−1

// · · · // P0
d0 // M // 0.

Define tre(ϕ) =
∑∞

i=0(−1)i tre(ϕi ) ∈ HH0(Λe).

Remark

If idim Se <∞, then tre(ϕ) defined for any endomorphism
ϕ ∈ mod Λ.
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Additivity of the e-trace

Lemma

Let modΛ have commutative diagram with exact rows

0 // L
u //

φ
��

M
v //

ϕ

��

N

ψ
��

// 0

0 // L
u // M

v // N // 0.

If any two of L, M, N are e-bounded, then

tre(ϕ) = tre(φ) + tre(ψ).
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Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Lemma

Given ϕ ∈ EndΛ(M) with e-bounded filtration

0 = Mr+1 ⊂ Mr ⊂ · · · ⊂ M1 ⊂ M0 = M .

If ϕ(Mi) ⊆ Mi+1, i = 0, . . . , r , then tre(ϕ) = 0.

Proof. Let ϕi : Mi → Mi be restriction of ϕ.

∃ commutative diagram with exact rows

0 // Mi+1
//

ϕi+1
��

Mi
//

ϕi
��

Mi/Mi+1

0��

// 0

0 // Mi+1
// Mi

// Mi/Mi+1
// 0.

Hence, tre(ϕi ) = tre(ϕi+1).

In particular, tre(ϕ) = tre(ϕr+1) = tre(0) = 0.

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main result on HH0

Theorem

If idimSe <∞, then HH0(Λe) is radical-trivial.

Proof. Let x̄ = x + Λ(1− e)Λ ∈ rad(Λe), where x ∈ Λ.

Then x̄ = ā, where an+1 = 0 for some n ≥ 0.

Since idimSe <∞, we have e-bounded filtration

0 = an+1Λ ⊆ anΛ ⊆ · · · ⊆ aΛ ⊆ Λ.

Consider ϕ : Λ→ Λ : y 7→ ay . Then ϕ(aiΛ) ⊆ ai+1Λ.

Hence

ā + [Λe ,Λe ] = tre((a)) = tre(ϕ) = 0̄ + [Λe ,Λe ].

That is, x̄ ∈ [Λe ,Λe ].
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Basic idempotents

Say e is basic if eΛ has multiplicity 1 in Λ.

Theorem

Let e be basic with eΛe/eJ2e commutative.

If Ext1(Se , Se) 6= 0, then pdim(Se) = idim(Se) =∞.

Proof. e basic ⇒ eΛ(1− e)Λe ⊆ eJ2e.

⇒ ∃ algebra morphism f : Λe → eΛe/eJ2e : x̄ 7→ exe + eJ2e.

Since eΛe/eJ2e commutative, [Λe ,Λe ] ⊆ Ker(f ).

Let idim(S) <∞⇒ HH0(Λe) radical-trivial.

Let a ∈ eJe ⇒ ā ∈ J(Λe)⇒ ā ∈ [Λe ,Λe ].

⇒ 0 = f (ā) = a + eJ2e ⇒ a ∈ eJ2e.

Thus eJe/eJ2e = 0⇒ Ext1(Se ,Se) = 0.

If pdim(Se) <∞, then consider Λo-simple So.
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Main result

Theorem

Let A fin dim alg over field k with S simple of dimension one.
If E (A) has a loop at S, then pdim(S) = idim(S) =∞.

Proof. Let S = Se with e primitive idempotent.

dim Se = 1⇒ e basic, and eA = ke + eJ

⇒ eAe/eJ2e commutative.

If idim(S) <∞ or pdim(S) <∞, then Ext1(S ,S) = 0.

That is, E (A) no loop at S .
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Main consequences

Let A be finite dimensional algebra over a field k .

Call A elementary if every simple is of dimension one.
or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .
Call A elementary if every simple is of dimension one.

or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .
Call A elementary if every simple is of dimension one.
or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .
Call A elementary if every simple is of dimension one.
or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .
Call A elementary if every simple is of dimension one.
or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Main consequences

Let A be finite dimensional algebra over a field k .
Call A elementary if every simple is of dimension one.
or equivalently, A ∼= kQ/I with Q finite quiver.

Theorem

If A elementary, then Strong No loop Conjecture
holds.

Theorem (Igusa, Liu, Paquette, 2011)

If A is a finite dimensional algebra over field k = k̄ ,
then Strong No Loop Conjecture holds.

Proof. Since k̄ = k, we have A ≈ kQ/I .

Shiping Liu On the global dimension of an algebra



Introduction
Hochschild homology

SNLC for algebras over algebraically closed filed
CDC for quasi-stratified algebras

Terminology

Let Λ artin algebra.

If Λ = 0, set gdim(Λ) = −1 and cd(Λ) = 1.

Definition

Let I be two-sided ideal in Λ.

1) Let t > 0 minimal with I t = I t+1, idempotent part of I .

2) I t = ΛeΛ with e2 = e, called maximal idempotent in I .

Remark

1) I nilpotent ⇔ its maximal idempotent is zero.

2) I idempotent ⇔ I coincides with its idempotent part.
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Reduction algorithm

Definition

Let I be two-sided ideal in Λ.

1) I is left projective if ΛI projective.

2) I is right projective if I Λ projective.

Theorem

Let I � Λ left or right projective with maximal idempotent e.

1) gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I ) <∞.

2) cd(Λ) = cd(eΛe) cd(Λ/I ).
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Standard stratification (CPS)

Definition

Let I = ΛeΛ with e primitive idempotent. Say I right stratifying if
I Λ is projective.

Definition

Λ is right standardly stratified if it admits chain of ideals

0 = I0 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ,

Ii+1/Ii is right stratifying in Λ/Ii , i = 0, . . . , r .
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Quasi-stratification

Definition

Let I � Λ with maximal idempotent e being zero or primitive.

Call I quasi-stratifying if I Λ or ΛI is projective.
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Theorem (Liu, Paquette, 2006)

Let Λ be quasi-stratified. Then gdim(Λ) <∞⇔ cd(A) = 1.

Proof. Consider quasi-stratification chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Ir ⊂ Ir+1 = Λ.

Let e be maximal idempotent in I1.

1) r = 1⇒ Λ = ΛeΛ with e primitive ⇒Λ ≈ eΛe.

Hence, gdim(Λ) <∞⇔ eJe = 0⇔ cd(A) = 1.

2) r > 1⇒ A/I1 has quasi-stratification chain

0 = I1/I1 ⊂ · · · ⊂ Ir/I1 ⊂ Ir+1/I1 = Λ/I1.

Since cd(Λ) = cd(eΛe) cd(Λ/I1), and

gdim(Λ) <∞⇔ gdim(eΛe), gdim(Λ/I1) <∞,
The statement follows from inductive hypothesis.
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Example

Let Λ be given by

2

σ

��
β

��>>>>>

α ��>>>>>

1
δ

@@�����

ε
@@�����

3,
γ

oo

σ2 = σβ = βγ = γδ = εα = εσ = εβ = δα− δσα = 0.

Λ neither left nor right standardly stratified.

Λ quasi-stratified with quasi-stratification chain

0 ⊂ < ε > ⊂ < ε, α > ⊂ < ε, α, δ > ⊂ < ε, α, δ, e2 >
⊂ < ε, α, δ, e2, e3 > ⊂ Λ,

where first ideal left projective, others right projective over the
quotient by the preceding one.
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How to find quasi-stratification chain
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