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Motivation and objective

© Ringel initiated the study of modules not on any cycles,
showing these modules are uniquely determined by their
composition factors.

@ Skowronski, and many others, studied module category
and AR-components in which all cycles are of finite depth.

© Liu studied module category and AR-components in which
all short cycles of finite depth.

Q In this talk, we shall describe AR-components in which
the short cycles are of bounded depth.

@ As application, give a new characterization of
representation-finiteness.
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A: a connected artin algebra.

modA: category of finitely generated right A-modules.
ind A: subcategory of modA of indecomposable modules.
rad(modA): Jacobson radical of modA.

rad”(modA), the n-th power of rad(modA).
rad™(modA) := Np>o rad”(modA), infinite radical.

Let ['4 be the AR-quiver of A, with AR-translation 7.
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Depth of a map

Given a map f : X — Y/, its depth is defined by

dp(f) = oo, if ferad™(X,Y);
PUIZ U n if Ferad(X, Y)\rad™ (X, Y).

© Amap f: X — Y inindA is irreducible < dp(f) = 1.

@ A connected component C of [, is generalized standard if

every non-zero map f : X — Y, with X, Y € C, is of finite
depth.

Proposition (lgusa-Todorov)

fi

If Xo X Xn_1 fn X, is a sectional path
of irreducible maps in ind A, then dp(f,---fi) = n.
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Cycles

O A cycle of length n in modA is a sequence

X1 Xn—1i>Xn=Xo
of non-zero non-isomorphisms in ind A.

@ If n =2, then o is called short cycle.

© The depth of o is defined by

dp(¢) = max{dp(f),...,dp(f)}

O If all the X; belong to a subquiver [ of 4, then o is
called cycle in add(l).
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Module categories without cycles

An artin algebra A is representation-finite if

@ ind A contains no cycle (Ringel);

@ ind A contains no short cycle (Happel-Liu).
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Examples of short-cycle-bounded subquivers

@ A subquiver I" of 4 is called short-cycle-bounded if there
exists a bound for the depths of short cycles in add(I").

@ If A is representation-finite, then rad®(mod A) = 0, and
consequently, 4 is short-cycle-bounded.

© Reiten and Skowronski introduced the notion of
generalized double tilted algebra.

An artin algebra A is generalized double tilted < 5 has a
faithful, generalized standard and short-cycle-bounded
component.
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Cuts

A connected full subquiver A of 4 is called
o 7-rigid if Homa(X,7Y) =0 for all X, Y € A.
@ cut provided, for arrow X — Y in [, that

o if X € A, then Y or 7Y, not both, belongs to A;
o if Y € A, then X or 77X, not both, belongs to A.

<
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Characterizations of tilted algebras

Theorem (Liu)

An artin algebra A is a tilted algebra < 4 contains a faithful
T-rigid cut 4A; and in this case, A is a slice.

Corollary (Liu)

If Ais a 7-rigid cut of 4, then the quotient algebra
B = A/ann(A)
is tilted with A being a slice of .




Semi-stable components

Let C be a connected component of [4.



Semi-stable components

Let C be a connected component of [4.

© The left stable part C; of C is its full subquiver of left
stable modules.



Semi-stable components

Let C be a connected component of [4.

© The left stable part C; of C is its full subquiver of left
stable modules.

@ The connected components of the quiver C; are called /eft
stable components of C.



Semi-stable components

Let C be a connected component of [4.

© The left stable part C; of C is its full subquiver of left
stable modules.

@ The connected components of the quiver C; are called /eft
stable components of C.

@ Dually, we have the right stable components of C.



Semi-stable components

Let C be a connected component of [4.

o

2]

The left stable part C; of C is its full subquiver of left
stable modules.

The connected components of the quiver C; are called /eft
stable components of C.

Dually, we have the right stable components of C.

A left or right stable component of C is called semi-stable
component of I4.



Semi-stable components

Let C be a connected component of [4.

o

2]

The left stable part C; of C is its full subquiver of left
stable modules.

The connected components of the quiver C; are called /eft
stable components of C.

Dually, we have the right stable components of C.

A left or right stable component of C is called semi-stable
component of I4.

The core of C is the full subquiver generated by the
modules lying on P ~» I, with P projective and / injective.
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Semi-stable components with oriented cycles

Let I" be an infinite semi-stable component of [ 4.

© /f I has oriented cycles, then it has infinite sectional paths

M tM 13y P

R 1 tM M

Thus, add(I") has short cycles of arbitrarily large depths.

@ If [ contains no oriented cycle, it contains cuts of [ a;
and if such a cut is not T-rigid, then add(I") contains
short cycles of infinite depth.
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Main result

Let C be short-cycle-bounded connected component of I .

Then C consists of

e a finite core containing all possible oriented cycles,

e some infinite left stable components I+, ..., I, with
r>0,
e some infinite right stable components @1, ..., ©, with
s> 0.
where

© each I; has T-rigid cut A; such that B; = A/ann(4;) is
tilted and all the predecessors of A; in C belong to the
connecting component of [p..

@ each ©; has T-rigid cut ¥; such that C; = A/ann(X;) is
tilted and all the successors of A; in C belong to the
connecting component of [ ~..




[llustration of a short-cycle-bounded component

Finite Core

A
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O Let A= kQ/I be radical squared zero, where

Q:5—4—=3——=2_—"1.

@ We have a short-cycle-bounded AR-component as follows :
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['a has at most finitely many short-cycle-bounded components;
and each of them has only finitely many T-orbits.

The algebra A is of representation-finite if and only if there
exists a bound for the depths of short cycles in ind A




