Introduction Finitely presented or co-presented representations AR-sequences Shapes of AR-components Number of regular (

Representation theory of an infinite quiver

Raymundo Bautista, Shiping Liu*, Charles Paquette

UNAM in Morelia, Université de Sherbrooke

October 2 - 7, 2011

Raymundo Bautista, Shiping Liu*, Charles Paquette

イロト イロト イヨト イヨト 二日

Motivation

• Representations of infinite quivers appeared

Motivation

- Representations of infinite quivers appeared
- in study of D^b(mod A), where A finite dimensional algebra with rad²(A) = 0 [BL]

・ロト ・四ト ・ヨト ・ヨト - ヨ

Motivation

- Representations of infinite quivers appeared
- in study of D^b(mod A), where A finite dimensional algebra with rad²(A) = 0 [BL]
- in classification of noetherian hereditary abelian categories with Serre functor [RVDB].

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Motivation

- Representations of infinite quivers appeared
- in study of D^b(mod A), where A finite dimensional algebra with rad²(A) = 0 [BL]
- in classification of noetherian hereditary abelian categories with Serre functor [RVDB].
- in construction of cluster categories with infinite cluster structure [HJ].

Main objective of this talk

1. To describe the shapes of the Auslander-Reiten components of the category of finitely presented representations.

Main objective of this talk

- 1. To describe the shapes of the Auslander-Reiten components of the category of finitely presented representations.
- 2. To give some necessary and sufficient conditions for this category to have AR-sequences and to admit Serre functor.

k: arbitrary field.

Raymundo Bautista, Shiping Liu*, Charles Paquette

<ロ> (四) (四) (三) (三) (三)

- k: arbitrary field.
- Q: connected quiver, which is

Raymundo Bautista, Shiping Liu*, Charles Paquette

イロト イポト イヨト イヨト 二日

- k: arbitrary field.
- Q: connected quiver, which is
 - locally finite, and

- k : arbitrary field.
- Q: connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

イロト イポト イヨト イヨト 二日

- k : arbitrary field.
- Q: connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

• In particular, Q has no oriented cycle.

- k : arbitrary field.
- Q : connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

• In particular, Q has no oriented cycle.

Definition

An infinite path in Q is called

- k : arbitrary field.
- Q : connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• In particular, Q has no oriented cycle.

Definition

An infinite path in Q is called

• left infinite if it is $\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ$,

- k : arbitrary field.
- Q : connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

• In particular, Q has no oriented cycle.

Definition

An infinite path in Q is called

- left infinite if it is $\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ$,
- right infinite if it is $\circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots$,

- k : arbitrary field.
- Q: connected quiver, which is
 - locally finite, and
 - interval-finite (i.e. $\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).
 - In particular, Q has no oriented cycle.

Definition

An infinite path in Q is called

- left infinite if it is $\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ$,
- right infinite if it is $\circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots$,
- double infinite if it is $\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

rep(Q): category of locally finite dimensional k-representations.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

 $\operatorname{rep}(Q)$: category of locally finite dimensional *k*-representations. This is hereditary abelian but not necessarily Hom-finite.

・ロト ・四ト ・ヨト ・ヨト - ヨ

 $\operatorname{rep}(Q)$: category of locally finite dimensional k-representations. This is hereditary abelian but not necessarily Hom-finite. For each $x \in Q_0$,

・ロト ・四ト ・ヨト ・ヨト - ヨ

 $\operatorname{rep}(Q)$: category of locally finite dimensional *k*-representations. This is hereditary abelian but not necessarily Hom-finite. For each $x \in Q_0$,

・ロト ・四ト ・ヨト ・ヨト - ヨ

• P_x : indecomposable projective representation at x,

 $\operatorname{rep}(Q)$: category of locally finite dimensional k-representations. This is hereditary abelian but not necessarily Hom-finite.

・ロト ・四ト ・ヨト ・ヨト - ヨ

For each $x \in Q_0$,

- P_x : indecomposable projective representation at x,
- I_x : indecomposable injective representation at x.

 $\operatorname{rep}(Q)$: category of locally finite dimensional k-representations. This is hereditary abelian but not necessarily Hom-finite.

For each $x \in Q_0$,

- P_x : indecomposable projective representation at x,
- I_x : indecomposable injective representation at x.

 $\operatorname{proj}(Q)$: additive subcategory of $\operatorname{rep}(Q)$ of the $P_x, x \in Q_0$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

 $\operatorname{rep}(Q)$: category of locally finite dimensional *k*-representations. This is hereditary abelian but not necessarily Hom-finite.

For each $x \in Q_0$,

- P_x : indecomposable projective representation at x,
- I_x : indecomposable injective representation at x.

 $\operatorname{proj}(Q)$: additive subcategory of $\operatorname{rep}(Q)$ of the $P_x, x \in Q_0$. $\operatorname{inj}(Q)$: additive subcategory of $\operatorname{rep}(Q)$ of the $I_x, x \in Q_0$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\operatorname{rep}(Q)$: category of locally finite dimensional k-representations. This is hereditary abelian but not necessarily Hom-finite.

For each $x \in Q_0$,

- P_x : indecomposable projective representation at x,
- I_x : indecomposable injective representation at x.

 $\operatorname{proj}(Q)$: additive subcategory of $\operatorname{rep}(Q)$ of the $P_x, x \in Q_0$. $\operatorname{inj}(Q)$: additive subcategory of $\operatorname{rep}(Q)$ of the $I_x, x \in Q_0$.

Proposition

There is a Nakayama equivalence

$$u : \operatorname{proj}(Q) \rightarrow \operatorname{inj}(Q) : P_x \mapsto I_x.$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

<ロ> (四) (四) (三) (三) (三)

Definition A representation $M \in \operatorname{rep}(Q)$ is called

Raymundo Bautista, Shiping Liu*, Charles Paquette

Definition

Definition

A representation $M \in \operatorname{rep}(Q)$ is called

• finitely presented if it has projective resolution

$$0 \to P_1 \to P_0 \to M \to 0,$$

・ロト ・四ト ・ヨト ・ヨト - ヨ

where $P_0, P_1 \in \operatorname{proj}(Q)$.

Definition

Definition

A representation $M \in \operatorname{rep}(Q)$ is called

• finitely presented if it has projective resolution

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

where $P_0, P_1 \in \operatorname{proj}(Q)$.

• finitely co-presented if it has injective co-resolution

$$0 \rightarrow M \rightarrow I_0 \rightarrow I_1 \rightarrow 0,$$

where $I_0, I_1 \in inj(Q)$.

 $\operatorname{rep}^+(Q)$: category of finitely presented representations.

・ロト ・回ト ・ヨト ・ヨト - ヨ

 $\operatorname{rep}^+(Q)$: category of finitely presented representations. $\operatorname{rep}^-(Q)$: category of finitely co-presented representations.

 $\operatorname{rep}^+(Q)$: category of finitely presented representations. $\operatorname{rep}^-(Q)$: category of finitely co-presented representations. $\operatorname{rep}^b(Q)$: finite dimensional representations.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\operatorname{rep}^+(Q)$: category of finitely presented representations. $\operatorname{rep}^-(Q)$: category of finitely co-presented representations. $\operatorname{rep}^b(Q)$: finite dimensional representations.

Proposition

• rep⁺(Q) and rep⁻(Q) are Ext-finite, hereditary and abelian, which are extension-closed in rep(Q).

 $\operatorname{rep}^+(Q)$: category of finitely presented representations. $\operatorname{rep}^-(Q)$: category of finitely co-presented representations. $\operatorname{rep}^b(Q)$: finite dimensional representations.

Proposition

• rep⁺(Q) and rep⁻(Q) are Ext-finite, hereditary and abelian, which are extension-closed in rep(Q).

• $\operatorname{rep}^+(Q) \cap \operatorname{rep}^-(Q) = \operatorname{rep}^b(Q).$

Projectives and injectives in rep⁺(Q)

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Projectives and injectives in rep⁺(Q)

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Proposition

• $M \in \operatorname{rep}^+(Q)$ projective $\Leftrightarrow M \in \operatorname{proj}(Q)$.

Projectives and injectives in $rep^+(Q)$

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Proposition

- *M* ∈ rep⁺(*Q*) projective ⇔ *M* ∈ proj(*Q*). *M* ∈ rep⁺(*Q*) injective and finite dimensional
- M ∈ rep⁺(Q) injective and finite dimensional
 ⇔ M ∈ add(I_x | x ∈ Q⁺).

Projectives and injectives in $rep^+(Q)$

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Proposition

- *M* ∈ rep⁺(*Q*) projective ⇔ *M* ∈ proj(*Q*). *M* ∈ rep⁺(*Q*) injective and finite dimensional
- M ∈ rep⁺(Q) injective and finite dimensional
 ⇔ M ∈ add(I_x | x ∈ Q⁺).

Projectives and injectives in rep⁺(Q)

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

Proposition

- *M* ∈ rep⁺(*Q*) projective ⇔ *M* ∈ proj(*Q*). *M* ∈ rep⁺(*Q*) injective and finite dimensional
- $M \in \operatorname{rep}^+(Q)$ injective and finite dimensional $\Leftrightarrow M \in \operatorname{add}(I_x \mid x \in Q^+).$

Example

• $Q: \quad 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n \longrightarrow \cdots$.

Projectives and injectives in $rep^+(Q)$

 Q^+ : full subquiver of Q of vertices x having only finitely many predecessors, that is, I_x finite dimensional.

Proposition

- *M* ∈ rep⁺(*Q*) projective ⇔ *M* ∈ proj(*Q*). *M* ∈ rep⁺(*Q*) injective and finite dimensional
- $M \in \operatorname{rep}^+(Q)$ injective and finite dimensiona $\Leftrightarrow M \in \operatorname{add}(I_x \mid x \in Q^+).$

Example

- $Q: 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow n \longrightarrow \cdots$.
- P_1 is injective in rep⁺(Q) but $P_1 \not\cong I_x$, for every $x \in Q_0$.

AR-translation in rep(Q)

イロト (部) (日) (日) (日) (日)

Definition

1. If $M \in \operatorname{rep}^+(Q)$ with minimal projective resolution $0 \longrightarrow P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$, define $\operatorname{DTr} M \in \operatorname{rep}^-(Q)$ by short exact sequence $0 \longrightarrow \operatorname{DTr} M \longrightarrow \nu(P_1) \xrightarrow{\nu(f)} \nu(P_0) \longrightarrow 0$.

AR-translation in rep(Q)

Definition

If M ∈ rep⁺(Q) with minimal projective resolution
 0 → P₁ → P₀ → M → 0,
 define DTrM ∈ rep⁻(Q) by short exact sequence
 0 → DTrM → ν(P₁) ^{ν(f)}→ ν(P₀) → 0.

 If M ∈ rep⁻(Q) with minimal injective co-resolution
 0 → M → I₀ ^g→ I₁ → 0,
 define TrDM ∈ rep⁺(Q) by short exact sequence

$$0 \longrightarrow \nu^{-}(I_0) \stackrel{\nu^{-}(g)}{\longrightarrow} \nu^{-}(I_1) \longrightarrow \operatorname{TrD} M \longrightarrow 0$$

AR-sequences in $\operatorname{rep}^+(Q)$

<ロ> (四) (四) (三) (三) (三)

Theorem

AR-sequences in $\operatorname{rep}^+(Q)$

<ロ> (四) (四) (三) (三) (三)

Theorem

1. Let
$$X \in \operatorname{rep}^+(Q)$$
 indecomposable.

AR-sequences in $rep^+(Q)$

Theorem

- 1. Let $X \in \operatorname{rep}^+(Q)$ indecomposable.
- 2. If X non-projective and DTrX finite dimensional, then $rep^+(Q)$ has AR-sequence

$$0 \longrightarrow \operatorname{DTr} X \longrightarrow E \longrightarrow X \longrightarrow 0.$$

AR-sequences in $rep^+(Q)$

Theorem

- 1. Let $X \in \operatorname{rep}^+(Q)$ indecomposable.
- If X non-projective and DTrX finite dimensional, then rep⁺(Q) has AR-sequence

$$0 \longrightarrow \operatorname{DTr} X \longrightarrow E \longrightarrow X \longrightarrow 0.$$

3. If X non-injective and finite dimensional, then rep⁺(Q) has AR-sequence

$$0 \longrightarrow X \longrightarrow E \longrightarrow \operatorname{TrD} X \longrightarrow 0.$$

(ロ) (同) (E) (E) (E)

AR-sequences in $rep^+(Q)$

Theorem

- 1. Let $X \in \operatorname{rep}^+(Q)$ indecomposable.
- If X non-projective and DTrX finite dimensional, then rep⁺(Q) has AR-sequence

$$0 \longrightarrow \operatorname{DTr} X \longrightarrow E \longrightarrow X \longrightarrow 0.$$

3. If X non-injective and finite dimensional, then rep⁺(Q) has AR-sequence

$$0 \longrightarrow X \longrightarrow E \longrightarrow \operatorname{TrD} X \longrightarrow 0.$$

(ロ) (同) (E) (E) (E)

4. Every AR-sequence in $rep^+(Q)$ is as stated above, and in particular, it has finite dimensional starting term.

(ロ) (四) (E) (E) (E)

AR-quiver

• *A* : Hom-finite Krull-Schmidt additive *k*-category.

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver Γ_{A} of A is a valued translation quiver.

イロン イロン イヨン イヨン 三日

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver Γ_{A} of A is a valued translation quiver.

・ロト ・四ト ・ヨト ・ヨト - ヨ

1. vertices: the non-isomorphic indecomposables.

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver Γ_{A} of A is a valued translation quiver.
 - 1. vertices: the non-isomorphic indecomposables.
 - 2. arrows: single valued arrows $X \to Y$ with valuation $(d_{XY}, d'_{X,Y})$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver Γ_{A} of A is a valued translation quiver.
 - 1. vertices: the non-isomorphic indecomposables.
 - 2. arrows: single valued arrows $X \to Y$ with valuation $(d_{XY}, d'_{X,Y})$.
 - 3. translation: $\tau Z = X$ if \exists AR-sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$.

イロト (部) (日) (日) (日) (日)

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver Γ_{A} of A is a valued translation quiver.
 - 1. vertices: the non-isomorphic indecomposables.
 - 2. arrows: single valued arrows $X \to Y$ with valuation $(d_{XY}, d'_{X,Y})$.
 - 3. translation: $\tau Z = X$ if \exists AR-sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$.

イロト (部) (日) (日) (日) (日)

• A valuation (d_{XY}, d'_{XY}) is symmetric if $d_{XY} = d'_{XY}$.

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver $\Gamma_{\!_{\mathcal{A}}}$ of \mathcal{A} is a valued translation quiver.
 - 1. vertices: the non-isomorphic indecomposables.
 - 2. arrows: single valued arrows $X \to Y$ with valuation $(d_{XY}, d'_{X,Y})$.

3. translation: $\tau Z = X$ if \exists AR-sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$.

イロト (部) (日) (日) (日) (日)

- A valuation $(d_{_{XY}}, d'_{_{XY}})$ is symmetric if $d_{_{XY}} = d'_{_{XY}}$.
- In this case, valued arrow X → Y is replaced by d_{X,Y} unvalued arrows from X to Y.

- *A* : Hom-finite Krull-Schmidt additive *k*-category.
- The AR-quiver $\Gamma_{\!_{\mathcal{A}}}$ of \mathcal{A} is a valued translation quiver.
 - 1. vertices: the non-isomorphic indecomposables.
 - 2. arrows: single valued arrows $X \to Y$ with valuation $(d_{XY}, d'_{X,Y})$.

3. translation: $\tau Z = X$ if \exists AR-sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$.

- A valuation $(d_{_{XY}}, d'_{_{XY}})$ is symmetric if $d_{_{XY}} = d'_{_{XY}}$.
- In this case, valued arrow X → Y is replaced by d_{X,Y} unvalued arrows from X to Y.
- In this way, Γ_A is a partially valued translation quiver in which all possible valuations are non-symmetric.

(ロ) (四) (E) (E) (E)

(Γ, τ) : connected translation quiver.

イロト イロト イヨト イヨト 二日

 (Γ, τ) : connected translation quiver.

Definition A connected subquiver Δ of Γ is *section* if

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

(1) Δ contains no oriented cycle,

(ロ) (同) (E) (E) (E)

$$(\Gamma, \tau)$$
 : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- (1) Δ contains no oriented cycle,
- (2) Δ meets each τ -orbit in Γ exactly once,

(ロ) (同) (E) (E) (E)

$$(\Gamma, au)$$
 : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- (1) Δ contains no oriented cycle,
- (2) Δ meets each τ -orbit in Γ exactly once,
- (3) Δ is convex in Γ .

$$(\Gamma, \tau)$$
 : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- (1) Δ contains no oriented cycle,
- (2) Δ meets each τ -orbit in Γ exactly once,
- (3) Δ is convex in Γ .

Proposition

If Δ is section of Γ , then there is embedding

$$\Gamma \to \mathbb{Z}\Delta : \tau^n x \mapsto (-n, x).$$

イロン イロン イヨン イヨン 三日

Definition A section Δ of Γ is called

Definition

A section Δ of Γ is called

(1) *left-most* if every $x \in \Gamma_0$ is $\tau^{-n}x$ with $n \ge 0$ and $x \in \Delta_0$;

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

A section Δ of Γ is called

(1) *left-most* if every $x \in \Gamma_0$ is $\tau^{-n}x$ with $n \ge 0$ and $x \in \Delta_0$; (2) *right-most* if every $x \in \Gamma_0$ is $\tau^n x$ with $n \ge 0$ and $x \in \Delta_0$.

Definition

A section Δ of Γ is called

(1) *left-most* if every $x \in \Gamma_0$ is $\tau^{-n}x$ with $n \ge 0$ and $x \in \Delta_0$; (2) *right-most* if every $x \in \Gamma_0$ is $\tau^n x$ with $n \ge 0$ and $x \in \Delta_0$.

Proposition

(1) If Δ is left-most section of Γ , then Γ embeds in $\mathbb{N}\Delta$.

(ロ) (同) (E) (E) (E)

Definition

A section Δ of Γ is called

```
(1) left-most if every x \in \Gamma_0 is \tau^{-n}x with n \ge 0 and x \in \Delta_0;
(2) right-most if every x \in \Gamma_0 is \tau^n x with n \ge 0 and x \in \Delta_0.
```

Proposition

If Δ is left-most section of Γ, then Γ embeds in NΔ.
 If Δ is right-most section of Γ, then Γ embeds in N⁻Δ.

(ロ) (同) (E) (E) (E)

AR-quiver of $\operatorname{rep}^+(Q)$

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

AR-quiver of $\operatorname{rep}^+(Q)$

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

(1) τX is defined $\Leftrightarrow X$ non-projective and DTr X finite dimensional. In this case, $\tau X = DTr X$.

AR-quiver of $\operatorname{rep}^+(Q)$

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

- Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then
 - (1) τX is defined $\Leftrightarrow X$ non-projective and DTr X finite dimensional. In this case, $\tau X = DTr X$.

(2) $\tau^{-}X$ is defined $\Leftrightarrow X$ non-injective and finite dimensional. In this case, $\tau^{-}X = \text{TrD}X$.

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

- Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then
 - (1) τX is defined $\Leftrightarrow X$ non-projective and DTr X finite dimensional. In this case, $\tau X = DTr X$.
 - (2) $\tau^{-}X$ is defined $\Leftrightarrow X$ non-injective and finite dimensional. In this case, $\tau^{-}X = \text{TrD}X$.

Call $X \in \Gamma_{\operatorname{rep}^+(Q)}$ pseudo-projective if $\operatorname{DTr} X$ infinite dimensional.

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

- Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then
 - (1) τX is defined $\Leftrightarrow X$ non-projective and DTr X finite dimensional. In this case, $\tau X = DTr X$.
 - (2) $\tau^{-}X$ is defined $\Leftrightarrow X$ non-injective and finite dimensional. In this case, $\tau^{-}X = \text{TrD}X$.

Call $X \in \Gamma_{\operatorname{rep}^+(Q)}$ pseudo-projective if $\operatorname{DTr} X$ infinite dimensional. Thus, τX not defined $\Leftrightarrow X$ projective or pseudo-projective.

 $\operatorname{rep}^+(Q)$ Hom-finite abelian \Rightarrow AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is defined.

Proposition

- Let au be translation of $\Gamma_{\operatorname{rep}^+(Q)}$. If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then
 - (1) τX is defined $\Leftrightarrow X$ non-projective and DTr X finite dimensional. In this case, $\tau X = DTr X$.
 - (2) $\tau^{-}X$ is defined $\Leftrightarrow X$ non-injective and finite dimensional. In this case, $\tau^{-}X = \text{TrD}X$.

Call $X \in \Gamma_{\operatorname{rep}^+(Q)}$ pseudo-projective if $\operatorname{DTr} X$ infinite dimensional.

Thus, τX not defined $\Leftrightarrow X$ projective or pseudo-projective.

 $\tau^- X$ not defined $\Leftrightarrow X$ injective or infinite dimensional.

イロト (部) (日) (日) (日) (日)

Components with infinite dimensional or pseudo-projective representations

Proposition Let Γ be component of $\Gamma_{rep^+(Q)}$.

Components with infinite dimensional or pseudo-projective representations

Proposition

Let Γ be component of $\Gamma_{\operatorname{rep}^+(Q)}$.

 If Γ has infinite dimensional representations, then they form a right-most section of Γ.

Components with infinite dimensional or pseudo-projective representations

Proposition

Let Γ be component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- If Γ has infinite dimensional representations, then they form a right-most section of Γ.
- If Γ has pseudo-projective representations, then they form a left-most section of Γ.

Proposition Let Q infinite. For $X \in \Gamma_{rep^+(Q)}$, exactly one of following occurs.

(日) (回) (E) (E) (E)

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n} P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective;

(ロ) (同) (E) (E) (E)

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n}P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective;

(ロ) (同) (E) (E) (E)

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n}P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective; (3) X is neither preprojective nor preinjective, called regular.

・ロン ・回 と ・ ヨ と ・ ヨ と

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n} P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective; (3) X is neither preprojective nor preinjective, called regular.

(日) (部) (注) (注) (言)

Proposition

Let Γ be component of $\Gamma_{\operatorname{rep}^+(Q)}$.

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n} P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective; (3) X is neither preprojective nor preinjective, called regular.

Proposition

Let Γ be component of $\Gamma_{\operatorname{rep}^+(Q)}$. If one representation in Γ is preprojective (preinjective, regular),

(日) (部) (注) (注) (言)

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n} P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective; (3) X is neither preprojective nor preinjective, called regular.

Proposition

Let Γ be component of $\Gamma_{\mathrm{rep}^+(Q)}$.

If one representation in Γ is preprojective (preinjective, regular), then all representations in Γ are preprojective (preinjective, regular).

(日) (部) (注) (注) (言)

Let Q infinite. For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of following occurs. (1) $X = \tau^{-n} P_x$ with $x \in Q_0$ and $n \ge 0$, called preprojective; (2) $X = \tau^n I_x$ with $x \in Q^+$ and $n \ge 0$, called preinjective; (3) X is neither preprojective nor preinjective, called regular.

Proposition

Let Γ be component of $\Gamma_{\mathrm{rep}^+(Q)}$.

If one representation in Γ is preprojective (preinjective, regular), then all representations in Γ are preprojective (preinjective, regular). In this case, Γ is called preprojective (preinjective, regular).

(ロ) (同) (E) (E) (E)

(ロ) (四) (三) (三) (三)

Theorem

1. $\Gamma_{\operatorname{rep}^+(Q)}$ has a unique preprojective component \mathcal{P}_Q .

Theorem

- 1. $\Gamma_{\operatorname{rep}^+(Q)}$ has a unique preprojective component \mathcal{P}_Q .
- 2. \mathcal{P}_Q has a left-most section formed by the P_x with $x \in Q_0$, which is isomorphic to Q^{op} .

(ロ) (同) (E) (E) (E)

Theorem

- 1. $\Gamma_{\operatorname{rep}^+(Q)}$ has a unique preprojective component \mathcal{P}_Q .
- 2. \mathcal{P}_Q has a left-most section formed by the P_x with $x \in Q_0$, which is isomorphic to Q^{op} .

(ロ) (同) (E) (E) (E)

3. \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.

Theorem

- 1. $\Gamma_{\operatorname{rep}^+(Q)}$ has a unique preprojective component \mathcal{P}_Q .
- 2. \mathcal{P}_Q has a left-most section formed by the P_x with $x \in Q_0$, which is isomorphic to Q^{op} .

- 3. \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.
- 4. If Q has no right infinite path, then $\mathcal{P}_Q \cong \mathbb{N}Q^{\mathrm{op}}$.

Theorem

- 1. $\Gamma_{\operatorname{rep}^+(Q)}$ has a unique preprojective component \mathcal{P}_Q .
- 2. \mathcal{P}_Q has a left-most section formed by the P_x with $x \in Q_0$, which is isomorphic to Q^{op} .
- 3. \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.
- 4. If Q has no right infinite path, then $\mathcal{P}_Q \cong \mathbb{N}Q^{\mathrm{op}}$.
- 5. Otherwise, \mathcal{P}_Q has right-most section formed by its infinite dimensional representations, and consequently, the τ -orbits in \mathcal{P}_Q are all finite.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

 \mathcal{P}_Q can be constructed from $\mathbb{N}Q^{\operatorname{op}}$ as follows.

・ロト ・四ト ・ヨト ・ヨト - ヨ

 \mathcal{P}_Q can be constructed from $\mathbb{N}Q^{\mathrm{op}}$ as follows.

(1) Define $f(0, x) = \dim_k P_x \in \mathbb{N} \cup \{\infty\}$, for $x \in Q_0$.

 \mathcal{P}_Q can be constructed from $\mathbb{N}Q^{\mathrm{op}}$ as follows.

- (1) Define $f(0, x) = \dim_k P_x \in \mathbb{N} \cup \{\infty\}$, for $x \in Q_0$.
- (2) Extend f to additive function

$$f:\mathbb{N}Q^{\mathrm{op}}\to\mathbb{N}\cup\{\infty\}$$

イロト (部) (日) (日) (日) (日)

in unique way so that if $f(u) = \infty$ and $\exists u \rightsquigarrow v$, then $f(v) = \infty$.

 \mathcal{P}_Q can be constructed from $\mathbb{N}Q^{\mathrm{op}}$ as follows.

- (1) Define $f(0, x) = \dim_k P_x \in \mathbb{N} \cup \{\infty\}$, for $x \in Q_0$.
- (2) Extend f to additive function

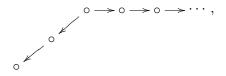
$$f:\mathbb{N}Q^{\mathrm{op}}\to\mathbb{N}\cup\{\infty\}$$

in unique way so that if $f(u) = \infty$ and $\exists u \rightsquigarrow v$, then $f(v) = \infty$.

(3) $\mathcal{P}_Q \cong$ subquiver of $\mathbb{N}Q^{\mathrm{op}}$ of the (n, x) with $f(n, x) < \infty$ or $f(n, x) = \infty$ with n = 0 or $f(n - 1, x) < \infty$.

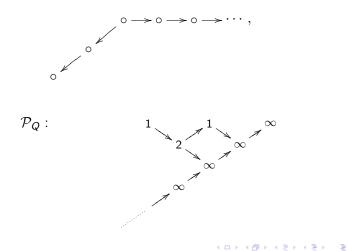
An example

Let Q be as follows:



An example

Let Q be as follows:



For $x \in Q^+$, let Q_x^+ connected component of Q^+ containing x.

イロン イロン イヨン イヨン 三日

For $x \in Q^+$, let Q_x^+ connected component of Q^+ containing x.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Proposition

Let \mathcal{I} be preinjective component of $\Gamma_{\operatorname{rep}^+(Q)}$ with $I_x \in \mathcal{I}$.

For $x \in Q^+$, let Q_x^+ connected component of Q^+ containing x.

Proposition

Let \mathcal{I} be preinjective component of $\Gamma_{\operatorname{rep}^+(Q)}$ with $I_x \in \mathcal{I}$.

(1) \mathcal{I} has right-most section formed by the l_y with $y \in Q_x^+$, which is isomorphic to $(Q_x^+)^{\mathrm{op}}$.

For $x \in Q^+$, let Q_x^+ connected component of Q^+ containing x.

Proposition

- Let \mathcal{I} be preinjective component of $\Gamma_{\operatorname{rep}^+(Q)}$ with $I_x \in \mathcal{I}$.
 - (1) \mathcal{I} has right-most section formed by the l_y with $y \in Q_x^+$, which is isomorphic to $(Q_x^+)^{\text{op}}$.

(ロ) (同) (E) (E) (E)

(2) \mathcal{I} embeds in $\mathbb{N}^{-}(Q_{x}^{+})^{\mathrm{op}}$.

For $x \in Q^+$, let Q_x^+ connected component of Q^+ containing x.

Proposition

- Let \mathcal{I} be preinjective component of $\Gamma_{\operatorname{rep}^+(Q)}$ with $I_x \in \mathcal{I}$.
 - (1) \mathcal{I} has right-most section formed by the l_y with $y \in Q_x^+$, which is isomorphic to $(Q_x^+)^{\text{op}}$.

- (2) \mathcal{I} embeds in $\mathbb{N}^{-}(Q_{x}^{+})^{\mathrm{op}}$.
- (3) \mathcal{I} contains only finite dimensional representations.

<ロ> (四) (四) (三) (三) (三)

Theorem Let Q be infinite.

(ロ) (同) (E) (E) (E)

Theorem Let Q be infinite.

1. The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ correspond bijectively to the connected components of Q^+ .

< □ > < @ > < 注 > < 注 > ... 注

Theorem Let Q be infinite.

- 1. The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ correspond bijectively to the connected components of Q^+ .
- If Q no left infinite path, then Γ_{rep⁺(Q)} has unique preinjective component of shape N⁻Q^{op};

Theorem

Let Q be infinite.

- 1. The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ correspond bijectively to the connected components of Q^+ .
- If Q no left infinite path, then Γ_{rep⁺(Q)} has unique preinjective component of shape N⁻Q^{op};
- 3. Otherwise, every preinjective component of $\Gamma_{\operatorname{rep}^+(Q)}$ has left-most section formed by its pseudo-projective representations, and consequently, its τ -orbits are all finite.

(ロ) (同) (E) (E) (E)

1. The preinjective components can be constructed from $\mathbb{N}^-Q^{\mathrm{op}}$ as follows.

・ロト ・四ト ・ヨト ・ヨト - ヨ

1. The preinjective components can be constructed from $\mathbb{N}^-Q^{\mathrm{op}}$ as follows.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

2. Define $f(0, x) = \dim_k I_x \in \mathbb{N} \cup \{\infty\}$ for $x \in Q_0$.

- 1. The preinjective components can be constructed from $\mathbb{N}^-Q^{\mathrm{op}}$ as follows.
- 2. Define $f(0, x) = \dim_k I_x \in \mathbb{N} \cup \{\infty\}$ for $x \in Q_0$.
- 3. Extend f to an additive function

$$f: \mathbb{N}^{-}Q^{\mathrm{op}} \to \mathbb{N} \cup \{\infty\}$$

in unique way so that if $f(u) = \infty$ and $\exists v \rightsquigarrow u$, then $f(v) = \infty$.

- 1. The preinjective components can be constructed from $\mathbb{N}^- Q^{\mathrm{op}}$ as follows.
- 2. Define $f(0, x) = \dim_k I_x \in \mathbb{N} \cup \{\infty\}$ for $x \in Q_0$.
- 3. Extend f to an additive function

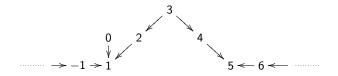
$$f: \mathbb{N}^{-}Q^{\mathrm{op}} \to \mathbb{N} \cup \{\infty\}$$

in unique way so that if $f(u) = \infty$ and $\exists v \rightsquigarrow u$, then $f(v) = \infty$.

The preinjective components correspond bijectively to the connected components of the subquiver of N⁻Q^{op} of the (n,x) with f(n,x) < ∞.

Example

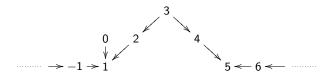
Let Q be as follows:



<ロ> (四) (四) (三) (三) (三)

Example

Let Q be as follows:



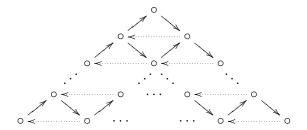
 $\Gamma_{\mathrm{rep}^+(Q)}$ has two preinjective components :

イロト イポト イヨト イヨト 二日

Wings

Definition

A *finite wing* is a trivially valued translation quiver as follows :



・ロン ・回 と ・ヨン ・ヨン

3

イロト イポト イヨト イヨト 二日

Theorem Let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Theorem

Let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

1. If Γ has no infinite dimensional or pseudo-projective representation, then $\Gamma \cong \mathbb{Z}\mathbb{A}_{\infty}$.

Theorem

Let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- 1. If Γ has no infinite dimensional or pseudo-projective representation, then $\Gamma \cong \mathbb{Z}\mathbb{A}_{\infty}$.
- 2. If Γ has infinite dimensional but no pseudo-projective representations, then the infinite dimensional representations form a left infinite path. In particular, $\Gamma \cong \mathbb{N}^-\mathbb{A}_{\infty}$.

(ロ) (同) (E) (E) (E)

Theorem

Let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- 1. If Γ has no infinite dimensional or pseudo-projective representation, then $\Gamma \cong \mathbb{Z}\mathbb{A}_{\infty}$.
- 2. If Γ has infinite dimensional but no pseudo-projective representations, then the infinite dimensional representations form a left infinite path. In particular, $\Gamma \cong \mathbb{N}^-\mathbb{A}_{\infty}$.
- 3. If Γ has pseudo-projective but no infinite dimensional representations, then the pseudo-projective representations form a right infinite path. In particular, $\Gamma \cong \mathbb{NA}_{\infty}$.

(ロ) (同) (E) (E) (E)

Theorem

Let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- 1. If Γ has no infinite dimensional or pseudo-projective representation, then $\Gamma \cong \mathbb{Z}\mathbb{A}_{\infty}$.
- 2. If Γ has infinite dimensional but no pseudo-projective representations, then the infinite dimensional representations form a left infinite path. In particular, $\Gamma \cong \mathbb{N}^-\mathbb{A}_{\infty}$.
- 3. If Γ has pseudo-projective but no infinite dimensional representations, then the pseudo-projective representations form a right infinite path. In particular, $\Gamma \cong \mathbb{NA}_{\infty}$.
- 4. If Γ has both pseudo-projective representations and infinite dimensional representations, then Γ is a finite wing.

Corollary The AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ of $\operatorname{rep}^+(Q)$ is symmetrically valued.

イロト イロト イヨト イヨト 二日

・ロト ・四ト ・ヨト ・ヨト - ヨ

Definition The *infinite Dynkin diagrams* are as follows :

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition The *infinite Dynkin diagrams* are as follows :

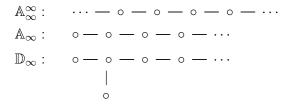
 $\mathbb{A}_{\infty}^{\infty}: \quad \cdots = \circ = \circ = \circ = \circ = \cdots$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Definition The *infinite Dynkin diagrams* are as follows :

・ロト ・四ト ・ヨト ・ヨト - ヨ

Definition The *infinite Dynkin diagrams* are as follows :



The non-Dynkin case

Theorem If Q is not of finite or infinite Dynkin type, then $\Gamma_{rep^+(Q)}$ has infinitely many regular components.

Theorem

If Q is an infinite Dynkin quiver, then $\Gamma_{\operatorname{rep}^+(Q)}$ has at most 4 components, of which at most 1 is preinjective and at most 2 are regular.

Theorem

If Q is an infinite Dynkin quiver, then $\Gamma_{\operatorname{rep}^+(Q)}$ has at most 4 components, of which at most 1 is preinjective and at most 2 are regular.

(ロ) (同) (E) (E) (E)

1. Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.

Theorem

If Q is an infinite Dynkin quiver, then $\Gamma_{\operatorname{rep}^+(Q)}$ has at most 4 components, of which at most 1 is preinjective and at most 2 are regular.

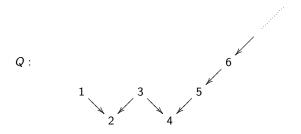
(ロ) (同) (E) (E) (E)

- 1. Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.
- 2. *Q* of type $\mathbb{D}_{\infty} \Rightarrow$ exactly one regular component.

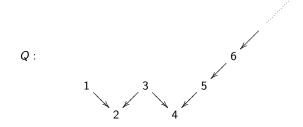
Theorem

If Q is an infinite Dynkin quiver, then $\Gamma_{\operatorname{rep}^+(Q)}$ has at most 4 components, of which at most 1 is preinjective and at most 2 are regular.

- 1. Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.
- 2. *Q* of type $\mathbb{D}_{\infty} \Rightarrow$ exactly one regular component.
- 3. *Q* of type $\mathbb{A}_{\infty}^{\infty} \Rightarrow$ at most 2 regular components.



(ロ) (四) (E) (E) (E) (E)



Then $\Gamma_{\operatorname{rep}^+(Q)}$ consists of two components :

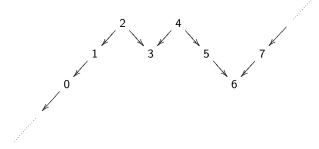
イロト イロト イヨト イヨト 二日

 $\mathcal{P}_Q \cong \mathbb{N}\mathbb{A}_\infty$ and

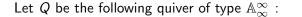
・ロ・・ (日・・ (日・・ (日・)

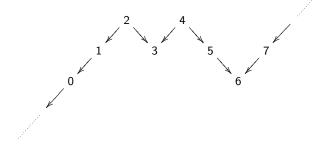
3

Let Q be the following quiver of type $\mathbb{A}_{\infty}^{\infty}$:



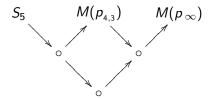
イロン イロン イヨン イヨン 三日





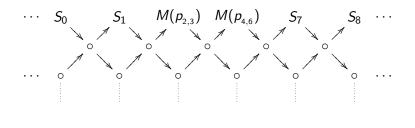
Let $p_{i,j}: i \rightsquigarrow j$, and $p_{\infty}: 2 \rightsquigarrow -\infty$.

Then $\Gamma_{rep^+(Q)}$ has a finite regular component of wing type:



イロン イロン イヨン イヨン 三日

and a regular component of shape $\mathbb{Z}\mathbb{A}_\infty$:



イロン イヨン イヨン イヨン

3