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1 Construct a universal covering for each valued quiver.

2 Introduce covering of species and the associated
push-down functor.

3 As an application, we shall construct a cluster category of
non simply laced type C∞.
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important in the study of cluster algebras, for example,

classification of mutation-finite skew-symmetrizable
cluster algebras by Felikson-Shapiro-Tumarkin.

2 The unfolding of an exchange matrix is a covering of the
corresponding valued quiver.

3 There is a growing interest in cluster categories with a
cluster structure of infinite rank, while cluster categories
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Valued quivers

1 A valued quiver is a pair (∆, v), where

∆ = (∆0,∆1) is a locally finite quiver without
multiple arrows, loops or 2-cycles;

v is a valuation, that is, each arrow x → y is
endowed with (vxy , vyx) ∈ N× N.

2 The valuation v is called trivial if vxy = vyx = 1 for every
x → y ∈ ∆1.

Remark

A non-valued quiver without multiple arrows, loops or 2-cycles
is regarded as a trivially valued quiver.
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Example

A valued quiver of type C∞ with a zigzag orientation:

0
(2,1) // 1 2 //oo 3 4 //oo 5 oo

where trivial valuations are omitted.



Valued quiver morphisms

Definition
1 Let (Γ , u) and (∆, v) be valued quivers.

2 A quiver morphism ϕ : Γ → ∆ is valued quiver morphism

if, for any x
(uxy ,uyx ) // y ∈ Γ 1, we have

(uxy , uyx) ≤ (vϕ(x),ϕ(y), vϕ(y),ϕ(x)).
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Valued quiver covering

Definition

A valued quiver morphism ϕ : (Γ , u)→ (∆, v) is called a
valued quiver covering provided that

1 Given a ∈ ∆0, ϕ
−(a) := {x ∈ Γ 0 | ϕ(x) = a} 6= ∅;

2 Given any arrow α : a
(vab,vba) // b ∈ ∆1,

for any x ∈ ϕ−(a), we have

vab =
∑

β:x→y∈ϕ−(α) uxy ;

for any y ∈ ϕ−(b), we have

v ba =
∑

γ:x→y∈ϕ−(α) uyx .
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Example of valued quiver covering

...
b1

a0 (1,2)

''

(1,1) 77

b0

a−1

(1,1) 77

(1,2)

''
b−1
...

ϕ

��

a
(2,3) // b



Universal cover of a non-valued quiver

Theorem (Bongartz, Gabriel)

Given non-valued quiver Q, one has unique quiver covering

π : Q̃ → Q,

where Q̃ is a tree, called universal cover of Q.



Unfold a valued quiver

Let (∆, v) be a connected valued quiver.

Definition

Define unfolding quiver ∆̂ of (∆, v) to be non-valued quiver.

∆̂0 = ∆0;

For each arrow α : x
(vxy ,vyx )// y in ∆, one draws vxyvyx arrows

αij : x → y in ∆̂, arranged as a (vyx × vxy )-matrix
α11 α12 · · · α1,vxy

α21 α22 · · · α2,vxy
...

...
. . .

...
αvyx ,1 αvyx ,2 · · · αvyx ,vxy

 .
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Universal cover of a valued quiver

Theorem

1 There exists a valued quiver covering

π : ∆̃ −→ ∆,

where ∆̃ is a full subquiver of the universal cover of ∆̂.

In particular, ∆̃ is a trivially valued tree.

2 π covers every valued quiver covering φ : Γ → ∆.
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Example: Universal cover of C∞

x1 x2
//oo x3
oo

A∞∞ : x0

  

==

x−1 x−2
//oo x−3

oo

ϕ

��

C∞ : 0
(2,1) // 1 2oo // 3 oo



Species

(∆, v): symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species S of (∆, v) consists of

1 finite dimensional division k-algebra S(i), for i ∈ ∆0;

2 S(i)-S(j)-bimodules S(α), for α : i
(vij ,vji ) // j ∈ ∆1, with

dimS(α)S(j) = vij ;

dimS(i) S(α) = vji .
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Example: R-species of C∞

C∞ : 0
(2,1) // 1 2 //oo 3 4 //oo

C∞ : C C // R RRoo R // R RRoo R //



Representations of a species

1 A representation X of a speceis S consists of

right S(i)-vector space X (i), for each i ∈ ∆0;

S(j)-linear map

X (α) : X (i)⊗S(i) S(α)→ X (j),

for each α : i → j ∈ ∆1.

2 Set dimX =
∑

i∈∆ dimX (i)S(i).

Proposition (Dlab-Ringel)

The category rep(S) of finite dimensional representations of S
is a hereditary abelian category.
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Morphisms of species

T : species of another valued quiver no infinite path (Γ , u).

Definition

A species morphism Φ : T → S consists of

1 a valued quiver morphism ϕ : (Γ , u)→ (∆, v);

2 an algebra morphism ϕi : T (i)→ S(ϕ(i)), for each i ∈ Γ 0;

3 For each arrow β : i → j ∈ Γ with α = ϕ(β) : a→ b,

T (i)-S(b)-bilinear map

βϕ : T (β)⊗T (j) S(b)→ S(α);

S(a)-T (j)-bilinear map

ϕβ : S(a)⊗T (i) T (β)→ S(α).
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Species covering

Definition

A species morphism Φ : T → S is called species covering if

1 ϕ : (Γ , u)→ (∆, v) is valued quiver covering;

2 Given any α : a→ b ∈ ∆1, the following are satisfied.

For each i ∈ ϕ−(a), there exists an isomorphism

(βϕ) :
⊕

β:i→j∈ϕ−(α)

T (β)
⊗
T (j)

S(b) → S(α).

For each j ∈ ϕ−(b), there exists isomorphism

(ϕγ) :
⊕

γ:i→j∈ϕ−(α)

S(a)
⊗
T (i)

T (γ) → S(α).
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(βϕ) :
⊕

β:i→j∈ϕ−(α)

T (β)
⊗
T (j)

S(b) → S(α).

For each j ∈ ϕ−(b), there exists isomorphism

(ϕγ) :
⊕

γ:i→j∈ϕ−(α)

S(a)
⊗
T (i)

T (γ) → S(α).



Example of species covering

R R R //Roo R oo
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Push-down functor and pull-up functor

Fix a species covering Φ : T → S with vqc ϕ : Γ → ∆.

1 The push-down functor Φλ : rep(T )→ rep(S) as follows.

If X ∈ rep(T ), then Φλ(X ) ∈ rep(S) such, for a ∈ ∆0,

Φλ(X )(a) = ⊕i∈ϕ−(a) X (i)⊗T (i) S(a);

2 The pull-up functor Φµ : rep(S)→ rep(T ) as follows.

If M ∈ rep(S), then Φµ(M) ∈ rep(T ) such, for i ∈ Γ 0,

Φµ(M)(i) = M(ϕ(i)),

which is considered as T (i)-vector space.
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Adjoint pairs

Theorem

Let Φ : T → S be a species covering.

1 The push-down functor Φλ : rep(T )→ rep(S) induces an

exact functor ΦD
λ : Db(rep(T ))→ Db(rep(S)).

2 The pull-up functor Φµ : rep(S)→ rep(T ) induces an

exact functor ΦD
µ : Db(rep(S))→ Db(rep(T )).

3 (Φλ,Φµ) and (ΦD
λ ,Φ

D
µ ) are adjoint pairs.
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Example of push-down
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Part II

Cluster category of type C∞

joint with

Jinde Xu and Yichao Yang



Orbit category

1 A : Hom-finite Krull-Schmidt additive k-category.

2 G : group acting on A such, for objects X ,Y , that

A(X , g ·Y ) = 0 for almost all g ∈ G .

3 Define G -orbit category A/G as follows.

The objects of A/G are those of A;

(A/G )(X ,Y ) = ⊕g∈G A(X , g ·Y ).

Lemma

A/G is Hom-finite Krull-Schmidt additive k-category with a
canonical embedding

σ : A → A/G : X 7→ X ; f 7→ f .
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G -covering

Definition

A k-linear functor π : A → B is called G -covering provided

∃ commutative diagram

A

σ

��

π

##
A/G ∼ // B.
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Cluster structure

Assume now that A is a triangulated k-category.

A non-empty collection C of subcategories of A is called
cluster structure provided, for any C ∈ C, that

1 The quiver QC of C has no loop or 2-cycle;

2 for any M ∈ indC, ∃!M∗ ∈ indA (6∼= M) such that
µ

M
(C) := add(CM ,M∗) lies in C;

3 Qµ
M

(C) is obtained from QC by FZ-mutation at M ;

4 There exist in A two exact triangles :

M f // N
g //M∗ //M[1];

M∗ u // L v //M //M∗[1],

where f , u are minimal left CM-approximations;

g , v are minimal right CM-approximations.
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Cluster tilting subcategories

Definition (Koenig, Zhu)

A subcategory C of A is called cluster-tilting provided that

1 C is functorially finite in A;
2 For any object X ∈ A, we have

HomA(C,X [1]) = 0⇔ X ∈ C ⇔ HomA(X , C[1]) = 0.
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Cluster categories

Definition

A triangulated category A is called cluster category if it
admits a cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If A is 2-CY category with cluster tilting subcategories, then

cluster tilting subcategories in A form a cluster structure ⇔
no loop or 2-cycle in quiver of any cluster tilting subcategory.
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2-CY category associated with hereditary category

1 Let H be Hom-finite, hereditary, abelian k-category
having AR-sequences.

2 Then Db(H) has AR-triangles, and its AR-translation is
auto-equivalence.

3 Let Db(H) be full subcategory of Db(H), containing
exactly one object of each isoclass of objects of Db(H).

4 Then Db(H) has AR-triangles, and its AR-translation τ
D

is automorphism.

Theorem(Keller)

Setting F = τ−1
D
◦ [1], the canonical orbit category

C (H) = Db(H)/< F >

is 2-CY triangulated category.
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Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.

1 Then rep(Q) has AR-sequences.

2 The cluster tilting subcategories in C (rep(Q)) form a

cluster structure in case Q is

finite (BMRRT);

of type A∞ or A∞∞ (Liu, Paquette);

of type D∞ (Yang).
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1 Consider the valued quiver

C∞ : 0
(2,1) // 1 2 //oo 3 4 //oo

and its following R-species :

C∞ : C C // R RRoo R // R RRoo R //

2 We shall show that C (rep(C∞)) is a cluster category.
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Recall the following covering:

x1 x2
//oo

A∞∞ : x0

##

;;

x−1 x−2
//oo

R R R //Roo

A∞∞ : R

R ""

R
<<

R R R //Roo

ϕ

��
Φ

��

C∞ : 0
(2,1) // 1 2oo // C∞ : C C // R RRoo R //



Group action on C (A∞∞)

Consider the following automorphism

σ : A∞∞ → A∞∞ : xn 7→ x−n.

Then < σ >= {e, σ} := G .

Remark

The G -action on A∞∞ ⇒ G -action on rep(A∞∞);

⇒ G -action on C (A∞∞);

⇒ G -action on Γ C (A∞∞).
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Properties of the cluster category C (A∞∞)

Theorem (Liu, Paquette)

The AR-quiver Γ C (A∞∞) of C (A∞∞) consists of

a connecting component CA∞∞(∼= ZA∞∞) ;

two orthogonal regular components RR ,RL(∼= ZA∞).

Observation

Consider the σ-action on Γ C (A∞∞).

1 σ · RR = RL.

2 The σ-action on CA∞∞ is reflection across τ
C
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Induced G -coverings

Theorem

Consider the species covering Φ : A∞∞ → C∞.

1 The push-down Φλ : rep(A∞∞)→ rep(C∞) is G -covering.

2 The push-down Φλ induces G -covering

ΦD
λ : Db(rep(A∞∞)) // Db(rep(C∞)),

which induces G -covering

ΦC
λ : C (rep(A∞∞)) // C (rep(C∞)).

3 The functor ΦC
λ induces valued translation quiver covering

ΦC
λ : Γ C (rep(A∞∞))

// Γ C (rep(C∞)).
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The cluster category C (rep(C∞))

Theorem

1 The cluster tilting subcategories in C (rep(C∞)) form a
cluster structure.

2 The AR-quiver Γ C (rep(C∞)) of C (rep(C∞)) consists of

a connecting component CC∞(∼= ZC∞), obtained by

folding CA∞∞ along the τ
C

-orbit of P[x0] ;

a regular component R (∼= ZA∞), obtained by

identifying RR with RL.

Remark

In a similar fashion, we can construct a cluster category of
type B∞.
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The infinite strip with marked points

Consider the strip in the plane

S [−1, 1] = {(x , y) ∈ R2 | −1 ≤ y ≤ 1}

with marked points:

ln = (n, 1), ri = (−n,−1); n ∈ Z.
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Arcs in S [−1, 1]

There exist in S [−1, 1] three types of arcs:

upper arcs : [li , lj ] with |i − j | > 1;

lower arcs : [ri , rj ] with |i − j | > 1;

connecting arcs : [li , rj ] with i , j ∈ Z.
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Geometric realization of C (rep(A∞∞))

Theorem (Liu, Paquette)

C (rep(A∞∞)) // S [−1, 1]oo

{objects in RL} // {upper arcs}oo

{objects in RR} // {lower arcs}oo

{objects in CA∞∞} // {connecting arcs}oo

{maximal rigid subcategories} // {triangulations}oo

{cluster tilting subcategories} // {compact triangulations}oo
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The twisted strip with marked points

1 The group G =< σ > acts on S [−1, 1], with σ acting as

rotation around the origin of angle π.

2 The twisted strip is the quotient

S [0, 1] = S [−1, 1]/G .
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Arcs in the twisted strip

1 S [0, 1] has a fundamental domain

{(x , y) ∈ R2 | 0 ≤ y ≤ 1}\{(x , 0) | x < 0}

with marked points li = (i , 1); i ∈ Z.

2 There exist two types of arcs:

upper arcs : [li , lj ], with |i − j | ≥ 2, not passing

through the origin O;

connecting arcs : [li ,O, lj ], i , j ∈ Z, passing through

the origin O.
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Match between algebraic covering and topological covering

C (A∞∞)

ΦC
λ

��

geometric realization // S [−1, 1]

π

��

oo

C (C∞)
geometric realization // S [0, 1]oo


