Auslander-Reiten components with bounded short cycles

Shiping Liu (Université de Sherbrooke)

joint with

Jinde Xu (Xiangtan University, China)

Mathematical Congress of the Americas 2017

July 24 - 27, Montreal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.
- Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.
- Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.
- Liu studied module category and AR-components in which all short cycles of finite depth.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.
- Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.
- Liu studied module category and AR-components in which all short cycles of finite depth.

 In this talk, we shall describe AR-components in which the short cycles are of bounded depth.

- Ringel initiated the study of modules not on any cycles, showing these modules are uniquely determined by their composition factors.
- Skowroński, and many others, studied module category and AR-components in which all cycles are of finite depth.
- Liu studied module category and AR-components in which all short cycles of finite depth.

- In this talk, we shall describe AR-components in which the short cycles are of bounded depth.
- As application, give a new characterization of representation-finiteness.

• A: a connected artin algebra.

- A: a connected artin algebra.
- **2** mod *A*: category of finitely generated right *A*-modules.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A: a connected artin algebra.
- **2** modA: category of finitely generated right A-modules.
- **(3)** ind A: subcategory of modA of indecomposable modules.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A: a connected artin algebra.
- **2** mod *A*: category of finitely generated right *A*-modules.
- **(3)** ind A: subcategory of modA of indecomposable modules.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• rad(mod A): Jacobson radical of mod A.

- A: a connected artin algebra.
- **2** mod *A*: category of finitely generated right *A*-modules.
- **(3)** ind A: subcategory of modA of indecomposable modules.

- rad(mod A): Jacobson radical of mod A.
- $rad^{n}(mod A)$, the *n*-th power of rad(mod A).

- A: a connected artin algebra.
- **2** mod *A*: category of finitely generated right *A*-modules.
- **(a)** ind A: subcategory of modA of indecomposable modules.

- rad(mod A): Jacobson radical of mod A.
- $rad^{n}(mod A)$, the *n*-th power of rad(mod A).
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) := \bigcap_{n \ge 0} \operatorname{rad}^{n}(\operatorname{mod} A)$, infinite radical.

- A: a connected artin algebra.
- **2** mod *A*: category of finitely generated right *A*-modules.
- **(a)** ind A: subcategory of modA of indecomposable modules.
- rad(mod A): Jacobson radical of mod A.
- $rad^{n}(mod A)$, the *n*-th power of rad(mod A).
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) := \bigcap_{n \ge 0} \operatorname{rad}^{n}(\operatorname{mod} A)$, infinite radical.
- Let Γ_A be the AR-quiver of A, with AR-translation τ .

Given a map $f: X \to Y$, its *depth* is defined by

(ロ)、

Given a map $f: X \to Y$, its *depth* is defined by $dp(f) = \begin{cases} \infty, & \text{if } f \in rad^{\infty}(X, Y); \\ n, & \text{if } f \in rad^{n}(X, Y) \setminus rad^{n+1}(X, Y). \end{cases}$

・ロト・日本・モート モー うへぐ

Given a map $f: X \to Y$, its *depth* is defined by $dp(f) = \begin{cases} \infty, & \text{if } f \in rad^{\infty}(X, Y); \\ n, & \text{if } f \in rad^{n}(X, Y) \setminus rad^{n+1}(X, Y). \end{cases}$

Remark

• A map $f : X \to Y$ in ind A is irreducible $\Leftrightarrow dp(f) = 1$.

Given a map $f: X \to Y$, its *depth* is defined by $dp(f) = \begin{cases} \infty, & \text{if } f \in rad^{\infty}(X, Y); \\ n, & \text{if } f \in rad^{n}(X, Y) \setminus rad^{n+1}(X, Y). \end{cases}$

Remark

- A map $f: X \to Y$ in ind A is irreducible $\Leftrightarrow dp(f) = 1$.
- A connected component C of Γ_A is generalized standard if

Given a map $f: X \to Y$, its *depth* is defined by $dp(f) = \begin{cases} \infty, & \text{if } f \in rad^{\infty}(X, Y); \\ n, & \text{if } f \in rad^{n}(X, Y) \setminus rad^{n+1}(X, Y). \end{cases}$

Remark

- A map $f: X \to Y$ in ind A is irreducible $\Leftrightarrow dp(f) = 1$.
- A connected component C of Γ_A is generalized standard if every non-zero map f : X → Y, with X, Y ∈ C, is of finite depth.

Given a map $f: X \to Y$, its *depth* is defined by $dp(f) = \begin{cases} \infty, & \text{if } f \in rad^{\infty}(X, Y); \\ n, & \text{if } f \in rad^{n}(X, Y) \setminus rad^{n+1}(X, Y). \end{cases}$

Remark

- A map $f: X \to Y$ in ind A is irreducible $\Leftrightarrow dp(f) = 1$.
- A connected component C of Γ_A is generalized standard if every non-zero map f : X → Y, with X, Y ∈ C, is of finite depth.

Proposition (Igusa-Todorov)

If
$$X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n$$
 is a sectional path of irreducible maps in ind A, then $dp(f_n \cdots f_1) = n$.

• A cycle of length n in modA is a sequence

• A cycle of length n in modA is a sequence

$$\sigma: X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n = X_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A cycle of length n in modA is a sequence

$$\sigma: X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n = X_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

of non-zero non-isomorphisms in $\operatorname{ind} A$.

• A cycle of length n in modA is a sequence

$$\sigma: X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n = X_0$$

of non-zero non-isomorphisms in ind A.

2 If n = 2, then σ is called *short cycle*.

• A cycle of length n in modA is a sequence

$$\sigma: X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n = X_0$$

of non-zero non-isomorphisms in $\operatorname{ind} A$.

- **2** If n = 2, then σ is called *short cycle*.
- The *depth* of σ is defined by

 $dp(\sigma) = \max\{dp(f_1), \ldots, dp(f_n)\}.$

• A cycle of length n in modA is a sequence

$$\sigma: X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n = X_0$$

of non-zero non-isomorphisms in $\operatorname{ind} A$.

- **2** If n = 2, then σ is called *short cycle*.
- The *depth* of σ is defined by

 $\mathrm{dp}(\sigma) = \max\{\mathrm{dp}(f_1), \ldots, \mathrm{dp}(f_n)\}.$

If all the X_i belong to a subquiver Γ of Γ_A, then σ is called cycle in add(Γ).

Theorem

An artin algebra A is representation-finite if

• ind *A* contains no cycle (Ringel);

Theorem

An artin algebra A is representation-finite if

- ind *A* contains no cycle (Ringel);
- **2** ind *A* contains no short cycle (Happel-Liu).

• A subquiver Γ of Γ_A is called *short-cycle-bounded* if there exists a bound for the depths of short cycles in $\operatorname{add}(\Gamma)$.

- A subquiver Γ of Γ_A is called *short-cycle-bounded* if there exists a bound for the depths of short cycles in $\operatorname{add}(\Gamma)$.
- If A is representation-finite, then rad[∞](mod A) = 0, and consequently, Γ_A is short-cycle-bounded.

- A subquiver Γ of Γ_A is called *short-cycle-bounded* if there exists a bound for the depths of short cycles in $\operatorname{add}(\Gamma)$.
- If A is representation-finite, then rad[∞](mod A) = 0, and consequently, Γ_A is short-cycle-bounded.

Reiten and Skowronski introduced the notion of generalized double tilted algebra.

- A subquiver Γ of Γ_A is called *short-cycle-bounded* if there exists a bound for the depths of short cycles in $\operatorname{add}(\Gamma)$.
- If A is representation-finite, then rad[∞](mod A) = 0, and consequently, Γ_A is short-cycle-bounded.
- Reiten and Skowronski introduced the notion of generalized double tilted algebra.

Theorem

An artin algebra A is generalized double tilted $\Leftrightarrow \Gamma_A$ has a faithful, generalized standard and short-cycle-bounded component.

A connected full subquiver Δ of Γ_A is called

A connected full subquiver Δ of Γ_A is called

•
$$\tau$$
-rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A connected full subquiver Δ of Γ_A is called

• τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.

2 cut provided, for arrow $X \to Y$ in Γ_A , that

A connected full subquiver Δ of Γ_A is called

- τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
- **2** cut provided, for arrow $X \to Y$ in Γ_A , that
 - if $X \in \Delta$, then Y or τY , not both, belongs to Δ ;

A connected full subquiver Δ of Γ_A is called

- τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
- **2** cut provided, for arrow $X \to Y$ in Γ_A , that
 - if $X \in \Delta$, then Y or τY , not both, belongs to Δ ;
 - if $Y \in \Delta$, then X or τ^-X , not both, belongs to Δ .

Theorem (Liu)

An artin algebra A is a tilted algebra $\Leftrightarrow \Gamma_A$ contains a faithful τ -rigid cut Δ ; and in this case, Δ is a slice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Liu)

An artin algebra A is a tilted algebra $\Leftrightarrow \Gamma_A$ contains a faithful τ -rigid cut Δ ; and in this case, Δ is a slice.

Corollary (Liu)

If Δ is a τ -rigid cut of Γ_A , then the quotient algebra

 $B = A/\mathrm{ann}(\Delta)$

is tilted with Δ being a slice of Γ_B .

The *left stable part* C₁ of C is its full subquiver of left stable modules.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The *left stable part* C_l of C is its full subquiver of left stable modules.
- The connected components of the quiver C₁ are called *left stable components* of C.

- The *left stable part* C_l of C is its full subquiver of left stable modules.
- The connected components of the quiver C₁ are called *left stable components* of C.

③ Dually, we have the *right stable components* of C.

- The *left stable part* C₁ of C is its full subquiver of left stable modules.
- The connected components of the quiver C₁ are called *left stable components* of C.
- **③** Dually, we have the *right stable components* of C.
- A left or right stable component of C is called *semi-stable* component of Γ_A.

- The *left stable part* C₁ of C is its full subquiver of left stable modules.
- The connected components of the quiver C₁ are called *left stable components* of C.
- **③** Dually, we have the *right stable components* of C.
- A left or right stable component of C is called *semi-stable* component of Γ_A.
- Solution The core of C is the full subquiver generated by the modules lying on P → I, with P projective and I injective.

Let Γ be an infinite semi-stable component of Γ_A .

Let Γ be an infinite semi-stable component of Γ_A .

0 If Γ has oriented cycles, then it has infinite sectional paths

Let Γ be an infinite semi-stable component of Γ_A .

0 If Γ has oriented cycles, then it has infinite sectional paths

$$M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots$$

$$\cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow M$$

ヘロト 人間ト 人団ト 人団ト

э

Let Γ be an infinite semi-stable component of Γ_A .

0 If Γ has oriented cycles, then it has infinite sectional paths

$$M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots$$

$$\cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow M$$

Thus, $add(\Gamma)$ has short cycles of arbitrarily large depths.

Let Γ be an infinite semi-stable component of Γ_A .

Ο If Γ has oriented cycles, then it has infinite sectional paths

 $M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots$

$$\cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow M$$

Thus, $add(\Gamma)$ has short cycles of arbitrarily large depths. 2 If Γ contains no oriented cycle, it contains cuts of Γ_A ;

Let Γ be an infinite semi-stable component of Γ_A .

Ο If Γ has oriented cycles, then it has infinite sectional paths

$$M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots$$

$$\cdots \longrightarrow \tau^{2t} M \longrightarrow \cdots \longrightarrow \tau^t M \longrightarrow \cdots \longrightarrow M$$

Thus, $add(\Gamma)$ has short cycles of arbitrarily large depths.

If Γ contains no oriented cycle, it contains cuts of Γ_A; and if such a cut is not τ-rigid, then add(Γ) contains short cycles of infinite depth.

Theorem

Let C be short-cycle-bounded connected component of Γ_A .

Theorem

Let C be short-cycle-bounded connected component of Γ_A . Then C consists of

• a finite core containing all possible oriented cycles,

Theorem

Let C be short-cycle-bounded connected component of Γ_A . Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \ge 0$,

Theorem

Let C be short-cycle-bounded connected component of Γ_A . Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \ge 0$,
- some infinite right stable components $\Theta_1, \ldots, \Theta_s$ with $s \ge 0$.

Theorem

Let C be short-cycle-bounded connected component of Γ_A . Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \ge 0$,
- some infinite right stable components $\Theta_1, \ldots, \Theta_s$ with $s \ge 0$.

where

 each Γ_i has τ-rigid cut Δ_i such that B_i = A/ann(Δ_i) is tilted and all the predecessors of Δ_i in C belong to the connecting component of Γ_{B_i}.

Theorem

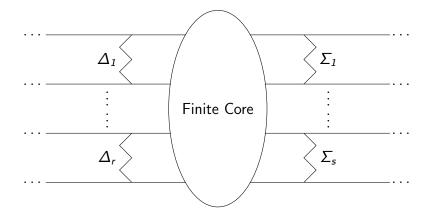
Let C be short-cycle-bounded connected component of Γ_A . Then C consists of

- a finite core containing all possible oriented cycles,
- some infinite left stable components $\Gamma_1, \ldots, \Gamma_r$ with $r \ge 0$,
- some infinite right stable components $\Theta_1, \ldots, \Theta_s$ with $s \ge 0$.

where

- each Γ_i has τ-rigid cut Δ_i such that B_i = A/ann(Δ_i) is tilted and all the predecessors of Δ_i in C belong to the connecting component of Γ_{B_i}.
- each Θ_i has τ-rigid cut Σ_i such that C_i = A/ann(Σ_i) is tilted and all the successors of Δ_i in C belong to the connecting component of Γ_{Ci}.

Illustration of a short-cycle-bounded component



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Example

• Let A = kQ/I be radical squared zero, where

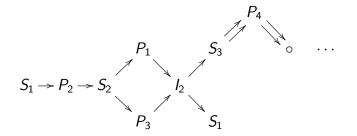
$$Q: 5 \longrightarrow 4 \Longrightarrow 3 \longrightarrow 2 \rightleftharpoons 1.$$

Example

• Let A = kQ/I be radical squared zero, where

$$Q: 5 \longrightarrow 4 \Longrightarrow 3 \longrightarrow 2 \rightleftharpoons 1.$$

We have a short-cycle-bounded AR-component as follows:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

 Γ_A has at most finitely many short-cycle-bounded components; and each of them has only finitely many τ -orbits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

 Γ_A has at most finitely many short-cycle-bounded components; and each of them has only finitely many τ -orbits.

Theorem

The algebra A is of representation-finite if and only if there exists a bound for the depths of short cycles in ind A

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣