Covering Theory and Cluster Categories

Shiping Liu (Université de Sherbrooke) Joint with
Fang Li, Jinde Xu and Yichao Yang

International Workshop

 on Cluster Algebras and Related TopicsChern Institute of Mathematics
Nankai University (Tianjin, China) July 10-13, 2017

Objective

(1) Construct a universal covering for each valued quiver.

Objective

(1) Construct a universal covering for each valued quiver.
(2) Introduce covering of species and the associated push-down functor.

Objective

(1) Construct a universal covering for each valued quiver.
(3) Introduce covering of species and the associated push-down functor.

- As an application, we shall construct a cluster category of non simply laced type \mathbb{C}_{∞}.

Motivation

(1) Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example,

Motivation

(1) Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.

Motivation

(1) Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.
(2) The unfolding of an exchange matrix is a covering of the corresponding valued quiver.
(1) Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.
(2) The unfolding of an exchange matrix is a covering of the corresponding valued quiver.
(3) There is a growing interest in cluster categories with a cluster structure of infinite rank, while cluster categories of non simply laced type seems unseen.

Part I

Covering theory

for species and their representations

joint with

Fang Li, Jinde Xu and Yichao Yang

Valued quivers

(1) A valued quiver is a pair (Δ, v), where

Valued quivers

(1) A valued quiver is a pair (Δ, v), where

- $\Delta=\left(\Delta_{0}, \Delta_{1}\right)$ is a locally finite quiver without multiple arrows, loops or 2-cycles;

Valued quivers

(1) A valued quiver is a pair (Δ, v), where

- $\Delta=\left(\Delta_{0}, \Delta_{1}\right)$ is a locally finite quiver without multiple arrows, loops or 2-cycles;
- v is a valuation, that is, each arrow $x \rightarrow y$ is endowed with $\left(v_{x y}, v_{y x}\right) \in \mathbb{N} \times \mathbb{N}$.

Valued quivers

(1) A valued quiver is a pair (Δ, v), where

- $\Delta=\left(\Delta_{0}, \Delta_{1}\right)$ is a locally finite quiver without multiple arrows, loops or 2-cycles;
- v is a valuation, that is, each arrow $x \rightarrow y$ is endowed with $\left(v_{x y}, v_{y x}\right) \in \mathbb{N} \times \mathbb{N}$.
(2) The valuation v is called trivial if $v_{x y}=v_{y x}=1$ for every $x \rightarrow y \in \Delta_{1}$.

Valued quivers

(1) A valued quiver is a pair (Δ, v), where

- $\Delta=\left(\Delta_{0}, \Delta_{1}\right)$ is a locally finite quiver without multiple arrows, loops or 2-cycles;
- v is a valuation, that is, each arrow $x \rightarrow y$ is endowed with $\left(v_{x y}, v_{y x}\right) \in \mathbb{N} \times \mathbb{N}$.
(2) The valuation v is called trivial if $v_{x y}=v_{y x}=1$ for every $x \rightarrow y \in \Delta_{1}$.

Remark

A non-valued quiver without multiple arrows, loops or 2-cycles is regarded as a trivially valued quiver.

Example

A valued quiver of type \mathbb{C}_{∞} with a zigzag orientation:

$$
0 \xrightarrow{(2,1)} 1 \lessdot-2 \longrightarrow 3 \lessdot 4 \longrightarrow 5<
$$

where trivial valuations are omitted.

Valued quiver morphisms

Definition

(1) Let (Γ, u) and (Δ, v) be valued quivers.

Valued quiver morphisms

Definition

(1) Let (Γ, u) and (Δ, v) be valued quivers.
(2) A quiver morphism $\varphi: \Gamma \rightarrow \Delta$ is valued quiver morphism

Valued quiver morphisms

Definition

(1) Let (Γ, u) and (Δ, v) be valued quivers.
(2) A quiver morphism $\varphi: \Gamma \rightarrow \Delta$ is valued quiver morphism
if, for any $x \xrightarrow{\left(u_{x y}, u_{y x}\right)} y \in \Gamma_{1}$, we have

$$
\left(u_{x y}, u_{y x}\right) \leq\left(v_{\varphi(x), \varphi(y)}, v_{\varphi(y), \varphi(x)}\right)
$$

Valued quiver covering

Definition

A valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is called a valued quiver covering provided that

Valued quiver covering

Definition

A valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is called a valued quiver covering provided that

- Given $a \in \Delta_{0}, \varphi^{-}(a):=\left\{x \in \Gamma_{0} \mid \varphi(x)=a\right\} \neq \emptyset$;

Valued quiver covering

Definition

A valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is called a valued quiver covering provided that
(1) Given $a \in \Delta_{0}, \varphi^{-}(a):=\left\{x \in \Gamma_{0} \mid \varphi(x)=a\right\} \neq \emptyset$;
(2) Given any arrow $\alpha: a \xrightarrow{\left(v_{a b}, v_{b a}\right)} b \in \Delta_{1}$,

Valued quiver covering

Definition

A valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is called a valued quiver covering provided that
(1) Given $a \in \Delta_{0}, \varphi^{-}(a):=\left\{x \in \Gamma_{0} \mid \varphi(x)=a\right\} \neq \emptyset$;
(2) Given any arrow $\alpha: a \xrightarrow{\left(v_{a b}, v_{b a}\right)} b \in \Delta_{1}$,

- for any $x \in \varphi^{-}(a)$, we have

$$
v_{a b}=\sum_{\beta: x \rightarrow y \in \varphi^{-}(\alpha)} u_{x y}
$$

Valued quiver covering

Definition

A valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is called a valued quiver covering provided that
(1) Given $a \in \Delta_{0}, \varphi^{-}(a):=\left\{x \in \Gamma_{0} \mid \varphi(x)=a\right\} \neq \emptyset$;
(2) Given any arrow $\alpha: a \xrightarrow{\left(v_{a b}, v_{b a}\right)} b \in \Delta_{1}$,

- for any $x \in \varphi^{-}(a)$, we have

$$
v_{a b}=\sum_{\beta: x \rightarrow y \in \varphi^{-}(\alpha)} u_{x y}
$$

- for any $y \in \varphi^{-}(b)$, we have

$$
v_{b a}=\sum_{\gamma: x \rightarrow y \in \varphi^{-}(\alpha)} u_{y x}
$$

Example of valued quiver covering

Universal cover of a non-valued quiver

Theorem (Bongartz, Gabriel)

Given non-valued quiver Q, one has unique quiver covering

$$
\pi: \tilde{Q} \rightarrow Q,
$$

where \tilde{Q} is a tree, called universal cover of Q.

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Definition

Define unfolding quiver $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Definition

Define unfolding quiver $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

- $\hat{\Delta}_{0}=\Delta_{0}$;

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Definition

Define unfolding quiver $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

- $\hat{\Delta}_{0}=\Delta_{0}$;
- For each arrow $\alpha: x \xrightarrow{\left(v_{x y}, v_{y x}\right)} y$ in Δ, one draws $v_{x y} v_{y x}$ arrows $\alpha_{i j}: x \rightarrow y$ in $\hat{\Delta}$, arranged as a $\left(v_{y x} \times v_{x y}\right)$-matrix

$$
\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1, v_{x y}} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2, v_{x y}} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{v_{y x}, 1} & \alpha_{v_{y x}, 2} & \cdots & \alpha_{v_{y x}, v_{x y}}
\end{array}\right)
$$

Universal cover of a valued quiver

Theorem

(1) There exists a valued quiver covering

$$
\pi: \tilde{\Delta} \longrightarrow \Delta
$$

Universal cover of a valued quiver

Theorem

(1) There exists a valued quiver covering

$$
\pi: \tilde{\Delta} \longrightarrow \Delta
$$

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$.

Universal cover of a valued quiver

Theorem

(1) There exists a valued quiver covering

$$
\pi: \tilde{\Delta} \longrightarrow \Delta
$$

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$.
In particular, $\tilde{\Delta}$ is a trivially valued tree.

Universal cover of a valued quiver

Theorem

(1) There exists a valued quiver covering

$$
\pi: \tilde{\Delta} \longrightarrow \Delta
$$

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$.
In particular, $\tilde{\Delta}$ is a trivially valued tree.
(2) π covers every valued quiver covering $\phi: \Gamma \rightarrow \Delta$.

Example: Universal cover of \mathbb{C}_{∞}

Species

(Δ, v) : symmetrizable valued quiver without infinite paths.

Species

(Δ, v) : symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species \mathcal{S} of (Δ, v) consists of

Species

(Δ, v) : symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species \mathcal{S} of (Δ, v) consists of

- finite dimensional division k-algebra $\mathcal{S}(i)$, for $i \in \Delta_{0}$;
(Δ, v) : symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species \mathcal{S} of (Δ, v) consists of

- finite dimensional division k-algebra $\mathcal{S}(i)$, for $i \in \Delta_{0}$;
- $\mathcal{S}(i)-\mathcal{S}(j)$-bimodules $\mathcal{S}(\alpha)$, for $\alpha: i \xrightarrow{\left(v_{i j}, v_{j i}\right)} j \in \Delta_{1}$, with
(Δ, v) : symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species \mathcal{S} of (Δ, v) consists of

- finite dimensional division k-algebra $\mathcal{S}(i)$, for $i \in \Delta_{0}$;
- $\mathcal{S}(i)-\mathcal{S}(j)$-bimodules $\mathcal{S}(\alpha)$, for $\alpha: i \xrightarrow{\left(v_{i j}, v_{j i}\right)} j \in \Delta_{1}$, with
- $\operatorname{dim} \mathcal{S}(\alpha)_{\mathcal{S}(j)}=v_{i j} ;$
(Δ, v) : symmetrizable valued quiver without infinite paths.

Definition

Let k be a field. A k-species \mathcal{S} of (Δ, v) consists of

- finite dimensional division k-algebra $\mathcal{S}(i)$, for $i \in \Delta_{0}$;
- $\mathcal{S}(i)-\mathcal{S}(j)$-bimodules $\mathcal{S}(\alpha)$, for $\alpha: i \xrightarrow{\left(v_{i j}, v_{j i}\right)} j \in \Delta_{1}$, with
- $\operatorname{dim} \mathcal{S}(\alpha)_{\mathcal{S}(j)}=v_{i j} ;$
- $\operatorname{dim}_{\mathcal{S}(i)} \mathcal{S}(\alpha)=v_{j j}$.

Example: \mathbb{R}-species of \mathbb{C}_{∞}

$$
\begin{aligned}
& \mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1 \longleftarrow 2 \longrightarrow 3<4 \cdots \\
& \mathcal{C}_{\infty}: \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R}<\mathbb{R}^{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \leftarrow^{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}}>
\end{aligned}
$$

Representations of a species

(1) A representation X of a speceis \mathcal{S} consists of

Representations of a species

(1) A representation X of a speceis \mathcal{S} consists of

- right $\mathcal{S}(i)$-vector space $X(i)$, for each $i \in \Delta_{0}$;

Representations of a species

(1) A representation X of a speceis \mathcal{S} consists of

- right $\mathcal{S}(i)$-vector space $X(i)$, for each $i \in \Delta_{0}$;
- $\mathcal{S}(j)$-linear map

$$
X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \rightarrow X(j),
$$

for each $\alpha: i \rightarrow j \in \Delta_{1}$.

Representations of a species

(1) A representation X of a speceis \mathcal{S} consists of

- right $\mathcal{S}(i)$-vector space $X(i)$, for each $i \in \Delta_{0}$;
- $\mathcal{S}(j)$-linear map

$$
X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \rightarrow X(j),
$$

for each $\alpha: i \rightarrow j \in \Delta_{1}$.
(2) Set $\operatorname{dim} X=\sum_{i \in \Delta_{\mathrm{o}}} \operatorname{dim} X(i)_{\mathcal{S}(i)}$.

Representations of a species

(1) A representation X of a speceis \mathcal{S} consists of

- right $\mathcal{S}(i)$-vector space $X(i)$, for each $i \in \Delta_{0}$;
- $\mathcal{S}(j)$-linear map

$$
X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \rightarrow X(j)
$$

for each $\alpha: i \rightarrow j \in \Delta_{1}$.
(2) Set $\operatorname{dim} X=\sum_{i \in \Delta_{\mathrm{o}}} \operatorname{dim} X(i)_{\mathcal{S}(i)}$.

Proposition (Dlab-Ringel)

The category $\operatorname{rep}(\mathcal{S})$ of finite dimensional representations of \mathcal{S} is a hereditary abelian category.

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).
Definition
A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of

- a valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$;

Morphisms of species

\mathcal{T} ：species of another valued quiver no infinite path (Γ, u) ．

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of
－a valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ ；
（0）an algebra morphism $\varphi_{i}: \mathcal{T}(i) \rightarrow \mathcal{S}(\varphi(i))$ ，for each $i \in \Gamma_{0}$ ；

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of

- a valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$;
(2) an algebra morphism $\varphi_{i}: \mathcal{T}(i) \rightarrow \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_{0}$;
- For each arrow $\beta: i \rightarrow j \in \Gamma$ with $\alpha=\varphi(\beta): a \rightarrow b$,

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of

- a valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$;
(2) an algebra morphism $\varphi_{i}: \mathcal{T}(i) \rightarrow \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_{0}$;
- For each arrow $\beta: i \rightarrow j \in \Gamma$ with $\alpha=\varphi(\beta): a \rightarrow b$,
- $\mathcal{T}(i)-\mathcal{S}(b)$-bilinear map

$$
{ }_{\beta} \varphi: \mathcal{T}(\beta) \otimes_{\mathcal{T}(j)} \mathcal{S}(b) \rightarrow \mathcal{S}(\alpha) ;
$$

Morphisms of species

\mathcal{T} : species of another valued quiver no infinite path (Γ, u).

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ consists of

- a valued quiver morphism $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$;
(2) an algebra morphism $\varphi_{i}: \mathcal{T}(i) \rightarrow \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_{0}$;
- For each arrow $\beta: i \rightarrow j \in \Gamma$ with $\alpha=\varphi(\beta): a \rightarrow b$,
- $\mathcal{T}(i)-\mathcal{S}(b)$-bilinear map

$$
{ }_{\beta} \varphi: \mathcal{T}(\beta) \otimes_{\mathcal{T}(j)} \mathcal{S}(b) \rightarrow \mathcal{S}(\alpha) ;
$$

- $\mathcal{S}(a)-\mathcal{T}(j)$-bilinear map

$$
\varphi_{\beta}: \mathcal{S}(a) \otimes_{\mathcal{T}(i)} \mathcal{T}(\beta) \rightarrow \mathcal{S}(\alpha) .
$$

Species covering

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ is called species covering if

Species covering

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ is called species covering if
(1) $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is valued quiver covering;

Species covering

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ is called species covering if
(1) $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is valued quiver covering;
(2) Given any $\alpha: a \rightarrow b \in \Delta_{1}$, the following are satisfied.

Species covering

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ is called species covering if
(1) $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is valued quiver covering;
(2) Given any $\alpha: a \rightarrow b \in \Delta_{1}$, the following are satisfied.

- For each $i \in \varphi^{-}(a)$, there exists an isomorphism

$$
\left({ }_{\beta} \varphi\right): \bigoplus_{\beta: i \rightarrow j \in \varphi^{-}(\alpha)} \mathcal{T}(\beta) \bigotimes_{\mathcal{T}(j)} \mathcal{S}(b) \rightarrow \mathcal{S}(\alpha)
$$

Species covering

Definition

A species morphism $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ is called species covering if
(1) $\varphi:(\Gamma, u) \rightarrow(\Delta, v)$ is valued quiver covering;
(2) Given any $\alpha: a \rightarrow b \in \Delta_{1}$, the following are satisfied.

- For each $i \in \varphi^{-}(a)$, there exists an isomorphism

$$
\left({ }_{\beta} \varphi\right): \bigoplus_{\beta: i \rightarrow j \in \varphi^{-}(\alpha)} \mathcal{T}(\beta) \bigotimes_{\mathcal{T}(j)} \mathcal{S}(b) \rightarrow \mathcal{S}(\alpha)
$$

- For each $j \in \varphi^{-}(b)$, there exists isomorphism

$$
\left(\varphi_{\gamma}\right): \bigoplus_{\gamma: i \rightarrow j \in \varphi^{-}(\alpha)} \mathcal{S}(a) \bigotimes_{\mathcal{T}(i)} \mathcal{T}(\gamma) \rightarrow \mathcal{S}(\alpha)
$$

Example of species covering

Push-down functor and pull-up functor

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.

Push-down functor and pull-up functor

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows.

Push-down functor and pull-up functor

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

Push-down functor and pull-up functor

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

$$
\Phi_{\lambda}(X)(a)=\oplus_{i \in \varphi^{-}(a)} X(i) \otimes_{\mathcal{T}(i)} \mathcal{S}(a) ;
$$

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

$$
\Phi_{\lambda}(X)(a)=\oplus_{i \in \varphi^{-}(a)} X(i) \otimes_{\mathcal{T}(i)} \mathcal{S}(a) ;
$$

(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ as follows.

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

$$
\Phi_{\lambda}(X)(a)=\oplus_{i \in \varphi^{-}(a)} X(i) \otimes_{\mathcal{T}(i)} \mathcal{S}(a) ;
$$

(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ as follows. If $M \in \operatorname{rep}(\mathcal{S})$, then $\Phi_{\mu}(M) \in \operatorname{rep}(\mathcal{T})$ such, for $i \in \Gamma_{0}$,

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

$$
\Phi_{\lambda}(X)(a)=\oplus_{i \in \varphi^{-}(a)} X(i) \otimes_{\mathcal{T}(i)} \mathcal{S}(a) ;
$$

(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ as follows. If $M \in \operatorname{rep}(\mathcal{S})$, then $\Phi_{\mu}(M) \in \operatorname{rep}(\mathcal{T})$ such, for $i \in \Gamma_{0}$,

$$
\Phi_{\mu}(M)(i)=M(\varphi(i)),
$$

Fix a species covering $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ with vqc $\varphi: \Gamma \rightarrow \Delta$.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ as follows. If $X \in \operatorname{rep}(\mathcal{T})$, then $\Phi_{\lambda}(X) \in \operatorname{rep}(\mathcal{S})$ such, for $a \in \Delta_{0}$,

$$
\Phi_{\lambda}(X)(a)=\oplus_{i \in \varphi^{-}(a)} X(i) \otimes_{\mathcal{T}(i)} \mathcal{S}(a) ;
$$

(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ as follows. If $M \in \operatorname{rep}(\mathcal{S})$, then $\Phi_{\mu}(M) \in \operatorname{rep}(\mathcal{T})$ such, for $i \in \Gamma_{0}$,

$$
\Phi_{\mu}(M)(i)=M(\varphi(i))
$$

which is considered as $\mathcal{T}(i)$-vector space.

Adjoint pairs

Theorem

Let $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ be a species covering.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ induces an exact functor $\Phi_{\lambda}^{D}: D^{b}(\operatorname{rep}(\mathcal{T})) \rightarrow D^{b}(\operatorname{rep}(\mathcal{S}))$.

Adjoint pairs

Theorem

Let $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ be a species covering.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ induces an exact functor $\Phi_{\lambda}^{D}: D^{b}(\operatorname{rep}(\mathcal{T})) \rightarrow D^{b}(\operatorname{rep}(\mathcal{S}))$.
(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ induces an exact functor $\Phi_{\mu}^{D}: D^{b}(\operatorname{rep}(\mathcal{S})) \rightarrow D^{b}(\operatorname{rep}(\mathcal{T}))$.

Adjoint pairs

Theorem

Let $\Phi: \mathcal{T} \rightarrow \mathcal{S}$ be a species covering.
(1) The push-down functor $\Phi_{\lambda}: \operatorname{rep}(\mathcal{T}) \rightarrow \operatorname{rep}(\mathcal{S})$ induces an exact functor $\Phi_{\lambda}^{D}: D^{b}(\operatorname{rep}(\mathcal{T})) \rightarrow D^{b}(\operatorname{rep}(\mathcal{S}))$.
(2) The pull-up functor $\Phi_{\mu}: \operatorname{rep}(\mathcal{S}) \rightarrow \operatorname{rep}(\mathcal{T})$ induces an exact functor $\Phi_{\mu}^{D}: D^{b}(\operatorname{rep}(\mathcal{S})) \rightarrow D^{b}(\operatorname{rep}(\mathcal{T}))$.
(3) $\left(\Phi_{\lambda}, \Phi_{\mu}\right)$ and $\left(\Phi_{\lambda}^{D}, \Phi_{\mu}^{D}\right)$ are adjoint pairs.

Example of push-down

$$
\psi \Phi
$$

$$
\mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \stackrel{\mathbb{R}}{\leftarrow} \mathbb{R} \cdots \stackrel{\mathbb{R}}{\stackrel{\rightharpoonup}{*}}
$$

$\Downarrow \Phi_{\lambda}$
$\mathbb{C} \longrightarrow \mathbb{R} \oplus \mathbb{R} \longleftarrow 0 \cdots \rightarrow$

Part II

Cluster category of type \mathbb{C}_{∞}

joint with

Jinde Xu and Yichao Yang

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.
(2) G : group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y)=0$ for almost all $g \in G$.

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.
(2) G : group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y)=0$ for almost all $g \in G$.

- Define G-orbit category \mathcal{A} / G as follows.

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.
(2) G : group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y)=0$ for almost all $g \in G$.

- Define G-orbit category \mathcal{A} / G as follows.
- The objects of \mathcal{A} / G are those of \mathcal{A};

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.
(2) G : group acting on \mathcal{A} such, for objects X, Y, that

$$
\mathcal{A}(X, g \cdot Y)=0 \text { for almost all } g \in G .
$$

- Define G-orbit category \mathcal{A} / G as follows.
- The objects of \mathcal{A} / G are those of \mathcal{A};
- $(\mathcal{A} / G)(X, Y)=\oplus_{g \in G} \mathcal{A}(X, g \cdot Y)$.

Orbit category

(1) \mathcal{A} : Hom-finite Krull-Schmidt additive k-category.
(2) G : group acting on \mathcal{A} such, for objects X, Y, that

$$
\mathcal{A}(X, g \cdot Y)=0 \text { for almost all } g \in G .
$$

- Define G-orbit category \mathcal{A} / G as follows.
- The objects of \mathcal{A} / G are those of \mathcal{A};
- $(\mathcal{A} / G)(X, Y)=\oplus_{g \in G} \mathcal{A}(X, g \cdot Y)$.

Lemma

\mathcal{A} / G is Hom-finite Krull-Schmidt additive k-category with a canonical embedding

$$
\sigma: \mathcal{A} \rightarrow \mathcal{A} / G: X \mapsto X ; f \mapsto f .
$$

G-covering

Definition

A k-linear functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is called G-covering provided

G-covering

Definition

A k-linear functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is called G-covering provided
\exists commutative diagram

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.
A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called cluster structure provided, for any $\mathcal{C} \in \mathfrak{C}$, that

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.
A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called cluster structure provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver $Q_{\mathcal{C}}$ of \mathcal{C} has no loop or 2-cycle;

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.
A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called cluster structure provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver $Q_{\mathcal{C}}$ of \mathcal{C} has no loop or 2-cycle;
© for any $M \in \operatorname{ind} \mathcal{C}, \exists!M^{*} \in \operatorname{ind} \mathcal{A}(\not \neq M)$ such that $\mu_{M}(\mathcal{C}):=\operatorname{add}\left(\mathcal{C}_{M}, M^{*}\right)$ lies in \mathfrak{C};

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.
A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called cluster structure provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver $Q_{\mathcal{C}}$ of \mathcal{C} has no loop or 2-cycle;
(2) for any $M \in \operatorname{ind} \mathcal{C}, \exists!M^{*} \in \operatorname{ind} \mathcal{A}(\not \neq M)$ such that $\mu_{M}(\mathcal{C}):=\operatorname{add}\left(\mathcal{C}_{M}, M^{*}\right)$ lies in \mathfrak{C};
- $Q_{\mu_{M}(\mathcal{C})}$ is obtained from $Q_{\mathcal{C}}$ by FZ-mutation at M;

Cluster structure

Assume now that \mathcal{A} is a triangulated k-category.
A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called cluster structure provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver $Q_{\mathcal{C}}$ of \mathcal{C} has no loop or 2-cycle;
© for any $M \in \operatorname{ind} \mathcal{C}, \exists!M^{*} \in \operatorname{ind} \mathcal{A}(\not \neq M)$ such that $\mu_{M}(\mathcal{C}):=\operatorname{add}\left(\mathcal{C}_{M}, M^{*}\right)$ lies in \mathfrak{C};
- $Q_{\mu_{M}(\mathcal{C})}$ is obtained from $Q_{\mathcal{C}}$ by FZ-mutation at M;
- There exist in \mathcal{A} two exact triangles:

$$
\begin{aligned}
& M \xrightarrow{f} N \xrightarrow{g} M^{*} \longrightarrow M[1] ; \\
& M^{*} \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^{*}[1],
\end{aligned}
$$

where f, u are minimal left \mathcal{C}_{M}-approximations; g, v are minimal right \mathcal{C}_{M}-approximations.

Cluster tilting subcategories

Definition (Koenig, Zhu)

A subcategory \mathcal{C} of \mathcal{A} is called cluster-tilting provided that

Cluster tilting subcategories

Definition (Koenig, Zhu)

A subcategory \mathcal{C} of \mathcal{A} is called cluster-tilting provided that
(1) \mathcal{C} is functorially finite in \mathcal{A};

Cluster tilting subcategories

Definition (Koenig, Zhu)

A subcategory \mathcal{C} of \mathcal{A} is called cluster-tilting provided that
(1) \mathcal{C} is functorially finite in \mathcal{A};
(2) For any object $X \in \mathcal{A}$, we have

$$
\operatorname{Hom}_{\mathcal{A}}(\mathcal{C}, X[1])=0 \Leftrightarrow X \in \mathcal{C} \Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(X, \mathcal{C}[1])=0 .
$$

Cluster categories

Definition
A triangulated category \mathcal{A} is called cluster category if it admits a cluster structure.

Cluster categories

Definition

A triangulated category \mathcal{A} is called cluster category if it admits a cluster structure.

Theorem (Buan, lyama, Reiten, Scott)

If \mathcal{A} is $2-\mathrm{CY}$ category with cluster tilting subcategories, then

Cluster categories

Definition

A triangulated category \mathcal{A} is called cluster category if it admits a cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is $2-\mathrm{CY}$ category with cluster tilting subcategories, then cluster tilting subcategories in \mathcal{A} form a cluster structure \Leftrightarrow

Cluster categories

Definition

A triangulated category \mathcal{A} is called cluster category if it admits a cluster structure.

Theorem (Buan, lyama, Reiten, Scott)

If \mathcal{A} is $2-\mathrm{CY}$ category with cluster tilting subcategories, then cluster tilting subcategories in \mathcal{A} form a cluster structure \Leftrightarrow no loop or 2-cycle in quiver of any cluster tilting subcategory.

2-CY category associated with hereditary category

(1) Let \mathcal{H} be Hom-finite, hereditary, abelian k-category having AR-sequences.

2-CY category associated with hereditary category

(1) Let \mathcal{H} be Hom-finite, hereditary, abelian k-category having AR-sequences.
(2) Then $D^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.

2-CY category associated with hereditary category

(1) Let \mathcal{H} be Hom-finite, hereditary, abelian k-category having AR-sequences.
(2) Then $D^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.
(3) Let $\mathscr{D}^{b}(\mathcal{H})$ be full subcategory of $D^{b}(\mathcal{H})$, containing exactly one object of each isoclass of objects of $D^{b}(\mathcal{H})$.

2-CY category associated with hereditary category

(1) Let \mathcal{H} be Hom-finite, hereditary, abelian k-category having AR-sequences.
(2) Then $D^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.
(3) Let $\mathscr{D}^{b}(\mathcal{H})$ be full subcategory of $D^{b}(\mathcal{H})$, containing exactly one object of each isoclass of objects of $D^{b}(\mathcal{H})$.
(9) Then $\mathscr{D}^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation $\tau_{\mathscr{D}}$ is automorphism.

2-CY category associated with hereditary category

(1) Let \mathcal{H} be Hom-finite, hereditary, abelian k-category having AR-sequences.
(2) Then $D^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.

- Let $\mathscr{D}^{b}(\mathcal{H})$ be full subcategory of $D^{b}(\mathcal{H})$, containing exactly one object of each isoclass of objects of $D^{b}(\mathcal{H})$.
- Then $\mathscr{D}^{b}(\mathcal{H})$ has AR-triangles, and its AR-translation $\tau_{\mathscr{D}}$ is automorphism.

Theorem(Keller)

Setting $F=\tau_{\mathscr{D}}^{-1} \circ[1]$, the canonical orbit category

$$
\mathscr{C}(\mathcal{H})=\mathscr{D}^{b}(\mathcal{H}) /\langle F\rangle
$$

is $2-\mathrm{CY}$ triangulated category.

Known cluster categories from hereditary category

Theorem
 Let Q be a locally finite quiver without infinite paths.

Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.
(1) Then $\operatorname{rep}(Q)$ has $A R$-sequences.

Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.
(1) Then $\operatorname{rep}(Q)$ has $A R$-sequences.
(2) The cluster tilting subcategories in $\mathscr{C}(\operatorname{rep}(Q))$ form a cluster structure in case Q is

Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.
(1) Then $\operatorname{rep}(Q)$ has $A R$-sequences.
(2) The cluster tilting subcategories in $\mathscr{C}(\operatorname{rep}(Q))$ form a cluster structure in case Q is

- finite (BMRRT);

Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.
(1) Then $\operatorname{rep}(Q)$ has $A R$-sequences.
(2) The cluster tilting subcategories in $\mathscr{C}(\operatorname{rep}(Q))$ form a cluster structure in case Q is

- finite (BMRRT);
- of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ (Liu, Paquette);

Known cluster categories from hereditary category

Theorem

Let Q be a locally finite quiver without infinite paths.
(1) Then $\operatorname{rep}(Q)$ has $A R$-sequences.
(2) The cluster tilting subcategories in $\mathscr{C}(\operatorname{rep}(Q))$ form a cluster structure in case Q is

- finite (BMRRT);
- of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ (Liu, Paquette);
- of type \mathbb{D}_{∞} (Yang).
(1) Consider the valued quiver

$$
\mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1 \leftarrow 2 \longrightarrow 3<4 \cdots \cdots
$$

and its following \mathbb{R}-species :

$$
\mathcal{C}_{\infty}: \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \stackrel{\mathbb{R}}{\longleftrightarrow} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \stackrel{\mathbb{R}}{\longleftrightarrow} \mathbb{R} \cdots \xrightarrow{\mathbb{R}} \rightarrow
$$

(1) Consider the valued quiver

$$
\mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1<2 \longrightarrow 3<4 \cdots \cdots
$$

and its following \mathbb{R}-species :

$$
\mathcal{C}_{\infty}: \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \stackrel{\mathbb{R}}{\leftarrow} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \stackrel{\mathbb{R}}{\longleftrightarrow} \mathbb{R} \cdots \xrightarrow{\mathbb{R}} \rightarrow
$$

(2) We shall show that $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ is a cluster category.

Recall the following covering:

$\mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1 \longleftarrow 2 \xrightarrow{\cdots} \rightarrow$

Group action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Consider the following automorphism

$$
\sigma: \mathbb{A}_{\infty}^{\infty} \rightarrow \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n} .
$$

Group action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Consider the following automorphism

$$
\sigma: \mathbb{A}_{\infty}^{\infty} \rightarrow \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}
$$

Then $<\sigma>=\{e, \sigma\}:=G$.

Group action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Consider the following automorphism

$$
\sigma: \mathbb{A}_{\infty}^{\infty} \rightarrow \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}
$$

Then $\langle\sigma>=\{e, \sigma\}:=G$.
Remark
The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow G$-action on $\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)$;

Group action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Consider the following automorphism

$$
\sigma: \mathbb{A}_{\infty}^{\infty} \rightarrow \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}
$$

Then $\langle\sigma>=\{e, \sigma\}:=G$.

Remark

The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow G$-action on $\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)$;
$\Rightarrow G$-action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$;

Group action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Consider the following automorphism

$$
\sigma: \mathbb{A}_{\infty}^{\infty} \rightarrow \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}
$$

Then $<\sigma>=\{e, \sigma\}:=G$.

Remark

The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow G$-action on $\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)$;
$\Rightarrow G$-action on $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$;
$\Rightarrow G$-action on $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$.

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}\right)$;

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}\right)$;
- two orthogonal regular components $\mathcal{R}_{R}, \mathcal{R}_{L}\left(\cong \mathbb{Z}_{\infty}\right)$.

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}\right)$;
- two orthogonal regular components $\mathcal{R}_{R}, \mathcal{R}_{L}\left(\cong \mathbb{Z}_{\infty}\right)$.

Observation

Consider the σ-action on $\Gamma_{\mathscr{C}}\left(\mathbb{A}_{\infty}^{\infty}\right)$.

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}\right)$;
- two orthogonal regular components $\mathcal{R}_{R}, \mathcal{R}_{L}\left(\cong \mathbb{Z}_{\infty}\right)$.

Observation

Consider the σ-action on $\Gamma_{\mathscr{C}}\left(\mathbb{A}_{\infty}^{\infty}\right)$.
(1) $\sigma \cdot \mathcal{R}_{R}=\mathcal{R}_{L}$.

Properties of the cluster category $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$

Theorem (Liu, Paquette)

The AR-quiver $\Gamma_{\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)}$ of $\mathscr{C}\left(\mathbb{A}_{\infty}^{\infty}\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}^{\infty}\right)$;
- two orthogonal regular components $\mathcal{R}_{R}, \mathcal{R}_{L}\left(\cong \mathbb{Z}_{\infty}\right)$.

Observation

Consider the σ-action on $\Gamma_{\mathscr{C}}\left(\mathbb{A}_{\infty}^{\infty}\right)$.
(1) $\sigma \cdot \mathcal{R}_{R}=\mathcal{R}_{L}$.
(2) The σ-action on $\mathcal{C}_{\mathbb{A} \infty}$ is reflection across $\tau_{\mathscr{C}}$-orbit of $P\left[x_{0}\right]$.

Induced G-coverings

Theorem

Consider the species covering Φ : $\mathcal{A}_{\infty}^{\infty} \rightarrow \mathcal{C}_{\infty}$.

Induced G-coverings

Theorem

Consider the species covering $\Phi: \mathcal{A}_{\infty}^{\infty} \rightarrow \mathcal{C}_{\infty}$.
(1) The push-down $\Phi_{\lambda}: \operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right) \rightarrow \operatorname{rep}\left(\mathcal{C}_{\infty}\right)$ is G-covering.

Induced G-coverings

Theorem

Consider the species covering $\Phi: \mathcal{A}_{\infty}^{\infty} \rightarrow \mathcal{C}_{\infty}$.
(1) The push-down $\Phi_{\lambda}: \operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right) \rightarrow \operatorname{rep}\left(\mathcal{C}_{\infty}\right)$ is G-covering.
(2) The push-down Φ_{λ} induces G-covering

$$
\Phi_{\lambda}^{D}: \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longrightarrow \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right),
$$

Induced G-coverings

Theorem

Consider the species covering $\Phi: \mathcal{A}_{\infty}^{\infty} \rightarrow \mathcal{C}_{\infty}$.
(1) The push-down $\Phi_{\lambda}: \operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right) \rightarrow \operatorname{rep}\left(\mathcal{C}_{\infty}\right)$ is G-covering.
(2) The push-down Φ_{λ} induces G-covering

$$
\Phi_{\lambda}^{D}: \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longrightarrow \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)
$$

which induces G-covering

$$
\Phi_{\lambda}^{\mathscr{C}}: \mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longrightarrow \mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)
$$

Induced G-coverings

Theorem

Consider the species covering $\Phi: \mathcal{A}_{\infty}^{\infty} \rightarrow \mathcal{C}_{\infty}$.
(1) The push-down $\Phi_{\lambda}: \operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right) \rightarrow \operatorname{rep}\left(\mathcal{C}_{\infty}\right)$ is G-covering.
(2) The push-down Φ_{λ} induces G-covering

$$
\Phi_{\lambda}^{D}: \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longrightarrow \mathscr{D}^{b}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)
$$

which induces G-covering

$$
\Phi_{\lambda}^{\mathscr{C}}: \mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longrightarrow \mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)
$$

(3) The functor $\Phi_{\lambda}^{\mathscr{C}}$ induces valued translation quiver covering

$$
\Phi_{\lambda}^{\mathscr{C}}: \Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right)} \longrightarrow \Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)} .
$$

The cluster category $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$
Theorem
(1) The cluster tilting subcategories in $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ form a cluster structure.

The cluster category $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$
Theorem
(1) The cluster tilting subcategories in $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ form a cluster structure.
(2) The $A R$-quiver $\Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)}$ of $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ consists of

The cluster category $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$
Theorem
(1) The cluster tilting subcategories in $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ form a cluster structure.
(2) The $A R$-quiver $\Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)}$ of $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{C}_{\infty}}\left(\cong \mathbb{Z} \mathbb{C}_{\infty}\right)$, obtained by folding $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}$ along the $\tau_{\mathscr{C}}$-orbit of $P\left[x_{0}\right]$;

The cluster category $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$

Theorem

(1) The cluster tilting subcategories in $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ form a cluster structure.
(2) The $A R$-quiver $\Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)}$ of $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{C}_{\infty}}\left(\cong \mathbb{Z} \mathbb{C}_{\infty}\right)$, obtained by folding $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}$ along the $\tau_{\mathscr{C}}$-orbit of $P\left[x_{0}\right]$;
- a regular component $\mathcal{R}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}\right)$, obtained by identifying \mathcal{R}_{R} with \mathcal{R}_{L}.

The cluster category $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$

Theorem

(1) The cluster tilting subcategories in $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ form a cluster structure.
(2) The $A R$-quiver $\Gamma_{\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)}$ of $\mathscr{C}\left(\operatorname{rep}\left(\mathcal{C}_{\infty}\right)\right)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{C}_{\infty}}\left(\cong \mathbb{Z} \mathbb{C}_{\infty}\right)$, obtained by folding $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}$ along the $\tau_{\mathscr{G}}$-orbit of $P\left[x_{0}\right]$;
- a regular component $\mathcal{R}\left(\cong \mathbb{Z} \mathbb{A}_{\infty}\right)$, obtained by identifying \mathcal{R}_{R} with \mathcal{R}_{L}.

Remark

In a similar fashion, we can construct a cluster category of type \mathbb{B}_{∞}.

The infinite strip with marked points

Consider the strip in the plane

$$
S[-1,1]=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq y \leq 1\right\}
$$

with marked points:

$$
\mathfrak{l}_{n}=(n, 1), \mathfrak{r}_{i}=(-n,-1) ; n \in \mathbb{Z}
$$

The infinite strip with marked points

Consider the strip in the plane

$$
S[-1,1]=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq y \leq 1\right\}
$$

with marked points:

$$
\mathfrak{l}_{n}=(n, 1), \mathfrak{r}_{i}=(-n,-1) ; n \in \mathbb{Z}
$$

Arcs in $S[-1,1]$

There exist in $S[-1,1]$ three types of arcs:

- upper arcs: $\left[\mathfrak{l}_{i}, \mathfrak{l}_{j}\right]$ with $|i-j|>1$;
- lower arcs: $\left[\mathfrak{r}_{i}, \mathfrak{r}_{j}\right]$ with $|i-j|>1$;
- connecting arcs : $\left[\mathfrak{l}_{i}, \mathfrak{r}_{j}\right]$ with $i, j \in \mathbb{Z}$.

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right)$

Theorem (Liu, Paquette)

$$
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longleftrightarrow S[-1,1]
$$

$\left\{\right.$ objects in $\left.\mathcal{R}_{L}\right\} \longleftrightarrow$ \{upper arcs $\}$
$\left\{\right.$ objects in $\left.\mathcal{R}_{R}\right\} \longleftrightarrow$ \{lower arcs $\}$
$\left\{\right.$ objects in $\left.\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}\right\} \longleftrightarrow$ \{connecting arcs $\}$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right)$

Theorem (Liu, Paquette)

$$
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longleftrightarrow S[-1,1]
$$

$\left\{\right.$ objects in $\left.\mathcal{R}_{L}\right\} \longleftrightarrow$ \{upper arcs\} $\left\{\right.$ objects in $\left.\mathcal{R}_{R}\right\} \longleftrightarrow$ \{lower arcs $\}$
$\left\{\right.$ objects in $\left.\mathcal{C}_{A_{\infty}}\right\} \longleftrightarrow$ \{connecting arcs\}
\{maximal rigid subcategories $\} \longleftrightarrow \longrightarrow$ \{triangulations $\}$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right)$

Theorem (Liu, Paquette)

$$
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{A}_{\infty}^{\infty}\right)\right) \longleftrightarrow S[-1,1]
$$

$\left\{\right.$ objects in $\left.\mathcal{R}_{L}\right\} \longleftrightarrow$ \{upper arcs $\}$
$\left\{\right.$ objects in $\left.\mathcal{R}_{R}\right\} \longleftrightarrow$ \{lower arcs $\}$
$\left\{\right.$ objects in $\left.\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}\right\} \longleftrightarrow$ \{connecting arcs $\}$
\{maximal rigid subcategories $\} \longleftrightarrow$ \{triangulations $\}$
\{cluster tilting subcategories $\} \longleftrightarrow$ \{compact triangulations $\}$
(1) The group $G=<\sigma>$ acts on $S[-1,1]$, with σ acting as rotation around the origin of angle π.
(1) The group $G=\langle\sigma\rangle$ acts on $S[-1,1]$, with σ acting as rotation around the origin of angle π.
(2) The twisted strip is the quotient

$$
S[0,1]=S[-1,1] / G .
$$

Arcs in the twisted strip

(1) $S[0,1]$ has a fundamental domain

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1\right\} \backslash\{(x, 0) \mid x<0\}
$$

with marked points $\mathfrak{l}_{i}=(i, 1) ; i \in \mathbb{Z}$.

Arcs in the twisted strip

(1) $S[0,1]$ has a fundamental domain

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1\right\} \backslash\{(x, 0) \mid x<0\}
$$

with marked points $\mathfrak{l}_{i}=(i, 1) ; i \in \mathbb{Z}$.
(2) There exist two types of arcs:

Arcs in the twisted strip

(1) $S[0,1]$ has a fundamental domain

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1\right\} \backslash\{(x, 0) \mid x<0\}
$$

with marked points $\mathfrak{l}_{i}=(i, 1) ; i \in \mathbb{Z}$.
(2) There exist two types of arcs:

- upper arcs: $\left[\mathfrak{l}_{i}, \mathrm{l}_{j}\right]$, with $|i-j| \geq 2$, not passing through the origin O;

Arcs in the twisted strip

(1) $S[0,1]$ has a fundamental domain

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1\right\} \backslash\{(x, 0) \mid x<0\}
$$

with marked points $\mathfrak{l}_{i}=(i, 1) ; i \in \mathbb{Z}$.
(2) There exist two types of arcs:

- upper arcs: $\left[\mathfrak{l}_{i}, \mathrm{l}_{j}\right]$, with $|i-j| \geq 2$, not passing through the origin O;
- connecting arcs : $\left[\mathfrak{l}_{i}, O, \mathfrak{l}_{j}\right], i, j \in \mathbb{Z}$, passing through the origin O.

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right)$

Theorem

$$
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right) \longleftrightarrow S[0,1]
$$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right)$

Theorem

$$
\begin{aligned}
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right) & \longleftrightarrow S[0,1] \\
\{\text { objects in } \mathcal{R}\} & \longleftrightarrow\{\text { upper arcs }\}
\end{aligned}
$$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right)$

Theorem

$$
\begin{aligned}
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right) & \longleftrightarrow S[0,1] \\
\{\text { objects in } \mathcal{R}\} & \longleftrightarrow\{\text { upper arcs }\}
\end{aligned}
$$

$\left\{\right.$ objects in $\left.\mathcal{C}_{\mathbb{C}_{\infty}}\right\} \longleftrightarrow \longrightarrow$ \{connecting arcs $\}$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right)$

Theorem

$$
\begin{aligned}
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right) & \longrightarrow S[0,1] \\
\{\text { objects in } \mathcal{R}\} & \longrightarrow\{\text { upper arcs }\}
\end{aligned}
$$

$\left\{\right.$ objects in $\left.\mathcal{C}_{\mathbb{C}_{\infty}}\right\} \longleftrightarrow \longrightarrow$ \{connecting arcs $\}$
$\{$ maximal rigid subcategories $\} \longleftrightarrow$ \{triangulations $\}$

Geometric realization of $\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right)$

Theorem

$$
\begin{aligned}
\mathscr{C}\left(\operatorname{rep}\left(\mathbb{C}_{\infty}\right)\right) & \longleftrightarrow S[0,1] \\
\{\text { objects in } \mathcal{R}\} & \longleftrightarrow\{\text { upper arcs }\}
\end{aligned}
$$

\{objects in $\left.\mathcal{C}_{\mathbb{C}_{\infty}}\right\} \longleftrightarrow \longrightarrow$ \{connecting arcs $\}$
$\{$ maximal rigid subcategories $\} \longleftrightarrow$ \{triangulations $\}$
\{cluster tilting subcategories\} \longleftrightarrow \{compact triangulations\}

Match between algebraic covering and topological covering

