Covering Theory and Cluster Categories

Shiping Liu (Université de Sherbrooke) joint with Fang Li, Jinde Xu and Yichao Yang

International Workshop on Cluster Algebras and Related Topics

Chern Institute of Mathematics Nankai University (Tianjin, China) July 10 - 13, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Construct a universal covering for each valued quiver.

• Construct a universal covering for each valued quiver.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduce covering of species and the associated push-down functor.

- Construct a universal covering for each valued quiver.
- Introduce covering of species and the associated push-down functor.
- S As an application, we shall construct a cluster category of non simply laced type C_∞.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.
- On the unfolding of an exchange matrix is a covering of the corresponding valued quiver.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Unfolding the exchange matrix of a cluster algebra is important in the study of cluster algebras, for example, classification of mutation-finite skew-symmetrizable cluster algebras by Felikson-Shapiro-Tumarkin.
- On the unfolding of an exchange matrix is a covering of the corresponding valued quiver.
- There is a growing interest in cluster categories with a cluster structure of infinite rank, while cluster categories of non simply laced type seems unseen.

Part I

Covering theory for species and their representations

joint with

Fang Li, Jinde Xu and Yichao Yang

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• A valued quiver is a pair (Δ, v) , where

- A valued quiver is a pair (Δ, v) , where
 - Δ = (Δ₀, Δ₁) is a locally finite quiver without multiple arrows, loops or 2-cycles;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Valued quivers

- A valued quiver is a pair (Δ, v) , where
 - Δ = (Δ₀, Δ₁) is a locally finite quiver without multiple arrows, loops or 2-cycles;
 - v is a valuation, that is, each arrow x → y is endowed with (v_{xy}, v_{yx}) ∈ N × N.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Valued quivers

- A valued quiver is a pair (Δ, v) , where
 - Δ = (Δ₀, Δ₁) is a locally finite quiver without multiple arrows, loops or 2-cycles;
 - v is a valuation, that is, each arrow x → y is endowed with (v_{xy}, v_{yx}) ∈ N × N.
- The valuation v is called *trivial* if $v_{xy} = v_{yx} = 1$ for every $x \to y \in \Delta_1$.

Valued quivers

- A valued quiver is a pair (Δ, v) , where
 - Δ = (Δ₀, Δ₁) is a locally finite quiver without multiple arrows, loops or 2-cycles;
 - v is a valuation, that is, each arrow $x \to y$ is endowed with $(v_{xy}, v_{yx}) \in \mathbb{N} \times \mathbb{N}$.
- **2** The valuation v is called *trivial* if $v_{xy} = v_{yx} = 1$ for every $x \to y \in \Delta_1$.

Remark

A non-valued quiver without multiple arrows, loops or 2-cycles is regarded as a trivially valued quiver.

A valued quiver of type \mathbb{C}_{∞} with a zigzag orientation: $0 \xrightarrow{(2,1)} 1 \xleftarrow{} 2 \xrightarrow{} 3 \xleftarrow{} 4 \xrightarrow{} 5 \xleftarrow{} 5 \xleftarrow{} 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where trivial valuations are omitted.

• Let (Γ, u) and (Δ, v) be valued quivers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let (Γ, u) and (Δ, v) be valued quivers.
- **2** A quiver morphism $\varphi : \Gamma \to \Delta$ is *valued quiver morphism*

- Let (Γ, u) and (Δ, v) be valued quivers.
- A quiver morphism φ : Γ → Δ is valued quiver morphism
 if, for any x (u_{xy}, u_{yx})/(y ∈ Γ₁, we have
 (u_{xy}, u_{yx}) ≤ (v_{φ(x),φ(y)}, v_{φ(y),φ(x)}).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Valued quiver covering

Definition

A valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v)$ is called a valued quiver covering provided that

A valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v)$ is called a valued quiver covering provided that

• Given
$$a \in \Delta_0$$
, $\varphi^-(a) := \{x \in \Gamma_0 \mid \varphi(x) = a\} \neq \emptyset$;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

A valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v)$ is called a valued quiver covering provided that

• Given
$$a \in \Delta_0, \, \varphi^-(a) := \{x \in \Gamma_0 \mid \varphi(x) = a\}
eq \emptyset;$$

・ロト ・ 一下・ ・ モト・ ・ モト・

e Given any arrow
$$\alpha : a \xrightarrow{(v_{ab}, v_{ba})} b \in \Delta_{1, a}$$

A valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v)$ is called a valued quiver covering provided that

• Given
$$a \in \Delta_0, \ \varphi^-(a) := \{x \in \Gamma_0 \mid \varphi(x) = a\} \neq \emptyset;$$

o Given any arrow $\alpha : a \xrightarrow{(v_{ab}, v_{ba})} b \in \Delta_1$,

• for any $x \in \varphi^-(a)$, we have

$$v_{ab} = \sum_{\beta: x \to y \in \varphi^{-}(\alpha)} u_{xy};$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

A valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v)$ is called a valued quiver covering provided that

• Given
$$a \in \Delta_0, \, \varphi^-(a) := \{x \in \Gamma_0 \mid \varphi(x) = a\}
eq \emptyset;$$

e Given any arrow $\alpha : a \xrightarrow{(v_{ab}, v_{ba})} b \in \Delta_1$,

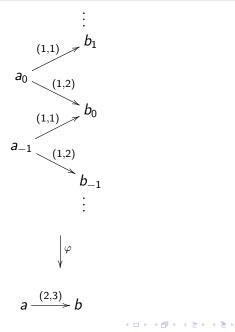
• for any $x \in \varphi^-(a)$, we have

$$v_{ab} = \sum_{\beta: x \to y \in \varphi^{-}(\alpha)} u_{xy};$$

• for any $y \in \varphi^-(b)$, we have

$$v_{ba} = \sum_{\gamma: x \to y \in \varphi^-(\alpha)} u_{yx}.$$

Example of valued quiver covering



æ

Theorem (Bongartz, Gabriel)

Given non-valued quiver Q, one has unique quiver covering

$$\pi: \tilde{Q} \to Q,$$

where \tilde{Q} is a tree, called *universal cover* of Q.

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Definition

Define *unfolding quiver* $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

Unfold a valued quiver

Let (Δ, v) be a connected valued quiver.

Definition

Define unfolding quiver $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

• $\hat{arDelta}_0=arDelta_0$;

Let (Δ, v) be a connected valued quiver.

Definition

Define unfolding quiver $\hat{\Delta}$ of (Δ, v) to be non-valued quiver.

- $\hat{arDelta}_0=arDelta_0$;
- For each arrow $\alpha : x \xrightarrow{(v_{xy}, v_{yx})} y$ in Δ , one draws $v_{xy}v_{yx}$ arrows $\alpha_{ij} : x \to y$ in $\hat{\Delta}$, arranged as a $(v_{yx} \times v_{xy})$ -matrix

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1,v_{xy}} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2,v_{xy}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{v_{yx},1} & \alpha_{v_{yx},2} & \cdots & \alpha_{v_{yx},v_{xy}} \end{pmatrix}$$

• There exists a valued quiver covering

$$\pi: \tilde{\Delta} \longrightarrow \Delta,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• There exists a valued quiver covering

$$\pi: \tilde{\varDelta} \longrightarrow \varDelta,$$

◆□> ◆□> ◆豆> ◆豆> □豆

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$.

There exists a valued quiver covering

$$\pi: \tilde{\Delta} \longrightarrow \Delta,$$

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$. In particular, $\tilde{\Delta}$ is a trivially valued tree.

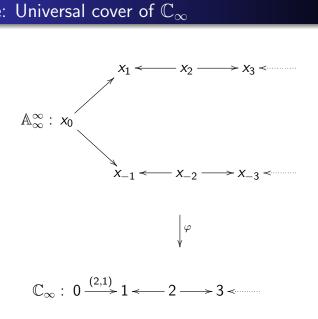
There exists a valued quiver covering

 $\pi:\tilde{\varDelta}\longrightarrow\varDelta,$

where $\tilde{\Delta}$ is a full subquiver of the universal cover of $\hat{\Delta}$. In particular, $\tilde{\Delta}$ is a trivially valued tree.

2 π covers every valued quiver covering $\phi : \Gamma \to \Delta$.

Example: Universal cover of \mathbb{C}_{∞}



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(Δ, v) : symmetrizable valued quiver without infinite paths.

(Δ, v) : symmetrizable valued quiver without infinite paths.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let k be a field. A k-species S of (Δ, v) consists of

- Let k be a field. A k-species S of (Δ, v) consists of
- finite dimensional division k-algebra S(i), for $i \in \Delta_0$;

Definition

Let k be a field. A k-species S of (Δ, v) consists of

- finite dimensional division k-algebra S(i), for $i \in \Delta_0$;
- $\mathcal{S}(i)$ - $\mathcal{S}(j)$ -bimodules $\mathcal{S}(\alpha)$, for $\alpha : i \xrightarrow{(v_{ij}, v_{ji})} j \in \Delta_1$, with

Definition

- Let k be a field. A k-species S of (Δ, v) consists of
- finite dimensional division k-algebra S(i), for $i \in \Delta_0$;
- $\mathcal{S}(i)$ - $\mathcal{S}(j)$ -bimodules $\mathcal{S}(\alpha)$, for $\alpha : i \xrightarrow{(v_{ij}, v_{ji})} j \in \Delta_1$, with

• dim
$$\mathcal{S}(\alpha)_{\mathcal{S}(j)} = \mathbf{v}_{ij};$$

Definition

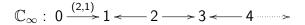
Let k be a field. A k-species S of (Δ, v) consists of

• finite dimensional division k-algebra S(i), for $i \in \Delta_0$;

• $\mathcal{S}(i)$ - $\mathcal{S}(j)$ -bimodules $\mathcal{S}(\alpha)$, for $\alpha : i \xrightarrow{(v_{ij}, v_{ji})} j \in \Delta_1$, with

- dim $\mathcal{S}(\alpha)_{\mathcal{S}(j)} = \mathbf{v}_{ij};$
- $\dim_{\mathcal{S}(i)} \mathcal{S}(\alpha) = \mathbf{v}_{ji}$.

Example: \mathbb{R} -species of \mathbb{C}_{∞}



 $\mathcal{C}_{\infty}: \ \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \overset{\mathbb{R}}{\longleftrightarrow} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \overset{\mathbb{R}}{\longrightarrow} \mathbb{R} \overset{\mathbb{R}}{\longleftrightarrow} \mathbb{R} \xrightarrow{\mathbb{R}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• A *representation* X of a speceis S consists of

• A *representation* X of a speceis S consists of

• right S(i)-vector space X(i), for each $i \in \Delta_0$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Representations of a species

() A *representation* X of a speceis S consists of

- right S(i)-vector space X(i), for each $i \in \Delta_0$;
- S(j)-linear map

$$X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \to X(j),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for each $\alpha : i \to j \in \Delta_1$.

Representations of a species

(A *representation* X of a speceis S consists of

- right S(i)-vector space X(i), for each $i \in \Delta_0$;
- S(j)-linear map

$$X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \to X(j),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for each $\alpha: i \to j \in \Delta_1$.

2 Set dim
$$X = \sum_{i \in \Delta_0} \dim X(i)_{\mathcal{S}(i)}$$
.

Representations of a species

() A *representation* X of a speceis S consists of

- right S(i)-vector space X(i), for each $i \in \Delta_0$;
- $\mathcal{S}(j)$ -linear map

$$X(\alpha): X(i) \otimes_{\mathcal{S}(i)} \mathcal{S}(\alpha) \to X(j),$$

for each $\alpha: i \to j \in \Delta_1$.

2 Set dim
$$X = \sum_{i \in \Delta_0} \dim X(i)_{\mathcal{S}(i)}$$
.

Proposition (Dlab-Ringel)

The category rep(S) of finite dimensional representations of S is a hereditary abelian category.

Morphisms of species

 \mathcal{T} : species of another valued quiver no infinite path (Γ , u).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Morphisms of species

 \mathcal{T} : species of another valued quiver no infinite path (Γ , u).

Definition

A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of

- A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of
- a valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v);$

- A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of
- a valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v);$
- an algebra morphism $\varphi_i : \mathcal{T}(i) \to \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_0$;

- A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of
- a valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v);$
- an algebra morphism $\varphi_i : \mathcal{T}(i) \to \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_0$;
- For each arrow $\beta : i \to j \in \Gamma$ with $\alpha = \varphi(\beta) : a \to b$,

- A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of
- a valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v);$
- **2** an algebra morphism $\varphi_i : \mathcal{T}(i) \to \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_0$;
- For each arrow $\beta: i \to j \in \Gamma$ with $\alpha = \varphi(\beta): a \to b$,
 - $\mathcal{T}(i)$ - $\mathcal{S}(b)$ -bilinear map

$$_{\beta}\varphi:\mathcal{T}(\beta)\otimes_{\mathcal{T}(j)}\mathcal{S}(b)\to\mathcal{S}(\alpha);$$

Definition

- A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ consists of
- a valued quiver morphism $\varphi : (\Gamma, u) \to (\Delta, v);$
- **2** an algebra morphism $\varphi_i : \mathcal{T}(i) \to \mathcal{S}(\varphi(i))$, for each $i \in \Gamma_0$;
- For each arrow $\beta: i \to j \in \Gamma$ with $\alpha = \varphi(\beta): a \to b$,
 - $\mathcal{T}(i)$ - $\mathcal{S}(b)$ -bilinear map

$$_{\beta}\varphi:\mathcal{T}(\beta)\otimes_{\mathcal{T}(j)}\mathcal{S}(b)\rightarrow\mathcal{S}(\alpha);$$

• $\mathcal{S}(a)$ - $\mathcal{T}(j)$ -bilinear map

$$\varphi_{\beta}: \mathcal{S}(a) \otimes_{\mathcal{T}(i)} \mathcal{T}(\beta) \to \mathcal{S}(\alpha).$$

Definition

A species morphism $\Phi : \mathcal{T} \to \mathcal{S}$ is called *species covering* if

Definition

A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ is called *species covering* if

• $\varphi: (\Gamma, u) \to (\Delta, v)$ is valued quiver covering;

Definition

A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ is called *species covering* if

- $\varphi: (\Gamma, u) \to (\Delta, v)$ is valued quiver covering;
- **2** Given any $\alpha : a \to b \in \Delta_1$, the following are satisfied.

Definition

A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ is called *species covering* if

• $\varphi: (\Gamma, u) \to (\Delta, v)$ is valued quiver covering;

- **2** Given any $\alpha : a \rightarrow b \in \Delta_1$, the following are satisfied.
 - For each $i \in \varphi^{-}(a)$, there exists an isomorphism

$$(_etaarphi): igoplus_{eta:i
ightarrow j\inarphi^-(lpha)} \mathcal{T}(eta) igodot_{\mathcal{T}(j)} \mathcal{S}(b)
ightarrow \mathcal{S}(lpha).$$

Definition

A species morphism $\Phi:\mathcal{T}\to\mathcal{S}$ is called *species covering* if

• $\varphi: (\Gamma, u) \to (\Delta, v)$ is valued quiver covering;

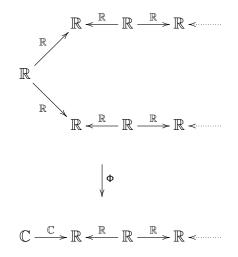
- **2** Given any $\alpha : a \rightarrow b \in \Delta_1$, the following are satisfied.
 - For each $i \in \varphi^{-}(a)$, there exists an isomorphism

$$(_{eta} arphi) : igoplus_{eta: i o j \in arphi^{-}(lpha)} \mathcal{T}(eta) \bigotimes_{\mathcal{T}(j)} \mathcal{S}(b) o \mathcal{S}(lpha).$$

• For each $j\in arphi^-(b)$, there exists isomorphism

$$(\varphi_{\gamma}): \bigoplus_{\gamma: i \to j \in \varphi^{-}(\alpha)} \mathcal{S}(a) \bigotimes_{\mathcal{T}(i)} \mathcal{T}(\gamma) \to \mathcal{S}(\alpha).$$

Example of species covering



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

- Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.
 - The *push-down functor* Φ_{λ} : rep $(\mathcal{T}) \rightarrow$ rep (\mathcal{S}) as follows.

・ロト・日本・モート モー うへぐ

- Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.
 - The *push-down functor* Φ_λ : rep(*T*) → rep(*S*) as follows.
 If *X* ∈ rep(*T*), then Φ_λ(*X*) ∈ rep(*S*) such, for *a* ∈ Δ₀,

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

The push-down functor Φ_λ : rep(T) → rep(S) as follows.
 If X ∈ rep(T), then Φ_λ(X) ∈ rep(S) such, for a ∈ Δ₀,
 Φ_λ(X)(a) = ⊕_{i∈φ⁻(a)} X(i) ⊗_{T(i)} S(a);

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

- The push-down functor Φ_λ : rep(T) → rep(S) as follows.
 If X ∈ rep(T), then Φ_λ(X) ∈ rep(S) such, for a ∈ Δ₀,
 Φ_λ(X)(a) = ⊕_{i∈φ⁻(a)} X(i) ⊗_{T(i)} S(a);
- **2** The *pull-up functor* Φ_{μ} : rep $(S) \rightarrow$ rep(T) as follows.

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

- The push-down functor Φ_λ : rep(T) → rep(S) as follows.
 If X ∈ rep(T), then Φ_λ(X) ∈ rep(S) such, for a ∈ Δ₀,
 Φ_λ(X)(a) = ⊕_{i∈φ⁻(a)} X(i) ⊗_{T(i)} S(a);
- The *pull-up functor* Φ_μ : rep(S) → rep(T) as follows.
 If M ∈ rep(S), then Φ_μ(M) ∈ rep(T) such, for i ∈ Γ₀,

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

- The push-down functor Φ_λ : rep(T) → rep(S) as follows.
 If X ∈ rep(T), then Φ_λ(X) ∈ rep(S) such, for a ∈ Δ₀,
 Φ_λ(X)(a) = ⊕_{i∈φ⁻(a)} X(i) ⊗_{T(i)} S(a);
- The *pull-up functor* Φ_μ : rep(S) → rep(T) as follows.
 If M ∈ rep(S), then Φ_μ(M) ∈ rep(T) such, for i ∈ Γ₀,

$$\Phi_{\mu}(M)(i) = M(\varphi(i)),$$

Fix a species covering $\Phi : \mathcal{T} \to \mathcal{S}$ with vqc $\varphi : \Gamma \to \Delta$.

- The push-down functor Φ_λ : rep(T) → rep(S) as follows.
 If X ∈ rep(T), then Φ_λ(X) ∈ rep(S) such, for a ∈ Δ₀,
 Φ_λ(X)(a) = ⊕_{i∈φ⁻(a)} X(i) ⊗_{T(i)} S(a);
- The *pull-up functor* $\Phi_{\mu} : \operatorname{rep}(S) \to \operatorname{rep}(\mathcal{T})$ as follows. If $M \in \operatorname{rep}(S)$, then $\Phi_{\mu}(M) \in \operatorname{rep}(\mathcal{T})$ such, for $i \in \Gamma_0$,

$$\Phi_{\mu}(M)(i) = M(\varphi(i)),$$

which is considered as $\mathcal{T}(i)$ -vector space.

Theorem

Let $\Phi:\mathcal{T}\to\mathcal{S}$ be a species covering.

The push-down functor Φ_λ : rep(T) → rep(S) induces an exact functor Φ^D_λ : D^b(rep(T)) → D^b(rep(S)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let $\Phi : \mathcal{T} \to \mathcal{S}$ be a species covering.

- The push-down functor Φ_λ : rep(T) → rep(S) induces an exact functor Φ^D_λ : D^b(rep(T)) → D^b(rep(S)).
- The pull-up functor Φ_μ : rep(S) → rep(T) induces an exact functor Φ^D_μ : D^b(rep(S)) → D^b(rep(T)).

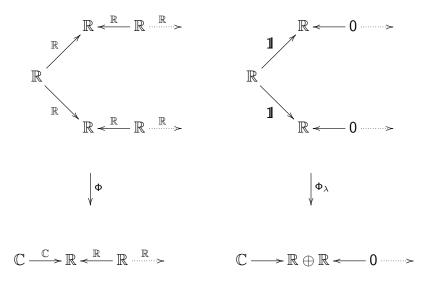
Theorem

Let $\Phi : \mathcal{T} \to \mathcal{S}$ be a species covering.

- The push-down functor Φ_λ : rep(T) → rep(S) induces an exact functor Φ^D_λ : D^b(rep(T)) → D^b(rep(S)).
- The pull-up functor Φ_μ : rep(S) → rep(T) induces an exact functor Φ^D_μ : D^b(rep(S)) → D^b(rep(T)).

3 $(\Phi_{\lambda}, \Phi_{\mu})$ and $(\Phi_{\lambda}^{D}, \Phi_{\mu}^{D})$ are adjoint pairs.

Example of push-down



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Part II

Cluster category of type \mathbb{C}_∞

joint with

Jinde Xu and Yichao Yang

(ロ)、(型)、(E)、(E)、 E) の(の)

• A : Hom-finite Krull-Schmidt additive *k*-category.

- A : Hom-finite Krull-Schmidt additive *k*-category.
- **2** G: group acting on \mathcal{A} such, for objects X, Y, that

 $\mathcal{A}(X, g \cdot Y) = 0$ for almost all $g \in G$.

・ロト・日本・モート モー うへぐ

- A : Hom-finite Krull-Schmidt additive *k*-category.
- 3 G: group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y) = 0$ for almost all $g \in G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution Define *G*-orbit category \mathcal{A}/G as follows.

- A : Hom-finite Krull-Schmidt additive *k*-category.
- 3 G: group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y) = 0$ for almost all $g \in G$.
- Solution Define *G*-orbit category \mathcal{A}/G as follows.
 - The objects of \mathcal{A}/G are those of \mathcal{A} ;

- A : Hom-finite Krull-Schmidt additive *k*-category.
- 3 G: group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y) = 0$ for almost all $g \in G$.
- Solution Define *G*-orbit category \mathcal{A}/G as follows.
 - The objects of \mathcal{A}/G are those of \mathcal{A} ;

• $(\mathcal{A}/G)(X,Y) = \bigoplus_{g \in G} \mathcal{A}(X,g \cdot Y).$

- A : Hom-finite Krull-Schmidt additive *k*-category.
- 3 G: group acting on \mathcal{A} such, for objects X, Y, that $\mathcal{A}(X, g \cdot Y) = 0$ for almost all $g \in G$.
- Solution Define *G*-orbit category \mathcal{A}/G as follows.
 - The objects of \mathcal{A}/G are those of \mathcal{A} ;
 - $(\mathcal{A}/G)(X,Y) = \bigoplus_{g \in G} \mathcal{A}(X,g \cdot Y).$

Lemma

 \mathcal{A}/G is Hom-finite Krull-Schmidt additive k-category with a canonical embedding

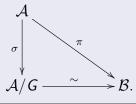
$$\sigma:\mathcal{A}
ightarrow\mathcal{A}/\mathsf{G}:X\mapsto X;f\mapsto f$$

A *k*-linear functor $\pi : \mathcal{A} \to \mathcal{B}$ is called *G*-covering provided

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A *k*-linear functor $\pi : \mathcal{A} \to \mathcal{B}$ is called *G*-covering provided

 \exists commutative diagram



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cluster structure

Assume now that A is a triangulated *k*-category.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume now that \mathcal{A} is a triangulated *k*-category.

A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called *cluster structure* provided, for any $\mathcal{C} \in \mathfrak{C}$, that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assume now that A is a triangulated *k*-category.

A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called *cluster structure* provided, for any $\mathcal{C} \in \mathfrak{C}$, that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The quiver Q_C of C has no loop or 2-cycle;

Assume now that \mathcal{A} is a triangulated *k*-category.

A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called *cluster structure* provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver Q_C of C has no loop or 2-cycle;
- for any $M \in \text{ind}\mathcal{C}$, $\exists ! M^* \in \text{ind}\mathcal{A} \ (\not\cong M)$ such that $\mu_M(\mathcal{C}) := \text{add}(\mathcal{C}_M, M^*)$ lies in \mathfrak{C} ;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume now that \mathcal{A} is a triangulated *k*-category.

A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called *cluster structure* provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver Q_C of C has no loop or 2-cycle;
- for any $M \in \text{ind}\mathcal{C}$, $\exists ! M^* \in \text{ind}\mathcal{A} \ (\not\cong M)$ such that $\mu_M(\mathcal{C}) := \text{add}(\mathcal{C}_M, M^*)$ lies in \mathfrak{C} ;
- $Q_{\mu_M(\mathcal{C})}$ is obtained from $Q_{\mathcal{C}}$ by FZ-mutation at M;

Assume now that A is a triangulated *k*-category.

A non-empty collection \mathfrak{C} of subcategories of \mathcal{A} is called *cluster structure* provided, for any $\mathcal{C} \in \mathfrak{C}$, that

- The quiver $Q_{\mathcal{C}}$ of \mathcal{C} has no loop or 2-cycle;
- for any $M \in \operatorname{ind} \mathcal{C}$, $\exists ! M^* \in \operatorname{ind} \mathcal{A} \ (\not\cong M)$ such that $\mu_M(\mathcal{C}) := \operatorname{add}(\mathcal{C}_M, M^*)$ lies in \mathfrak{C} ;
- $Q_{\mu_M(\mathcal{C})}$ is obtained from $Q_{\mathcal{C}}$ by FZ-mutation at M;
- There exist in $\mathcal A$ two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1];$$
$$M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

where f, u are minimal left C_M -approximations; g, v are minimal right C_M -approximations.

Definition (Koenig, Zhu)

A subcategory ${\mathcal C}$ of ${\mathcal A}$ is called ${\it cluster-tilting}$ provided that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Koenig, Zhu)

A subcategory ${\mathcal C}$ of ${\mathcal A}$ is called cluster-tilting provided that

• C is functorially finite in A;

Definition (Koenig, Zhu)

A subcategory C of A is called *cluster-tilting* provided that

- C is functorially finite in A;
- **2** For any object $X \in \mathcal{A}$, we have

 $\operatorname{Hom}_{\mathcal{A}}(\mathcal{C},X[1]) = 0 \Leftrightarrow X \in \mathcal{C} \Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(X,\mathcal{C}[1]) = 0.$

A triangulated category A is called *cluster category* if it admits a cluster structure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A triangulated category A is called *cluster category* if it admits a cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If ${\mathcal A}$ is 2-CY category with cluster tilting subcategories, then

A triangulated category A is called *cluster category* if it admits a cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY category with cluster tilting subcategories, then cluster tilting subcategories in \mathcal{A} form a cluster structure \Leftrightarrow

A triangulated category A is called *cluster category* if it admits a cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY category with cluster tilting subcategories, then cluster tilting subcategories in \mathcal{A} form a cluster structure \Leftrightarrow no loop or 2-cycle in quiver of any cluster tilting subcategory.

• Let \mathcal{H} be Hom-finite, hereditary, abelian *k*-category having AR-sequences.

- Let H be Hom-finite, hereditary, abelian k-category having AR-sequences.
- **2** Then $D^b(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.

・ロト・日本・モート モー うへぐ

- Let H be Hom-finite, hereditary, abelian k-category having AR-sequences.
- Then $D^b(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.
- Let D^b(H) be full subcategory of D^b(H), containing exactly one object of each isoclass of objects of D^b(H).

- Let H be Hom-finite, hereditary, abelian k-category having AR-sequences.
- **2** Then $D^b(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.
- Let D^b(H) be full subcategory of D^b(H), containing exactly one object of each isoclass of objects of D^b(H).
- Then D^b(H) has AR-triangles, and its AR-translation τ_D is automorphism.

- Let \mathcal{H} be Hom-finite, hereditary, abelian *k*-category having AR-sequences.
- **2** Then $D^b(\mathcal{H})$ has AR-triangles, and its AR-translation is auto-equivalence.
- Let D^b(H) be full subcategory of D^b(H), containing exactly one object of each isoclass of objects of D^b(H).
- Then D^b(H) has AR-triangles, and its AR-translation τ_D is automorphism.

Theorem(Keller)

Setting
$$F = \tau_{\mathscr{D}}^{-1} \circ [1]$$
, the canonical orbit category
 $\mathscr{C}(\mathcal{H}) = \mathscr{D}^b(\mathcal{H}) / < F >$

is 2-CY triangulated category.

Let Q be a locally finite quiver without infinite paths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let Q be a locally finite quiver without infinite paths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Then rep(Q) has AR-sequences.

Let Q be a locally finite quiver without infinite paths.

- Then rep(Q) has AR-sequences.
- The cluster tilting subcategories in C(rep(Q)) form a cluster structure in case Q is

Let Q be a locally finite quiver without infinite paths.

- Then rep(Q) has AR-sequences.
- The cluster tilting subcategories in C(rep(Q)) form a cluster structure in case Q is

• finite (BMRRT);

Let Q be a locally finite quiver without infinite paths.

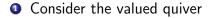
- Then rep(Q) has AR-sequences.
- The cluster tilting subcategories in C(rep(Q)) form a cluster structure in case Q is

- finite (BMRRT);
- of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ (Liu, Paquette);

Let Q be a locally finite quiver without infinite paths.

- Then rep(Q) has AR-sequences.
- The cluster tilting subcategories in C(rep(Q)) form a cluster structure in case Q is

- finite (BMRRT);
- of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ (Liu, Paquette);
- of type \mathbb{D}_{∞} (Yang).

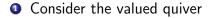


$$\mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1 \longleftrightarrow 2 \longrightarrow 3 \longleftrightarrow 4 \longrightarrow$$

and its following \mathbb{R} -species :

$$\mathcal{C}_{\infty}: \ \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \xleftarrow{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \xleftarrow{\mathbb{R}} \xrightarrow{\mathbb{R}} \mathbb{R} \xleftarrow{\mathbb{R}} \xrightarrow{\mathbb{R}} \xrightarrow{\mathbb{R}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



$$\mathbb{C}_{\infty}: 0 \xrightarrow{(2,1)} 1 \longleftrightarrow 2 \longrightarrow 3 \longleftrightarrow 4 \longrightarrow$$

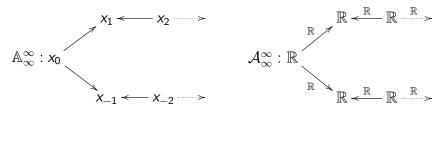
and its following \mathbb{R} -species :

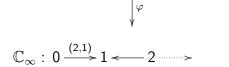
$$\mathcal{C}_{\infty}: \ \mathbb{C} \xrightarrow{\mathbb{C}} \mathbb{R} \xleftarrow{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}} \mathbb{R} \xleftarrow{\mathbb{R}} \xrightarrow{\mathbb{R}} \mathbb{R} \xleftarrow{\mathbb{R}} \xrightarrow{\mathbb{R}} \xrightarrow{\mathbb{R}}$$

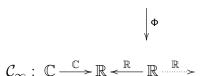
◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

2 We shall show that $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$ is a cluster category.

Recall the following covering:







▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Consider the following automorphism

$$\sigma: \mathbb{A}_{\infty}^{\infty} \to \mathbb{A}_{\infty}^{\infty}: x_n \mapsto x_{-n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sigma: \mathbb{A}_{\infty}^{\infty} \to \mathbb{A}_{\infty}^{\infty}: x_n \mapsto x_{-n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Then $\langle \sigma \rangle = \{e, \sigma\} := G$.

$$\sigma: \mathbb{A}_{\infty}^{\infty} \to \mathbb{A}_{\infty}^{\infty}: x_n \mapsto x_{-n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then
$$\langle \sigma \rangle = \{e, \sigma\} := G.$$

Remark

The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow$ G-action on $\operatorname{rep}(\mathbb{A}_{\infty}^{\infty})$;

$$\sigma: \mathbb{A}_{\infty}^{\infty} \to \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}.$$

Then $\langle \sigma \rangle = \{e, \sigma\} := G$.

Remark

The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow$ G-action on $\operatorname{rep}(\mathbb{A}_{\infty}^{\infty})$;

 \Rightarrow *G*-action on $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$;

$$\sigma: \mathbb{A}_{\infty}^{\infty} \to \mathbb{A}_{\infty}^{\infty}: x_{n} \mapsto x_{-n}.$$

Then $\langle \sigma \rangle = \{e, \sigma\} := G$.

Remark

The G-action on $\mathbb{A}_{\infty}^{\infty} \Rightarrow$ G-action on $\operatorname{rep}(\mathbb{A}_{\infty}^{\infty})$;

 \Rightarrow *G*-action on $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$;

 \Rightarrow *G*-action on $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$.

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$ of $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$ consists of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$ of $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$ consists of

• a connecting component $\mathcal{C}_{\mathbb{A}_\infty^\infty} (\cong \mathbb{Z}\mathbb{A}_\infty^\infty)$;

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$ of $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_\infty^\infty} (\cong \mathbb{Z}\mathbb{A}_\infty^\infty)$;
- two orthogonal regular components $\mathcal{R}_R, \mathcal{R}_L \cong \mathbb{Z}\mathbb{A}_\infty$).

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$ of $\mathscr{C}(\mathbb{A}_{\infty}^{\infty})$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_\infty^\infty} (\cong \mathbb{Z} \mathbb{A}_\infty^\infty)$;
- two orthogonal regular components $\mathcal{R}_R, \mathcal{R}_L \cong \mathbb{Z}\mathbb{A}_\infty$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation

Consider the σ -action on $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$.

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}^\infty_\infty)}$ of $\mathscr{C}(\mathbb{A}^\infty_\infty)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_\infty^\infty} (\cong \mathbb{Z} \mathbb{A}_\infty^\infty)$;
- two orthogonal regular components $\mathcal{R}_R, \mathcal{R}_L \cong \mathbb{Z}\mathbb{A}_\infty$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation

Consider the σ -action on $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$.

The AR-quiver $\Gamma_{\mathscr{C}(\mathbb{A}^\infty_\infty)}$ of $\mathscr{C}(\mathbb{A}^\infty_\infty)$ consists of

- a connecting component $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}} (\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty})$;
- two orthogonal regular components $\mathcal{R}_R, \mathcal{R}_L \cong \mathbb{Z}\mathbb{A}_\infty$).

Observation

Consider the σ -action on $\Gamma_{\mathscr{C}(\mathbb{A}_{\infty}^{\infty})}$.

$$\bullet \ \sigma \cdot \mathcal{R}_R = \mathcal{R}_L.$$

• The σ -action on $\mathcal{C}_{\mathbb{A}_{\infty}^{\infty}}$ is reflection across $\tau_{\mathscr{C}}$ -orbit of $P[x_0]$.

Theorem

Consider the species covering $\Phi : \mathcal{A}_{\infty}^{\infty} \to \mathcal{C}_{\infty}$.

Theorem

Consider the species covering $\Phi : \mathcal{A}_{\infty}^{\infty} \to \mathcal{C}_{\infty}$.

• The push-down Φ_{λ} : rep $(\mathbb{A}_{\infty}^{\infty}) \to rep(\mathcal{C}_{\infty})$ is G-covering.

Theorem

Consider the species covering $\Phi : \mathcal{A}_{\infty}^{\infty} \to \mathcal{C}_{\infty}$.

• The push-down Φ_{λ} : rep $(\mathbb{A}_{\infty}^{\infty}) \to rep(\mathcal{C}_{\infty})$ is G-covering.

2 The push-down Φ_{λ} induces G-covering

 $\Phi^D_{\lambda}: \mathscr{D}^b(\operatorname{rep}(\mathbb{A}^\infty_\infty)) \longrightarrow \mathscr{D}^b(\operatorname{rep}(\mathcal{C}_\infty)),$

Theorem

Consider the species covering $\Phi : \mathcal{A}_{\infty}^{\infty} \to \mathcal{C}_{\infty}$.

- The push-down $\Phi_{\lambda} : \operatorname{rep}(\mathbb{A}_{\infty}^{\infty}) \to \operatorname{rep}(\mathcal{C}_{\infty})$ is G-covering.
- **2** The push-down Φ_{λ} induces G-covering

$$\Phi^D_{\lambda}: \mathscr{D}^b(\operatorname{rep}(\mathbb{A}_{\infty}^{\infty})) \longrightarrow \mathscr{D}^b(\operatorname{rep}(\mathcal{C}_{\infty})),$$

which induces G-covering

$$\Phi^{\mathscr{C}}_{\lambda}: \mathscr{C}(\operatorname{rep}(\mathbb{A}^{\infty}_{\infty})) \longrightarrow \mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty})).$$

Theorem

Consider the species covering $\Phi : \mathcal{A}_{\infty}^{\infty} \to \mathcal{C}_{\infty}$.

- The push-down $\Phi_{\lambda} : \operatorname{rep}(\mathbb{A}_{\infty}^{\infty}) \to \operatorname{rep}(\mathcal{C}_{\infty})$ is G-covering.
- **2** The push-down Φ_{λ} induces G-covering

$$\Phi^D_{\lambda}: \mathscr{D}^b(\operatorname{rep}(\mathbb{A}^\infty_\infty)) \longrightarrow \mathscr{D}^b(\operatorname{rep}(\mathcal{C}_\infty)),$$

which induces G-covering

$$\Phi_{\lambda}^{\mathscr{C}}:\mathscr{C}(\operatorname{rep}(\mathbb{A}_{\infty}^{\infty}))\longrightarrow \mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty})).$$

③ The functor $\Phi_{\lambda}^{\mathscr{C}}$ induces valued translation quiver covering

$$\Phi_{\lambda}^{\mathscr{C}}: \Gamma_{\mathscr{C}(\operatorname{rep}(\mathbb{A}_{\infty}^{\infty}))} \longrightarrow \Gamma_{\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))}.$$

The cluster category $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$

Theorem

● The cluster tilting subcategories in C(rep(C_∞)) form a cluster structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The cluster category $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$

Theorem

- The cluster tilting subcategories in C(rep(C_∞)) form a cluster structure.
- **2** The AR-quiver $\Gamma_{\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))}$ of $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$ consists of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The cluster category $\mathscr{C}(\operatorname{rep}(\mathcal{C}_\infty))$

Theorem

- The cluster tilting subcategories in C(rep(C_∞)) form a cluster structure.
- 3 The AR-quiver $\Gamma_{\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))}$ of $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$ consists of
 - a connecting component C_{C∞} (≅ ℤC_∞), obtained by folding C_{A∞} along the τ_φ-orbit of P[x₀];

The cluster category $\mathscr{C}(\operatorname{rep}(\mathcal{C}_\infty))$

Theorem

- The cluster tilting subcategories in C(rep(C_∞)) form a cluster structure.
- 3 The AR-quiver $\Gamma_{\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))}$ of $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$ consists of
 - a connecting component C_{C∞} (≅ ℤC_∞), obtained by folding C_{A∞} along the τ_𝒞-orbit of P[x₀];

a regular component R (≅ ZA_∞), obtained by identifying R_R with R_L.

The cluster category $\mathscr{C}(\operatorname{rep}(\mathcal{C}_\infty))$

Theorem

- The cluster tilting subcategories in C(rep(C_∞)) form a cluster structure.
- 3 The AR-quiver $\Gamma_{\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))}$ of $\mathscr{C}(\operatorname{rep}(\mathcal{C}_{\infty}))$ consists of
 - a connecting component C_{C∞} (≅ ℤC_∞), obtained by folding C_{A∞} along the τ_φ-orbit of P[x₀];
 - a regular component R (≅ ZA_∞), obtained by identifying R_R with R_L.

Remark

In a similar fashion, we can construct a cluster category of type $\mathbb{B}_\infty.$

The infinite strip with marked points

Consider the strip in the plane

$$S[-1,1] = \{(x,y) \in \mathbb{R}^2 \mid -1 \le y \le 1\}$$

with marked points:

$$\mathfrak{l}_n=(n,1),\mathfrak{r}_i=(-n,-1);$$
 $n\in\mathbb{Z}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

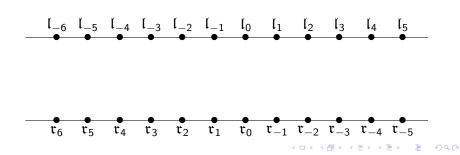
The infinite strip with marked points

Consider the strip in the plane

$$S[-1,1] = \{(x,y) \in \mathbb{R}^2 \mid -1 \le y \le 1\}$$

with marked points:

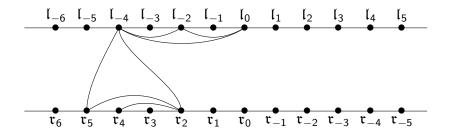
$$\mathfrak{l}_n=(n,1),\mathfrak{r}_i=(-n,-1);$$
 $n\in\mathbb{Z}.$



Arcs in S[-1,1]

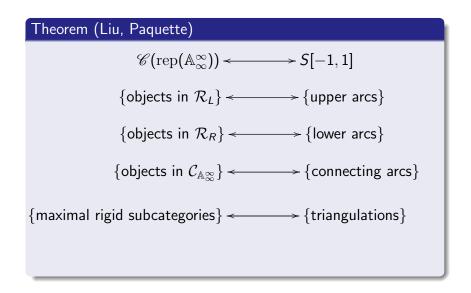
There exist in S[-1,1] three types of arcs:

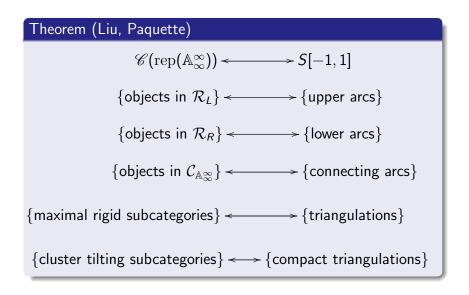
- upper arcs : $[l_i, l_j]$ with |i j| > 1;
- *lower arcs* : $[\mathfrak{r}_i, \mathfrak{r}_j]$ with |i j| > 1;
- connecting arcs : $[\mathfrak{l}_i, \mathfrak{r}_j]$ with $i, j \in \mathbb{Z}$.



Theorem (Liu, Paq<u>uette)</u> $\mathscr{C}(\operatorname{rep}(\mathbb{A}_{\infty}^{\infty})) \longleftrightarrow S[-1,1]$ {objects in \mathcal{R}_{l} } \longleftrightarrow {upper arcs} {objects in \mathcal{R}_R } $\leftarrow \rightarrow$ {lower arcs} {objects in $\mathcal{C}_{\mathbb{A}\infty}$ } \longleftrightarrow {connecting arcs}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ





The group G =< σ > acts on S[-1, 1], with σ acting as rotation around the origin of angle π.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The twisted strip with marked points

- The group G =< σ > acts on S[-1, 1], with σ acting as rotation around the origin of angle π.
- The twisted strip is the quotient

$$S[0,1] = S[-1,1]/G.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 1\}\backslash\{(x,0)\mid x<0\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with marked points $l_i = (i, 1)$; $i \in \mathbb{Z}$.

$$\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 1\}ackslash\{(x,0)\mid x<0\}$$

with marked points $l_i = (i, 1)$; $i \in \mathbb{Z}$.

O There exist two types of arcs:

$$\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 1\}ackslash\{(x,0)\mid x<0\}$$

with marked points $l_i = (i, 1)$; $i \in \mathbb{Z}$.

- Interest two types of arcs:
 - upper arcs : [l_i, l_j], with |i − j| ≥ 2, not passing through the origin O;

$$\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 1\}ackslash\{(x,0)\mid x<0\}$$

with marked points $l_i = (i, 1); i \in \mathbb{Z}$.

- Intere exist two types of arcs:
 - upper arcs : [l_i, l_j], with |i − j| ≥ 2, not passing through the origin O;
 - connecting arcs : [l_i, O, l_j], i, j ∈ Z, passing through the origin O.

Theorem

$$\mathscr{C}(\operatorname{rep}(\mathbb{C}_{\infty})) \longleftrightarrow S[0,1]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

$$\mathscr{C}(\operatorname{rep}(\mathbb{C}_{\infty})) \longleftrightarrow S[0,1]$$

 $\{objects in \mathcal{R}\} \longleftrightarrow \{upper arcs\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

$$\mathscr{C}(\operatorname{rep}(\mathbb{C}_{\infty})) \longleftrightarrow S[0,1]$$

 $\{objects in \mathcal{R}\} \longleftrightarrow \{upper arcs\}$

 $\{\textit{objects in } \mathcal{C}_{\mathbb{C}_{\infty}}\} \longleftrightarrow \{\textit{connecting arcs}\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Theorem

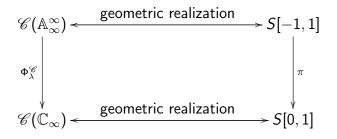
$$\mathscr{C}(\operatorname{rep}(\mathbb{C}_{\infty})) \longleftrightarrow S[0,1]$$

 $\{objects in \mathcal{R}\} \longleftrightarrow \{upper arcs\}$

$$\{\textit{objects in } \mathcal{C}_{\mathbb{C}_{\infty}}\} \longleftrightarrow \{\textit{connecting arcs}\}$$

Theorem $\mathscr{C}(\operatorname{rep}(\mathbb{C}_{\infty})) \longleftrightarrow S[0,1]$ $\{\text{objects in } \mathcal{R}\} \longleftrightarrow \{\text{upper arcs}\}$ $\{objects in \mathcal{C}_{\mathbb{C}_{\infty}}\} \longleftrightarrow \{connecting arcs\}$ $\{maximal rigid subcategories\} \longleftrightarrow \{triangulations\}$ $\{$ cluster tilting subcategories $\} \longleftrightarrow \{$ compact triangulations $\}$

Match between algebraic covering and topological covering



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ