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Motivation and objective

1 Ringel initiated the study of modules not on any cycles,
showing these modules are uniquely determined by their
composition factors.

2 Skowroński, and many others, studied module category
and AR-components in which all cycles are of finite depth.

3 Liu studied module category and AR-components in which
all short cycles of finite depth.

4 In this talk, we shall describe AR-components in which
the short cycles are of bounded depth.

5 As application, give a new characterization of
representation-finiteness.
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Setting

1 A: a connected artin algebra.

2 modA: category of finitely generated right A-modules.

3 indA: subcategory of modA of indecomposable modules.

4 rad(modA): Jacobson radical of modA.

5 radn(modA), the n-th power of rad(modA).

6 rad∞(modA) := ∩n≥0 radn(modA), infinite radical.

7 Let ΓA be the AR-quiver of A, with AR-translation τ .
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Depth of a map

Given a map f : X → Y , its depth is defined by

dp(f ) =

{ ∞, if f ∈ rad∞(X ,Y );

n, if f ∈ radn(X ,Y )\radn+1(X ,Y ).

Remark

1 A map f : X → Y in indA is irreducible ⇔ dp(f ) = 1.

2 A connected component C of ΓA is generalized standard if

every non-zero map f : X → Y , with X ,Y ∈ C, is of finite
depth.

Proposition (Igusa-Todorov)

If X0
f1 // X1

// · · · // Xn−1
fn // Xn is a sectional path

of irreducible maps in indA, then dp(fn · · · f1) = n.
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Cycles

Definition

1 A cycle of length n in modA is a sequence

σ : X0
f1 // X1

// · · · // Xn−1
fn // Xn = X0

of non-zero non-isomorphisms in indA.

2 If n = 2, then σ is called short cycle.

3 The depth of σ is defined by

dp(σ) = max{dp(f1), . . . , dp(fn)}.

4 If all the Xi belong to a subquiver Γ of ΓA, then σ is
called cycle in add(Γ ).
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Module categories without cycles
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Examples of short-cycle-bounded subquivers

1 A subquiver Γ of ΓA is called short-cycle-bounded if there
exists a bound for the depths of short cycles in add(Γ ).

2 If A is representation-finite, then rad∞(modA) = 0, and
consequently, ΓA is short-cycle-bounded.

3 Reiten and Skowronski introduced the notion of
generalized double tilted algebra.

Theorem

An artin algebra A is generalized double tilted ⇔ ΓA has a
faithful, generalized standard and short-cycle-bounded
component.
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Cuts

Definition

A connected full subquiver ∆ of ΓA is called

1 τ -rigid if HomA(X , τY ) = 0 for all X ,Y ∈ ∆.

2 cut provided, for arrow X → Y in ΓA, that

if X ∈ ∆, then Y or τY , not both, belongs to ∆;

if Y ∈ ∆, then X or τ−X , not both, belongs to ∆.
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Characterizations of tilted algebras

Theorem (Liu)

An artin algebra A is a tilted algebra ⇔ ΓA contains a faithful
τ -rigid cut ∆; and in this case, ∆ is a slice.

Corollary (Liu)

If ∆ is a τ -rigid cut of ΓA, then the quotient algebra

B = A/ann(∆)

is tilted with ∆ being a slice of ΓB .
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Semi-stable components

Let C be a connected component of ΓA.

1 The left stable part Cl of C is its full subquiver of left
stable modules.

2 The connected components of the quiver Cl are called left
stable components of C.

3 Dually, we have the right stable components of C.

4 A left or right stable component of C is called semi-stable
component of ΓA.

5 The core of C is the full subquiver generated by the
modules lying on P  I , with P projective and I injective.
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Semi-stable components with oriented cycles

Proposition

Let Γ be an infinite semi-stable component of ΓA.

1 If Γ has oriented cycles, then it has infinite sectional paths

M // · · · // τ tM // · · · // τ 2tM // · · ·

· · · // τ 2tM // · · · // τ tM // · · · //M

Thus, add(Γ ) has short cycles of arbitrarily large depths.

2 If Γ contains no oriented cycle, it contains cuts of ΓA;

and if such a cut is not τ -rigid, then add(Γ ) contains

short cycles of infinite depth.
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Main result

Theorem

Let C be short-cycle-bounded connected component of ΓA.

Then C consists of

a finite core containing all possible oriented cycles,

some infinite left stable components Γ1, . . . , Γr with
r ≥ 0,

some infinite right stable components Θ1, . . . ,Θs with
s ≥ 0.

where

1 each Γi has τ -rigid cut ∆i such that Bi = A/ann(∆i) is
tilted and all the predecessors of ∆i in C belong to the
connecting component of ΓBi

.

2 each Θ i has τ -rigid cut Σi such that Ci = A/ann(Σi) is
tilted and all the successors of ∆i in C belong to the
connecting component of ΓCi

.
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tilted and all the predecessors of ∆i in C belong to the
connecting component of ΓBi

.

2 each Θ i has τ -rigid cut Σi such that Ci = A/ann(Σi) is
tilted and all the successors of ∆i in C belong to the
connecting component of ΓCi

.



Illustration of a short-cycle-bounded component
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Example

1 Let A = kQ/I be radical squared zero, where

Q : 5 // 4 //// 3 // 2 // 1.oo

2 We have a short-cycle-bounded AR-component as follows :
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Consequences

Theorem

ΓA has at most finitely many short-cycle-bounded components;
and each of them has only finitely many τ -orbits.

Theorem

The algebra A is of representation-finite if and only if there
exists a bound for the depths of short cycles in indA
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