Cluster category of type \mathbb{A}_∞^∞ and triangulations of the infinite strip

Shiping Liu * (Université de Sherbrooke) Charles Paquette (University of Connecticut)

Seminar at Qing Hua University Beijing, China

June 13, 2016

- 本部 ト イヨ ト - - ヨ

Brief History

 In 2002, Fomin and Zelevinsky introduced cluster algebras of finite rank in connection with dual canonical bases and total positivity for semi-simple Lie groups.

個人 くほん くほん しき

Brief History

- In 2002, Fomin and Zelevinsky introduced cluster algebras of finite rank in connection with dual canonical bases and total positivity for semi-simple Lie groups.
- In 2006, Buan, Marsh, Reineke, Reiten and Todorov introduced cluster categories of finite rank as a categorification of cluster algebras of finite rank.

伺下 イヨト イヨト

Brief History

- In 2002, Fomin and Zelevinsky introduced cluster algebras of finite rank in connection with dual canonical bases and total positivity for semi-simple Lie groups.
- In 2006, Buan, Marsh, Reineke, Reiten and Todorov introduced cluster categories of finite rank as a categorification of cluster algebras of finite rank.
- In 2006, Caldero, Chapoton and Schiffler described cluster category of type A_n in terms of triangulations of an (n+3)-gon.

<ロ> (四) (四) (三) (三) (三)

Brief History

- In 2002, Fomin and Zelevinsky introduced cluster algebras of finite rank in connection with dual canonical bases and total positivity for semi-simple Lie groups.
- In 2006, Buan, Marsh, Reineke, Reiten and Todorov introduced cluster categories of finite rank as a categorification of cluster algebras of finite rank.
- In 2006, Caldero, Chapoton and Schiffler described cluster category of type A_n in terms of triangulations of an (n+3)-gon.
- In 2012, Holm-Jørgensen constructed cluster category of type A_∞ as finite derived category of dg-modules over the polynomial ring, and described cluster structure in terms of triangulations of the infinity-gon.

Objective of this talk

O To construct cluster categories of type A[∞]_∞ using the canonical orbit category of D^b(repQ), where Q is a quiver with no infinite path of type A[∞]_∞.

Objective of this talk

- O To construct cluster categories of type A[∞]_∞ using the canonical orbit category of D^b(repQ), where Q is a quiver with no infinite path of type A[∞]_∞.
- O To given a geometrical realization of the cluster structure of this cluster category in terms of triangulations of the infinite strip with marked points.

向下 イヨト イヨト 二日

Setting

• Let k be an algebraically closed field.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

回 と く ヨ と く ヨ と

æ

Setting

- Let k be an algebraically closed field.
- Let A be a Hom-finite, Krull-Schmidt triangulated k-category with shift functor [1].

向下 イヨト イヨト

Setting

- Let k be an algebraically closed field.
- Let A be a Hom-finite, Krull-Schmidt triangulated k-category with shift functor [1].
- A subcategory of A is called *strictly additive* if it is full, closed under isomorphisms, finite direct sums, and direct summands.

伺下 イヨト イヨト

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

通 と く ヨ と く ヨ と

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

• rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.

→ □ → → 三 → → 三 → つくで

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

- rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.
- weakly cluster-tilting if it is rigid, and given any $X \notin \mathcal{T}$,

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

- rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.
- weakly cluster-tilting if it is rigid, and given any $X \notin \mathcal{T}$,
 - $\operatorname{Hom}_{\mathcal{A}}(X, T[1]) \neq 0$, for some $T \in \mathcal{T}$;

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

- rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.
- weakly cluster-tilting if it is rigid, and given any $X \notin \mathcal{T}$,
 - Hom $_{\mathcal{A}}(X, T[1]) \neq 0$, for some $T \in \mathcal{T}$;
 - Hom $_{\mathcal{A}}(T', X[1]) \neq 0$, for some $T' \in \mathcal{T}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

- rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.
- weakly cluster-tilting if it is rigid, and given any $X \notin \mathcal{T}$,
 - Hom $_{\mathcal{A}}(X, T[1]) \neq 0$, for some $T \in \mathcal{T}$;
 - Hom $_{\mathcal{A}}(T', X[1]) \neq 0$, for some $T' \in \mathcal{T}$.
- cluster-tilting if it is weakly cluster-tilting and functorially finite in A.

Cluster-tilting subcategories

A strictly additive subcategory ${\mathcal T}$ of ${\mathcal A}$ is called

- rigid if $\operatorname{Hom}_{\mathcal{A}}(T, T'[1]) = 0$, for $T, T' \in \mathcal{T}$.
- weakly cluster-tilting if it is rigid, and given any $X \notin \mathcal{T}$,
 - Hom_{\mathcal{A}} $(X, T[1]) \neq 0$, for some $T \in \mathcal{T}$;
 - Hom $_{\mathcal{A}}(T', X[1]) \neq 0$, for some $T' \in \mathcal{T}$.
- cluster-tilting if it is weakly cluster-tilting and functorially finite in A.

Theorem (Koenig, Zhu)

If \mathcal{T} is a cluster-tilting subcategory of \mathcal{A} , then $\mathrm{mod}\mathcal{T}\cong\mathcal{A}/\mathcal{T}[1].$

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Notation

Let \mathcal{T} be a strictly additive subcategory of \mathcal{A} .

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

回 と く ヨ と く ヨ と

æ

Notation

Let \mathcal{T} be a strictly additive subcategory of \mathcal{A} .

• $Q_{\mathcal{T}}$ denotes the quiver of \mathcal{T} ;

白 と く ヨ と く ヨ と

Notation

Let \mathcal{T} be a strictly additive subcategory of \mathcal{A} .

- $Q_{\mathcal{T}}$ denotes the quiver of \mathcal{T} ;
- For $M \in \operatorname{ind} \mathcal{T}$, define

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

白 と く ヨ と く ヨ と …

Notation

Let \mathcal{T} be a strictly additive subcategory of \mathcal{A} .

- $Q_{\mathcal{T}}$ denotes the quiver of \mathcal{T} ;
- **2** For $M \in \operatorname{ind} \mathcal{T}$, define

$$\mathcal{T}_{\mathcal{M}} := \mathrm{add}\{ \mathcal{N} \in \mathrm{ind}\mathcal{T} \mid \mathcal{N} \not\cong \mathcal{M} \}.$$

白 と く ヨ と く ヨ と …

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

白 と く ヨ と く ヨ と …

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

() Q_T has no oriented cycle of length one or two;

御 と く き と く き と

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- ② for any $M \in \operatorname{ind} \mathcal{T}$, ∃! $M^* \in \operatorname{ind} \mathcal{A}$ (≇ M) such that $\operatorname{add}(\mathcal{T}_M, M^*) := \mu_M(\mathcal{T})$ is cluster-tilting;

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- ② for any $M \in \operatorname{ind} \mathcal{T}$, ∃! $M^* \in \operatorname{ind} \mathcal{A}$ ($\cong M$) such that $\operatorname{add}(\mathcal{T}_M, M^*) := \mu_M(\mathcal{T})$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- **(**) Q_T has no oriented cycle of length one or two;
- ② for any $M \in \operatorname{ind} \mathcal{T}$, ∃! $M^* \in \operatorname{ind} \mathcal{A}$ ($\cong M$) such that $\operatorname{add}(\mathcal{T}_M, M^*) := \mu_M(\mathcal{T})$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1]; M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Cluster categories

 \mathcal{A} is called *cluster-category* if it admits cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- e for any *M* ∈ ind*T*, ∃! *M*^{*} ∈ ind*A* (≇ *M*) such that add(*T_M*, *M*^{*}) := $\mu_M(T)$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1]; M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_M -approximations;

g, v minimal right \mathcal{T}_M -approximations.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

2-Calabi-Yau categories

Definition

\mathcal{A} is called *2-Calabi-Yau* if, for $X, Y \in \mathcal{A}$, \exists isomorphism

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

白 ト く ヨ ト く ヨ ト

2-Calabi-Yau categories

Definition

 \mathcal{A} is called *2-Calabi-Yau* if, for $X, Y \in \mathcal{A}$, \exists isomorphism

 $\phi_{X,Y}: \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

2-Calabi-Yau categories

Definition

 \mathcal{A} is called 2-Calabi-Yau if, for $X, Y \in \mathcal{A}$, \exists isomorphism $\phi_{X,Y} : \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$ which is natural in X, Y.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

2-Calabi-Yau categories

Definition

 \mathcal{A} is called 2-Calabi-Yau if, for $X, Y \in \mathcal{A}$, \exists isomorphism $\phi_{X,Y} : \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$ which is natural in X, Y.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it has AR-triangles with $\tau_{\mathcal{A}} = [1]$;

2-Calabi-Yau categories

Definition

 \mathcal{A} is called 2-Calabi-Yau if, for $X, Y \in \mathcal{A}, \exists$ isomorphism $\phi_{X,Y} : \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$ which is natural in X, Y.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it has AR-triangles with $\tau_{\mathcal{A}} = [1]$; moreover, \mathcal{A} is a cluster category \Leftrightarrow

2-Calabi-Yau categories

Definition

 \mathcal{A} is called 2-Calabi-Yau if, for $X, Y \in \mathcal{A}, \exists$ isomorphism $\phi_{X,Y} : \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$ which is natural in X, Y.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it has AR-triangles with $\tau_{\mathcal{A}} = [1]$; moreover, \mathcal{A} is a cluster category \Leftrightarrow

• it has some cluster-tilting subcategories;

2-Calabi-Yau categories

Definition

 \mathcal{A} is called 2-Calabi-Yau if, for $X, Y \in \mathcal{A}, \exists$ isomorphism $\phi_{X,Y} : \operatorname{Hom}_{\mathcal{A}}(X, Y[1]) \xrightarrow{\sim} D\operatorname{Hom}_{\mathcal{A}}(Y, X[1]),$ which is natural in X, Y.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it has AR-triangles with $\tau_{\mathcal{A}} = [1]$;

moreover, ${\mathcal A}$ is a cluster category \Leftrightarrow

- it has some cluster-tilting subcategories;
- the quiver of each cluster-tilting subcategory has no oriented cycle of length one or two.

• Let Q be a quiver with no infinite path of type $\mathbb{A}_{\infty}^{\infty}$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

• Let Q be a quiver with no infinite path of type $\mathbb{A}_{\infty}^{\infty}$:

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

2 rep(Q) : category of fin. dim. k-representations of Q,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

rep(Q): category of fin. dim. k-representations of Q,
 which is hereditary abelian and has AR-sequences.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

- rep(Q): category of fin. dim. k-representations of Q,
 which is hereditary abelian and has AR-sequences.
- Given an AR-component Γ of rep(Q),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

- rep(Q): category of fin. dim. k-representations of Q,
 which is hereditary abelian and has AR-sequences.
- Given an AR-component Γ of rep(Q),
 - $\operatorname{add}(\Gamma) = \operatorname{add}\{X \mid X \in \Gamma\};\$

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

- rep(Q): category of fin. dim. k-representations of Q,
 which is hereditary abelian and has AR-sequences.
- Given an AR-component Γ of rep(Q),
 - $\operatorname{add}(\Gamma) = \operatorname{add}\{X \mid X \in \Gamma\};\$
 - k(Γ) : quotient of path category kΓ modulo the mesh relations.

···· __ 0 ___ 0 ___ ··· __ 0 ___ 0 ___ ···

- rep(Q): category of fin. dim. k-representations of Q,
 which is hereditary abelian and has AR-sequences.
- Given an AR-component Γ of rep(Q),
 - $\operatorname{add}(\Gamma) = \operatorname{add}\{X \mid X \in \Gamma\};\$
 - k(Γ) : quotient of path category kΓ modulo the mesh relations.
- Γ is called *standard* if $\operatorname{add}(\Gamma) \cong k(\Gamma)$.

Theorem (Liu, Paquette)

The AR-components of rep(Q) are all standard and consist of

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

白 ト イヨト イヨト

æ

Theorem (Liu, Paquette)

The AR-components of rep(Q) are all standard and consist of

0 a preprojective component $\mathcal{P}_Q (\cong \mathbb{N}\mathbb{A}_\infty^\infty) \ni P_a, a \in Q_0$;

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

個人 くほん くほん しき

Theorem (Liu, Paquette)

The AR-components of $\operatorname{rep}(Q)$ are all standard and consist of

- **0** a preprojective component $\mathcal{P}_Q \ (\cong \mathbb{NA}_\infty^\infty) \ni P_a, a \in Q_0;$
- 2 a preinjective component $\mathcal{I}_Q (\cong \mathbb{N}^- \mathbb{A}_\infty^\infty) \ni I_a, a \in Q_0;$

AR-theory in
$$\operatorname{rep}(Q)$$

Theorem (Liu, Paquette)

The AR-components of $\operatorname{rep}(Q)$ are all standard and consist of

- **0** a preprojective component $\mathcal{P}_Q \ (\cong \mathbb{NA}_\infty^\infty) \ni P_a, a \in Q_0;$
- 2 a preinjective component $\mathcal{I}_Q \, (\cong \mathbb{N}^- \mathbb{A}_\infty^\infty) \ni I_a, a \in Q_0;$
- **3** two orthogonal regular components $\mathcal{R}_R, \mathcal{R}_L (\cong \mathbb{Z}\mathbb{A}_\infty)$.

(4月) (日) (日) 日

AR-components of $D^b(rep(Q))$

Theorem (Liu, Paquette)

The bounded derived category D^b(rep(Q)) of rep(Q) has AR-triangles.

・ 同 ト ・ ヨ ト ・ ヨ ト

AR-components of $D^b(rep(Q))$

Theorem (Liu, Paquette)

- The bounded derived category D^b(rep(Q)) of rep(Q) has AR-triangles.
- The AR-components of D^b(rep(Q)) are all standard and consist of

・ 同 ト ・ ヨ ト ・ ヨ ト

AR-components of $D^b(rep(Q))$

Theorem (Liu, Paquette)

- The bounded derived category D^b(rep(Q)) of rep(Q) has AR-triangles.
- The AR-components of D^b(rep(Q)) are all standard and consist of
 - pairwise orthogonal regular components $\mathcal{R}_R[n]$, $\mathcal{R}_L[n]$ ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where $n \in \mathbb{Z}$;

AR-components of $D^b(rep(Q))$

Theorem (Liu, Paquette)

- The bounded derived category D^b(rep(Q)) of rep(Q) has AR-triangles.
- The AR-components of D^b(rep(Q)) are all standard and consist of
 - pairwise orthogonal regular components $\mathcal{R}_R[n]$, $\mathcal{R}_L[n]$ ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where $n \in \mathbb{Z}$;
 - connecting components $C_Q[n] \cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}$, obtained by gluing $\mathcal{I}_Q[n-1]$ with $\mathcal{P}_Q[n]$, where $n \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

• The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.

白 ト イヨト イヨト

• The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.

2 Then
$$F = \tau_{D}^{-1} \circ [1]$$
 is automorphism of $D^{b}(\operatorname{rep}(Q))$.

白 ト イヨト イヨト

- The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.
- **2** Then $F = \tau_D^{-1} \circ [1]$ is automorphism of $D^b(\operatorname{rep}(Q))$.
- Given $X, Y \in D^b(rep(Q))$, for all but finitely many $i \in \mathbb{Z}$,

 $\operatorname{Hom}_{D^b(\operatorname{rep}(Q))}(X,F^iY)=0.$

- The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.
- 3 Then $F = \tau_D^{-1} \circ [1]$ is automorphism of $D^b(\operatorname{rep}(Q))$.
- Given $X, Y \in D^b(rep(Q))$, for all but finitely many $i \in \mathbb{Z}$, $\operatorname{Hom}_{D^b(rep(Q))}(X, F^iY) = 0.$

• Define the canonical orbit category
$$\mathscr{C}(Q)$$
 of $D^b(\operatorname{rep}(Q))$:

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

- The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.
- 3 Then $F = \tau_D^{-1} \circ [1]$ is automorphism of $D^b(\operatorname{rep}(Q))$.
- Given $X, Y \in D^b(rep(Q))$, for all but finitely many $i \in \mathbb{Z}$, $\operatorname{Hom}_{D^b(rep(Q))}(X, F^iY) = 0.$
- Define the canonical orbit category $\mathscr{C}(Q)$ of $D^b(\operatorname{rep}(Q))$:
 - The objects are those of $D^b(\operatorname{rep}(Q))$;

- The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.
- 3 Then $F = \tau_D^{-1} \circ [1]$ is automorphism of $D^b(\operatorname{rep}(Q))$.
- Given $X, Y \in D^b(rep(Q))$, for all but finitely many $i \in \mathbb{Z}$, $\operatorname{Hom}_{D^b(rep(Q))}(X, F^iY) = 0.$
- Define the canonical orbit category $\mathscr{C}(Q)$ of $D^b(\operatorname{rep}(Q))$:
 - The objects are those of $D^b(rep(Q))$;
 - $\operatorname{Hom}_{\mathscr{C}(Q)}(X, Y) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D^{b}(\operatorname{rep}(Q))}(X, F^{i}Y).$

- The AR-translation τ_D of $D^b(rep(Q))$ is auto-equivalence, considered as an automorphism.
- 3 Then $F = \tau_D^{-1} \circ [1]$ is automorphism of $D^b(\operatorname{rep}(Q))$.
- Given $X, Y \in D^b(rep(Q))$, for all but finitely many $i \in \mathbb{Z}$, $\operatorname{Hom}_{D^b(rep(Q))}(X, F^iY) = 0.$
- Define the canonical orbit category $\mathscr{C}(Q)$ of $D^b(\operatorname{rep}(Q))$:
 - The objects are those of $D^b(rep(Q))$;
 - $\operatorname{Hom}_{\mathscr{C}(Q)}(X, Y) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D^{b}(\operatorname{rep}(Q))}(X, F^{i}Y).$
- $\mathscr{C}(Q)$ is 2-CY with triangle-exact projection functor $p: D^b(\operatorname{rep}(Q)) \to \mathscr{C}(Q): X \mapsto X; f \mapsto f.$

Cluster category of type $\mathbb{A}_{\infty}^{\infty}$

Theorem

(Q) is cluster category with three AR-components:

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

(本部) (本語) (本語) (語)

Cluster category of type $\mathbb{A}_{\infty}^{\infty}$

Theorem

• $\mathscr{C}(Q)$ is cluster category with three AR-components:

• one connecting component $\mathcal{C}_Q[0] (\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty})$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type A_{∞}^{∞} and triangulations of the infinite

- (回) (三) (三) (三) (三)

Cluster category of type $\mathbb{A}_{\infty}^{\infty}$

Theorem

- **0** $\mathscr{C}(Q)$ is cluster category with three AR-components:
 - one connecting component $\mathcal{C}_Q[0] (\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty})$.
 - two orthogonal regular components R_L[0], R_R[0] (≅ ZA_∞).

· < @ > < 글 > < 글 > · · 글

Cluster category of type $\mathbb{A}_{\infty}^{\infty}$

Theorem

- **0** $\mathscr{C}(Q)$ is cluster category with three AR-components:
 - one connecting component $\mathcal{C}_Q[0](\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty})$.
 - two orthogonal regular components R_L[0], R_R[0] (≅ ZA_∞).
- ② A subcategory of C(Q) is weakly cluster-tilting ⇔ it is maximal rigid.

· < @ > < 문 > < 문 > · · 문

Marked points in the infinite strip

• Let $\mathcal{B}_{\infty} = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ with marked points:

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

→ □ → → 三 → → 三 → つくで

Marked points in the infinite strip

• Let $\mathcal{B}_{\infty} = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ with marked points:

• upper marked points: $l_i = (i, 1), i \in \mathbb{Z};$

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

→ □ → → 三 → → 三 → つくで

Marked points in the infinite strip

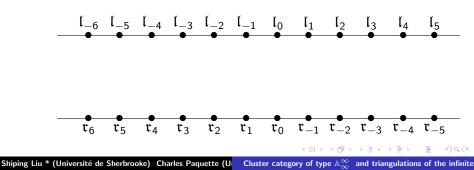
• Let $\mathcal{B}_{\infty} = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ with marked points:

- upper marked points: $l_i = (i, 1), i \in \mathbb{Z};$
- lower marked points: $\mathfrak{r}_i = (-i, 0), i \in \mathbb{Z}$.

Marked points in the infinite strip

• Let $\mathcal{B}_{\infty} = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1\}$ with marked points:

- upper marked points: $l_i = (i, 1), i \in \mathbb{Z};$
- lower marked points: $\mathfrak{r}_i = (-i, 0), i \in \mathbb{Z}$.



Simple curves and segments

• A *simple curve* in \mathcal{B}_{∞} is a curve which does not cross itself and joins two marked points called *endpoints*.

回 と く ヨ と く ヨ と …

Simple curves and segments

- A *simple curve* in \mathcal{B}_{∞} is a curve which does not cross itself and joins two marked points called *endpoints*.
- ② A simple curve is called *internal* if it intersects the boundary of B_∞ only at the endpoints.

個人 くほん くほん しき

Simple curves and segments

- A *simple curve* in \mathcal{B}_{∞} is a curve which does not cross itself and joins two marked points called *endpoints*.
- ② A simple curve is called *internal* if it intersects the boundary of B_∞ only at the endpoints.
- Given distinct marked points p, q, ∃! isotopy class σ of internal simple curves in B_∞ joining p, q; which is

· < @ > < 글 > < 글 > · · 글

Simple curves and segments

- A simple curve in \mathcal{B}_{∞} is a curve which does not cross itself and joins two marked points called *endpoints*.
- ② A simple curve is called *internal* if it intersects the boundary of B_∞ only at the endpoints.
- Given distinct marked points p, q, ∃! isotopy class σ of internal simple curves in B_∞ joining p, q; which is
 - called *segment* of endpoints $\mathfrak{p}, \mathfrak{q};$

- 本部 ト イヨ ト - - ヨ

Simple curves and segments

- A *simple curve* in \mathcal{B}_{∞} is a curve which does not cross itself and joins two marked points called *endpoints*.
- ② A simple curve is called *internal* if it intersects the boundary of B_∞ only at the endpoints.
- Given distinct marked points p, q, ∃! isotopy class σ of internal simple curves in B_∞ joining p, q; which is
 - called *segment* of endpoints p, q;
 - written as $\sigma = [\mathfrak{p}, \mathfrak{q}] = [\mathfrak{q}, \mathfrak{p}].$

The arcs

A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {r_i, r_{i+1}}, i \in \mathbb{Z}$;

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The arcs

A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {r_i, r_{i+1}}, i \in \mathbb{Z}$;

• upper arc if $\sigma = [\mathfrak{l}_i, \mathfrak{l}_j]$ with |i - j| > 1;

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The arcs

A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {r_i, r_{i+1}}, i \in \mathbb{Z}$;

- upper arc if $\sigma = [l_i, l_j]$ with |i j| > 1;
- *lower arc* if $\sigma = [\mathfrak{r}_i, \mathfrak{r}_j]$ with |i j| > 1;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The arcs

A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {\mathfrak{r}_i, \mathfrak{r}_{i+1}}, i \in \mathbb{Z}$;

- upper arc if $\sigma = [l_i, l_j]$ with |i j| > 1;
- *lower arc* if $\sigma = [\mathfrak{r}_i, \mathfrak{r}_j]$ with |i j| > 1;
- connecting arc if $\sigma = [\mathfrak{l}_i, \mathfrak{r}_j]$ with $i, j \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

The arcs

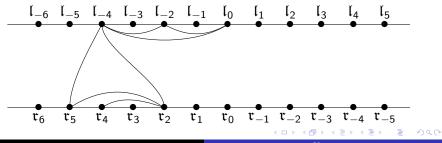
A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {\mathfrak{r}_i, \mathfrak{r}_{i+1}}, i \in \mathbb{Z}$;

- upper arc if $\sigma = [\mathfrak{l}_i, \mathfrak{l}_j]$ with |i j| > 1;
- *lower arc* if $\sigma = [\mathfrak{r}_i, \mathfrak{r}_j]$ with |i j| > 1;
- connecting arc if $\sigma = [\mathfrak{l}_i, \mathfrak{r}_j]$ with $i, j \in \mathbb{Z}$.
- arc if σ is an upper, lower, or connecting arc.

The arcs

A segment σ is *edge* if $\sigma = {l_i, l_{i+1}}$ or $\sigma = {r_i, r_{i+1}}, i \in \mathbb{Z}$;

- upper arc if $\sigma = [\mathfrak{l}_i, \mathfrak{l}_j]$ with |i j| > 1;
- *lower arc* if $\sigma = [\mathfrak{r}_i, \mathfrak{r}_j]$ with |i j| > 1;
- connecting arc if $\sigma = [\mathfrak{l}_i, \mathfrak{r}_j]$ with $i, j \in \mathbb{Z}$.
- arc if σ is an upper, lower, or connecting arc.



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Crossing pairs

• Two simple curves are *crossing* if they have common point which is not endpoint of any of the curves.

同 と く ヨ と く ヨ と

Crossing pairs

- Two simple curves are *crossing* if they have common point which is not endpoint of any of the curves.
- Two arcs u, v are said to cross if every curve in u crosses each of the curves in v.

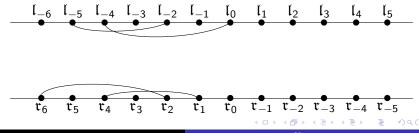
個人 くほん くほん しき

Crossing pairs

- Two simple curves are *crossing* if they have common point which is not endpoint of any of the curves.
- Two arcs u, v are said to cross if every curve in u crosses each of the curves in v.
- An arc does not cross itself; and an upper arc does not cross a lower arc.

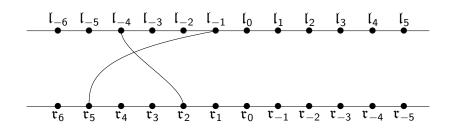
Crossing pairs

- Two simple curves are *crossing* if they have common point which is not endpoint of any of the curves.
- Two arcs u, v are said to cross if every curve in u crosses each of the curves in v.
- An arc does not cross itself; and an upper arc does not cross a lower arc.



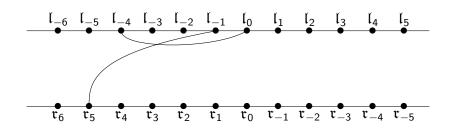
Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Illustrations



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Illustrations



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Triangulations of \mathcal{B}_{∞}

Definition

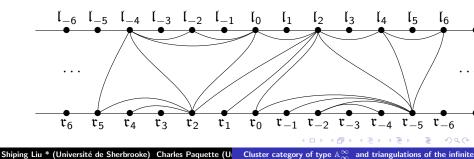
A triangulation \mathbb{T} of \mathcal{B}_{∞} is a maximal set of pairwise non-crossing arcs in \mathcal{B}_{∞} .

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Triangulations of \mathcal{B}_{∞}

Definition

A *triangulation* \mathbb{T} of \mathcal{B}_{∞} is a maximal set of pairwise non-crossing arcs in \mathcal{B}_{∞} .



Parametrization of indecomposable objects by arcs

• Identify $X \in \operatorname{rep}(Q)$ with $X[0] \in \mathcal{C}(Q)$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

・回 ・ ・ ヨ ・ ・ ヨ ・

Parametrization of indecomposable objects by arcs

- Identify $X \in \operatorname{rep}(Q)$ with $X[0] \in \mathcal{C}(Q)$.
- A complete set of non-isomorphic indecomposable objects of C(Q) is given by

$$\operatorname{ind} \mathscr{C}(Q) = \mathcal{C}_Q \cup \mathcal{R}_L \cup \mathcal{R}_R.$$

Parametrization of indecomposable objects by arcs

- Identify $X \in \operatorname{rep}(Q)$ with $X[0] \in \mathcal{C}(Q)$.
- A complete set of non-isomorphic indecomposable objects of C(Q) is given by

$$\operatorname{ind} \mathscr{C}(Q) = \mathcal{C}_Q \cup \mathcal{R}_L \cup \mathcal{R}_R.$$

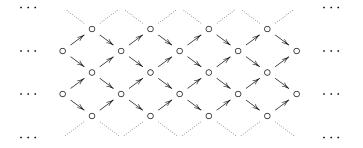
We shall construct a bijection

$$\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}),$$

where $\operatorname{arc}(\mathcal{B}_{\infty})$ is the set of arcs in \mathcal{B}_{∞} .

向下 イヨト イヨト

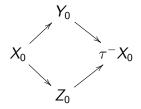
Parametrization of objects in $\mathcal{C}_Q \cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Parametrization of objects in C_Q

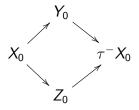
• Fix arbitrarily a mesh in C_Q as follows:



個 と く ヨ と く ヨ と …

Parametrization of objects in C_Q

• Fix arbitrarily a mesh in C_Q as follows:

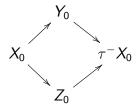


2 R_0 : double infinite sectional path $\ni X_0 \to Z_0$;

★御▶ ★理▶ ★理▶ 二臣

Parametrization of objects in C_Q

• Fix arbitrarily a mesh in C_Q as follows:

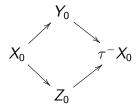


- **2** R_0 : double infinite sectional path $\ni X_0 \to Z_0$;
- L_0 : double infinite sectional path $\ni X_0 \to Y_0$;

個人 くほん くほん しき

Parametrization of objects in C_Q

• Fix arbitrarily a mesh in C_Q as follows:

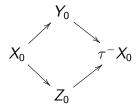


- **2** R_0 : double infinite sectional path $\ni X_0 \to Z_0$;
- L_0 : double infinite sectional path $\ni X_0 \to Y_0$;
- Write $R_i = \tau^i R_0$ and $L_i = \tau^i L_0$, for $i \in \mathbb{Z}$.

★御▶ ★理▶ ★理▶ 二臣

Parametrization of objects in C_Q

• Fix arbitrarily a mesh in C_Q as follows:

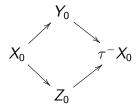


- **2** R_0 : double infinite sectional path $\ni X_0 \to Z_0$;
- L_0 : double infinite sectional path $\ni X_0 \to Y_0$;
- Write $R_i = \tau^i R_0$ and $L_i = \tau^i L_0$, for $i \in \mathbb{Z}$.
- **③** For $X \in C_Q$, ∃!(i,j) such that $X = L_i \cap R_j$.

・吊り ・ヨン ・ヨン ・ヨ

Parametrization of objects in C_Q

• Fix arbitrarily a mesh in C_Q as follows:

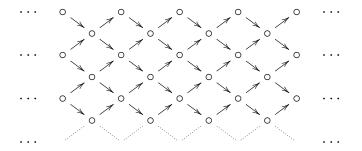


- **2** R_0 : double infinite sectional path $\ni X_0 \to Z_0$;
- L_0 : double infinite sectional path $\ni X_0 \to Y_0$;
- Write $R_i = \tau^i R_0$ and $L_i = \tau^i L_0$, for $i \in \mathbb{Z}$.
- **③** For $X \in C_Q$, ∃!(i,j) such that $X = L_i \cap R_j$.

• Set
$$\varphi(X) = [\mathfrak{l}_i, \mathfrak{r}_j] \in \operatorname{arc}(\mathcal{B}_\infty)$$

- 이 프 아이 프 아이

Parametrization of objects in regular components $(\cong \mathbb{Z}\mathbb{A}_{\infty})$



Parametrization of objects in \mathcal{R}_L

1 quasi-simple $S_L \in \mathcal{R}_L$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_L) \neq 0$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

(本部) (本語) (本語) (語)

Parametrization of objects in \mathcal{R}_L

- **1** quasi-simple $S_L \in \mathcal{R}_L$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_L) \neq 0$.
- 2 L_i^+ : the infinite sectional starting in $\tau^i S_L$;

(本語) (本語) (本語) (語)

Parametrization of objects in \mathcal{R}_L

- **1** quasi-simple $S_L \in \mathcal{R}_L$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_L) \neq 0$.
- 2 L_i^+ : the infinite sectional starting in $\tau^i S_L$;
- L_i^- : the infinite sectional ending in $\tau^i S_L$;

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Parametrization of objects in \mathcal{R}_L

- **1** quasi-simple $S_L \in \mathcal{R}_L$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_L) \neq 0$.
- 2 L_i^+ : the infinite sectional starting in $\tau^i S_L$;
- L_i^- : the infinite sectional ending in $\tau^i S_L$;
- For $X \in \mathcal{R}_L$, $\exists ! (i, j), i \leq j$, with $X = L_i^+ \cap L_j^-$;

Parametrization of objects in \mathcal{R}_L

- **1** quasi-simple $S_L \in \mathcal{R}_L$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_L) \neq 0$.
- 2 L_i^+ : the infinite sectional starting in $\tau^i S_L$;
- L_i^- : the infinite sectional ending in $\tau^i S_L$;
- For $X \in \mathcal{R}_L$, $\exists ! (i, j)$, $i \leq j$, with $X = L_i^+ \cap L_j^-$;
- Set $\varphi(X) = [\mathfrak{l}_{i-1}, \mathfrak{l}_{j+1}].$

Parametrization of objects in \mathcal{R}_R

1 quasi-simple $S_R \in \mathcal{R}_R$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_R) \neq 0$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

(《圖》 《문》 《문》 - 문

Parametrization of objects in \mathcal{R}_R

- **1** quasi-simple $S_R \in \mathcal{R}_R$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_R) \neq 0$.
- 2 R_i^+ : the infinite sectional starting in $\tau^i S_R$;

(本語) (本語) (本語) (語)

Parametrization of objects in \mathcal{R}_R

- **1** quasi-simple $S_R \in \mathcal{R}_R$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_R) \neq 0$.
- **2** R_i^+ : the infinite sectional starting in $\tau^i S_R$;
- R_i^- : the infinite sectional ending in $\tau^i S_R$;

▲ □ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Parametrization of objects in \mathcal{R}_R

- **1** quasi-simple $S_R \in \mathcal{R}_R$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_R) \neq 0$.
- **2** R_i^+ : the infinite sectional starting in $\tau^i S_R$;
- R_i^- : the infinite sectional ending in $\tau^i S_R$;
- For $X \in \mathcal{R}_R$, $\exists !(i,j)$, $i \geq j$, with $X = R_i^+ \cap R_j^-$;

Parametrization of objects in \mathcal{R}_R

- **1** quasi-simple $S_R \in \mathcal{R}_R$ with $\operatorname{Hom}_{\mathscr{C}(Q)}(X_0, S_R) \neq 0$.
- **2** R_i^+ : the infinite sectional starting in $\tau^i S_R$;
- R_i^- : the infinite sectional ending in $\tau^i S_R$;
- For $X \in \mathcal{R}_R$, $\exists !(i,j)$, $i \geq j$, with $X = R_i^+ \cap R_j^-$;
- Set $\varphi(X) = [\mathfrak{r}_{i+1}, \mathfrak{r}_{j-1}].$

• This yields a bijection $\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}) :$

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

- This yields a bijection $\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}) :$
- **2** The quasi-simples in \mathcal{R}_L correspond to arcs $[\mathfrak{l}_{i-1}, \mathfrak{l}_{i+1}]$.

· < @ > < 문 > < 문 > · · 문

- This yields a bijection $\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}) :$
- **2** The quasi-simples in \mathcal{R}_L correspond to arcs $[\mathfrak{l}_{i-1}, \mathfrak{l}_{i+1}]$.
- **③** The quasi-simples in \mathcal{R}_R correspond to arcs $[\mathfrak{r}_{i-1}, \mathfrak{r}_{i+1}]$.

- イボト イヨト - ヨ

- This yields a bijection $\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}) :$
- **2** The quasi-simples in \mathcal{R}_L correspond to arcs $[\mathfrak{l}_{i-1}, \mathfrak{l}_{i+1}]$.
- **③** The quasi-simples in \mathcal{R}_R correspond to arcs $[\mathfrak{r}_{i-1}, \mathfrak{r}_{i+1}]$.
- For $M \in \operatorname{ind} \mathscr{C}(Q)$, set $a_M = \varphi(M) \in \operatorname{arc}(\mathcal{B}_\infty)$.

- This yields a bijection $\varphi : \operatorname{ind} \mathscr{C}(Q) \to \operatorname{arc}(\mathcal{B}_{\infty}) :$
- **2** The quasi-simples in \mathcal{R}_L correspond to arcs $[\mathfrak{l}_{i-1}, \mathfrak{l}_{i+1}]$.
- The quasi-simples in \mathcal{R}_R correspond to arcs $[\mathfrak{r}_{i-1}, \mathfrak{r}_{i+1}]$.
- For $M \in \operatorname{ind} \mathscr{C}(Q)$, set $a_M = \varphi(M) \in \operatorname{arc}(\mathcal{B}_\infty)$.
- For $u \in \operatorname{arc}(\mathcal{B}_{\infty})$, set $M_u = \varphi^-(u) \in \operatorname{ind} \mathscr{C}(Q)$.

Interpretation of arrows

Lemma

Let $u, v \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u, M_v \in \operatorname{ind} \mathscr{C}(Q)$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Interpretation of arrows

Lemma

Let $u, v \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u, M_v \in \operatorname{ind} \mathscr{C}(Q)$.

• If
$$u = [l_i, \mathfrak{r}_j]$$
, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [l_i, \mathfrak{r}_{j-1}]$ or $v = [l_{i-1}, \mathfrak{r}_j]$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

イロト イヨト イヨト イヨト

Interpretation of arrows

Lemma

Let $u, v \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u, M_v \in \operatorname{ind} \mathscr{C}(Q)$.

• If
$$u = [l_i, r_j]$$
, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [l_i, r_{j-1}]$ or $v = [l_{i-1}, r_j]$.

■ If
$$u = [l_i, l_j]$$
, $i \le j - 2$, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [l_{i-1}, l_j]$ or $v = [l_i, l_{j-1}]$ with $i < j - 2$.

イロン イボン イヨン イヨン 三日

Interpretation of arrows

Lemma

Let $u, v \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u, M_v \in \operatorname{ind} \mathscr{C}(Q)$.

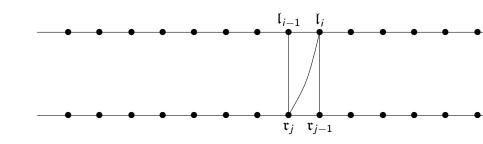
• If
$$u = [l_i, r_j]$$
, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [l_i, r_{j-1}]$ or $v = [l_{i-1}, r_j]$.

• If
$$u = [l_i, l_j]$$
, $i \le j - 2$, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [l_{i-1}, l_j]$ or $v = [l_i, l_{j-1}]$ with $i < j - 2$.

● If
$$u = [\mathfrak{r}_i, \mathfrak{r}_j]$$
, $i \ge j+2$, then $\exists M_u \to M_v$ in $\Gamma(\mathscr{C}(Q)) \Leftrightarrow v = [\mathfrak{r}_i, \mathfrak{r}_{j-1}]$ or $v = [\mathfrak{r}_{i-1}, \mathfrak{r}_j]$ with $i > j+2$.

イロン イボン イヨン イヨン 三日

Illustration of arrows



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

<ロ> (四) (四) (三) (三) (三)

Interpretation of AR-translation

Lemma

Let $u \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u \in \operatorname{ind} \mathscr{C}(Q)$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

(4回) (4回) (4回) - 回

Interpretation of AR-translation

Lemma

Let $u \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u \in \operatorname{ind} \mathscr{C}(Q)$.

• If
$$u = [l_i, \mathfrak{r}_j]$$
, then $\tau M_u = M_{[l_{i+1}, \mathfrak{r}_{j+1}]}$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

イロン イ部ン イヨン イヨン 三日

Interpretation of AR-translation

Lemma

Let $u \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u \in \operatorname{ind} \mathscr{C}(Q)$.

• If
$$u = [\mathfrak{l}_i, \mathfrak{r}_j]$$
, then $\tau M_u = M_{[\mathfrak{l}_{i+1}, \mathfrak{r}_{j+1}]}$.

2 If
$$u = [\mathfrak{l}_i, \mathfrak{l}_j]$$
 with $i \leq j - 2$, then $\tau M_u = M_{[\mathfrak{l}_{i+1}, \mathfrak{l}_{j+1}]}$.

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

· < @ > < 문 > < 문 > · · 문

Interpretation of AR-translation

Lemma

Let $u \in \operatorname{arc}(\mathcal{B}_{\infty})$ with $M_u \in \operatorname{ind} \mathscr{C}(Q)$.

• If
$$u = [l_i, \mathfrak{r}_j]$$
, then $\tau M_u = M_{[l_{i+1}, \mathfrak{r}_{j+1}]}$.

3 If
$$u = [l_i, l_j]$$
 with $i \leq j - 2$, then $\tau M_u = M_{[l_{i+1}, l_{j+1}]}$.

3 If
$$u = [\mathfrak{r}_i, \mathfrak{r}_j]$$
 with $i \ge j + 2$, then $\tau M_u = M_{[\mathfrak{r}_{i+1}, \mathfrak{r}_{j+1}]}$.

イロン イボン イヨン イヨン 三日

Interpretation of weakly cluster-tilting subcategories

Let \mathcal{T} be a subcategory of $\mathscr{C}(Q)$.

回り くほり くほり 一日

Interpretation of weakly cluster-tilting subcategories

Let \mathcal{T} be a subcategory of $\mathscr{C}(Q)$. Write $\operatorname{arc}(\mathcal{T}) = \{a_M \mid M \in \operatorname{ind} \mathscr{C}(Q) \cap \mathcal{T}\}.$

Interpretation of weakly cluster-tilting subcategories

Let \mathcal{T} be a subcategory of $\mathscr{C}(Q)$.

Write $\operatorname{arc}(\mathcal{T}) = \{a_M \mid M \in \operatorname{ind} \mathscr{C}(Q) \cap \mathcal{T}\}.$

Lemma

If $M, N \in \operatorname{ind} \mathscr{C}(Q)$, then $\operatorname{Hom}_{\mathscr{C}(Q)}(M, N[1]) = 0 \Leftrightarrow (a_M, a_N)$ is non-crossing in $\operatorname{arc}(\mathcal{B}_{\infty})$.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Interpretation of weakly cluster-tilting subcategories

Let \mathcal{T} be a subcategory of $\mathscr{C}(Q)$.

Write $\operatorname{arc}(\mathcal{T}) = \{a_M \mid M \in \operatorname{ind} \mathscr{C}(Q) \cap \mathcal{T}\}.$

Lemma

If $M, N \in \operatorname{ind} \mathscr{C}(Q)$, then $\operatorname{Hom}_{\mathscr{C}(Q)}(M, N[1]) = 0 \Leftrightarrow (a_M, a_N)$ is non-crossing in $\operatorname{arc}(\mathcal{B}_{\infty})$.

Theorem

 \mathcal{T} is a weakly cluster-tilting subcategory $\Leftrightarrow \operatorname{arc}(\mathcal{T})$ is a triangulation of \mathcal{B}_{∞} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Definition

Let \mathbb{T} be a triangulation of \mathcal{B}_{∞} .

Definition

Let \mathbb{T} be a triangulation of \mathcal{B}_{∞} .

• An upper marked point l_p is called

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$

- An upper marked point l_p is called
 - *left* T-*bounded* if [l_i, l_p], [l_p, r_j] ∈ T for only finitely many i -p;

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$

- An upper marked point l_p is called
 - *left* T-*bounded* if [l_i, l_p], [l_p, r_j] ∈ T for only finitely many i -p;
 - *left* T-*unbounded* if [l_i, l_p], [l_p, r_j] ∈ T for infinitely many i -p.

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$

An upper marked point l_p is called

- *left* T-*bounded* if [l_i, l_p], [l_p, r_j] ∈ T for only finitely many i -p;
- *left* \mathbb{T} -*unbounded* if $[\mathfrak{l}_i, \mathfrak{l}_p], [\mathfrak{l}_p, \mathfrak{r}_j] \in \mathbb{T}$ for infinitely many i < p and infinitely many j > -p.
- right T-bounded if [l_p, l_i], [l_p, r_j] ∈ T for only finitely many i > p and only finitely many j < -p;

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$

• An upper marked point l_p is called

- *left* T-*bounded* if [l_i, l_p], [l_p, r_j] ∈ T for only finitely many i -p;
- *left* \mathbb{T} -*unbounded* if $[\mathfrak{l}_i, \mathfrak{l}_p], [\mathfrak{l}_p, \mathfrak{r}_j] \in \mathbb{T}$ for infinitely many i < p and infinitely many j > -p.
- right T-bounded if [l_p, l_i], [l_p, r_j] ∈ T for only finitely many i > p and only finitely many j < -p;
- right T-unbounded if [l_p, l_i], [l_p, r_j] ∈ T for infinitely many i > p and infinitely many j < -p.

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$

• An upper marked point l_p is called

- *left* T-*bounded* if [l_i, l_p], [l_p, r_j] ∈ T for only finitely many i -p;
- *left* \mathbb{T} -*unbounded* if $[\mathfrak{l}_i, \mathfrak{l}_p], [\mathfrak{l}_p, \mathfrak{r}_j] \in \mathbb{T}$ for infinitely many i < p and infinitely many j > -p.
- right T-bounded if [l_p, l_i], [l_p, r_j] ∈ T for only finitely many i > p and only finitely many j < -p;
- right T-unbounded if [l_p, l_i], [l_p, r_j] ∈ T for infinitely many i > p and infinitely many j < -p.
- In a similarly, one defines a lower marked point to be *left T-bounded*, *left T-unbounded*, *right T-bounded*, and *right T-unbounded*.

Introduction Cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ Geometric realization

Fountains

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$ A marked point $\mathfrak p$ is called

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

イロン イヨン イヨン イヨン

Fountains

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$ A marked point $\mathfrak p$ is called

left T-fountain base if p is left T-unbounded but right T-bounded.

Fountains

Let $\mathbb T$ be a triangulation of $\mathcal B_\infty.$ A marked point $\mathfrak p$ is called

- *left* T-fountain base if p is left T-unbounded but right T-bounded.
- *right* T-*fountain base* if p is right T-unbounded but left T-bounded.

米部 米油 米油 米油 とう

Fountains

Let ${\mathbb T}$ be a triangulation of ${\mathcal B}_\infty.$ A marked point ${\mathfrak p}$ is called

- *left* T-fountain base if p is left T-unbounded but right T-bounded.
- *right* T-*fountain base* if p is right T-unbounded but left T-bounded.
- *full* **T**-*fountain base* if **p** is left and right **T**-unbounded.

□→ ★ 国 → ★ 国 → □ 国

Introduction Cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ Geometric realization

Main Result

Theorem

A subcategory \mathcal{T} of $\mathscr{C}(Q)$ is cluster-tilting $\Leftrightarrow \operatorname{arc}(\mathcal{T})$ is a

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Introduction Cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ Geometric realization

Main Result

Theorem

A subcategory \mathcal{T} of $\mathscr{C}(Q)$ is cluster-tilting $\Leftrightarrow \operatorname{arc}(\mathcal{T})$ is a triangulation of \mathcal{B}_{∞} containing some connecting arcs, and

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

Main Result

Theorem

A subcategory \mathcal{T} of $\mathscr{C}(Q)$ is cluster-tilting $\Leftrightarrow \operatorname{arc}(\mathcal{T})$ is a triangulation of \mathcal{B}_{∞} containing some connecting arcs, and every marked point in \mathcal{B}_{∞} is either an $\operatorname{arc}(\mathcal{T})$ -fountain base or an endpoint of at most finitely many of arcs in $\operatorname{arc}(\mathcal{T})$.

- 《圖》 《圖》 《圖》 - 圖

Introduction Cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ Geometric realization

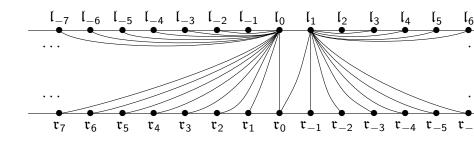
Main Result

Theorem

A subcategory \mathcal{T} of $\mathscr{C}(Q)$ is cluster-tilting $\Leftrightarrow \operatorname{arc}(\mathcal{T})$ is a triangulation of \mathcal{B}_{∞} containing some connecting arcs, and every marked point in \mathcal{B}_{∞} is either an $\operatorname{arc}(\mathcal{T})$ -fountain base or an endpoint of at most finitely many of arcs in $\operatorname{arc}(\mathcal{T})$. In this case, \mathcal{B}_{∞} has at most two $\operatorname{arc}(\mathcal{T})$ -fountain bases, and if it has two, then one is a left fountain base and the other one is a right fountain base.

イロン イボン イヨン イヨン 三日

A cluster-tilting subcategory with two fountains



Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Interpretation of mutation

Theorem

• Let \mathcal{T} be a cluster-tilting subcategory of \mathcal{A} .

Shiping Liu * (Université de Sherbrooke) Charles Paquette (U Cluster category of type $\mathbb{A}_{\infty}^{\infty}$ and triangulations of the infinite

白 と く ヨ と く ヨ と …

Interpretation of mutation

Theorem

- Let \mathcal{T} be a cluster-tilting subcategory of \mathcal{A} .
- 2 Each u ∈ arc(T) is a diagonal of a unique quadrilateral Σ in B_∞ formed by some arcs of arc(T) or segments in B_∞.

個人 くほん くほん しき

Interpretation of mutation

Theorem

- Let \mathcal{T} be a cluster-tilting subcategory of \mathcal{A} .
- e Each u ∈ arc(T) is a diagonal of a unique quadrilateral Σ in B_∞ formed by some arcs of arc(T) or segments in B_∞.
- If v is the other diagonal of Σ , then $M_u^* = M_v$.

(《圖》 《문》 《문》 - 문