Linear categories: from module categories to derived categories and cluster categories

Shiping Liu (University of Sherbrooke)

The 14th National Conference on Algebra

Yangzhou, China May 26 - 30, 2016

・ロト ・回ト ・ヨト ・ヨト

Motivation

In many areas of algebra, one studies various abelian or triangulated categories over a field.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation

In many areas of algebra, one studies various abelian or triangulated categories over a field.

 In representation theory of algebras, one studies module category and its deived category;

Motivation

In many areas of algebra, one studies various abelian or triangulated categories over a field.

- In representation theory of algebras, one studies module category and its deived category;
- In algebraic geometry, one studies categories of coherent sheaves and their derived categories;

Motivation

In many areas of algebra, one studies various abelian or triangulated categories over a field.

- In representation theory of algebras, one studies module category and its deived category;
- In algebraic geometry, one studies categories of coherent sheaves and their derived categories;
- In algebraic topology, one studies derived category of dg-modules over the singular cochain dg-algebra of a simply connected topological space.

Motivation

In many areas of algebra, one studies various abelian or triangulated categories over a field.

- In representation theory of algebras, one studies module category and its deived category;
- In algebraic geometry, one studies categories of coherent sheaves and their derived categories;
- In algebraic topology, one studies derived category of dg-modules over the singular cochain dg-algebra of a simply connected topological space.
- More recently, one studies cluster categories, a categorification of cluster algebras, which are connected to the representation theory of semi-simple Lie groups.

k: algebraically closed field.

\mathcal{A} : Hom-finite Krull-Schmidt additive k-categories.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- k: algebraically closed field.
- A : Hom-finite Krull-Schmidt additive *k*-categories.
 - Morphism sets are finite dimensional k-spaces;

(本間) (本語) (本語)

- k : algebraically closed field.
- \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-categories.
 - Morphism sets are finite dimensional k-spaces;
 - Indecomposables have local endomorphism algebra.

- 4 同 2 4 日 2 4 日 2 4

- k : algebraically closed field.
- \mathcal{A} : Hom-finite Krull-Schmidt additive k-categories.
 - Morphism sets are finite dimensional k-spaces;
 - Indecomposables have local endomorphism algebra.
 - Each non-zero object is direct sum of finitely many indecomposable objects.

Objective of Study

Classify the indecomposable objects and describe the morphisms.

Objective of Study

Classify the indecomposable objects and describe the morphisms.

Tools of Study

 Auslander-Reiten theory: irreducible morphisms, almost split sequences, Auslander-Reiten quiver;

Objective of Study

Classify the indecomposable objects and describe the morphisms.

Tools of Study

- Auslander-Reiten theory: irreducible morphisms, almost split sequences, Auslander-Reiten quiver;
- Galois covering theory.

Jacobson radical

• Given objects $X, Y \in \mathcal{A}$, decomposed as

$$X = X_1 \oplus \cdots \oplus X_m; Y = Y_1 \oplus \cdots \oplus Y_n,$$

where $X_j, Y_i \in \text{ind } A$.

Jacobson radical

• Given objects $X, Y \in \mathcal{A}$, decomposed as

$$X = X_1 \oplus \cdots \oplus X_m; Y = Y_1 \oplus \cdots \oplus Y_n,$$

where $X_j, Y_i \in \operatorname{ind} \mathcal{A}$.

• Each morphism $f : X \to Y$ can be written $f = (f_{ij})_{n \times m}$; where $f_{ij} : X_i \to Y_j$.

Jacobson radical

Given objects X, Y ∈ A, decomposed as X = X₁ ⊕ · · · ⊕ X_m; Y = Y₁ ⊕ · · · ⊕ Y_n, where X_i, Y_i ∈ ind A.

- Each morphism $f : X \to Y$ can be written $f = (f_{ij})_{n \times m}$; where $f_{ij} : X_j \to Y_i$.
- We say f is *radical* if all f_{ij} non-invertible.

Jacobson radical

• Given objects $X, Y \in \mathcal{A}$, decomposed as

$$X = X_1 \oplus \cdots \oplus X_m; Y = Y_1 \oplus \cdots \oplus Y_n,$$

where $X_j, Y_i \in \operatorname{ind} A$.

- Each morphism $f : X \to Y$ can be written $f = (f_{ij})_{n \times m}$; where $f_{ij} : X_j \to Y_j$.
- We say f is *radical* if all f_{ij} non-invertible. rad $(X, Y) = \{$ radical morphisms $f : X \to Y \}$.

Jacobson radical

• Given objects $X, Y \in \mathcal{A}$, decomposed as

$$X = X_1 \oplus \cdots \oplus X_m; Y = Y_1 \oplus \cdots \oplus Y_n,$$

where $X_j, Y_i \in \operatorname{ind} \mathcal{A}$.

- Each morphism $f : X \to Y$ can be written $f = (f_{ij})_{n \times m}$; where $f_{ij} : X_j \to Y_j$.
- We say f is *radical* if all f_{ij} non-invertible. $rad(X, Y) = \{ radical \text{ morphisms } f : X \to Y \}.$ $rad^2(X, Y) = \{ f \in rad(X, Y) \mid f = \sum g_i f_i \},$ where f_i, g_i are radical morphisms.

Irreducible morphisms

Let $X, Y \in \mathcal{A}$ be indecomposable.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

Irreducible morphisms

Let $X, Y \in \mathcal{A}$ be indecomposable. A morphism $f : X \to Y$ is *irreducible* if

 $f \in \operatorname{rad}(X, Y) \setminus \operatorname{rad}^2(X, Y).$

・ロン ・回と ・ヨン・

Irreducible morphisms

Let $X, Y \in \mathcal{A}$ be indecomposable. A morphism $f : X \to Y$ is *irreducible* if

$$f \in \operatorname{rad}(X, Y) \setminus \operatorname{rad}^2(X, Y).$$

Notation

•
$$\operatorname{Irr}(X, Y) = \operatorname{rad}(X, Y)/\operatorname{rad}^2(X, Y).$$

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

イロト イポト イヨト イヨト

э

Irreducible morphisms

Let $X, Y \in \mathcal{A}$ be indecomposable. A morphism $f : X \to Y$ is *irreducible* if

$$f \in \operatorname{rad}(X, Y) \setminus \operatorname{rad}^2(X, Y).$$

Notation

•
$$\operatorname{Irr}(X, Y) = \operatorname{rad}(X, Y)/\operatorname{rad}^2(X, Y).$$

• $d_{XY} = \dim_k \operatorname{Irr}(X, Y).$

イロト イポト イヨト イヨト

э

Pseudo-exact sequences

A sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ is *pseudo-exact* if

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

イロン イヨン イヨン イヨン

Pseudo-exact sequences

A sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ is *pseudo-exact* if

•
$$g f = 0;$$

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

イロン イヨン イヨン イヨン

Pseudo-exact sequences

A sequence
$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
 is *pseudo-exact* if

• every $h: M \to Y$ with gh = 0 factors through f;

イロン イヨン イヨン イヨン

Pseudo-exact sequences

A sequence
$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
 is *pseudo-exact* if

- every $h: M \to Y$ with gh = 0 factors through f;
- every $h: Y \to N$ with hf = 0 factors through g.

・ロン ・回と ・ヨン・

Almost split sequences

• An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that

・ロト ・回ト ・ヨト ・ヨト

Almost split sequences

- An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that
 - *f*, *g* are radical morphisms;

Almost split sequences

- An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that
 - f, g are radical morphisms;
 - every radical $u: X \to M$ factors through f;

Almost split sequences

• An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that

• *f*, *g* are radical morphisms;

- every radical $u: X \to M$ factors through f;
- every radical $v: N \rightarrow Z$ factors through g.

Almost split sequences

• An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that

• f, g are radical morphisms;

- every radical $u: X \to M$ factors through f;
- every radical $v : N \to Z$ factors through g.

In this case,

• $X, Z \in ind A$, written $X = \tau Z$;

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Almost split sequences

• An almost split sequence is a pseudo-exact sequence $X \xrightarrow{f} Y \xrightarrow{g} Z$ with $Y \neq 0$ such that

• f, g are radical morphisms;

- every radical $u: X \to M$ factors through f;
- every radical $v : N \to Z$ factors through g.

In this case,

- $X, Z \in ind A$, written $X = \tau Z$;
- τ is called *AR-translation*.

(日) (四) (王) (王) (王)

Translation quiver

• Let $\Gamma = (\Gamma_0, \Gamma_1)$ be a quiver. A *translation* on Γ

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

・ロン ・回と ・ヨン ・ヨン

Translation quiver

Let Γ = (Γ₀, Γ₁) be a quiver. A *translation* on Γ is an injection σ : Σ₀ → Γ₀, with Σ₀ ⊆ Γ₀,

(日) (四) (王) (王) (王)

Translation quiver

Let Γ = (Γ₀, Γ₁) be a quiver. A *translation* on Γ is an injection σ : Σ₀ → Γ₀, with Σ₀ ⊆ Γ₀, such, for x ∈ Σ₀, y → Γ₀, that

<ロ> (四) (四) (注) (三) (三)

Translation quiver

Let Γ = (Γ₀, Γ₁) be a quiver. A *translation* on Γ is an injection σ : Σ₀ → Γ₀, with Σ₀ ⊆ Γ₀, such, for x ∈ Σ₀, y → Γ₀, that

$${}^{\#}\{ \text{ arrows } y \to x \} = {}^{\#}\{ \text{ arrows } \sigma x \to y \}.$$

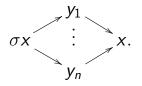
<ロ> (四) (四) (注) (三) (三)

Translation quiver

Let Γ = (Γ₀, Γ₁) be a quiver. A *translation* on Γ is an injection σ : Σ₀ → Γ₀, with Σ₀ ⊆ Γ₀, such, for x ∈ Σ₀, y → Γ₀, that

$${}^{\#}\{ \text{ arrows } y
ightarrow x\} = {}^{\#}\{ \text{ arrows } \sigma x
ightarrow y\}.$$

This yields a mesh



イロト イポト イヨト イヨト

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

イロト イヨト イヨト イヨト

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

 \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$

イロト イポト イヨト イヨト

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

- \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$
- Given two vertices X, Y, put d_{XY} arrows $\alpha_i : X \to Y$,

・ロン ・回 と ・ 回 と ・ 回 と

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

- \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$
- Given two vertices X, Y, put d_{XY} arrows α_i : X → Y, corresponding to k-basis for Irr(X, Y).

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

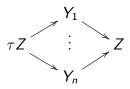
- \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$
- Given two vertices X, Y, put d_{XY} arrows α_i : X → Y, corresponding to k-basis for Irr(X, Y).
- The translation is AR-translation au so that a mesh

(ロ) (同) (E) (E) (E)

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

- \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$
- Given two vertices X, Y, put d_{XY} arrows α_i : X → Y, corresponding to k-basis for Irr(X, Y).
- The translation is AR-translation au so that a mesh

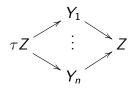


イロト イポト イラト イラト 一日

Auslander-Reiten quiver

The *AR-quiver* $\Gamma(\mathcal{A})$ of \mathcal{A} is a translation quiver:

- \bullet Vertices: the non-isomorphic indec. objects of $\mathcal{A}.$
- Given two vertices X, Y, put d_{XY} arrows α_i : X → Y, corresponding to k-basis for Irr(X, Y).
- The translation is AR-translation au so that a mesh



corresponds to an almost split sequence

$$\tau Z \longrightarrow Y_1 \oplus \cdots \oplus Y_n \longrightarrow Z$$

A 35 M 4 35 M

Objective of Study

• Describe almost split sequences in \mathcal{A} .

イロン イヨン イヨン イヨン

Objective of Study

- Describe almost split sequences in \mathcal{A} .
- **2** Describe the shapes of the components of $\Gamma(\mathcal{A})$.

イロン イヨン イヨン イヨン

Orbit category with respect to group action

• G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that

・ロン ・回 と ・ ヨ と ・ ヨ と

Orbit category with respect to group action

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;

Orbit category with respect to group action

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;
 - if $X \in \operatorname{ind} \mathcal{A}$, then $g \cdot X \ncong X$ for $(e \neq) g \in G$.

・ロン ・回 と ・ ヨ と ・ ヨ と

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;
 - if $X \in \operatorname{ind} \mathcal{A}$, then $g \cdot X \ncong X$ for $(e \neq) g \in G$.
- Define *G*-orbit category A/G as follows:

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;
 - if $X \in \operatorname{ind} \mathcal{A}$, then $g \cdot X \ncong X$ for $(e \neq) g \in G$.
- Define *G*-orbit category A/G as follows:
 - The objects are those of \mathcal{A} ;

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;
 - if $X \in \operatorname{ind} \mathcal{A}$, then $g \cdot X \ncong X$ for $(e \neq) g \in G$.
- Define *G*-orbit category A/G as follows:
 - The objects are those of \mathcal{A} ;
 - $\operatorname{Hom}_{\mathcal{A}/G}(X, Y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y).$

- G: group acting on \mathcal{A} such, for $X, Y \in \mathcal{A}$, that
 - $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$;
 - if $X \in \operatorname{ind} \mathcal{A}$, then $g \cdot X \ncong X$ for $(e \neq) g \in G$.
- Define *G*-orbit category A/G as follows:
 - The objects are those of \mathcal{A} ;
 - $\operatorname{Hom}_{\mathcal{A}/G}(X,Y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{A}}(X,g \cdot Y).$

• \mathcal{A}/G Hom-finite Krull-Schmidt with projection

$$p: \mathcal{A} \to \mathcal{A}/G: X \mapsto X; f \mapsto f$$

(ロ) (同) (E) (E) (E)

Galois Covering

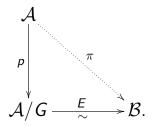
• Let $E: \mathcal{A}/G \xrightarrow{\sim} \mathcal{B}$ be an equivalence.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

・ロット (四) (日) (日)

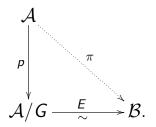
Galois Covering

- Let $E: \mathcal{A}/G \xrightarrow{\sim} \mathcal{B}$ be an equivalence.
- Onsider the commutative diagram:



Galois Covering

- Let $E: \mathcal{A}/G \xrightarrow{\sim} \mathcal{B}$ be an equivalence.
- Onsider the commutative diagram:



• Call $\pi: \mathcal{A} \longrightarrow \mathcal{B}$ Galois G-covering functor.

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let $\pi : \mathcal{A} \longrightarrow \mathcal{B}$ be Galois *G*-covering functor.

イロト イヨト イヨト イヨト

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let $\pi : \mathcal{A} \longrightarrow \mathcal{B}$ be Galois *G*-covering functor.

• $\operatorname{ind} \mathcal{B} = \{\pi(X) \mid X \in \operatorname{ind} \mathcal{A}\}$ such that

・ロト ・回ト ・ヨト ・ヨト

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let $\pi : \mathcal{A} \longrightarrow \mathcal{B}$ be Galois *G*-covering functor.

•
$$\operatorname{ind} \mathcal{B} = \{\pi(X) \mid X \in \operatorname{ind} \mathcal{A}\}$$
 such that

$$\pi(X) = \pi(Y) \Leftrightarrow Y = g \cdot X$$
, for some $g \in G$.

イロト イヨト イヨト イヨト

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let $\pi : \mathcal{A} \longrightarrow \mathcal{B}$ be Galois *G*-covering functor.

• $\operatorname{ind} \mathcal{B} = \{\pi(X) \mid X \in \operatorname{ind} \mathcal{A}\}$ such that

 $\pi(X) = \pi(Y) \Leftrightarrow Y = g \cdot X$, for some $g \in G$.

Output Provide the components of Γ(B) are π(Γ), where Γ ranges over the components of Γ(A).

イロト イポト イヨト イヨト

AR-quiver under Galois covering

Theorem (Bautista, Liu)

Let $\pi : \mathcal{A} \longrightarrow \mathcal{B}$ be Galois *G*-covering functor.

•
$$\operatorname{ind} \mathcal{B} = \{\pi(X) \mid X \in \operatorname{ind} \mathcal{A}\}$$
 such that

 $\pi(X) = \pi(Y) \Leftrightarrow Y = g \cdot X$, for some $g \in G$.

Output Provide the components of Γ(B) are π(Γ), where Γ ranges over the components of Γ(A).

$$\textbf{ o If } g \cdot X \not\in \Gamma \text{ for all } X \in \Gamma \text{ and } (e \neq) g \in G, \text{ then }$$

$$\pi(\Gamma)\cong\Gamma.$$

・ロト ・回ト ・ヨト ・ヨト

• From now on, \mathcal{A} is triangulated category.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

イロト イヨト イヨト イヨト

- From now on, \mathcal{A} is triangulated category.
- All subcategories of A are assumed to be full, additive, closed under direct summands.

イロト イポト イヨト イヨト

New Setting

- From now on, \mathcal{A} is triangulated category.
- All subcategories of A are assumed to be full, additive, closed under direct summands.
- Let \mathcal{T} be subcategory of \mathcal{A} .
 - $Q_{\mathcal{T}}$: quiver of \mathcal{T} (the underlying quiver of $\Gamma(\mathcal{T})$).

・ロン ・回と ・ヨン・

New Setting

- From now on, \mathcal{A} is triangulated category.
- All subcategories of A are assumed to be full, additive, closed under direct summands.
- Let \mathcal{T} be subcategory of \mathcal{A} .
 - $Q_{\mathcal{T}}$: quiver of \mathcal{T} (the underlying quiver of $\Gamma(\mathcal{T})$).
 - For $M \in \operatorname{ind} \mathcal{T}$, define

 $\mathcal{T}_{M} := \mathrm{add}\{N \in \mathrm{ind}\mathcal{T} \mid N \not\cong M\}.$

소리가 소문가 소문가 소문가

Cluster tilting subcategories

Definition

A subcategory \mathcal{T} of \mathcal{A} is called *cluster-tilting* if

・ロト ・日本 ・モート ・モート

Cluster tilting subcategories

Definition

A subcategory ${\mathcal T}$ of ${\mathcal A}$ is called *cluster-tilting* if

• \mathcal{T} is functorially finite in \mathcal{A} ;

イロト イポト イヨト イヨト

Cluster tilting subcategories

Definition

A subcategory ${\mathcal T}$ of ${\mathcal A}$ is called cluster-tilting if

- \mathcal{T} is functorially finite in \mathcal{A} ;
- Hom_{\mathcal{A}}(T, T'[1]) = 0, for all $T, T' \in \mathcal{T}$;

・ロン ・回と ・ヨン ・ヨン

Cluster tilting subcategories

Definition

A subcategory ${\mathcal T}$ of ${\mathcal A}$ is called *cluster-tilting* if

- \mathcal{T} is functorially finite in \mathcal{A} ;
- Hom_{\mathcal{A}}(T, T'[1]) = 0, for all $T, T' \in \mathcal{T}$;
- If $X \notin \mathcal{T}$, then $\exists T, T' \in \mathcal{T}$ such that

・ロン ・回 と ・ ヨ と ・ ヨ と

Cluster tilting subcategories

Definition

A subcategory \mathcal{T} of \mathcal{A} is called *cluster-tilting* if

- \mathcal{T} is functorially finite in \mathcal{A} ;
- Hom_{\mathcal{A}}(T, T'[1]) = 0, for all $T, T' \in \mathcal{T}$;
- If $X \notin \mathcal{T}$, then $\exists T, T' \in \mathcal{T}$ such that

 $\operatorname{Hom}_{\mathcal{A}}(X, T[1]) \neq 0; \operatorname{Hom}_{\mathcal{A}}(T', X[1]) \neq 0.$

(ロ) (同) (E) (E) (E)

Cluster tilting subcategories

Definition

A subcategory ${\mathcal T}$ of ${\mathcal A}$ is called cluster-tilting if

- \mathcal{T} is functorially finite in \mathcal{A} ;
- Hom_{\mathcal{A}}(T, T'[1]) = 0, for all $T, T' \in \mathcal{T}$;
- If $X \notin \mathcal{T}$, then $\exists T, T' \in \mathcal{T}$ such that

 $\operatorname{Hom}_{\mathcal{A}}(X, \, T[1]) \neq 0; \operatorname{Hom}_{\mathcal{A}}(T', X[1]) \neq 0.$

Theorem (Koenig, Zhu)

If $\mathcal T$ is a cluster-tilting subcategory of $\mathcal A$, then $\mathrm{mod}\mathcal T\cong \mathcal A/\mathcal T[1].$

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

イロト イポト イヨト イヨト

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

() Q_T has no oriented cycle of length one or two;

イロト イポト イヨト イヨト

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- e for any *M* ∈ ind*T*, ∃! *M*^{*} ∈ ind*A* (≇ *M*) such that add(*T_M*, *M*^{*}) := $\mu_M(T)$ is cluster-tilting;

(ロ) (同) (E) (E) (E)

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- e for any *M* ∈ ind*T*, ∃! *M*^{*} ∈ ind*A* (≇ *M*) such that add(*T_M*, *M*^{*}) := $\mu_M(T)$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- e for any *M* ∈ ind*T*, ∃! *M*^{*} ∈ ind*A* (≇ *M*) such that add(*T_M*, *M*^{*}) := $\mu_M(T)$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1]; M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

Cluster categories

 \mathcal{A} is a *cluster-category* if it has cluster-tilting subcategories; and for any cluster-tilting subcategory \mathcal{T} ,

- Q_T has no oriented cycle of length one or two;
- e for any *M* ∈ ind*T*, ∃! *M*^{*} ∈ ind*A* (≇ *M*) such that add(*T_M*, *M*^{*}) := $\mu_M(T)$ is cluster-tilting;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by FZ-mutation at M;
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1]; M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_M -approximations;

g, v minimal right \mathcal{T}_M -approximations.

Objective of Study

Construct more cluster categories of infinite rank.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

イロト イヨト イヨト イヨト

Plan of the rest of this talk

• $Q = (Q_0, Q_1)$: connected, locally finite, no infinite path.

・ロン ・回と ・ヨン ・ヨン

Plan of the rest of this talk

- $Q = (Q_0, Q_1)$: connected, locally finite, no infinite path.
- 2 Study rep(Q); $D^b(rep(Q))$.

・ロト ・回ト ・ヨト ・ヨト

Plan of the rest of this talk

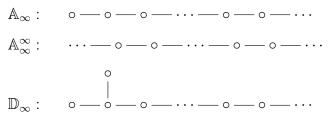
- $Q = (Q_0, Q_1)$: connected, locally finite, no infinite path.
- 2 Study rep(Q); $D^b(rep(Q))$.
- Show an orbit category of D^b(rep(Q)) is cluster category if Q is of infinite Dynkin type

ヘロン 人間 とくほど くほとう

Plan of the rest of this talk

• $Q = (Q_0, Q_1)$: connected, locally finite, no infinite path.

- 3 Study rep(Q); $D^b(rep(Q))$.
- Show an orbit category of D^b(rep(Q)) is cluster category if Q is of infinite Dynkin type

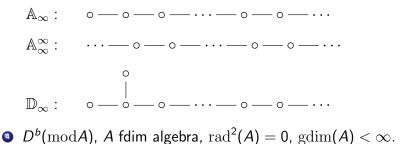


◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Plan of the rest of this talk

• $Q = (Q_0, Q_1)$: connected, locally finite, no infinite path.

- 3 Study rep(Q); $D^b(rep(Q))$.
- Show an orbit category of D^b(rep(Q)) is cluster category if Q is of infinite Dynkin type



▲□▶ ▲□▶ ▲目▶ ▲目▶ = ● ● ●

Representations

• A k-linear representation M of Q consists of

- 4 回 2 - 4 □ 2 - 4 □

Representations

• A k-linear representation M of Q consists of

• k-spaces M(x); $x \in Q_0$;

・ 回 と ・ ヨ と ・ ヨ と

3

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(\alpha): M(x) \rightarrow M(y); \alpha: x \rightarrow y \in Q_1.$

イロン イヨン イヨン イヨン

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(\alpha): M(x) \rightarrow M(y); \ \alpha: x \rightarrow y \in Q_1.$

2 Define
$$\dim_k M = \sum_{x \in Q_0} \dim_k M(x)$$
.

イロン イヨン イヨン イヨン

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(\alpha): M(x)
 ightarrow M(y); \ lpha: x
 ightarrow y \in Q_1.$

2 Define
$$\dim_k M = \sum_{x \in Q_0} \dim_k M(x)$$
.

• rep(Q) : category of fin. dim. *k*-representations of *Q*.

・ロン ・回 と ・ 回 と ・ 回 と

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(\alpha): M(x)
 ightarrow M(y); \ lpha: x
 ightarrow y \in Q_1.$

2 Define
$$\dim_k M = \sum_{x \in Q_0} \dim_k M(x)$$
.

• rep(Q) : category of fin. dim. *k*-representations of Q.

• Given
$$a \in Q$$
, one defines

・ロン ・回 と ・ 回 と ・ 回 と

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(\alpha): M(x)
 ightarrow M(y); \ lpha: x
 ightarrow y \in Q_1.$

2 Define
$$\dim_k M = \sum_{x \in Q_0} \dim_k M(x)$$
.

- rep(Q) : category of fin. dim. *k*-representations of Q.
- Given $a \in Q$, one defines
 - indecomposable projective $P_a \in \operatorname{rep}(Q)$ by

$$P_a(x) = k < a \rightsquigarrow x >, ext{ for } x \in Q_0.$$

イロト イポト イラト イラト 一日

Representations

• A k-linear representation M of Q consists of

- k-spaces M(x); $x \in Q_0$;
- k-maps $M(lpha):M(x) o M(y);\ lpha:x o y\in Q_1.$

2 Define
$$\dim_k M = \sum_{x \in Q_0} \dim_k M(x)$$
.

• rep(Q) : category of fin. dim. *k*-representations of *Q*.

• Given
$$a \in Q$$
, one defines

• indecomposable projective $P_{\mathsf{a}} \in \operatorname{rep}(Q)$ by

$$P_a(x) = k < a \rightsquigarrow x >, ext{ for } x \in Q_0.$$

• indecomposable injective $I_a \in \operatorname{rep}(Q)$ by

$$I_a(x) = k < x \rightsquigarrow a >; \text{ for } x \in Q_0.$$

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

イロト イヨト イヨト イヨト

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

•
$$(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$$

イロト イヨト イヨト イヨト

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

• $(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$

• Translation $\sigma : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0 : (a, n) \to (a, n-1).$

・ロン ・回と ・ヨン ・ヨン

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

- $(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$
- Translation $\sigma : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0 : (a, n) \to (a, n-1).$
- Every $a o b \in Q_1$ induces arrows

ヘロン 人間 とくほど くほとう

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

• $(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$

- Translation $\sigma : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0 : (a, n) \to (a, n-1).$
- Every $a \rightarrow b \in Q_1$ induces arrows

$$\cdots (a,-1) (a,0) (a,1) (b,0) (b,1) \cdots$$

ヘロン 人間 とくほど くほとう

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

•
$$(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$$

- Translation $\sigma : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0 : (a, n) \to (a, n-1).$
- Every $a o b \in Q_1$ induces arrows

$$\cdots (a,-1) (a,0) (a,1) (b,0) (b,1) \cdots$$

2 $\mathbb{N}Q$: subquiver generated by (a, n); $a \in Q_0$, $n \ge 0$;

・ロン ・回と ・ヨン・

A general construction of translation quivers

• Construct a translation quiver $\mathbb{Z}Q$:

•
$$(\mathbb{Z}Q)_0 = \{(a, n) \mid a \in Q_0; n \in \mathbb{Z}\};$$

- Translation $\sigma : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0 : (a, n) \to (a, n-1).$
- Every $a o b \in Q_1$ induces arrows

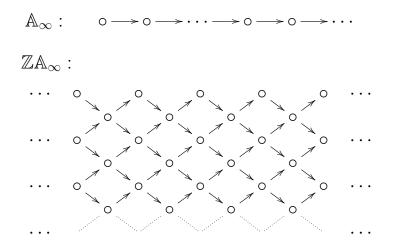
$$\cdots (a,-1) (a,0) (a,1) (b,0) (b,1) \cdots$$

- 3 $\mathbb{N}Q$: subquiver generated by (a, n); $a \in Q_0$, $n \ge 0$;
- **3** \mathbb{N}^-Q : subquiver generated by (a, n); $a \in Q_0$, $n \leq 0$.

イロト イポト イヨト イヨト

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

Example



< 🗗 🕨

★ E > < E >

æ

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of

・ロン ・回と ・ヨン・モン・

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of

1 a *preprojective* component $\mathcal{P} \ (\cong \mathbb{N} Q^{\mathrm{op}}) \ni P_a, a \in Q_0;$

イロト イヨト イヨト イヨト

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of rep(Q) consist of

- **1** a *preprojective* component $\mathcal{P} (\cong \mathbb{N}Q^{\mathrm{op}}) \ni P_a, a \in Q_0;$
- **2** a *preinjective* component $\mathcal{I} (\cong \mathbb{N}^- Q^{\mathrm{op}}) \ni I_a, a \in Q_0;$

イロン イヨン イヨン イヨン

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of $\operatorname{rep}(Q)$ consist of

- **1** a *preprojective* component $\mathcal{P} \ (\cong \mathbb{N} Q^{\mathrm{op}}) \ni P_a, a \in Q_0;$
- 3 a preinjective component $\mathcal{I} (\cong \mathbb{N}^- Q^{\mathrm{op}}) \ni I_a, a \in Q_0;$
- **o** r regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where

イロン イ部ン イヨン イヨン 三日

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of $\operatorname{rep}(Q)$ consist of

- **1** a *preprojective* component $\mathcal{P} \ (\cong \mathbb{N} Q^{\mathrm{op}}) \ni P_a, a \in Q_0;$
- 2 a *preinjective* component $\mathcal{I} (\cong \mathbb{N}^- Q^{\mathrm{op}}) \ni I_a, a \in Q_0$;
- *r* regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where

•
$$r=0,1,2,$$
 if Q of type $\mathbb{A}_{\infty},\mathbb{D}_{\infty},\mathbb{A}_{\infty}^{\infty};$

イロン イヨン イヨン イヨン

AR-components of representations

Theorem (Bautista, Liu, Paquette)

If Q is infinite, then AR-components of $\operatorname{rep}(Q)$ consist of

- **0** a *preprojective* component $\mathcal{P} \ (\cong \mathbb{N} Q^{\mathrm{op}}) \ni P_a, a \in Q_0;$
- 2 a *preinjective* component $\mathcal{I} (\cong \mathbb{N}^- Q^{\mathrm{op}}) \ni I_a, a \in Q_0;$
- **o** r regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where
 - r=0,1,2, if Q of type $\mathbb{A}_{\infty},\mathbb{D}_{\infty},\mathbb{A}_{\infty}^{\infty};$
 - $r = \infty$, in all the remaining cases.

(ロ) (同) (E) (E) (E)

The bounded derived category

D^b(rep(Q)) : the derived category of bounded complexes over rep(Q).

イロト イヨト イヨト イヨト

The bounded derived category

- D^b(rep(Q)) : the derived category of bounded complexes over rep(Q).
- **2** For $M \in \operatorname{rep}(Q)$ and $n \in \mathbb{Z}$, we have stalk complex

п

 $M[n]: \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow \cdots$

(ロ) (同) (E) (E) (E)

The bounded derived category

- D^b(rep(Q)) : the derived category of bounded complexes over rep(Q).
- **2** For $M \in \operatorname{rep}(Q)$ and $n \in \mathbb{Z}$, we have stalk complex

п

- $M[n]: \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow \cdots$
- The indecomposable objects of $D^b(rep(Q))$ are

 $\{M[n] \mid n \in \mathbb{Z}, M \in ind(rep(Q))\}.$

소리가 소문가 소문가 소문가

Almost split sequences in $D^b(rep(Q))$

Theorem (Bautista, Liu, Paquette)

Severy almost split sequence X → Y → Z in rep(Q) induces almost split sequences D^b(rep(Q)) :

$$X[n] \longrightarrow Y[n] \longrightarrow Z[n], n \in \mathbb{Z}.$$

・ロン ・回と ・ヨン・

Almost split sequences in $D^b(rep(Q))$

Theorem (Bautista, Liu, Paquette)

Severy almost split sequence X → Y → Z in rep(Q) induces almost split sequences D^b(rep(Q)) :

$$X[n] \longrightarrow Y[n] \longrightarrow Z[n], n \in \mathbb{Z}.$$

2 For $a \in Q_0$, \exists almost split sequences in $D^b(rep(Q))$:

$$I_{a}[n-1] \longrightarrow (\bigoplus_{a_{i} \to a} I_{a_{i}}[n-1]) \oplus (\bigoplus_{a \to b_{j}} P_{b_{j}}[n]) \longrightarrow P_{a}[n],$$

for $n \in \mathbb{Z}$.

・ロン ・回と ・ヨン・

AR-components of $D^b(rep(Q))$

Theorem (Bautista, Liu, Paquette)

The AR-components of $D^b(\operatorname{rep}(Q))$ consist of

• regular components $\mathcal{R}[n] \cong \mathbb{Z}\mathbb{A}_{\infty}$, where \mathcal{R} ranges over the regular components of $\Gamma(\operatorname{rep}(Q))$ and $n \in \mathbb{Z}$;

・ロン ・聞と ・ほと ・ほと

AR-components of $D^b(\operatorname{rep}(Q))$

Theorem (Bautista, Liu, Paquette)

The AR-components of $D^b(\operatorname{rep}(Q))$ consist of

- regular components $\mathcal{R}[n] \cong \mathbb{Z}\mathbb{A}_{\infty}$, where \mathcal{R} ranges over the regular components of $\Gamma(\operatorname{rep}(Q))$ and $n \in \mathbb{Z}$;
- ② connecting components $C[n] (\cong \mathbb{Z}Q^{op})$, obtained by gluing $\mathcal{I}[n-1]$ with $\mathcal{P}[n]$ and $n \in \mathbb{Z}$.

イロン イ部ン イヨン イヨン 三日

AR-components of $D^b(\operatorname{rep}(Q))$

Theorem (Bautista, Liu, Paquette)

The AR-components of $D^b(\operatorname{rep}(Q))$ consist of

- regular components $\mathcal{R}[n] \cong \mathbb{Z}\mathbb{A}_{\infty}$, where \mathcal{R} ranges over the regular components of $\Gamma(\operatorname{rep}(Q))$ and $n \in \mathbb{Z}$;
- connecting components $C[n] \cong \mathbb{Z}Q^{op}$, obtained by gluing $\mathcal{I}[n-1]$ with $\mathcal{P}[n]$ and $n \in \mathbb{Z}$.
- AR-translation τ_{D} is automorphism of $D^{b}(rep(Q))$.

(ロ) (同) (E) (E) (E)

Canonical orbit category

Consider group $G = \langle F \rangle$, where $F = \tau_{D}^{-1} \circ [1]$.

・ロン ・回と ・ヨン・

Canonical orbit category

Consider group $G = \langle F \rangle$, where $F = \tau_{D}^{-1} \circ [1]$.

This yields a Galois G-covering functor

$$p: D^b(\operatorname{rep}(Q)) \longrightarrow D^b(\operatorname{rep}(Q))/G := \mathscr{C}(Q).$$

Canonical orbit category

Consider group $G = \langle F \rangle$, where $F = \tau_D^{-1} \circ [1]$.

This yields a Galois G-covering functor

$$p: D^b(\operatorname{rep}(Q)) \longrightarrow D^b(\operatorname{rep}(Q))/G := \mathscr{C}(Q).$$

Theorem (Keller, Buan-Iyama-Reiten-Scott)

 $\mathscr{C}(Q)$ is triangulated, which is a cluster category in case Q is is finite.

(ロ) (同) (E) (E) (E)

Conjecture (Liu, Paquette)

 $\mathscr{C}(Q)$ is always a cluster category.

Shiping Liu (University of Sherbrooke) Linear categories: from module categories to derived categories

・ロン ・回 とくほど ・ ほとう

э

Conjecture (Liu, Paquette)

 $\mathscr{C}(Q)$ is always a cluster category.

Remark

It suffices to show that the quiver of any cluster-tilting subcategory in $\mathscr{C}(Q)$ has no oriented cycle of length one or two.

・ロト ・回ト ・ヨト ・ヨト

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then $\mathscr{C}(Q)$ is a cluster category;

イロン イヨン イヨン イヨン

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then $\mathscr{C}(Q)$ is a cluster category; and its AR-components consist of

• a connecting component $\mathcal{C}[0] (\cong \mathbb{Z}Q^{\mathrm{op}})$;

イロン イヨン イヨン イヨン

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then $\mathscr{C}(Q)$ is a cluster category; and its AR-components consist of

- a connecting component $\mathcal{C}[0] (\cong \mathbb{Z}Q^{\mathrm{op}})$;
- *r* regular components $\mathcal{R}[0] (\cong \mathbb{Z}\mathbb{A}_{\infty})$, where

・ロン ・回 と ・ ヨ と ・ ヨ と

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then $\mathscr{C}(Q)$ is a cluster category; and its AR-components consist of

- a connecting component $\mathcal{C}[0] (\cong \mathbb{Z}Q^{\mathrm{op}})$;
- *r* regular components $\mathcal{R}[0] (\cong \mathbb{Z}\mathbb{A}_{\infty})$, where

• r=0,1,2 in case Q of type \mathbb{A}_{∞} , \mathbb{D}_{∞} , $\mathbb{A}_{\infty}^{\infty}$, resp.

(ロ) (同) (E) (E) (E)

The infinite Dynkin case

Theorem (Liu-Paquette, Yang)

If Q is infinite Dynkin quiver, then $\mathscr{C}(Q)$ is a cluster category; and its AR-components consist of

- a connecting component $\mathcal{C}[0] (\cong \mathbb{Z}Q^{\mathrm{op}})$;
- *r* regular components $\mathcal{R}[0] \ (\cong \mathbb{Z}\mathbb{A}_{\infty})$, where
 - r=0,1,2 in case Q of type \mathbb{A}_{∞} , \mathbb{D}_{∞} , $\mathbb{A}_{\infty}^{\infty}$, resp.

• $\mathcal R$ ranges over regular components of $\Gamma(\operatorname{rep}(Q));$

・ロン ・回 と ・ ヨ と ・ ヨ と

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$.

・ロン ・回と ・ヨン ・ヨン

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules.

・ロン ・回と ・ヨン・

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules. Consider $D^b(\operatorname{mod} A)$.

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules. Consider $D^b(\operatorname{mod} A)$.

Theorem (Bautista, Liu)

There exists a quiver \tilde{Q} with no infinite path and a Galois \mathfrak{G} -covering

$$\pi: D^b(\operatorname{rep}(\tilde{Q})) \longrightarrow D^b(\operatorname{mod} A),$$

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules. Consider $D^b(\operatorname{mod} A)$.

Theorem (Bautista, Liu)

There exists a quiver \tilde{Q} with no infinite path and a Galois $\mathfrak{G}\text{-}\mathrm{covering}$

$$\pi: D^b(\operatorname{rep}(\tilde{Q})) \longrightarrow D^b(\operatorname{mod} A),$$

• where \mathfrak{G} acts freely on AR-components of $D^b(\operatorname{rep}(\tilde{Q}))$.

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules. Consider $D^b(\operatorname{mod} A)$.

Theorem (Bautista, Liu)

There exists a quiver \tilde{Q} with no infinite path and a Galois $\mathfrak{G}\text{-}\mathrm{covering}$

$$\pi: D^b(\operatorname{rep}(\tilde{Q})) \longrightarrow D^b(\operatorname{mod} A),$$

• where \mathfrak{G} acts freely on AR-components of $D^b(\operatorname{rep}(\tilde{Q}))$.

• AR-components of $D^b(\text{mod} A)$ are of shape $\mathbb{Z}\tilde{Q}$ or $\mathbb{Z}\mathbb{A}_{\infty}$.

The bounded derived category of an algebra

A : fin dim k-algebra, $\operatorname{rad}^2(A) = 0$, $\operatorname{gdim}(A) < \infty$. modA : category of fin dim left A-modules. Consider $D^b(\operatorname{mod} A)$.

Theorem (Bautista, Liu)

There exists a quiver \tilde{Q} with no infinite path and a Galois $\mathfrak{G}\text{-}\mathrm{covering}$

$$\pi: D^b(\operatorname{rep}(\tilde{Q})) \longrightarrow D^b(\operatorname{mod} A),$$

- where \mathfrak{G} acts freely on AR-components of $D^b(\operatorname{rep}(\tilde{Q}))$.
- AR-components of $D^b(\operatorname{mod} A)$ are of shape $\mathbb{Z}\tilde{Q}$ or $\mathbb{Z}\mathbb{A}_{\infty}$.
- The number of such AR-components is generally finite.