Geometric properties of matrices

Shiping Liu Université de Sherbrooke

Lecture at Shaoxing University

July 4, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(ロ)、

- Zariski Topology
- **2** Quivers and Representations

(ロ)、(型)、(E)、(E)、 E) の(の)

- Zariski Topology
- Quivers and Representations
- Orbits and orbit closures of Representations

(ロ)、(型)、(E)、(E)、 E) の(の)

 We shall illustrate the interaction of linear algebra with topology and geometry.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We shall illustrate the interaction of linear algebra with topology and geometry.
- 2 More precisely, we shall describe the orbit closures in the Zariski space of $m \times n$ matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Throughout, let k be an infinite field.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Throughout, let k be an infinite field.
- ② $A^n := \{(a_1, \ldots, a_n) \mid a_i \in k\}$, called *affine n-space* over *k*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Throughout, let k be an infinite field.

2 $\mathbb{A}^n := \{(a_1, \ldots, a_n) \mid a_i \in k\}, \text{ called affine n-space over } k.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.

- Throughout, let k be an infinite field.
- **3** $\mathbb{A}^n := \{(a_1, \ldots, a_n) \mid a_i \in k\}, \text{ called affine } n-space \text{ over } k.$
- k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.
- Given $f \in k[x_1, \ldots, x_n]$ and $p = (a_1, \cdots, a_n) \in \mathbb{A}^n$, put $f(p) = f(a, \cdots, a_n) \in k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Throughout, let k be an infinite field.
- **3** $\mathbb{A}^n := \{(a_1, \ldots, a_n) \mid a_i \in k\}, \text{ called affine } n-space \text{ over } k.$
- k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.
- Given $f \in k[x_1, \ldots, x_n]$ and $p = (a_1, \cdots, a_n) \in \mathbb{A}^n$, put $f(p) = f(a, \cdots, a_n) \in k$.

• Given $F \subseteq k[x_1, \cdots, x_n]$, we define

- Throughout, let k be an infinite field.
- k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.
- Given $f \in k[x_1, \ldots, x_n]$ and $p = (a_1, \cdots, a_n) \in \mathbb{A}^n$, put $f(p) = f(a, \cdots, a_n) \in k$.
- Given $F \subseteq k[x_1, \cdots, x_n]$, we define

 $\mathcal{Z}(F) := \{ p \in \mathbb{A}^n \mid f(p) = 0, \text{ for all } f \in F \},$

- Throughout, let k be an infinite field.
- k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.
- Given $f \in k[x_1, \ldots, x_n]$ and $p = (a_1, \cdots, a_n) \in \mathbb{A}^n$, put $f(p) = f(a, \cdots, a_n) \in k$.
- Given $F \subseteq k[x_1, \cdots, x_n]$, we define

$$\mathcal{Z}(F) := \{ p \in \mathbb{A}^n \mid f(p) = 0, ext{ for all } f \in F \},$$

which is called an *algebraic set* of \mathbb{A}^n .

- Throughout, let k be an infinite field.
- k[x₁,...,x_n]: ring of polynomials in variables x₁,...,x_n, which is called *coordinate ring* of Aⁿ.
- Given $f \in k[x_1, \ldots, x_n]$ and $p = (a_1, \cdots, a_n) \in \mathbb{A}^n$, put $f(p) = f(a, \cdots, a_n) \in k$.
- Given $F \subseteq k[x_1, \cdots, x_n]$, we define

 $\mathcal{Z}(F) := \{ p \in \mathbb{A}^n \mid f(p) = 0, \text{ for all } f \in F \},$

which is called an *algebraic set* of \mathbb{A}^n .

Example

If
$$p = (a_1, \ldots, a_n) \in \mathbb{A}^n$$
, then $\{p\} = \mathcal{Z}(x_1 - a_1, \ldots, x_n - a_n)$ is an algebraic set.

• Take $k = \mathbb{R}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

• Take $k = \mathbb{R}$.

2 $\mathbb{A}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Take $k = \mathbb{R}$.
- 2 $\mathbb{A}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
- **③** The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Take $k = \mathbb{R}$.
- 2 $\mathbb{A}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
- **③** The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.
- $\mathcal{Z}(x+y-1)$: straight line passing through (1,0), (0,1).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Take $k = \mathbb{R}$.
- 2 $\mathbb{A}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
- **3** The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.
- $\mathcal{Z}(x+y-1)$: straight line passing through (1,0), (0,1).

• $\mathcal{Z}(x^2 + y^2 - 1)$: unit circle centered at (0, 0).

- Take $k = \mathbb{R}$.
- 2 $\mathbb{A}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$: the real plane.
- **3** The coordinate ring is $\mathbb{R}[x, y]$, real polynomials in x, y.
- $\mathcal{Z}(x+y-1)$: straight line passing through (1,0), (0,1).

- $\mathcal{Z}(x^2 + y^2 1)$: unit circle centered at (0, 0).
- $\mathcal{Z}(x+y-1,x^2+y^2-1) = \{(1,0),(0,1)\}.$

Definition

• Let X be a non-empty set.

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if

•
$$X, \emptyset \in \mathscr{T};$$

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if

•
$$X, \emptyset \in \mathscr{T};$$

• If $C_1, \ldots, C_n \in \mathscr{T}$, then $\cup_{i=1}^n C_i \in \mathscr{T}$.

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if
 - $X, \emptyset \in \mathscr{T};$
 - If $C_1, \ldots, C_n \in \mathscr{T}$, then $\cup_{i=1}^n C_i \in \mathscr{T}$.
 - If $C_i \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_i \in \mathscr{T}$, where I is arbitrary index set.

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if
 - $X, \emptyset \in \mathscr{T};$
 - If $C_1, \ldots, C_n \in \mathscr{T}$, then $\cup_{i=1}^n C_i \in \mathscr{T}$.
 - If $C_i \in \mathscr{T}$ for all $i \in I$, then $\bigcap_{i \in I} C_i \in \mathscr{T}$, where I is arbitrary index set.

In this case,

• The pair (X, *T*) is called a *topological space*;

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if
 - $X, \emptyset \in \mathcal{T};$
 - If $C_1, \ldots, C_n \in \mathscr{T}$, then $\cup_{i=1}^n C_i \in \mathscr{T}$.
 - If $C_i \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_i \in \mathscr{T}$, where I is arbitrary index set.
- In this case,
 - The pair (X, *T*) is called a *topological space*;
 - The sets in ${\mathscr T}$ are called *closed sets*;

Definition

- Let X be a non-empty set.
- **2** A collection \mathcal{T} of subsets of X is called a *topology* on X if
 - $X, \emptyset \in \mathcal{T};$
 - If $C_1, \ldots, C_n \in \mathscr{T}$, then $\cup_{i=1}^n C_i \in \mathscr{T}$.
 - If $C_i \in \mathscr{T}$ for all $i \in I$, then $\cap_{i \in I} C_i \in \mathscr{T}$, where I is arbitrary index set.
- In this case,
 - The pair (X, *T*) is called a *topological space*;
 - The sets in \mathscr{T} are called *closed sets*;
 - A subset Y of X is called an *open set* if $Y = X \setminus C$ for some $C \in \mathscr{T}$.

Topological spaces

Let (X, \mathscr{T}) , (Y, \mathscr{S}) be topological spaces.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Topological spaces

Let (X, \mathscr{T}) , (Y, \mathscr{S}) be topological spaces.

Proposition

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$
 is a topological space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let (X, \mathscr{T}) , (Y, \mathscr{S}) be topological spaces.

Proposition

 $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology

$$\mathscr{T} \times \mathscr{S} = \{ \mathsf{C} \times \mathsf{D} \mid \mathsf{C} \in \mathscr{T}, \mathsf{D} \in \mathscr{S} \}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let (X, \mathscr{T}) , (Y, \mathscr{S}) be topological spaces.

Proposition

 $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology

$$\mathscr{T} \times \mathscr{S} = \{ \mathsf{C} \times \mathsf{D} \mid \mathsf{C} \in \mathscr{T}, \mathsf{D} \in \mathscr{S} \}.$$

Definition

A map f : X → Y is called *continuous* provided, for any closed set C of Y, that f⁻¹(C) is closed.

Let (X, \mathscr{T}) , (Y, \mathscr{S}) be topological spaces.

Proposition

 $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ is a topological space equipped with the topology $\mathscr{T} \times \mathscr{S} = \{C \times D \mid C \in \mathscr{T}, D \in \mathscr{S}\}.$

Definition

- A map f : X → Y is called *continuous* provided, for any closed set C of Y, that f⁻¹(C) is closed.
- Given U ⊆ X, its closure U is the intersection of all closed sets containing U, which is the smallest closed set in X containing U.

Zariski Topology on \mathbb{A}^n

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Zariski Topology on \mathbb{A}^n

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

Zariski Topology on \mathbb{A}^n

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

•
$$\mathbb{A}^n = \mathcal{Z}(0);$$
Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

•
$$\mathbb{A}^n = \mathcal{Z}(0);$$

•
$$\cup_{i=1}^{s} \mathcal{Z}(F_s) = \mathcal{Z}(F)$$
, where $F = \{f_1 \cdots f_s \mid f_i \in F_i\}$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

•
$$\mathbb{A}^n = \mathcal{Z}(0);$$

- $\cup_{i=1}^{s} \mathcal{Z}(F_s) = \mathcal{Z}(F)$, where $F = \{f_1 \cdots f_s \mid f_i \in F_i\}$;
- $\cap_{i \in I} \mathcal{Z}(F_i) = \mathcal{Z}(\bigcup_{i \in I} F_i)$, where *I* arbitrary index set.

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

•
$$\mathbb{A}^n = \mathcal{Z}(0);$$

- $\cup_{i=1}^{s} \mathcal{Z}(F_s) = \mathcal{Z}(F)$, where $F = \{f_1 \cdots f_s \mid f_i \in F_i\}$;
- $\cap_{i \in I} \mathcal{Z}(F_i) = \mathcal{Z}(\bigcup_{i \in I} F_i)$, where *I* arbitrary index set.

Remark

• The finite sets in \mathbb{A}^n are closed.

Theorem

The algebraic sets in \mathbb{A}^n form a topology, called Zariski topology.

Proof.

•
$$\emptyset = \mathcal{Z}(x_1, x_1 - 1);$$

•
$$\mathbb{A}^n = \mathcal{Z}(0);$$

- $\cup_{i=1}^{s} \mathcal{Z}(F_s) = \mathcal{Z}(F)$, where $F = \{f_1 \cdots f_s \mid f_i \in F_i\}$;
- $\cap_{i \in I} \mathcal{Z}(F_i) = \mathcal{Z}(\bigcup_{i \in I} F_i)$, where *I* arbitrary index set.

Remark

• The finite sets in \mathbb{A}^n are closed.

• $\mathbb{A}^1 = k$, where k is an infinite field.

• $\mathbb{A}^1 = k$, where k is an infinite field.

2 The coordinate ring is k[x].

- $\mathbb{A}^1 = k$, where k is an infinite field.
- 2 The coordinate ring is k[x].

Proposition

• The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\mathbb{A}^1 = k$, where k is an infinite field.
- **2** The coordinate ring is k[x].

Proposition

- The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .
- If Y is an infinite subset of \mathbb{A}^1 , then $\overline{Y} = \mathbb{A}^1$.

- $\mathbb{A}^1 = k$, where k is an infinite field.
- **2** The coordinate ring is k[x].

Proposition

• The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .

• If Y is an infinite subset of \mathbb{A}^1 , then $\overline{Y} = \mathbb{A}^1$.

Proof. Let $C = \mathcal{Z}(F)$ for some $F \subseteq K[x]$.

- $\mathbb{A}^1 = k$, where k is an infinite field.
- **2** The coordinate ring is k[x].

Proposition

• The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .

a If Y is an infinite subset of
$$\mathbb{A}^1$$
, then $\overline{Y} = \mathbb{A}^1$.

Proof. Let $C = \mathcal{Z}(F)$ for some $F \subseteq K[x]$.

Since k[x] is a principal ideal domain, $\mathcal{Z}(F) = \mathcal{Z}(f)$ for some $f \in k[x]$.

- $\mathbb{A}^1 = k$, where k is an infinite field.
- **2** The coordinate ring is k[x].

Proposition

- The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .
- If Y is an infinite subset of \mathbb{A}^1 , then $\overline{Y} = \mathbb{A}^1$.

Proof. Let $C = \mathcal{Z}(F)$ for some $F \subseteq K[x]$.

Since k[x] is a principal ideal domain, $\mathcal{Z}(F) = \mathcal{Z}(f)$ for some $f \in k[x]$.

If $f \neq 0$, since k is a field, $C = \mathcal{Z}(f)$ is finite.

- $\mathbb{A}^1 = k$, where k is an infinite field.
- **2** The coordinate ring is k[x].

Proposition

• The closed sets in \mathbb{A}^1 are finite sets and \mathbb{A}^1 .

a If Y is an infinite subset of
$$\mathbb{A}^1$$
, then $\overline{Y} = \mathbb{A}^1$.

Proof. Let
$$C = \mathcal{Z}(F)$$
 for some $F \subseteq K[x]$.

Since k[x] is a principal ideal domain, $\mathcal{Z}(F) = \mathcal{Z}(f)$ for some $f \in k[x]$.

If
$$f \neq 0$$
, since k is a field, $C = \mathcal{Z}(f)$ is finite.

If
$$f = 0$$
, then $C = \mathcal{Z}(0) = \mathbb{A}^1$.

$$M_{m \times n}(k) := \{ (a_{ij})_{m \times n} \mid a_{ij} \in k \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1
$$M_{m \times n}(k) := \{(a_{ij})_{m \times n} \mid a_{ij} \in k\}.$$

2 We shall identify $M_{m \times n}(k) = \mathbb{A}^{mn}$, the affine *mn*-space.

(ロ)、(型)、(E)、(E)、 E) の(の)

1
$$M_{m \times n}(k) := \{(a_{ij})_{m \times n} \mid a_{ij} \in k\}.$$

- **2** We shall identify $M_{m \times n}(k) = \mathbb{A}^{mn}$, the affine *mn*-space.
- $M_{m \times n}(k)$ has coordinate ring

$$k[x_{ij}; i = 1, \dots, m; j = 1, \dots, n].$$

1
$$M_{m \times n}(k) := \{(a_{ij})_{m \times n} \mid a_{ij} \in k\}.$$

2 We shall identify $M_{m \times n}(k) = \mathbb{A}^{mn}$, the affine *mn*-space.

• $M_{m \times n}(k)$ has coordinate ring

$$k[x_{ij}; i = 1, \dots, m; j = 1, \dots, n].$$

Example

• Consider
$$M_{2\times 2}(\mathbb{R}) = \mathbb{A}^4$$
.

1
$$M_{m \times n}(k) := \{(a_{ij})_{m \times n} \mid a_{ij} \in k\}.$$

2 We shall identify $M_{m \times n}(k) = \mathbb{A}^{mn}$, the affine *mn*-space.

• $M_{m \times n}(k)$ has coordinate ring

$$k[x_{ij}; i = 1, \dots, m; j = 1, \dots, n].$$

Example

- Consider $M_{2\times 2}(\mathbb{R}) = \mathbb{A}^4$.
- The coordinate ring is $\mathbb{R}[x_{11}, x_{12}, x_{21}, x_{22}]$ with

1
$$M_{m \times n}(k) := \{(a_{ij})_{m \times n} \mid a_{ij} \in k\}.$$

2 We shall identify $M_{m \times n}(k) = \mathbb{A}^{mn}$, the affine *mn*-space.

• $M_{m \times n}(k)$ has coordinate ring

$$k[x_{ij}; i = 1, \dots, m; j = 1, \dots, n].$$

Example

- Consider $M_{2\times 2}(\mathbb{R}) = \mathbb{A}^4$.
- The coordinate ring is $\mathbb{R}[x_{11}, x_{12}, x_{21}, x_{22}]$ with

$$\begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} = x_{11}x_{22} - x_{12}x_{21} \in \mathbb{R}[x_{11}, x_{12}, x_{21}, x_{22}].$$

$GL(n,k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a \text{ group}$

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

9 *Proof.* The coordinate ring of $M_{n \times n}(k)$ contains

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

1 Proof. The coordinate ring of $M_{n \times n}(k)$ contains

$$D_n := \begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

1 *Proof.* The coordinate ring of $M_{n \times n}(k)$ contains

$$D_n := \begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 Given $A = (a_{ij})_{n \times n} \in M_{n \times n}(k)$, we have

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a group called$ *general linear group*of degree*n*.

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

1 *Proof.* The coordinate ring of $M_{n \times n}(k)$ contains

$$D_n := \begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Given $A = (a_{ij})_{n \times n} \in M_{n \times n}(k)$, we have $A \in GL(n, k) \Leftrightarrow \det(A) \neq 0 \Leftrightarrow A \notin \mathcal{Z}(D_n).$

 $GL(n, k) := \{A \in M_{n \times n}(k) \mid A \text{ invertible}\}, a \text{ group}$ called *general linear group* of degree *n*.

Proposition

GL(n, k) is an open set of $M_{n \times n}(k)$.

1 *Proof.* The coordinate ring of $M_{n \times n}(k)$ contains

$$D_n := \begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} = \sum_{\sigma \in S_n} x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$$

Given A = (a_{ij})_{n×n} ∈ M_{n×n}(k), we have A ∈ GL(n, k) ⇔ det(A) ≠ 0 ⇔ A ∉ Z(D_n).
Thus, GL(n, k) = M_{n×n}(k)\Z(D_n), that is an open set.

• Set
$$\mathcal{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

2 Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \ldots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.

• $r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.

- $r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$
- If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.
- $r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$
- If $A \in M_{m \times n}(k)$, then $\operatorname{rank}(A) \leq r$

 \Leftrightarrow determinant of any square submatrix of order $\leq r$ is 0.

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.
- $r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$
- If A ∈ M_{m×n}(k), then rank(A) ≤ r
 ⇔ determinant of any square submatrix of order ≤ r is 0.
 ⇔ r_i(A) = 0, i = 1,..., s.

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **2** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.

•
$$r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$$

• If
$$A \in M_{m \times n}(k)$$
, then $\operatorname{rank}(A) \leq r$

 $\Leftrightarrow \text{ determinant of any square submatrix of order} \leq r \text{ is } 0.$ $\Leftrightarrow r_i(A) = 0, i = 1, \dots, s.$ $\Leftrightarrow A \in \mathcal{Z}(r_1, \dots, r_s).$

• Set
$$\mathscr{O}_{m \times n}(r) = \{A \in M_{m \times n}(k) \mid \operatorname{rank}(A) \leq r\}.$$

Proposition

 $\mathscr{O}_{m \times n}(r)$ is closed in $M_{m \times n}(k)$, for $r = 0, 1, \dots, \min\{m, n\}$.

- **3** Proof. Consider the variable matrix $X = (x_{ij})_{m \times n}$.
- Let X_1, \dots, X_s the square submatrices of X of order $\leq r$.

•
$$r_i = \det(X_i) \in k[x_{ij}; i = 1, ..., m; j = 1, ..., n].$$

• If
$$A \in M_{m \times n}(k)$$
, then $\operatorname{rank}(A) \leq r$

 $\Leftrightarrow \text{ determinant of any square submatrix of order} \leq r \text{ is } 0.$ $\Leftrightarrow r_i(A) = 0, i = 1, \dots, s.$ $\Leftrightarrow A \in \mathcal{Z}(r_1, \dots, r_s).$ $\bullet \text{ That is, } \mathcal{O}_{m \times n}(r) = \mathcal{Z}(r_1, \dots, r_s) \text{ is a closed set.}$
• a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;

- a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;
- a finite set Q_1 of arrows $\alpha : i \to j$, where $i, j \in Q_0$.

- a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;
- a finite set Q_1 of arrows $\alpha : i \to j$, where $i, j \in Q_0$.

2 Given an arrow $\alpha : i \to j$, write $i = s(\alpha)$ and $e(\alpha) = j$.

- a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;
- a finite set Q_1 of arrows $\alpha : i \to j$, where $i, j \in Q_0$.

2 Given an arrow
$$\alpha : i \to j$$
, write $i = s(\alpha)$ and $e(\alpha) = j$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;
- a finite set Q_1 of arrows $\alpha : i \to j$, where $i, j \in Q_0$.

2 Given an arrow
$$\alpha : i \to j$$
, write $i = s(\alpha)$ and $e(\alpha) = j$.

- a finite set Q_0 of vertices enumerated as $1, 2, \ldots, n$;
- a finite set Q_1 of arrows $\alpha : i \to j$, where $i, j \in Q_0$.

2 Given an arrow
$$\alpha : i \to j$$
, write $i = s(\alpha)$ and $e(\alpha) = j$.

• Let
$$Q = (Q_0, Q_1)$$
 be a quiver with $Q_0 = \{1, ..., n\}$.

- Let $Q = (Q_0, Q_1)$ be a quiver with $Q_0 = \{1, ..., n\}$.
- A vector $\mathbf{d} = (d_1, \dots, d_n)$, with d_i positive integer, is called a *dimension vector* for Q.

- Let $Q = (Q_0, Q_1)$ be a quiver with $Q_0 = \{1, ..., n\}$.
- A vector $\mathbf{d} = (d_1, \dots, d_n)$, with d_i positive integer, is called a *dimension vector* for Q.
- For each $\alpha : i \to j \in Q_1$, choose a matrix $A_{\alpha} \in M_{d_i \times d_j}(k)$.

- Let $Q = (Q_0, Q_1)$ be a quiver with $Q_0 = \{1, ..., n\}$.
- A vector $\mathbf{d} = (d_1, \dots, d_n)$, with d_i positive integer, is called a *dimension vector* for Q.
- For each α : i → j ∈ Q₁, choose a matrix A_α ∈ M_{d_i×d_j}(k). The collection A = (A_α)_{α∈Q1} is called a *representation* of Q of dimension vector d.

- Let $Q = (Q_0, Q_1)$ be a quiver with $Q_0 = \{1, ..., n\}$.
- A vector $\mathbf{d} = (d_1, \dots, d_n)$, with d_i positive integer, is called a *dimension vector* for Q.
- For each α : i → j ∈ Q₁, choose a matrix A_α ∈ M_{d_i×d_j}(k). The collection A = (A_α)_{α∈Q1} is called a *representation* of Q of dimension vector d.

Rep(Q, d): the set of all representations of Q of dimension vector d.

- Let $Q = (Q_0, Q_1)$ be a quiver with $Q_0 = \{1, ..., n\}$.
- A vector $\mathbf{d} = (d_1, \dots, d_n)$, with d_i positive integer, is called a *dimension vector* for Q.
- For each α : i → j ∈ Q₁, choose a matrix A_α ∈ M_{d_i×d_j}(k). The collection A = (A_α)_{α∈Q1} is called a *representation* of Q of dimension vector d.
- Rep(Q, d): the set of all representations of Q of dimension vector d.
- We shall identify

$$\operatorname{Rep}(Q,\mathbf{d})=\mathbb{A}^n,$$

where $n = \sum_{\alpha \in Q_1} d_{s(\alpha)} d_{e(\alpha)}$.

$$Q: 1 \bigcirc \alpha \text{ and } \mathbf{d} = (5).$$

1
$$Q: 1 \cap \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

1
$$Q: 1 \cap \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

1
$$Q: 1 \cap \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$\operatorname{Rep}(Q,\mathbf{d})=M_{5\times 5}(k)=\mathbb{A}^{25}.$$

1
$$Q: 1 \bigcirc \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$\operatorname{Rep}(Q,\mathbf{d})=M_{5\times 5}(k)=\mathbb{A}^{25}.$$

2
$$\mathcal{A}_3$$
: 1 $\xrightarrow{\alpha}$ 2 $\xrightarrow{\beta}$ 3 and **d** = (2,3,4).

Q:
$$1 \bigcirc \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$\operatorname{Rep}(Q,\mathbf{d})=M_{5\times 5}(k)=\mathbb{A}^{25}.$$

2
$$\mathcal{A}_3$$
: 1 $\xrightarrow{\alpha}$ 2 $\xrightarrow{\beta}$ 3 and **d** = (2,3,4).

A representation of A_3 of dimension vector **d** is a pair of matrices $(A_{\alpha}, A_{\beta}) \in M_{2 \times 3}(k) \times M_{3 \times 4}(k)$. Therefore,

(日) (日) (日) (日) (日) (日) (日) (日)

Q :
$$1 \bigcirc \alpha$$
 and $\mathbf{d} = (5)$.

A representation of Q of dimension vector **d** is a matrix $A_{\alpha} \in M_{5 \times 5}(k)$. Thus,

$$\operatorname{Rep}(Q,\mathbf{d})=M_{5\times 5}(k)=\mathbb{A}^{25}.$$

2
$$\mathcal{A}_3$$
: 1 $\xrightarrow{\alpha}$ 2 $\xrightarrow{\beta}$ 3 and **d** = (2,3,4).

A representation of A_3 of dimension vector **d** is a pair of matrices $(A_{\alpha}, A_{\beta}) \in M_{2 \times 3}(k) \times M_{3 \times 4}(k)$. Therefore,

$$\operatorname{Rep}(\mathcal{A}_3, \mathbf{d}) = M_{2 \times 3}(k) \times M_{3 \times 4}(k) = \mathbb{A}^6 \times \mathbb{A}^{12} = \mathbb{A}^{18}.$$

• Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.

・ロト・日本・モト・モート ヨー うへで

2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.

• Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.

- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.
- $G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k)$ is a group.

- Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.
- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.
- $G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k)$ is a group.

Definition

Given

$$g=(g_1,\cdots,g_n)\in G(\mathsf{d}) ext{ and } (\mathcal{A}_lpha)_{lpha\in \mathcal{Q}_1}\in \operatorname{Rep}(\mathcal{Q},\mathsf{d}),$$

- Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.
- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.
- $G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k)$ is a group.

Definition

Given

$$g = (g_1, \cdots, g_n) \in G(\mathbf{d})$$
 and $(A_{\alpha})_{\alpha \in Q_1} \in \operatorname{Rep}(Q, \mathbf{d}),$

$$g \cdot (A_{lpha})_{lpha \in \mathcal{Q}_1} = (B_{lpha})_{lpha \in \mathcal{Q}_1} \in \operatorname{Rep}(\mathcal{Q}, \mathbf{d}),$$

▲日 > ▲母 > ▲目 > ▲目 > → 目 → のへで

• Let
$$Q=(Q_0,Q_1)$$
 be a quiver, where $Q_0=\{1,\ldots,n\}.$

2 Let
$$\mathbf{d} = (d_1, \cdots, d_n)$$
 be a dimension vector.

$$G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k)$$
 is a group.

Definition

v

Given

$$g = (g_1, \cdots, g_n) \in G(\mathbf{d})$$
 and $(A_{lpha})_{lpha \in Q_1} \in \operatorname{Rep}(Q, \mathbf{d}),$
we define

$$g \cdot (A_{\alpha})_{\alpha \in Q_1} = (B_{\alpha})_{\alpha \in Q_1} \in \operatorname{Rep}(Q, \mathbf{d}),$$

where, for each arrow $\alpha: i \rightarrow j$,

$$B_{\alpha}=g_i^{-1}\,A_{\alpha}\,g_j,$$

▲日▶▲圖▶▲圖▶▲圖▶ ■ のQの

• \mathcal{A}_2 : 1 $\xrightarrow{\alpha}$ 2 and $\mathbf{d} = (m, n)$.

- $\mathcal{A}_2: 1 \xrightarrow{\alpha} 2$ and $\mathbf{d} = (m, n)$.
- A representation of A₂ of dimension vector d is a matrix A ∈ M_{m×n}(k).

・ロト・日本・モト・モート ヨー うへで

•
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and **d** = (m, n).

A representation of A₂ of dimension vector d is a matrix A ∈ M_{m×n}(k).

(ロ)、(型)、(E)、(E)、 E) の(の)

1
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and **d** = (m, n).

A representation of A₂ of dimension vector d is a matrix A ∈ M_{m×n}(k).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Moreover, $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.

1
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and **d** = (m, n).

A representation of A₂ of dimension vector d is a matrix A ∈ M_{m×n}(k).

- Moreover, $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.
- **3** Given $(g_1, g_2) \in GL(m, k) \times GL(n, k)$ and $A \in M_{m \times n}(k)$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and **d** = (m, n).

A representation of A₂ of dimension vector d is a matrix A ∈ M_{m×n}(k).

- Moreover, $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.
- Given $(g_1, g_2) \in GL(m, k) \times GL(n, k)$ and $A \in M_{m \times n}(k)$,

$$(g_1,g_2)\cdot A=g_1^{-1}Ag_2.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\left(\left(\begin{array}{rrr} 1 & 0 \\ 1 & 1 \end{array} \right), \left(\begin{array}{rrr} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \right) \cdot \left(\begin{array}{rrr} 2 & 3 & 4 \\ 3 & 1 & 2 \end{array} \right)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 3 & 4 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 3 & 4 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 7 & 4 \\ 1 & 0 & -2 \end{pmatrix}.$$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ
$G(\mathbf{d})$ -orbits

• Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.
- $G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k).$

$G(\mathbf{d})$ -orbits

• Let
$$Q = (Q_0, Q_1)$$
 be a quiver, where $Q_0 = \{1, ..., n\}$.

2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.

$$G(\mathbf{d}) = GL(d_1, k) \times \cdots \times GL(d_n, k).$$

Definition

Given
$$A = (A_{\alpha})_{\alpha \in Q_1} \in \operatorname{Rep}(Q, \mathbf{d})$$
, the set

$$\mathscr{O}(A) = \{g \cdot A \mid g \in G(\mathbf{d})\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

is called $G(\mathbf{d})$ -orbit of A.

 \mathcal{A}_2 -case

• \mathcal{A}_2 : 1 $\xrightarrow{\alpha}$ 2 and $\mathbf{d} = (m, n)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

(

)
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and **d** = (m, n).

2 Rep
$$(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k)$$
 and $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

$$\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and $\mathbf{d} = (m, n)$.

2 Rep
$$(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k)$$
 and $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

 $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathscr{O}(A)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\mathcal{A}_2$$
: 1 $\xrightarrow{\alpha}$ 2 and $\mathbf{d} = (m, n)$.

2 Rep
$$(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k)$$
 and $G(\mathbf{d}) = GL(m, k) \times GL(n, k)$.

Proposition

Given $A \in M_{m \times n}(k)$, we obtain

 $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathcal{O}(A)$ $\Leftrightarrow B = g_1^{-1}Ag_2$, with $g_1 \in GL(m, k)$, $g_2 \in GL(n, k)$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$@ \operatorname{Rep}(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k) \text{ and } G(\mathbf{d}) = GL(m, k) \times GL(n, k).$$

Proposition

Given $A \in M_{m \times n}(k)$, we obtain $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathcal{O}(A)$ $\Leftrightarrow B = g_1^{-1}Ag_2$, with $g_1 \in GL(m, k)$, $g_2 \in GL(n, k)$;

 \Leftrightarrow *B* obtained from *A* by performing some elementary row operations and some elementary column operations;

$$@ \operatorname{Rep}(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k) \text{ and } G(\mathbf{d}) = GL(m, k) \times GL(n, k).$$

Proposition

Given $A \in M_{m \times n}(k)$, we obtain $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathcal{O}(A)$ $\Leftrightarrow B = g_1^{-1}Ag_2$, with $g_1 \in GL(m, k)$, $g_2 \in GL(n, k)$;

⇔ B obtained from A by performing some elementary row operations and some elementary column operations;
 ⇔ rank(B) = rank(A).

$$@ \operatorname{Rep}(\mathcal{A}_2, \mathbf{d}) = M_{m \times n}(k) \text{ and } G(\mathbf{d}) = GL(m, k) \times GL(n, k).$$

Proposition

Given $A \in M_{m \times n}(k)$, we obtain $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = \operatorname{rank}(A)\}.$

Proof. Given $B \in M_{m \times n}(k)$, by definition, $B \in \mathcal{O}(A)$ $\Leftrightarrow B = g_1^{-1}Ag_2$, with $g_1 \in GL(m, k)$, $g_2 \in GL(n, k)$; $\Leftrightarrow B$ obtained from A by performing some elementary row

operations and some elementary column operations;

 $\Leftrightarrow \operatorname{rank}(B) = \operatorname{rank}(A).$

Remark

$$\mathscr{O}(\mathbf{0}_{m\times n}) = \{\mathbf{0}_{m\times n}\}$$

Orbit closure

• Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.

・ロト・日本・モート モー うへぐ

- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.
- $G(\mathbf{d}) = GL(m,k) \times \cdots \times GL(n,k).$

Orbit closure

- Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.
- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.

$$G(\mathbf{d}) = GL(m,k) \times \cdots \times GL(n,k).$$

Definition

The orbit closure of a representation $A \in \operatorname{Rep}(Q, \mathbf{d})$ is $\mathcal{O}(A)$, the closure of the $G(\mathbf{d})$ -orbit of A in $\operatorname{Rep}(Q, \mathbf{d})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Orbit closure

- Let $Q = (Q_0, Q_1)$ be a quiver, where $Q_0 = \{1, ..., n\}$.
- 2 Let $\mathbf{d} = (d_1, \cdots, d_n)$ be a dimension vector.

$$G(\mathbf{d}) = GL(m,k) \times \cdots \times GL(n,k).$$

Definition

The orbit closure of a representation $A \in \operatorname{Rep}(Q, \mathbf{d})$ is $\mathcal{O}(A)$, the closure of the $G(\mathbf{d})$ -orbit of A in $\operatorname{Rep}(Q, \mathbf{d})$.

Objective

To describe the orbit closures in $\operatorname{Rep}(Q, \mathbf{d})$.

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

• Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

Proof. E = {*B* ∈ *M*_{*m*×*n*}(*k*) | rank(*B*) ≤ 1} is closed.
 Since *O*(*A*) = {*B* ∈ *M*_{*m*×*n*}(*k*) | rank(*B*) = 1}, we have

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

Proof. E = {*B* ∈ *M*_{*m*×*n*}(*k*) | rank(*B*) ≤ 1} is closed.
 Since *O*(*A*) = {*B* ∈ *M*_{*m*×*n*}(*k*) | rank(*B*) = 1}, we have *E* = *O*(*A*) ∪ {0_{*m*×*n*}} ⇒ *O*(*A*) ⊆ *E*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.

③ ∃ continuous map $f : \mathbb{A}^1 \to M_{m \times n}(k) : a \mapsto aE_{11}$,

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
- ∃ continuous map f : A¹ → M_{m×n}(k) : a → aE₁₁, where (1, 1)-entry of E₁₁ is 1, and all other entries are 0.

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- ② Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
- ∃ continuous map f : A¹ → M_{m×n}(k) : a → aE₁₁, where (1, 1)-entry of E₁₁ is 1, and all other entries are 0.

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- ② Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
- ∃ continuous map f : A¹ → M_{m×n}(k) : a → aE₁₁, where (1, 1)-entry of E₁₁ is 1, and all other entries are 0.

Since $\mathbb{A}^1 \setminus \{0\}$ is infinite and $f^{-1}(\overline{\mathcal{O}(A)})$ is closed,

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- ② Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
- ∃ continuous map f : A¹ → M_{m×n}(k) : a → aE₁₁, where (1, 1)-entry of E₁₁ is 1, and all other entries are 0.
- Since $\mathbb{A}^1 \setminus \{0\}$ is infinite and $f^{-1}(\overline{\mathcal{O}(A)})$ is closed,

$$\mathbb{A}^1 = \overline{\mathbb{A}^1 \setminus \{0\}} \subseteq f^{-1}(\overline{\mathscr{O}(A)}).$$

Lemma

If
$$A \in M_{m \times n}(k)$$
 with $\operatorname{rank}(A) = 1$, then
 $\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}.$

- Proof. $\mathscr{E} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq 1\}$ is closed.
- ② Since $\mathscr{O}(A) = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) = 1\}$, we have $\mathscr{E} = \mathscr{O}(A) \cup \{0_{m \times n}\} \Rightarrow \overline{\mathscr{O}(A)} \subseteq \mathscr{E}$.
- ∃ continuous map f : A¹ → M_{m×n}(k) : a → aE₁₁, where (1, 1)-entry of E₁₁ is 1, and all other entries are 0.
- Since $\mathbb{A}^1 \setminus \{0\}$ is infinite and $f^{-1}(\overline{\mathcal{O}(A)})$ is closed,

$$\mathbb{A}^1 = \overline{\mathbb{A}^1 \setminus \{0\}} \subseteq f^{-1}(\overline{\mathscr{O}(A)}).$$

• Thus, $f(0) = 0_{m \times n} \in \overline{\mathcal{O}(A)} \Rightarrow \mathscr{E} \subseteq \overline{\mathcal{O}(A)} \Rightarrow \overline{\mathcal{O}(A)} = \mathscr{E}$.

Theorem

• Given any
$$A \in M_{m \times n}(k)$$
, we obtain

$$\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq \operatorname{rank}(A)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

) Given any
$$A \in M_{m \times n}(k)$$
, we obtain

$$\overline{\mathscr{O}(A)} = \{B \in M_{m \times n}(k) \mid \operatorname{rank}(B) \leq \operatorname{rank}(A)\}.$$

2 The orbits closures in
$$M_{m \times n}(k)$$
 are as follows:

$$\mathscr{O}_{m\times n}(r) = \{A \in M_{m\times n}(k) \mid \operatorname{rank}(A) \leq r\},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $r = 0, 1, ..., \min\{m, n\}$.