Geometric properties of matrices

Shiping Liu
Université De Sherbrooke

Lecture
 at

Shaoxing University

July 4, 2019

Plan

(1) Zariski Topology

Plan

- Zariski Topology
(2) Quivers and Representations
- Zariski Topology
(2) Quivers and Representations

0 Orbits and orbit closures of Representations

Objective

(1) We shall illustrate the interaction of linear algebra with topology and geometry.

Objective

(1) We shall illustrate the interaction of linear algebra with topology and geometry.
(2) More precisely, we shall describe the orbit closures in the Zariski space of $m \times n$ matrices.

Algebraic sets

(1) Throughout, let k be an infinite field.

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.
(4) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $p=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, put

$$
f(p)=f\left(a_{,}, \cdots, a_{n}\right) \in k
$$

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.
(4) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $p=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, put

$$
f(p)=f\left(a_{,}, \cdots, a_{n}\right) \in k
$$

(0) Given $F \subseteq k\left[x_{1}, \cdots, x_{n}\right]$, we define

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.
(9) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $p=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, put

$$
f(p)=f\left(a_{,}, \cdots, a_{n}\right) \in k
$$

(6) Given $F \subseteq k\left[x_{1}, \cdots, x_{n}\right]$, we define

$$
\mathcal{Z}(F):=\left\{p \in \mathbb{A}^{n} \mid f(p)=0, \text { for all } f \in F\right\}
$$

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.
(9) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $p=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, put

$$
f(p)=f\left(a_{,}, \cdots, a_{n}\right) \in k
$$

(6) Given $F \subseteq k\left[x_{1}, \cdots, x_{n}\right]$, we define

$$
\mathcal{Z}(F):=\left\{p \in \mathbb{A}^{n} \mid f(p)=0, \text { for all } f \in F\right\}
$$

which is called an algebraic set of \mathbb{A}^{n}.

Algebraic sets

(1) Throughout, let k be an infinite field.
(2) $\mathbb{A}^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$, called affine n-space over k.
(3) $k\left[x_{1}, \ldots, x_{n}\right]$: ring of polynomials in variables x_{1}, \ldots, x_{n}, which is called coordinate ring of \mathbb{A}^{n}.
(4) Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $p=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}^{n}$, put

$$
f(p)=f\left(a_{,}, \cdots, a_{n}\right) \in k
$$

(0) Given $F \subseteq k\left[x_{1}, \cdots, x_{n}\right]$, we define

$$
\mathcal{Z}(F):=\left\{p \in \mathbb{A}^{n} \mid f(p)=0, \text { for all } f \in F\right\}
$$

which is called an algebraic set of \mathbb{A}^{n}.
Example
If $p=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$, then $\{p\}=\mathcal{Z}\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is an algebraic set.

Example

(1) Take $k=\mathbb{R}$.

Example

(1) Take $k=\mathbb{R}$.
(2) $\mathbb{A}^{2}=\{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.

Example

(1) Take $k=\mathbb{R}$.
(2) $\mathbb{A}^{2}=\{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
(3) The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.

Example

(1) Take $k=\mathbb{R}$.
(3) $\mathbb{A}^{2}=\{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
(0) The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.

- $\mathcal{Z}(x+y-1)$: straight line passing through $(1,0),(0,1)$.

Example

(1) Take $k=\mathbb{R}$.
(2) $\mathbb{A}^{2}=\{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
(0) The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.

- $\mathcal{Z}(x+y-1)$: straight line passing through $(1,0),(0,1)$.
- $\mathcal{Z}\left(x^{2}+y^{2}-1\right)$: unit circle centered at $(0,0)$.

Example

(1) Take $k=\mathbb{R}$.
(2) $\mathbb{A}^{2}=\{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
(0) The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.

- $\mathcal{Z}(x+y-1)$: straight line passing through $(1,0),(0,1)$.
- $\mathcal{Z}\left(x^{2}+y^{2}-1\right)$: unit circle centered at $(0,0)$.
(0) $\mathcal{Z}\left(x+y-1, x^{2}+y^{2}-1\right)=\{(1,0),(0,1)\}$.

Topology

Definition

(1) Let X be a non-empty set.

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;
- If $C_{1}, \ldots, C_{n} \in \mathscr{T}$, then $\cup_{i=1}^{n} C_{i} \in \mathscr{T}$.

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;
- If $C_{1}, \ldots, C_{n} \in \mathscr{T}$, then $\cup_{i=1}^{n} C_{i} \in \mathscr{T}$.
- If $C_{i} \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_{i} \in \mathscr{T}$, where I is arbitrary index set.

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;
- If $C_{1}, \ldots, C_{n} \in \mathscr{T}$, then $\cup_{i=1}^{n} C_{i} \in \mathscr{T}$.
- If $C_{i} \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_{i} \in \mathscr{T}$, where I is arbitrary index set.
(3) In this case,
- The pair (X, \mathscr{T}) is called a topological space;

Topology

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;
- If $C_{1}, \ldots, C_{n} \in \mathscr{T}$, then $\cup_{i=1}^{n} C_{i} \in \mathscr{T}$.
- If $C_{i} \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_{i} \in \mathscr{T}$, where l is arbitrary index set.
(3) In this case,
- The pair (X, \mathscr{T}) is called a topological space;
- The sets in \mathscr{T} are called closed sets;

Topology

Definition

(1) Let X be a non-empty set.
(2) A collection \mathscr{T} of subsets of X is called a topology on X if

- $X, \emptyset \in \mathscr{T}$;
- If $C_{1}, \ldots, C_{n} \in \mathscr{T}$, then $\cup_{i=1}^{n} C_{i} \in \mathscr{T}$.
- If $C_{i} \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_{i} \in \mathscr{T}$, where l is arbitrary index set.
(3) In this case,
- The pair (X, \mathscr{T}) is called a topological space;
- The sets in \mathscr{T} are called closed sets;
- A subset Y of X is called an open set if $Y=X \backslash C$ for some $C \in \mathscr{T}$.

Topological spaces
Let $(X, \mathscr{T}),(Y, \mathscr{S})$ be topological spaces.

Topological spaces
Let $(X, \mathscr{T}),(Y, \mathscr{S})$ be topological spaces.

Proposition

$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$ is a topological space

Topological spaces
Let $(X, \mathscr{T}),(Y, \mathscr{S})$ be topological spaces.

Proposition

$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology

$$
\mathscr{T} \times \mathscr{S}=\{C \times D \mid C \in \mathscr{T}, D \in \mathscr{S}\} .
$$

Topological spaces

Let $(X, \mathscr{T}),(Y, \mathscr{S})$ be topological spaces.

Proposition

$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology

$$
\mathscr{T} \times \mathscr{S}=\{C \times D \mid C \in \mathscr{T}, D \in \mathscr{S}\} .
$$

Definition

(1) A map $f: X \rightarrow Y$ is called continuous provided, for any closed set C of Y, that $f^{-1}(C)$ is closed.

Topological spaces

Let $(X, \mathscr{T}),(Y, \mathscr{S})$ be topological spaces.

Proposition

$X \times Y=\{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology

$$
\mathscr{T} \times \mathscr{S}=\{C \times D \mid C \in \mathscr{T}, D \in \mathscr{S}\} .
$$

Definition

(1) A map $f: X \rightarrow Y$ is called continuous provided, for any closed set C of Y, that $f^{-1}(C)$ is closed.
(2) Given $U \subseteq X$, its closure \bar{U} is the intersection of all closed sets containing U, which is the smallest closed set in X containing U.

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;
- $\mathbb{A}^{n}=\mathcal{Z}(0)$;

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;
- $\mathbb{A}^{n}=\mathcal{Z}(0)$;
- $\cup_{i=1}^{s} \mathcal{Z}\left(F_{s}\right)=\mathcal{Z}(F)$, where $F=\left\{f_{1} \cdots f_{s} \mid f_{i} \in F_{i}\right\}$;

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;
- $\mathbb{A}^{n}=\mathcal{Z}(0)$;
- $\cup_{i=1}^{s} \mathcal{Z}\left(F_{s}\right)=\mathcal{Z}(F)$, where $F=\left\{f_{1} \cdots f_{s} \mid f_{i} \in F_{i}\right\}$;
- $\cap_{i \in I} \mathcal{Z}\left(F_{i}\right)=\mathcal{Z}\left(\cup_{i \in I} F_{i}\right)$, where I arbitrary index set.

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;
- $\mathbb{A}^{n}=\mathcal{Z}(0)$;
- $\cup_{i=1}^{s} \mathcal{Z}\left(F_{s}\right)=\mathcal{Z}(F)$, where $F=\left\{f_{1} \cdots f_{s} \mid f_{i} \in F_{i}\right\}$;
- $\cap_{i \in I} \mathcal{Z}\left(F_{i}\right)=\mathcal{Z}\left(\cup_{i \in I} F_{i}\right)$, where I arbitrary index set.

Remark

(1) The finite sets in \mathbb{A}^{n} are closed.

Zariski Topology on \mathbb{A}^{n}

Theorem

The algebraic sets in \mathbb{A}^{n} form a topology, called Zariski topology.

Proof.

- $\emptyset=\mathcal{Z}\left(x_{1}, x_{1}-1\right)$;
- $\mathbb{A}^{n}=\mathcal{Z}(0)$;
- $\cup_{i=1}^{s} \mathcal{Z}\left(F_{s}\right)=\mathcal{Z}(F)$, where $F=\left\{f_{1} \cdots f_{s} \mid f_{i} \in F_{i}\right\}$;
- $\cap_{i \in I} \mathcal{Z}\left(F_{i}\right)=\mathcal{Z}\left(\cup_{i \in I} F_{i}\right)$, where I arbitrary index set.

Remark

(1) The finite sets in \mathbb{A}^{n} are closed.
(2) $\mathbb{A}^{m} \times \mathbb{A}^{n}=\mathbb{A}^{m+n}$.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.
(2) If Y is an infinite subset of \mathbb{A}^{1}, then $\bar{Y}=\mathbb{A}^{1}$.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.
(2) If Y is an infinite subset of \mathbb{A}^{1}, then $\bar{Y}=\mathbb{A}^{1}$.

Proof. Let $C=\mathcal{Z}(F)$ for some $F \subseteq K[x]$.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.
(2) If Y is an infinite subset of \mathbb{A}^{1}, then $\bar{Y}=\mathbb{A}^{1}$.

Proof. Let $C=\mathcal{Z}(F)$ for some $F \subseteq K[x]$.
Since $k[x]$ is a principal ideal domain, $\mathcal{Z}(F)=\mathcal{Z}(f)$ for some $f \in k[x]$.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.
(2) If Y is an infinite subset of \mathbb{A}^{1}, then $\bar{Y}=\mathbb{A}^{1}$.

Proof. Let $C=\mathcal{Z}(F)$ for some $F \subseteq K[x]$.
Since $k[x]$ is a principal ideal domain, $\mathcal{Z}(F)=\mathcal{Z}(f)$ for some $f \in k[x]$.

If $f \neq 0$, since k is a field, $C=\mathcal{Z}(f)$ is finite.

Properties of \mathbb{A}^{1}

(1) $\mathbb{A}^{1}=k$, where k is an infinite field.
(2) The coordinate ring is $k[x]$.

Proposition

(1) The closed sets in \mathbb{A}^{1} are finite sets and \mathbb{A}^{1}.
(2) If Y is an infinite subset of \mathbb{A}^{1}, then $\bar{Y}=\mathbb{A}^{1}$.

Proof. Let $C=\mathcal{Z}(F)$ for some $F \subseteq K[x]$.
Since $k[x]$ is a principal ideal domain, $\mathcal{Z}(F)=\mathcal{Z}(f)$ for some $f \in k[x]$.

If $f \neq 0$, since k is a field, $C=\mathcal{Z}(f)$ is finite.
If $f=0$, then $C=\mathcal{Z}(0)=\mathbb{A}^{1}$.

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.
(2) We shall identify $M_{m \times n}(k)=\mathbb{A}^{m n}$, the affine $m n$-space.

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.
(2) We shall identify $M_{m \times n}(k)=\mathbb{A}^{m n}$, the affine $m n$-space.
(3) $M_{m \times n}(k)$ has coordinate ring

$$
k\left[x_{i j} ; i=1, \ldots m ; j=1, \ldots, n\right] .
$$

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.
(2) We shall identify $M_{m \times n}(k)=\mathbb{A}^{m n}$, the affine $m n$-space.
(3) $M_{m \times n}(k)$ has coordinate ring

$$
k\left[x_{i j} ; i=1, \ldots m ; j=1, \ldots, n\right]
$$

Example

(1) Consider $M_{2 \times 2}(\mathbb{R})=\mathbb{A}^{4}$.

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.
(2) We shall identify $M_{m \times n}(k)=\mathbb{A}^{m n}$, the affine $m n$-space.
(3) $M_{m \times n}(k)$ has coordinate ring

$$
k\left[x_{i j} ; i=1, \ldots m ; j=1, \ldots, n\right]
$$

Example

(1) Consider $M_{2 \times 2}(\mathbb{R})=\mathbb{A}^{4}$.
(2) The coordinate ring is $\mathbb{R}\left[x_{11}, x_{12}, x_{21}, x_{22}\right]$ with

Zariski space of matrices

(1) $M_{m \times n}(k):=\left\{\left(a_{i j}\right)_{m \times n} \mid a_{i j} \in k\right\}$.
(2) We shall identify $M_{m \times n}(k)=\mathbb{A}^{m n}$, the affine $m n$-space.
(3) $M_{m \times n}(k)$ has coordinate ring

$$
k\left[x_{i j} ; i=1, \ldots m ; j=1, \ldots, n\right]
$$

Example

(1) Consider $M_{2 \times 2}(\mathbb{R})=\mathbb{A}^{4}$.
(2) The coordinate ring is $\mathbb{R}\left[x_{11}, x_{12}, x_{21}, x_{22}\right]$ with

$$
\left.\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array} \right\rvert\,=x_{11} x_{22}-x_{12} x_{21} \in \mathbb{R}\left[x_{11}, x_{12}, x_{21}, x_{22}\right] .
$$

General linear groups

$$
G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A \text { invertible }\right\}, \text { a group }
$$

General linear groups

$$
G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A \text { invertible }\right\}, \text { a group }
$$

called general linear group of degree n.

General linear groups

$$
\begin{aligned}
& G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A \text { invertible }\right\} \text {, a group } \\
& \text { called general linear group of degree } n \text {. }
\end{aligned}
$$

Proposition

$G L(n, k)$ is an open set of $M_{n \times n}(k)$.

General linear groups

$$
\begin{aligned}
& G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A \text { invertible }\right\} \text {, a group } \\
& \text { called general linear group of degree } n \text {. }
\end{aligned}
$$

Proposition
 $G L(n, k)$ is an open set of $M_{n \times n}(k)$.

(1) Proof. The coordinate ring of $M_{n \times n}(k)$ contains

General linear groups

$$
G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A \text { invertible }\right\}, \text { a group }
$$

called general linear group of degree n.

Proposition

$G L(n, k)$ is an open set of $M_{n \times n}(k)$.
(1) Proof. The coordinate ring of $M_{n \times n}(k)$ contains

$$
D_{n}:=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} .
$$

General linear groups

$G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A\right.$ invertible $\}$, a group called general linear group of degree n.

Proposition

$G L(n, k)$ is an open set of $M_{n \times n}(k)$.
(1) Proof. The coordinate ring of $M_{n \times n}(k)$ contains

$$
D_{n}:=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} .
$$

(2) Given $A=\left(a_{i j}\right)_{n \times n} \in M_{n \times n}(k)$, we have

General linear groups

$G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A\right.$ invertible $\}$, a group called general linear group of degree n.

Proposition

$G L(n, k)$ is an open set of $M_{n \times n}(k)$.
(1) Proof. The coordinate ring of $M_{n \times n}(k)$ contains

$$
D_{n}:=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)} .
$$

(2) Given $A=\left(a_{i j}\right)_{n \times n} \in M_{n \times n}(k)$, we have

$$
A \in G L(n, k) \Leftrightarrow \operatorname{det}(A) \neq 0 \Leftrightarrow A \notin \mathcal{Z}\left(D_{n}\right) .
$$

General linear groups

$G L(n, k):=\left\{A \in M_{n \times n}(k) \mid A\right.$ invertible $\}$, a group called general linear group of degree n.

Proposition

$G L(n, k)$ is an open set of $M_{n \times n}(k)$.
(1) Proof. The coordinate ring of $M_{n \times n}(k)$ contains

$$
D_{n}:=\left|\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right|=\sum_{\sigma \in S_{n}} x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}
$$

(2) Given $A=\left(a_{i j}\right)_{n \times n} \in M_{n \times n}(k)$, we have

$$
A \in G L(n, k) \Leftrightarrow \operatorname{det}(A) \neq 0 \Leftrightarrow A \notin \mathcal{Z}\left(D_{n}\right)
$$

(3) Thus, $G L(n, k)=M_{n \times n}(k) \backslash \mathcal{Z}\left(D_{n}\right)$, that is an open set.

Some closed sets in $M_{m \times n}(k)$

- Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
(9) $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
(9) $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.
(3) If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
(9) $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.
(0) If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$
\Leftrightarrow determinant of any square submatrix of order $\leq r$ is 0 .
(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
(9) $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.
(0) If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$
\Leftrightarrow determinant of any square submatrix of order $\leq r$ is 0 . $\Leftrightarrow r_{i}(A)=0, i=1, \ldots, s$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.
(3) Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
(9) $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.
(0) If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$
\Leftrightarrow determinant of any square submatrix of order $\leq r$ is 0 .
$\Leftrightarrow r_{i}(A)=0, i=1, \ldots, s$.
$\Leftrightarrow A \in \mathcal{Z}\left(r_{1}, \ldots, r_{s}\right)$.

Some closed sets in $M_{m \times n}(k)$

(1) Set $\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}$.

Proposition

$\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r=0,1, \ldots, \min \{m, n\}$.
(2) Proof. Consider the variable matrix $X=\left(x_{i j}\right)_{m \times n}$.

- Let X_{1}, \cdots, X_{s} the square submatrices of X of order $\leq r$.
- $r_{i}=\operatorname{det}\left(X_{i}\right) \in k\left[x_{i j} ; i=1, \ldots, m ; j=1, \ldots, n\right]$.
(0) If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$
\Leftrightarrow determinant of any square submatrix of order $\leq r$ is 0 .
$\Leftrightarrow r_{i}(A)=0, i=1, \ldots, s$.
$\Leftrightarrow A \in \mathcal{Z}\left(r_{1}, \ldots, r_{s}\right)$.
- That is, $\mathscr{O}_{m \times n}(r)=\mathcal{Z}\left(r_{1}, \ldots, r_{s}\right)$ is a closed set.

Quivers

(1) A quiver Q consists of

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;
- a finite set Q_{1} of arrows $\alpha: i \rightarrow j$, where $i, j \in Q_{0}$.

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;
- a finite set Q_{1} of arrows $\alpha: i \rightarrow j$, where $i, j \in Q_{0}$.
(2) Given an arrow $\alpha: i \rightarrow j$, write $i=s(\alpha)$ and $e(\alpha)=j$.

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;
- a finite set Q_{1} of arrows $\alpha: i \rightarrow j$, where $i, j \in Q_{0}$.
(2) Given an arrow $\alpha: i \rightarrow j$, write $i=s(\alpha)$ and $e(\alpha)=j$.

Example

-1 1

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;
- a finite set Q_{1} of arrows $\alpha: i \rightarrow j$, where $i, j \in Q_{0}$.
(2) Given an arrow $\alpha: i \rightarrow j$, write $i=s(\alpha)$ and $e(\alpha)=j$.

Example

- $1 \bigcirc$
(2) $\mathcal{A}_{2}: 1 \longrightarrow 2$

Quivers

(1) A quiver Q consists of

- a finite set Q_{0} of vertices enumerated as $1,2, \ldots, n$;
- a finite set Q_{1} of arrows $\alpha: i \rightarrow j$, where $i, j \in Q_{0}$.
(2) Given an arrow $\alpha: i \rightarrow j$, write $i=s(\alpha)$ and $e(\alpha)=j$.

Example

-1 1
(3) $\mathcal{A}_{2}: 1 \longrightarrow 2$
(3) $\mathcal{A}_{n}: 1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1 \longrightarrow n$

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.
(2) A vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$, with d_{i} positive integer, is called a dimension vector for Q.

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.
(2) A vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$, with d_{i} positive integer, is called a dimension vector for Q.
(0) For each $\alpha: i \rightarrow j \in Q_{1}$, choose a matrix $A_{\alpha} \in M_{d_{i} \times d_{j}}(k)$.

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.
(2) A vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$, with d_{i} positive integer, is called a dimension vector for Q.
(0) For each $\alpha: i \rightarrow j \in Q_{1}$, choose a matrix $A_{\alpha} \in M_{d_{i} \times d_{j}}(k)$. The collection $A=\left(A_{\alpha}\right)_{\alpha \in Q_{1}}$ is called a representation of Q of dimension vector \mathbf{d}.

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.
(2) A vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$, with d_{i} positive integer, is called a dimension vector for Q.
(0) For each $\alpha: i \rightarrow j \in Q_{1}$, choose a matrix $A_{\alpha} \in M_{d_{i} \times d_{j}}(k)$. The collection $A=\left(A_{\alpha}\right)_{\alpha \in Q_{1}}$ is called a representation of Q of dimension vector \mathbf{d}.
(1) $\operatorname{Rep}(Q, \mathbf{d})$: the set of all representations of Q of dimension vector d.

Representations of a quiver

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with $Q_{0}=\{1, \ldots, n\}$.
(2) A vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$, with d_{i} positive integer, is called a dimension vector for Q.
(0) For each $\alpha: i \rightarrow j \in Q_{1}$, choose a matrix $A_{\alpha} \in M_{d_{i} \times d_{j}}(k)$. The collection $A=\left(A_{\alpha}\right)_{\alpha \in Q_{1}}$ is called a representation of Q of dimension vector \mathbf{d}.

- $\operatorname{Rep}(Q, \mathbf{d})$: the set of all representations of Q of dimension vector \mathbf{d}.
- We shall identify

$$
\operatorname{Rep}(Q, \mathbf{d})=\mathbb{A}^{n},
$$

where $n=\sum_{\alpha \in Q_{1}} d_{s(\alpha)} d_{e(\alpha)}$.

Example

(1) $Q: 1 \bigcap^{\alpha}$ and $\mathbf{d}=(5)$.

Example

(1) $Q: 1 \Gamma^{\alpha}$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

Example

(1) $Q: 1 \Gamma^{\alpha}$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

Example

(1) $Q: 1 \bigcap^{\alpha}$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$
\operatorname{Rep}(Q, \mathbf{d})=M_{5 \times 5}(k)=\mathbb{A}^{25} .
$$

Example

(1) $Q: 1 \Gamma^{\alpha}$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$
\operatorname{Rep}(Q, \mathbf{d})=M_{5 \times 5}(k)=\mathbb{A}^{25} .
$$

(3) $\mathcal{A}_{3}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\mathbf{d}=(2,3,4)$.

Example

(1) $Q: 1 \bigcirc \alpha$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$
\operatorname{Rep}(Q, \mathbf{d})=M_{5 \times 5}(k)=\mathbb{A}^{25}
$$

(2) $\mathcal{A}_{3}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\mathbf{d}=(2,3,4)$.

A representation of \mathcal{A}_{3} of dimension vector \mathbf{d} is a pair of matrices $\left(A_{\alpha}, A_{\beta}\right) \in M_{2 \times 3}(k) \times M_{3 \times 4}(k)$. Therefore,

Example

(1) $Q: 1 \bigcap^{\alpha}$ and $\mathbf{d}=(5)$.

A representation of Q of dimension vector \mathbf{d} is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$
\operatorname{Rep}(Q, \mathbf{d})=M_{5 \times 5}(k)=\mathbb{A}^{25} .
$$

(2) $\mathcal{A}_{3}: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\mathbf{d}=(2,3,4)$.

A representation of \mathcal{A}_{3} of dimension vector \mathbf{d} is a pair of matrices $\left(A_{\alpha}, A_{\beta}\right) \in M_{2 \times 3}(k) \times M_{3 \times 4}(k)$. Therefore,

$$
\operatorname{Rep}\left(\mathcal{A}_{3}, \mathbf{d}\right)=M_{2 \times 3}(k) \times M_{3 \times 4}(k)=\mathbb{A}^{6} \times \mathbb{A}^{12}=\mathbb{A}^{18} .
$$

Group action

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.

Group action

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(0) $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$ is a group.

Group action

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.

- $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$ is a group.

Definition

Given

$$
g=\left(g_{1}, \cdots, g_{n}\right) \in G(\mathbf{d}) \text { and }\left(A_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d}),
$$

Group action

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(0) $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$ is a group.

Definition

Given

$$
g=\left(g_{1}, \cdots, g_{n}\right) \in G(\mathbf{d}) \text { and }\left(A_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d}),
$$

we define

$$
g \cdot\left(A_{\alpha}\right)_{\alpha \in Q_{1}}=\left(B_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d}),
$$

Group action

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.

- $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$ is a group.

Definition

Given

$$
g=\left(g_{1}, \cdots, g_{n}\right) \in G(\mathbf{d}) \text { and }\left(A_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d}),
$$

we define

$$
g \cdot\left(A_{\alpha}\right)_{\alpha \in Q_{1}}=\left(B_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d}),
$$

where, for each arrow $\alpha: i \rightarrow j$,

$$
B_{\alpha}=g_{i}^{-1} A_{\alpha} g_{j},
$$

\mathcal{A}_{2}-case

(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) A representation of \mathcal{A}_{2} of dimension vector \mathbf{d} is a matrix $A \in M_{m \times n}(k)$.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) A representation of \mathcal{A}_{2} of dimension vector \mathbf{d} is a matrix $A \in M_{m \times n}(k)$.
(- $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)=\mathbb{A}^{m n}$.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) A representation of \mathcal{A}_{2} of dimension vector \mathbf{d} is a matrix $A \in M_{m \times n}(k)$.

- $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)=\mathbb{A}^{m n}$.
(0) Moreover, $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(1) A representation of \mathcal{A}_{2} of dimension vector \mathbf{d} is a matrix $A \in M_{m \times n}(k)$.
(- $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)=\mathbb{A}^{m n}$.
- Moreover, $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.
- Given $\left(g_{1}, g_{2}\right) \in G L(m, k) \times G L(n, k)$ and $A \in M_{m \times n}(k)$,
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) A representation of \mathcal{A}_{2} of dimension vector \mathbf{d} is a matrix $A \in M_{m \times n}(k)$.
- $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)=\mathbb{A}^{m n}$.
(0 Moreover, $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.
- Given $\left(g_{1}, g_{2}\right) \in G L(m, k) \times G L(n, k)$ and $A \in M_{m \times n}(k)$,

$$
\left(g_{1}, g_{2}\right) \cdot A=g_{1}^{-1} A g_{2}
$$

Example

$$
\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right) \\
= & \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right) \\
= & \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
= & \left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right) \\
= & \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
= & \left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
= & \left(\begin{array}{rrr}
2 & 3 & 4 \\
1 & -2 & -2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
&\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \cdot\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right) \\
&=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{rrr}
2 & 3 & 4 \\
1 & -2 & -2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{rrr}
2 & 7 & 4 \\
1 & 0 & -2
\end{array}\right) .
\end{aligned}
$$

G(d)-orbits

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.

- $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$.

G(d)-orbits

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(0) $G(\mathbf{d})=G L\left(d_{1}, k\right) \times \cdots \times G L\left(d_{n}, k\right)$.

Definition

Given $A=\left(A_{\alpha}\right)_{\alpha \in Q_{1}} \in \operatorname{Rep}(Q, \mathbf{d})$, the set

$$
\mathscr{O}(A)=\{g \cdot A \mid g \in G(\mathbf{d})\}
$$

is called $G(\mathbf{d})$-orbit of A.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(3) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\} .
$$

\mathcal{A}_{2}-case

(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\} .
$$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$
(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\}
$$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$ $\Leftrightarrow B=g_{1}^{-1} A g_{2}$, with $g_{1} \in G L(m, k), g_{2} \in G L(n, k)$;

\mathcal{A}_{2}-case

(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\}
$$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$
$\Leftrightarrow B=g_{1}^{-1} A g_{2}$, with $g_{1} \in G L(m, k), g_{2} \in G L(n, k)$;
$\Leftrightarrow B$ obtained from A by performing some elementary row operations and some elementary column operations;

\mathcal{A}_{2}-case

(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\}
$$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$ $\Leftrightarrow B=g_{1}^{-1} A g_{2}$, with $g_{1} \in G L(m, k), g_{2} \in G L(n, k)$;
$\Leftrightarrow B$ obtained from A by performing some elementary row operations and some elementary column operations;
$\Leftrightarrow \operatorname{rank}(B)=\operatorname{rank}(A)$.

\mathcal{A}_{2}-case

(1) $\mathcal{A}_{2}: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d}=(m, n)$.
(2) $\operatorname{Rep}\left(\mathcal{A}_{2}, \mathbf{d}\right)=M_{m \times n}(k)$ and $G(\mathbf{d})=G L(m, k) \times G L(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$
\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=\operatorname{rank}(A)\right\}
$$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$
$\Leftrightarrow B=g_{1}^{-1} A g_{2}$, with $g_{1} \in G L(m, k), g_{2} \in G L(n, k)$;
$\Leftrightarrow B$ obtained from A by performing some elementary row operations and some elementary column operations;
$\Leftrightarrow \operatorname{rank}(B)=\operatorname{rank}(A)$.

Remark

$$
\mathscr{O}\left(0_{m \times n}\right)=\left\{0_{m \times n}\right\} .
$$

Orbit closure

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(3) $G(\mathbf{d})=G L(m, k) \times \cdots \times G L(n, k)$.

Orbit closure

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(3) $G(\mathbf{d})=G L(m, k) \times \cdots \times G L(n, k)$.

Definition

The orbit closure of a representation $A \in \operatorname{Rep}(Q, \mathbf{d})$ is $\overline{\mathscr{O}(A)}$, the closure of the $G(\mathbf{d})$-orbit of A in $\operatorname{Rep}(Q, \mathbf{d})$.

Orbit closure

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver, where $Q_{0}=\{1, \ldots, n\}$.
(2) Let $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ be a dimension vector.
(0) $G(\mathbf{d})=G L(m, k) \times \cdots \times G L(n, k)$.

Definition

The orbit closure of a representation $A \in \operatorname{Rep}(Q, \mathbf{d})$ is $\overline{\mathscr{O}(A)}$, the closure of the $G(\mathbf{d})$-orbit of A in $\operatorname{Rep}(Q, \mathbf{d})$.

Objective

To describe the orbit closures in $\operatorname{Rep}(Q, \mathbf{d})$.

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma
If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma
If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma
If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma
If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have

$$
\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}
$$

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma
If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$,

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma

If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$, where $(1,1)$-entry of E_{11} is 1 , and all other entries are 0 .

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma

If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$, where $(1,1)$-entry of E_{11} is 1 , and all other entries are 0 .
(1) $a \neq 0 \Rightarrow f(a) \in \mathscr{O}(A) \subseteq \overline{\mathscr{O}(A)} \Rightarrow \mathbb{A}^{1} \backslash\{0\} \subseteq f^{-1}(\overline{\mathscr{O}(A)})$.

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma

If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$, where $(1,1)$-entry of E_{11} is 1 , and all other entries are 0 .
(1) $a \neq 0 \Rightarrow f(a) \in \mathscr{O}(A) \subseteq \overline{\mathscr{O}(A)} \Rightarrow \mathbb{A}^{1} \backslash\{0\} \subseteq f^{-1}(\overline{\mathscr{O}(A)})$.
(5) Since $\mathbb{A}^{1} \backslash\{0\}$ is infinite and $f^{-1}(\overline{\mathscr{O}(A)})$ is closed,

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma

If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$, where $(1,1)$-entry of E_{11} is 1 , and all other entries are 0 .
(1) $a \neq 0 \Rightarrow f(a) \in \mathscr{O}(A) \subseteq \overline{\mathscr{O}(A)} \Rightarrow \mathbb{A}^{1} \backslash\{0\} \subseteq f^{-1}(\overline{\mathscr{O}(A)})$.
(3) Since $\mathbb{A}^{1} \backslash\{0\}$ is infinite and $f^{-1}(\overline{\mathscr{O}(A)})$ is closed,

$$
\mathbb{A}^{1}=\overline{\mathbb{A}^{1} \backslash\{0\}} \subseteq f^{-1}(\overline{\mathscr{O}(A)})
$$

Orbits closures in $M_{m \times n}(k)$: a special case

Lemma

If $A \in M_{m \times n}(k)$ with $\operatorname{rank}(A)=1$, then

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\} .
$$

(1) Proof. $\mathscr{E}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\right\}$ is closed.
(2) Since $\mathscr{O}(A)=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B)=1\right\}$, we have $\mathscr{E}=\mathscr{O}(A) \cup\left\{0_{m \times n}\right\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
(3) \exists continuous map $f: \mathbb{A}^{1} \rightarrow M_{m \times n}(k): a \mapsto a E_{11}$, where $(1,1)$-entry of E_{11} is 1 , and all other entries are 0 .
(1) $a \neq 0 \Rightarrow f(a) \in \mathscr{O}(A) \subseteq \overline{\mathscr{O}(A)} \Rightarrow \mathbb{A}^{1} \backslash\{0\} \subseteq f^{-1}(\overline{\mathscr{O}(A)})$.
(5) Since $\mathbb{A}^{1} \backslash\{0\}$ is infinite and $f^{-1}(\overline{\mathscr{O}(A)})$ is closed,

$$
\mathbb{A}^{1}=\overline{\mathbb{A}^{1} \backslash\{0\}} \subseteq f^{-1}(\overline{\mathscr{O}(A)})
$$

(1) Thus, $f(0)=0_{m \times n} \in \overline{\mathscr{O}(A)} \Rightarrow \mathscr{E} \subseteq \overline{\mathscr{O}(A)} \Rightarrow \overline{\mathscr{O}(A)}=\mathscr{E}$

Orbits closures in $M_{m \times n}(k)$

Theorem

(1) Given any $A \in M_{m \times n}(k)$, we obtain

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq \operatorname{rank}(A)\right\} .
$$

Orbits closures in $M_{m \times n}(k)$

Theorem

(1) Given any $A \in M_{m \times n}(k)$, we obtain

$$
\overline{\mathscr{O}(A)}=\left\{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq \operatorname{rank}(A)\right\}
$$

(2) The orbits closures in $M_{m \times n}(k)$ are as follows:

$$
\mathscr{O}_{m \times n}(r)=\left\{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\right\}
$$

where $r=0,1, \ldots, \min \{m, n\}$.

