Oriented cycles and the global dimension of an algebra

Kiyoshi Igusa (Brandeis)
 Shiping Liu (Sherbrooke)
 Charles Paquette (New Brunswick)

SAGG
Université Laval

November 30, 2012

Motivation

A : fin dim associative algebra over field k.

Motivation

A : fin dim associative algebra over field k. $\bmod A$: category of fin. dim. right A-modules.

Motivation

A : fin dim associative algebra over field k. $\bmod A$: category of fin. dim. right A-modules.

Definition

$$
\operatorname{gdim} A=\sup \{\operatorname{pdim} M \mid M \in \bmod A\}
$$

Motivation

A : fin dim associative algebra over field k. $\bmod A$: category of fin. dim. right A-modules.

Definition

$$
\begin{aligned}
\operatorname{gdim} A & =\sup \{\operatorname{pdim} M \mid M \in \bmod A\} \\
& =\sup \{\operatorname{pdim} S \mid S \in \bmod A \text { simple }\}
\end{aligned}
$$

Motivation

A : fin dim associative algebra over field k.
$\bmod A$: category of fin. dim. right A-modules.

Definition

$$
\begin{aligned}
\operatorname{gdim} A & =\sup \{\operatorname{pdim} M \mid M \in \bmod A\} \\
& =\sup \{\operatorname{pdim} S \mid S \in \bmod A \text { simple }\}
\end{aligned}
$$

Problem

How to determine $\operatorname{gdim} A$ is finite or infinite ?

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.
(2) $k Q$ the path algebra of Q over k, that is,

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.
(2) $k Q$ the path algebra of Q over k, that is,

- k-basis: the set of paths in Q.

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.
(2) $k Q$ the path algebra of Q over k, that is,

- k-basis: the set of paths in Q.
- multiplication: concatenation of paths.

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.
(2) $k Q$ the path algebra of Q over k, that is,

- k-basis: the set of paths in Q.
- multiplication: concatenation of paths.
- $I \triangleleft k Q$ with $\left(Q^{+}\right)^{r} \subseteq I \subseteq\left(Q^{+}\right)^{2}$, where

Gabriel's Theorem

Theorem

If $\bar{k}=k$, then

$$
A \stackrel{\text { Mor }}{\sim} k Q / I,
$$

where

(1) $Q=\left(Q_{0}, Q_{1}\right)$ a finite quiver.
(2) $k Q$ the path algebra of Q over k, that is,

- k-basis: the set of paths in Q.
- multiplication: concatenation of paths.
- $I \triangleleft k Q$ with $\left(Q^{+}\right)^{r} \subseteq I \subseteq\left(Q^{+}\right)^{2}$, where

$$
r \geq 2 \text { and } Q^{+}=<Q_{1}>.
$$

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(0) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+I \mid a \in Q_{0}\right\} .
$$

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(3) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+I \mid a \in Q_{0}\right\}
$$

(9) The indecomposable projective A-modules are $P_{a}, a \in Q_{0}$, where

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(3) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+l \mid a \in Q_{0}\right\} .
$$

(9) The indecomposable projective A-modules are $P_{a}, a \in Q_{0}$, where

$$
P_{a}=e_{a} A=k<\text { classes of paths starting at } a>.
$$

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(3) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+I \mid a \in Q_{0}\right\} .
$$

(9) The indecomposable projective A-modules are $P_{a}, a \in Q_{0}$, where

$$
P_{a}=e_{a} A=k<\text { classes of paths starting at } a>.
$$

(5) The simple A-modules are

$$
S_{a}=P_{\mathrm{a}} / \operatorname{rad} P_{a}, a \in Q_{0}
$$

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(3) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+I \mid a \in Q_{0}\right\} .
$$

(9) The indecomposable projective A-modules are $P_{a}, a \in Q_{0}$, where

$$
P_{a}=e_{a} A=k<\text { classes of paths starting at } a>.
$$

(0) The simple A-modules are

$$
S_{a}=P_{\mathrm{a}} / \operatorname{rad} P_{a}, a \in Q_{0}
$$

Remark

$\operatorname{Hom}_{A}\left(P_{a}, P_{b}\right) \cong e_{b} A e_{a}$

Setting

(1) $A=k Q / I$, as previously defined with k arbitrary.
(2) Q has trivial paths $\varepsilon_{a}, a \in Q_{0}$.
(3) A has complete set of orthogonal primitive idempotents

$$
\left\{e_{a}=\varepsilon_{a}+I \mid a \in Q_{0}\right\} .
$$

(9) The indecomposable projective A-modules are $P_{a}, a \in Q_{0}$, where

$$
P_{a}=e_{a} A=k<\text { classes of paths starting at } a>.
$$

(6) The simple A-modules are

$$
S_{a}=P_{a} / \operatorname{rad} P_{a}, a \in Q_{0}
$$

Remark

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(P_{a}, P_{b}\right) & \cong e_{b} A e_{a} \\
& =k<\text { classes of paths } b \rightsquigarrow a>
\end{aligned}
$$

The no oriented cycle case

Proposition

If Q has no oriented cycle, then $\operatorname{gdim} A<$ the maximal length of the paths in Q.

The no oriented cycle case

Proposition

If Q has no oriented cycle, then
$\operatorname{gdim} A<$ the maximal length of the paths in Q.
Proof. Consider minimal projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0, \quad P_{n} \neq 0$.

The no oriented cycle case

Proposition

If Q has no oriented cycle, then
$\operatorname{gdim} A<$ the maximal length of the paths in Q.
Proof. Consider minimal projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0, \quad P_{n} \neq 0$.
$\exists P_{a_{i}} \vdash P_{i}, 0 \leq i \leq n$, with $\operatorname{Hom}_{A}\left(P_{a_{i}}, P_{a_{i-1}}\right) \neq 0$.

The no oriented cycle case

Proposition

If Q has no oriented cycle, then
$\operatorname{gdim} A<$ the maximal length of the paths in Q.
Proof. Consider minimal projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0, \quad P_{n} \neq 0$.
$\exists P_{\mathrm{a}_{i}} \vdash P_{i}, 0 \leq i \leq n$, with $\operatorname{Hom}_{A}\left(P_{\mathrm{a}_{i}}, P_{\mathrm{a}_{i-1}}\right) \neq 0$.
\exists non-trivial paths $a_{i-1} \rightsquigarrow a_{i}, i=1, \ldots, n$.

The no oriented cycle case

Proposition

If Q has no oriented cycle, then
$\operatorname{gdim} A<$ the maximal length of the paths in Q.
Proof. Consider minimal projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0, \quad P_{n} \neq 0$.
$\exists P_{a_{i}} \vdash P_{i}, 0 \leq i \leq n$, with $\operatorname{Hom}_{A}\left(P_{a_{i}}, P_{a_{i-1}}\right) \neq 0$.
\exists non-trivial paths $a_{i-1} \rightsquigarrow a_{i}, i=1, \ldots, n$.
\exists path $a_{0} \rightsquigarrow a_{1} \rightsquigarrow \cdots \rightsquigarrow a_{n-1} \rightsquigarrow a_{n}$.

Examples

Remark

The existence of oriented cycles in Q is necessary, but not sufficient, for $\operatorname{gdim} A=\infty$.

Examples

Remark

The existence of oriented cycles in Q is necessary, but not sufficient, for $\operatorname{gdim} A=\infty$.

Example

Let $A_{i}=k Q / I_{i}, i=1,2$, where

Examples

Remark

The existence of oriented cycles in Q is necessary, but not sufficient, for $\operatorname{gdim} A=\infty$.

Example

$$
\text { Let } A_{i}=k Q / I_{i}, i=1,2, \text { where }
$$ Q :

Examples

Remark

The existence of oriented cycles in Q is necessary, but not sufficient, for $\operatorname{gdim} A=\infty$.

Example

$$
\text { Let } \begin{aligned}
& A_{i}=k Q / l_{i}, i=1,2 \text {, where } \\
& \\
& Q: \\
& I_{1}=<\alpha \beta>, I_{2}=<\alpha \beta, \beta \alpha>.
\end{aligned}
$$

Examples

Remark

The existence of oriented cycles in Q is necessary, but not sufficient, for $\operatorname{gdim} A=\infty$.

Example

$$
\text { Let } A_{i}=k Q / I_{i}, i=1,2, \text { where }
$$

$$
I_{1}=<\alpha \beta>, I_{2}=<\alpha \beta, \beta \alpha>.
$$

Then $\operatorname{gdim} A_{1}=2$ and $\operatorname{gdim} A_{2}=\infty$.

Problem and Conjectures

Problem

What kind of oriented cycles make $\operatorname{gdim} A=\infty$?

Problem and Conjectures

Problem

What kind of oriented cycles make $\operatorname{gdim} A=\infty$?

No Loop Conjecture (Zacharia, 1980')

If Q has a loop, then $\operatorname{gdim} A=\infty$.

Problem and Conjectures

Problem

What kind of oriented cycles make $\operatorname{gdim} A=\infty$?

No Loop Conjecture (Zacharia, 1980')

If Q has a loop, then $\operatorname{gdim} A=\infty$.

Strong No Loop Conjecture (Zacharia, 1980')

If Q has loop at a vertex a, then $\operatorname{pdim} S_{a}=\infty$.

Brief History

- Using a result of Lenzing in 1969, Igusa established No Loop Conjecture in 1990.

Brief History

- Using a result of Lenzing in 1969, Igusa established No Loop Conjecture in 1990.
(2) For the Strong No Loop Conjecture, only partial solutions were obtained until 2010.

Main Result

Theorem (Igusa, Liu, Paquette, 2011)

Let $A=k Q / I$. If Q has a loop at a vertex a, then $\operatorname{pdim} S_{a}=\operatorname{idim} S_{a}=\infty$.

Hochschild homology group of degree zero

Definition

1) For $x, y \in A$, write $[x, y]=x y-y x$.

Hochschild homology group of degree zero

Definition

1) For $x, y \in A$, write $[x, y]=x y-y x$.
2) $[A, A]=\left\{\sum_{i}\left[x_{i}, y_{i}\right] \mid x_{i}, y_{i} \in A\right\}$.

Hochschild homology group of degree zero

Definition

1) For $x, y \in A$, write $[x, y]=x y-y x$.
2) $[A, A]=\left\{\sum_{i}\left[x_{i}, y_{i}\right] \mid x_{i}, y_{i} \in A\right\}$.
3) $\mathrm{HH}_{0}(A)=A /[A, A]$, an abelian group.

Hochschild homology group of degree zero

Definition

1) For $x, y \in A$, write $[x, y]=x y-y x$.
2) $[A, A]=\left\{\sum_{i}\left[x_{i}, y_{i}\right] \mid x_{i}, y_{i} \in A\right\}$.
3) $\mathrm{HH}_{0}(A)=A /[A, A]$, an abelian group.
4) $\mathrm{HH}_{0}(A)$ is radical-trivial if $\operatorname{rad} A \subseteq[A, A]$.

Hochschild homology group of degree zero

Definition

1) For $x, y \in A$, write $[x, y]=x y-y x$.
2) $[A, A]=\left\{\sum_{i}\left[x_{i}, y_{i}\right] \mid x_{i}, y_{i} \in A\right\}$.
3) $\mathrm{HH}_{0}(A)=A /[A, A]$, an abelian group.
4) $\mathrm{HH}_{0}(A)$ is radical-trivial if $\operatorname{rad} A \subseteq[A, A]$.

Proposition

Let A° denote the opposite algebra of A. Then $\mathrm{HH}_{0}(A)$ is radical-trivial \Leftrightarrow so is $\mathrm{HH}_{0}\left(A^{\circ}\right)$.

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

Proof. Let $x, y \in A$. Write

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}
\end{aligned}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2} \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2}
\end{aligned}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2} \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} . \\
& {[x, y]=\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha}}
\end{aligned}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2} \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} \\
& \begin{array}{l}
{[x, y]=\sum_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha}} \\
\quad+\sum_{\beta \in Q_{1}} \mu_{\beta}\left(\lambda_{s(\beta)}-\lambda_{t(\beta)}\right) \bar{\beta}+\bar{w}, w \in\left(Q^{+}\right)^{2} .
\end{array}
\end{aligned}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\sum_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}, \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} . \\
& \begin{array}{l}
{[x, y]=} \\
\quad \sum_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha} \\
\quad+\sum_{\beta \in Q_{1}} \mu_{\beta}\left(\lambda_{s(\beta)}-\lambda_{t(\beta)}\right) \bar{\beta}+\bar{w}, w \in\left(Q^{+}\right)^{2} .
\end{array}
\end{aligned}
$$

$$
\text { Set } \Omega=\left\{\alpha \in Q_{1} \mid s(\alpha) \neq t(\alpha)\right\} .
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\sum_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}, \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} . \\
& \begin{aligned}
{[x, y]=} & \sum_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha} \\
& \quad+\sum_{\beta \in Q_{1}} \mu_{\beta}\left(\lambda_{s(\beta)}-\lambda_{t(\beta)}\right) \bar{\beta}+\bar{w}, w \in\left(Q^{+}\right)^{2} .
\end{aligned}
\end{aligned}
$$

$$
\text { Set } \Omega=\left\{\alpha \in Q_{1} \mid s(\alpha) \neq t(\alpha)\right\} .
$$

$$
\bar{\sigma} \in[A, A] \Rightarrow \bar{\sigma}=\Sigma_{\alpha \in \Omega} \nu_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}, \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} . \\
& \begin{array}{l}
{[x, y]=\sum_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha}} \\
\quad+\sum_{\beta \in Q_{1}} \mu_{\beta}\left(\lambda_{s(\beta)}-\lambda_{t(\beta)}\right) \bar{\beta}+\bar{w}, w \in\left(Q^{+}\right)^{2} .
\end{array}
\end{aligned}
$$

$$
\text { Set } \Omega=\left\{\alpha \in Q_{1} \mid s(\alpha) \neq t(\alpha)\right\}
$$

$$
\bar{\sigma} \in[A, A] \Rightarrow \bar{\sigma}=\Sigma_{\alpha \in \Omega} \nu_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}
$$

$$
\Rightarrow \sigma-\Sigma_{\alpha \in \Omega} \nu_{\alpha} \alpha-u \in I \subseteq\left(Q^{+}\right)^{2}
$$

Loops are not commutators

Proposition

If σ is a loop in Q, then $\bar{\sigma} \notin[A, A]$. In particular, $\mathrm{HH}_{0}(A)$ is not radical-trivial.

$$
\begin{aligned}
& \text { Proof. Let } x, y \in A \text {. Write } \\
& x=\Sigma_{a \in Q_{0}} \lambda_{a} e_{a}+\Sigma_{\alpha \in Q_{1}} \lambda_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}, \\
& y=\Sigma_{b \in Q_{0}} \mu_{b} e_{b}+\Sigma_{\beta \in Q_{1}} \mu_{\beta} \bar{\beta}+\bar{v}, v \in\left(Q^{+}\right)^{2} . \\
& \begin{array}{l}
{[x, y]=\sum_{\alpha \in Q_{1}} \lambda_{\alpha}\left(\mu_{t(\alpha)}-\mu_{s(\alpha)}\right) \bar{\alpha}} \\
\quad+\sum_{\beta \in Q_{1}} \mu_{\beta}\left(\lambda_{s(\beta)}-\lambda_{t(\beta)}\right) \bar{\beta}+\bar{w}, w \in\left(Q^{+}\right)^{2} .
\end{array}
\end{aligned}
$$

$$
\text { Set } \Omega=\left\{\alpha \in Q_{1} \mid s(\alpha) \neq t(\alpha)\right\} .
$$

$$
\bar{\sigma} \in[A, A] \Rightarrow \bar{\sigma}=\Sigma_{\alpha \in \Omega} \nu_{\alpha} \bar{\alpha}+\bar{u}, u \in\left(Q^{+}\right)^{2}
$$

$$
\Rightarrow \sigma-\sum_{\alpha \in \Omega} \nu_{\alpha} \alpha-u \in I \subseteq\left(Q^{+}\right)^{2}
$$

$$
\Rightarrow \sigma-\Sigma_{\alpha \in \Omega} \nu_{\alpha} \alpha \in\left(Q^{+}\right)^{2}, \text { absurd }
$$

Trace of matrices over A

Definition

For $M=\left(x_{i j}\right)_{n \times n} \in M_{n}(A)$, one defines

$$
\operatorname{tr}(M)=\left(x_{11}+\cdots+x_{n n}\right)+[A, A] \in \mathrm{HH}_{0}(A)
$$

Trace of matrices over A

Definition

For $M=\left(x_{i j}\right)_{n \times n} \in M_{n}(A)$, one defines

$$
\operatorname{tr}(M)=\left(x_{11}+\cdots+x_{n n}\right)+[A, A] \in \mathrm{HH}_{0}(A)
$$

Proposition

$$
\begin{aligned}
& \text { If } M \in M_{m \times n}(A) \text { and } N \in M_{n \times m}(A) \text {, then } \\
& \qquad \operatorname{tr}(M N)=\operatorname{tr}(N M) .
\end{aligned}
$$

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

(1) Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective.

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

(- Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective.
(2) If $P=0$, define $\operatorname{tr}(\varphi)=0 \in \mathrm{HH}_{0}(A)$.

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

(c) Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective.
(2) If $P=0$, define $\operatorname{tr}(\varphi)=0 \in \mathrm{HH}_{0}(A)$.

- Otherwise, $P=e_{1} A \oplus \cdots \oplus e_{n} A$, with e_{1}, \ldots, e_{n} primitive idempotents.

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

(c) Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective.
(2) If $P=0$, define $\operatorname{tr}(\varphi)=0 \in \mathrm{HH}_{0}(A)$.

- Otherwise, $P=e_{1} A \oplus \cdots \oplus e_{n} A$, with e_{1}, \ldots, e_{n} primitive idempotents.
- Write $\varphi=\left(x_{i j}\right)_{n \times n}$, with $x_{i j}=\varphi\left(e_{i}\right) \in e_{j} A e_{i}$.

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

(c) Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective.
(2) If $P=0$, define $\operatorname{tr}(\varphi)=0 \in \mathrm{HH}_{0}(A)$.

- Otherwise, $P=e_{1} A \oplus \cdots \oplus e_{n} A$, with e_{1}, \ldots, e_{n} primitive idempotents.
- Write $\varphi=\left(x_{i j}\right)_{n \times n}$, with $x_{i j}=\varphi\left(e_{i}\right) \in e_{j} A e_{i}$.
- Define

$$
\operatorname{tr}(\varphi)=\operatorname{tr}\left(\left(x_{i j}\right)_{n \times n}\right) \in \mathrm{HH}_{0}(A)
$$

Trace of left multiplication maps

Lemma

Fix $u \in A$. Consider $\varphi_{u}: A \mapsto A: x \mapsto u x$. Then

$$
\operatorname{tr}\left(\varphi_{u}\right)=u+[A, A] \in H_{0}(A) .
$$

Trace of left multiplication maps

Lemma

Fix $u \in A$. Consider $\varphi_{u}: A \mapsto A: x \mapsto u x$. Then

$$
\operatorname{tr}\left(\varphi_{u}\right)=u+[A, A] \in H_{0}(A) .
$$

$$
\text { Proof. } A=\oplus_{a \in Q_{0}} e_{a} A \Rightarrow \varphi_{u}=\left(e_{b} u e_{a}\right)_{(a, b) \in Q_{0} \times Q_{0}} \text {. }
$$

Trace of left multiplication maps

Lemma

Fix $u \in A$. Consider $\varphi_{u}: A \mapsto A: x \mapsto u x$. Then

$$
\operatorname{tr}\left(\varphi_{u}\right)=u+[A, A] \in \mathrm{HH}_{0}(A)
$$

Proof. $A=\oplus_{a \in Q_{0}} e_{a} A \Rightarrow \varphi_{u}=\left(e_{b} u e_{a}\right)_{(a, b) \in Q_{0} \times Q_{0}}$. On the other hand, $u=\Sigma_{a, b \in Q_{0}} e_{a} u e_{b}$.

Trace of left multiplication maps

Lemma

Fix $u \in A$. Consider $\varphi_{u}: A \mapsto A: x \mapsto u x$. Then

$$
\operatorname{tr}\left(\varphi_{u}\right)=u+[A, A] \in \mathrm{HH}_{0}(A)
$$

Proof. $A=\oplus_{a \in Q_{0}} e_{a} A \Rightarrow \varphi_{u}=\left(e_{b} u e_{a}\right)_{(a, b) \in Q_{0} \times Q_{0}}$.
On the other hand, $u=\Sigma_{a, b \in Q_{0}} e_{a} u e_{b}$.
If $a \neq b$, then $e_{a} u e_{b}=\left[e_{a} u, e_{b}\right] \in[A, A]$

Trace of left multiplication maps

Lemma

Fix $u \in A$. Consider $\varphi_{u}: A \mapsto A: x \mapsto u x$. Then

$$
\operatorname{tr}\left(\varphi_{u}\right)=u+[A, A] \in \mathrm{HH}_{0}(A)
$$

Proof. $A=\oplus_{a \in Q_{0}} e_{a} A \Rightarrow \varphi_{u}=\left(e_{b} u e_{a}\right)_{(a, b) \in Q_{0} \times Q_{0}}$.
On the other hand, $u=\sum_{a, b \in Q_{0}} e_{a} u e_{b}$.
If $a \neq b$, then $e_{a} u e_{b}=\left[e_{a} u, e_{b}\right] \in[A, A]$
$\Rightarrow u+[A, A]=\Sigma_{a \in Q_{0}} e_{a} u e_{a}+[A, A]=\operatorname{tr}\left(\varphi_{u}\right)$.

Trace of endomorphisms of modules of fin proj dimension

- Let $M \in \bmod A$ have fin proj resolution

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \longrightarrow 0
$$

Trace of endomorphisms of modules of fin proj dimension

(1) Let $M \in \bmod A$ have fin proj resolution

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \longrightarrow 0 .
$$

(3) Given $\varphi \in \operatorname{End}_{A}(M)$, construct comm. diagram

$$
\begin{gathered}
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 \\
\varphi_{n} \downarrow \\
\downarrow \longrightarrow \varphi_{n-1} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
\end{gathered}
$$

Trace of endomorphisms of modules of fin proj dimension

- Let $M \in \bmod A$ have fin proj resolution

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \longrightarrow 0 .
$$

(3) Given $\varphi \in \operatorname{End}_{A}(M)$, construct comm. diagram

$$
\begin{gathered}
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 \\
\varphi_{n} \downarrow \\
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow \varphi_{n-1} \longrightarrow P_{0} \longrightarrow M \longrightarrow \begin{array}{l}
\varphi_{0} \downarrow
\end{array}
\end{gathered}
$$

- Define

$$
\operatorname{tr}(\varphi)=\sum_{i=0}^{n}(-1)^{i} \operatorname{tr}\left(\varphi_{i}\right) \in \mathrm{HH}_{0}(A)
$$

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\operatorname{HH}_{0}(A)$ is radical-trivial.

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\mathrm{HH}_{0}(A)$ is radical-trivial.
Proof. Make use of the trace function.

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\mathrm{HH}_{0}(A)$ is radical-trivial.
Proof. Make use of the trace function.

Theorem (lgusa, Lenzing, 1990)
 If $\operatorname{gdim} A<\infty$, then Q has no loop.

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\mathrm{HH}_{0}(A)$ is radical-trivial.
Proof. Make use of the trace function.

Theorem (lgusa, Lenzing, 1990)

If $\operatorname{gdim} A<\infty$, then Q has no loop.

Proof. Q has loop σ

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\operatorname{HH}_{0}(A)$ is radical-trivial.

Proof. Make use of the trace function.

Theorem (lgusa, Lenzing, 1990)

If $\operatorname{gdim} A<\infty$, then Q has no loop.
Proof. Q has loop σ
$\Rightarrow \mathrm{HH}_{0}(A)$ not radical-trivial

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $\operatorname{gdim} A<\infty$, then $\mathrm{HH}_{0}(A)$ is radical-trivial.

Proof. Make use of the trace function.

Theorem (Igusa, Lenzing, 1990)

If $\operatorname{gdim} A<\infty$, then Q has no loop.

$$
\begin{aligned}
& \text { Proof. } Q \text { has loop } \sigma \\
& \quad \Rightarrow \mathrm{HH}_{0}(A) \text { not radical-trivial } \\
& \quad \Rightarrow \operatorname{gdim} A=\infty .
\end{aligned}
$$

Localizing algebra

From now on, fix $e=e_{a_{1}}+\cdots+e_{a_{r}}, a_{i} \in Q_{0}$.

Localizing algebra

From now on, fix $e=e_{a_{1}}+\cdots+e_{a_{r}}, a_{i} \in Q_{0}$. Set $A_{e}=A / A(1-e) A$.

Localizing algebra

From now on, fix $e=e_{a_{1}}+\cdots+e_{a_{r},} a_{i} \in Q_{0}$. Set $A_{e}=A / A(1-e) A$.

Example. Let A be given by

$$
\sigma^{2}-\alpha \beta=0
$$

Localizing algebra

From now on, fix $e=e_{a_{1}}+\cdots+e_{a_{r},} a_{i} \in Q_{0}$. Set $A_{e}=A / A(1-e) A$.

Example. Let A be given by

$$
\sigma^{2}-\alpha \beta=0
$$

Then $A_{e_{a}}$ is given by

$$
\sigma C_{7} a, \quad \sigma^{2}=0 .
$$

Localizing Hochschild Homology

Consider algebra morphism

$$
p_{e}: A \rightarrow A_{e}: x \mapsto x+A(1-e) A .
$$

Localizing Hochschild Homology

Consider algebra morphism

$$
p_{e}: A \rightarrow A_{e}: x \mapsto x+A(1-e) A .
$$

This induces group morphism

$$
\begin{aligned}
H_{e}: & \mathrm{HH}_{0}(A)
\end{aligned} \rightarrow \mathrm{HH}_{0}\left(A_{e}\right) .
$$

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_{A}(P)$ with P projective.

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_{A}(P)$ with P projective.

Define e-trace of φ by

$$
\operatorname{tr}_{e}(\varphi)=H_{e}(\operatorname{tr}(\varphi)) \in \mathrm{HH}_{0}\left(A_{e}\right)
$$

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_{A}(P)$ with P projective.

Define e-trace of φ by

$$
\operatorname{tr}_{e}(\varphi)=H_{e}(\operatorname{tr}(\varphi)) \in \mathrm{HH}_{0}\left(A_{e}\right)
$$

Lemma

Let $\varphi \in \operatorname{End}_{A}(P)$ with P projective. If P, eA have no common summand, then $\operatorname{tr}_{e}(\varphi)=0$.

e-bounded modules

Definition

(1) A projective resolution in $\bmod A$
$\cdots \rightarrow P_{i} \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$
is e-bounded if $P_{i}, e A$ have no common summand, for $i \gg 0$.

e-bounded modules

Definition

(1) A projective resolution in $\bmod A$
$\cdots \longrightarrow P_{i} \rightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$
is e-bounded if $P_{i}, e A$ have no common summand, for $i \gg 0$.
(2) In this case, M is e-bounded module.

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{A}^{i}\left(M, S_{e}\right)=0$, for $i \gg 0$.

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{A}^{i}\left(M, S_{e}\right)=0$, for $i \gg 0$.
Proof. Let M have minimal projective resolution

$$
\cdots \longrightarrow P_{i} \rightarrow P_{i-1} \longrightarrow \cdots \rightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{A}^{i}\left(M, S_{e}\right)=0$, for $i \gg 0$.
Proof. Let M have minimal projective resolution

$$
\cdots \rightarrow P_{i} \rightarrow P_{i-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0 .
$$

$$
\text { For } i \geq 0, \operatorname{Ext}^{i}\left(M, S_{e}\right) \cong \operatorname{Hom}\left(P_{i}, S_{e}\right)=0
$$

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{A}^{i}\left(M, S_{e}\right)=0$, for $i \gg 0$.
Proof. Let M have minimal projective resolution

$$
\cdots \longrightarrow P_{i} \rightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

$$
\text { For } i \geq 0, \operatorname{Ext}^{i}\left(M, S_{e}\right) \cong \operatorname{Hom}\left(P_{i}, S_{e}\right)=0
$$

$\Leftrightarrow P_{i}, e A$ no common summand.

An interpretation

Set $S_{e}=e A / e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{A}^{i}\left(M, S_{e}\right)=0$, for $i \gg 0$.
Proof. Let M have minimal projective resolution

$$
\cdots \longrightarrow P_{i} \rightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

$$
\text { For } i \geq 0, \operatorname{Ext}^{i}\left(M, S_{e}\right) \cong \operatorname{Hom}\left(P_{i}, S_{e}\right)=0
$$ $\Leftrightarrow P_{i}, e A$ no common summand.

Corollary

$\operatorname{idim} S_{e}<\infty \Rightarrow$ all $M \in \bmod A$ are e-bounded.

e-trace of endomorphisms of e-bounded modules

(1) Let M have e-bounded projective resolution
$\cdots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$.

e-trace of endomorphisms of e-bounded modules

(1) Let M have e-bounded projective resolution

$$
\cdots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

(2) Given $\varphi \in \operatorname{End}_{A}(M)$, construct comm. diagram

e-trace of endomorphisms of e-bounded modules

(1) Let M have e-bounded projective resolution

$$
\cdots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

(2) Given $\varphi \in \operatorname{End}_{A}(M)$, construct comm. diagram

(0. Define $\operatorname{tr}_{e}(\varphi)=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(\varphi_{i}\right) \in \mathrm{HH}_{0}\left(A_{e}\right)$.

e-trace of endomorphisms of e-bounded modules

(1) Let M have e-bounded projective resolution

$$
\cdots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

(2 Given $\varphi \in \operatorname{End}_{A}(M)$, construct comm. diagram $\cdots \longrightarrow \underset{\varphi_{i} \downarrow}{ } \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow \underset{\varphi_{i-1}}{ } \rightarrow P_{0} \longrightarrow M \longrightarrow 0$
$\cdots \longrightarrow P_{i} \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$.
(0) Define $\operatorname{tr}_{e}(\varphi)=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{tr}_{e}\left(\varphi_{i}\right) \in \mathrm{HH}_{0}\left(A_{e}\right)$.

Remark

$\operatorname{idim} S_{e}<\infty \Rightarrow \operatorname{tr}_{e}(\varphi)$ defined for any endomor φ.

Additivity of the e-trace

Lemma

Let $\bmod A$ have exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow L \xrightarrow{u} M \xrightarrow{v} N \longrightarrow 0 \\
& \phi \downarrow \quad{ }_{\downarrow} \quad \downarrow \psi \\
& 0 \longrightarrow L \xrightarrow{u} M \xrightarrow{v} N \longrightarrow 0 \text {. }
\end{aligned}
$$

Additivity of the e-trace

Lemma

Let $\bmod A$ have exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow L \xrightarrow{u} M \xrightarrow{v} N \longrightarrow 0 \\
& \phi \downarrow \quad \downarrow^{\varphi} \quad \downarrow \psi \\
& 0 \longrightarrow L \xrightarrow{u} M \xrightarrow{v} N \longrightarrow 0 .
\end{aligned}
$$

If two of L, M, N are e-bounded, then all of them are e-bounded with

$$
\operatorname{tr}_{e}(\varphi)=\operatorname{tr}_{e}(\phi)+\operatorname{tr}_{e}(\psi)
$$

e-bounded filtration

Definition

An e-bounded filtration of M is a series

$$
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M
$$

of submodules of M such that M_{i} / M_{i+1} is e-bounded, for $i=0,1, \ldots, r$.

e-bounded filtration

Definition

An e-bounded filtration of M is a series

$$
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M
$$

of submodules of M such that M_{i} / M_{i+1} is
e-bounded, for $i=0,1, \ldots, r$.
In this case, the M_{i} are all e-bounded.

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M
$$

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
\begin{gathered}
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M \\
\text { If } \varphi\left(M_{i}\right) \subseteq M_{i+1}, i=0, \ldots, r, \text { then } \operatorname{tr}_{e}(\varphi)=0
\end{gathered}
$$

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
\begin{gathered}
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M \\
\text { If } \varphi\left(M_{i}\right) \subseteq M_{i+1}, i=0, \ldots, r, \text { then } \operatorname{tr}_{e}(\varphi)=0
\end{gathered}
$$

Proof. Let $\varphi_{i}: M_{i} \rightarrow M_{i}: x \mapsto \varphi(x)$. Consider

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
\begin{gathered}
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M \\
\text { If } \varphi\left(M_{i}\right) \subseteq M_{i+1}, i=0, \ldots, r, \text { then } \operatorname{tr}_{e}(\varphi)=0
\end{gathered}
$$

Proof. Let $\varphi_{i}: M_{i} \rightarrow M_{i}: x \mapsto \varphi(x)$. Consider

$$
\begin{aligned}
& 0 \longrightarrow M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 \\
& \varphi_{i+1} \downarrow \\
& 0 \longrightarrow M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 .
\end{aligned}
$$

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
\begin{gathered}
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M \\
\text { If } \varphi\left(M_{i}\right) \subseteq M_{i+1}, i=0, \ldots, r, \text { then } \operatorname{tr}_{e}(\varphi)=0
\end{gathered}
$$

Proof. Let $\varphi_{i}: M_{i} \rightarrow M_{i}: x \mapsto \varphi(x)$. Consider

$$
\begin{aligned}
& 0 \longrightarrow M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 \\
& \varphi_{i+1} \downarrow \\
& 0 \longrightarrow M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 . \\
& \Rightarrow \operatorname{tr}_{e}\left(\varphi_{i}\right)=\operatorname{tr}_{e}\left(\varphi_{i+1}\right), i=0, \ldots, r .
\end{aligned}
$$

e-trace of e-filtrated endomorphisms

Lemma

Given $\varphi \in \operatorname{End}_{A}(M)$ with e-bounded filtration

$$
\begin{gathered}
0=M_{r+1} \subseteq M_{r} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M \\
\text { If } \varphi\left(M_{i}\right) \subseteq M_{i+1}, i=0, \ldots, r, \text { then } \operatorname{tr}_{e}(\varphi)=0
\end{gathered}
$$

Proof. Let $\varphi_{i}: M_{i} \rightarrow M_{i}: x \mapsto \varphi(x)$. Consider

$$
\begin{aligned}
& 0 \longrightarrow M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 \\
& \varphi_{i+1} \downarrow \\
& 0 M_{i+1} \longrightarrow M_{i} \longrightarrow M_{i} \longrightarrow M_{i} / M_{i+1} \longrightarrow 0 . \\
& \Rightarrow \operatorname{tr}_{e}\left(\varphi_{i}\right)=\operatorname{tr}_{e}\left(\varphi_{i+1}\right), i=0, \ldots, r . \\
& \Rightarrow \operatorname{tr}_{e}(\varphi)=\operatorname{tr}_{e}\left(\varphi_{r+1}\right)=\operatorname{tr}_{e}(0)=0 .
\end{aligned}
$$

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.
Main result on localized Hochschild homology

Theorem

 idim S_{e} or $\operatorname{pdim} S_{e}<\infty \Rightarrow H H_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$.

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$. May assume $u^{n+1}=0$ with $n \geq 0$. Consider

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$. May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$. May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$.

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$. May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$. Now $\operatorname{idim} S_{e}<\infty \Rightarrow(*)$ is e-bounded filtration.

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$.
May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$.
Now $\operatorname{idim} S_{e}<\infty \Rightarrow(*)$ is e-bounded filtration.

$$
\Rightarrow 0=\operatorname{tr}_{e}\left(\varphi_{u}\right)=H_{e}\left(\operatorname{tr}\left(\varphi_{u}\right)\right)=H_{e}(u+[A, A])=\tilde{u}+\left[A_{e}, A_{e}\right] .
$$

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$.
May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$. Now $\operatorname{idim} S_{e}<\infty \Rightarrow(*)$ is e-bounded filtration. $\Rightarrow 0=\operatorname{tr}_{e}\left(\varphi_{u}\right)=H_{e}\left(\operatorname{tr}\left(\varphi_{u}\right)\right)=H_{e}(u+[A, A])=\tilde{u}+\left[A_{e}, A_{e}\right]$. If $\operatorname{pdim} S_{e}<\infty$, then $\operatorname{idim} S_{e^{\circ}}<\infty$

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$.
May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$. Now $\operatorname{idim} S_{e}<\infty \Rightarrow(*)$ is e-bounded filtration. $\Rightarrow 0=\operatorname{tr}_{e}\left(\varphi_{u}\right)=H_{e}\left(\operatorname{tr}\left(\varphi_{u}\right)\right)=H_{e}(u+[A, A])=\tilde{u}+\left[A_{e}, A_{e}\right]$. If $\operatorname{pdim} S_{e}<\infty$, then $\operatorname{idim} S_{e^{\circ}}<\infty$
$\Rightarrow \mathrm{HH}_{0}\left(A_{e^{\circ}}^{\circ}\right)=\mathrm{HH}_{0}\left(\left(A_{e}\right)^{\circ}\right)$ radical-trivial.

Main result on localized Hochschild homology

Theorem

 $\operatorname{idim} S_{e}$ or $\operatorname{pdim} S_{e}<\infty \Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.Proof. Let $u \in A$ with $\tilde{u}=u+A(1-e) A \in \operatorname{rad}\left(A_{e}\right)$.
May assume $u^{n+1}=0$ with $n \geq 0$. Consider

$$
(*) \quad 0=u^{n+1} A \subseteq u^{n} A \subseteq \cdots \subseteq u A \subseteq A
$$

Then $\varphi_{u}: A \rightarrow A: x \mapsto u x$ such that $\varphi_{u}\left(u^{i} A\right) \subseteq u^{i+1} A$. Now $\operatorname{idim} S_{e}<\infty \Rightarrow(*)$ is e-bounded filtration. $\Rightarrow 0=\operatorname{tr}_{e}\left(\varphi_{u}\right)=H_{e}\left(\operatorname{tr}\left(\varphi_{u}\right)\right)=H_{e}(u+[A, A])=\tilde{u}+\left[A_{e}, A_{e}\right]$. If $\operatorname{pdim} S_{e}<\infty$, then $\operatorname{idim} S_{e^{\circ}}<\infty$
$\Rightarrow \mathrm{HH}_{0}\left(A_{e^{\circ}}^{\circ}\right)=\mathrm{HH}_{0}\left(\left(A_{e}\right)^{\circ}\right)$ radical-trivial.
$\Rightarrow \mathrm{HH}_{0}\left(A_{e}\right)$ radical-trivial.

Main Result

Theorem

Let $A=k Q /$ I. If Q has loop at a vertex a, then

$$
\operatorname{pdim}_{a}=\operatorname{idim} S_{a}=\infty
$$

Main Result

Theorem

Let $A=k Q /$. If Q has loop at a vertex a, then

$$
\operatorname{pdim}_{a}=\operatorname{idim} S_{a}=\infty
$$

Proof. Let σ be loop at $a \in Q_{0}$.

Main Result

Theorem

Let $A=k Q /$. If Q has loop at a vertex a, then

$$
\operatorname{pdim}_{a}=\operatorname{idim} S_{a}=\infty
$$

Proof. Let σ be loop at $a \in Q_{0}$.
$\Rightarrow \sigma$ is loop in the quiver of $A_{e_{a}}$.

Main Result

Theorem

Let $A=k Q /$. If Q has loop at a vertex a, then

$$
\operatorname{pdim}_{a}=\operatorname{idim} S_{a}=\infty
$$

Proof. Let σ be loop at $a \in Q_{0}$.
$\Rightarrow \sigma$ is loop in the quiver of $A_{e_{a}}$.
$\Rightarrow \mathrm{HH}_{0}\left(A_{e_{\mathrm{a}}}\right)$ not radical-trivial.

Main Result

Theorem

Let $A=k Q /$. If Q has loop at a vertex a, then

$$
\operatorname{pdim}_{a}=\operatorname{idim} S_{a}=\infty
$$

Proof. Let σ be loop at $a \in Q_{0}$.
$\Rightarrow \sigma$ is loop in the quiver of $A_{e_{a}}$.
$\Rightarrow \mathrm{HH}_{0}\left(A_{e_{\mathrm{a}}}\right)$ not radical-trivial.
$\Rightarrow \operatorname{idim} S_{a}=\operatorname{pdim}_{a}=\infty$.

Combinatorial terminology

Let $A=k Q / I$.

Combinatorial terminology

$$
\text { Let } A=k Q / I \text {. }
$$

Definition

- A minimal relation for A is an element $\rho=\lambda_{1} p_{1}+\cdots+\lambda_{r} p_{r} \in I, \lambda_{i} \in k^{*}, p_{i}$ distinct, such that $\sum_{i \in \Omega} \lambda_{i} p_{i} \notin I$ for any $\Omega \subset\{1, \ldots, r\}$.

Combinatorial terminology

$$
\text { Let } A=k Q / I \text {. }
$$

Definition

- A minimal relation for A is an element $\rho=\lambda_{1} p_{1}+\cdots+\lambda_{r} p_{r} \in I, \lambda_{i} \in k^{*}, p_{i}$ distinct, such that $\sum_{i \in \Omega} \lambda_{i} p_{i} \notin I$ for any $\Omega \subset\{1, \ldots, r\}$.
(3) A path p in Q is nonzero in A if $p \notin I$.

Combinatorial terminology

$$
\text { Let } A=k Q / I \text {. }
$$

Definition

- A minimal relation for A is an element $\rho=\lambda_{1} p_{1}+\cdots+\lambda_{r} p_{r} \in I, \lambda_{i} \in k^{*}, p_{i}$ distinct, such that $\sum_{i \in \Omega} \lambda_{i} p_{i} \notin I$ for any $\Omega \subset\{1, \ldots, r\}$.
(3) A path p in Q is nonzero in A if $p \notin I$.
- A path p in Q is free in A if it is not summand of any minimal relation for A.

Example

- Let A be given by

Example

- Let A be given by

(2) $\alpha \delta-\beta \eta$ is a minimal relation for A.

Example

- Let A be given by

(2) $\alpha \delta-\beta \eta$ is a minimal relation for A.
- $\xi \theta$ is free in A.

Example

- Let A be given by

(2) $\alpha \delta-\beta \eta$ is a minimal relation for A.
- $\xi \theta$ is free in A.
- $\alpha \delta-\beta \eta+\gamma \zeta$ is relation, not minimal relation.

Oriented cycles

(1) Let $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{r}$ be oriented cycle, $\alpha_{i} \in Q_{1}$.

Oriented cycles

(1) Let $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{r}$ be oriented cycle, $\alpha_{i} \in Q_{1}$.
(2) Consider its cyclic permutations:

$$
\sigma_{1}=\sigma, \sigma_{2}=\alpha_{2} \cdots \alpha_{r} \alpha_{1}, \ldots, \sigma_{r}=\alpha_{r} \alpha_{1} \cdots \alpha_{r-1}
$$

Oriented cycles

(1) Let $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{r}$ be oriented cycle, $\alpha_{i} \in Q_{1}$.
(2) Consider its cyclic permutations:

$$
\sigma_{1}=\sigma, \sigma_{2}=\alpha_{2} \cdots \alpha_{r} \alpha_{1}, \ldots, \sigma_{r}=\alpha_{r} \alpha_{1} \cdots \alpha_{r-1}
$$

- σ is called cyclically non-zero in A if each of $\sigma_{1}, \cdots, \sigma_{r}$ is non-zero in A.

Oriented cycles

(1) Let $\sigma=\alpha_{1} \alpha_{2} \cdots \alpha_{r}$ be oriented cycle, $\alpha_{i} \in Q_{1}$.
(2) Consider its cyclic permutations:

$$
\sigma_{1}=\sigma, \sigma_{2}=\alpha_{2} \cdots \alpha_{r} \alpha_{1}, \ldots, \sigma_{r}=\alpha_{r} \alpha_{1} \cdots \alpha_{r-1}
$$

- σ is called cyclically non-zero in A if each of $\sigma_{1}, \cdots, \sigma_{r}$ is non-zero in A.
- σ is cyclically free in A if each of $\sigma_{1}, \ldots, \sigma_{r}$ is free in A.

Example

- Let $A=k Q / I$, where

$$
\begin{aligned}
& Q: \quad 1 \underset{\beta}{\stackrel{\alpha}{\gtrless}} 2 \overbrace{\delta}^{\gamma} 3 \stackrel{\mu}{\nu} 4 \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>.
\end{aligned}
$$

Example

- Let $A=k Q / I$, where

$$
\begin{aligned}
& Q: \quad 1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\delta}{\stackrel{\gamma}{\rightleftharpoons}} 3 \stackrel{\mu}{\stackrel{\mu}{\rightleftharpoons}} 4 \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>.
\end{aligned}
$$

(2) Cycle $\mu \nu$ nonzero, not cyclically nonzero in A.

Example

- Let $A=k Q / I$, where

$$
\begin{aligned}
& Q: \quad 1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\delta}{\stackrel{\gamma}{\rightleftharpoons}} 3 \stackrel{\mu}{\stackrel{\mu}{\rightleftharpoons}} 4 \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>.
\end{aligned}
$$

(2) Cycle $\mu \nu$ nonzero, not cyclically nonzero in A.

- Cycle $\beta \alpha$ is cyclically free in A.

Cyclically free cycles are not commutators

Remark

A loop in Q is always cyclically free in A.

Cyclically free cycles are not commutators

Remark

A loop in Q is always cyclically free in A.

Lemma

Let σ be oriented cycle in Q. If σ is cyclically free in A, then $\bar{\sigma} \notin[A, A]$.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Proof. Consider $A_{e_{\sigma}}=A / A\left(1-e_{\sigma}\right) A$.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Proof. Consider $A_{e_{\sigma}}=A / A\left(1-e_{\sigma}\right) A$.
σ remains cycle in the quiver of $A_{e_{\sigma}}$.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Proof. Consider $A_{e_{\sigma}}=A / A\left(1-e_{\sigma}\right) A$.
σ remains cycle in the quiver of $A_{e_{\sigma}}$.
σ cyclically free in $A \Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}}$.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Proof. Consider $A_{e_{\sigma}}=A / A\left(1-e_{\sigma}\right) A$.
σ remains cycle in the quiver of $A_{e_{\sigma}}$.
σ cyclically free in $A \Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}}$.
$\Rightarrow \mathrm{HH}_{0}\left(A_{e_{\sigma}}\right)$ not radical-trivial.

Further result

If σ is oriented cycle in Q passing through distinct vertices a_{1}, \ldots, a_{s}, put $e_{\sigma}=e_{a_{1}}+\cdots+e_{a_{s}}$.

Theorem

Let $A=k Q / I$ with σ oriented cycle in Q. If σ is cyclically free in A, then

$$
\operatorname{pdim} S_{e_{\sigma}}=\operatorname{idim} S_{e_{\sigma}}=\infty
$$

Proof. Consider $A_{e_{\sigma}}=A / A\left(1-e_{\sigma}\right) A$.
σ remains cycle in the quiver of $A_{e_{\sigma}}$.
σ cyclically free in $A \Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}}$.
$\Rightarrow \mathrm{HH}_{0}\left(A_{e_{\sigma}}\right)$ not radical-trivial.
$\Rightarrow \operatorname{pdim}_{A} S_{e_{\sigma}}=\operatorname{idim}_{A} S_{e_{\sigma}}=\infty$.

Example

(1) Let $A=k Q / I$, where

$$
\begin{aligned}
& Q: \quad \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>
\end{aligned}
$$

Example

(1) Let $A=k Q / l$, where

$$
\begin{aligned}
& Q: \quad \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>
\end{aligned}
$$

(2) The cycle $\beta \alpha$ is cyclically free in A.

Example

(c) Let $A=k Q / l$, where

$$
\begin{aligned}
& Q: \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>
\end{aligned}
$$

(2) The cycle $\beta \alpha$ is cyclically free in A.

- S_{1} or S_{2} is of infinite projective dimension.

Example

(c) Let $A=k Q / l$, where

$$
\begin{aligned}
& Q: \quad 1 \stackrel{\alpha}{\beta} 2 \stackrel{\gamma}{\delta} 3 \stackrel{\gamma}{\stackrel{\mu}{\nu}} 4 \\
& I=<\delta \gamma, \nu \mu,(\beta \alpha)^{2}-\gamma \delta,(\beta \alpha)^{3}>
\end{aligned}
$$

(2) The cycle $\beta \alpha$ is cyclically free in A.

- S_{1} or S_{2} is of infinite projective dimension.
- S_{1} or S_{2} is of infinite injective dimension.

Monomial algebras

- $A=k Q / I$ is monomial if $/$ generated by some paths of length ≥ 2.

Monomial algebras

- $A=k Q / I$ is monomial if I generated by some paths of length ≥ 2.
- In this case, an oriented cycle in Q is cyclically free in $A \Leftrightarrow$ it is cyclically nonzero in A.

Monomial algebras

(1) $A=k Q / I$ is monomial if I generated by some paths of length ≥ 2.
(2) In this case, an oriented cycle in Q is cyclically free in $A \Leftrightarrow$ it is cyclically nonzero in A.

Corollary

Let $A=k Q / /$ be monomial. If Q has oriented cycle which is cyclically nonzero in A, then $\operatorname{gdim} A=\infty$.

Example

- Let A be monomial given by

$$
Q: \quad 1 \stackrel{\alpha}{\stackrel{\alpha}{\rightleftarrows}} 2, \quad \alpha \beta \alpha=0 .
$$

Example

(1) Let A be monomial given by

$$
Q: \quad 1 \stackrel{\alpha}{\underset{\beta}{\rightleftarrows}} 2, \quad \alpha \beta \alpha=0 .
$$

(2) $\alpha \beta$ is cyclically nonzero in A.

Example

- Let A be monomial given by

$$
Q: \quad 1 \stackrel{\alpha}{\stackrel{\alpha}{\gtrless}} 2, \quad \alpha \beta \alpha=0 .
$$

(2) $\alpha \beta$ is cyclically nonzero in A.

- $\Rightarrow \operatorname{gdim} A=\infty$.

Extension Conjecture

Extension Conjecture

Let $A=k Q / I$. If Q has a loop at a vertex a, then $\operatorname{Ext}^{i}\left(S_{a}, S_{a}\right) \neq 0$ for infinitely many integers i.

Extension Conjecture

Extension Conjecture

Let $A=k Q / I$. If Q has a loop at a vertex a, then $\operatorname{Ext}^{i}\left(S_{a}, S_{a}\right) \neq 0$ for infinitely many integers i.

Remark

This conjecture holds true for monomial algebras and special biserial algebras.

