Homology theory of double complexes with application to Koszul duality

Ales Bouhada, Min Huang and Shiping Liu Université de Sherbrooke

Algebra Seminar

Hunan Normal University

July 2, 2019

Plan

(1) Introduction

Plan

(1) Introduction
(2) Total complex of a double complex

Plan

(1) Introduction
(2) Total complex of a double complex
(0) A generalization of the Acyclic Assemby Lemma
(1) Introduction
(2) Total complex of a double complex
(3) A generalization of the Acyclic Assemby Lemma
(9) Extension of functors
(1) Introduction
(2) Total complex of a double complex

- A generalization of the Acyclic Assemby Lemma
(1) Extension of functors
- Application to Koszul duality

Motivation

(1) In the study of derived categories, one technique is to compare the derived categories $D(\mathcal{A})$ and $D(\mathcal{B})$ of two abelian categories \mathcal{A}, \mathcal{B}.

Motivation

(1) In the study of derived categories, one technique is to compare the derived categories $D(\mathcal{A})$ and $D(\mathcal{B})$ of two abelian categories \mathcal{A}, \mathcal{B}.
(2) For this purpose, we need to construct a triangle-exact functor $D(\mathcal{A}) \rightarrow D(\mathcal{B})$.

Motivation

(1) In the study of derived categories, one technique is to compare the derived categories $D(\mathcal{A})$ and $D(\mathcal{B})$ of two abelian categories \mathcal{A}, \mathcal{B}.
(2) For this purpose, we need to construct a triangle-exact functor $D(\mathcal{A}) \rightarrow D(\mathcal{B})$.
(3) It is well known that an exact functor $F: \mathcal{A} \rightarrow \mathcal{B}$ induces a commutative diagram

Motivation

(1) In the study of derived categories, one technique is to compare the derived categories $D(\mathcal{A})$ and $D(\mathcal{B})$ of two abelian categories \mathcal{A}, \mathcal{B}.
(2) For this purpose, we need to construct a triangle-exact functor $D(\mathcal{A}) \rightarrow D(\mathcal{B})$.
(3) It is well known that an exact functor $F: \mathcal{A} \rightarrow \mathcal{B}$ induces a commutative diagram

where F^{C} is the component-wise application of F.

Objective

(1) Most often, however, we only have functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$.

Objective

(1) Most often, however, we only have functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$.
(2) To extend \mathfrak{F} to $\mathfrak{F}^{C}: C(\mathcal{A}) \rightarrow C(\mathcal{B})$, we need to consider total complexes of double complexes.

Objective

(1) Most often, however, we only have functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$.
(2) To extend \mathfrak{F} to $\mathfrak{F}^{C}: C(\mathcal{A}) \rightarrow C(\mathcal{B})$, we need to consider total complexes of double complexes.

- To pass \mathfrak{F}^{C} to the derived categories, we need to introduce a homology theory of double complexes.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
(2) Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
(2) Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
(3) $C(\mathcal{A})$: complex category of \mathcal{A}.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
(2) Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
(3) $C(\mathcal{A})$: complex category of \mathcal{A}.
(4) Given morphism $f^{*} \in C(\mathcal{A})$, its cone is denoted by C_{f}.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
(2) Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
(3) $C(\mathcal{A})$: complex category of \mathcal{A}.
(4) Given morphism $f^{*} \in C(\mathcal{A})$, its cone is denoted by C_{f}.
(0) $K(\mathcal{A})$: homotopy category of \mathcal{A}.

Setting

(1) An abelian category is called concrete if objects are equipped with abelian group structure and morphisms are compatible with abelian group structures of objects.
(2) Let \mathcal{A}, \mathcal{B} be concrete abelian categories with countable direct sums.
(3) $C(\mathcal{A})$: complex category of \mathcal{A}.
(4) Given morphism $f^{*} \in C(\mathcal{A})$, its cone is denoted by C_{f}.
(0) $K(\mathcal{A})$: homotopy category of \mathcal{A}.
(0) $D(\mathcal{A})$: derived category of \mathcal{A}.

Double Complexes

(1) A double complex $\left(M^{*}, v^{*}, h^{*}\right)$ over \mathcal{A} is as follows:

Double Complexes

(1) A double complex $\left(M^{*}, v^{*}, h^{*}\right)$ over \mathcal{A} is as follows:

Double Complexes

(1) A double complex $\left(M^{*}, v^{*}, h^{*}\right)$ over \mathcal{A} is as follows:

Double Complexes

(1) A double complex $\left(M^{*}, v^{*}, h^{*}\right)$ over \mathcal{A} is as follows:

$$
\begin{gathered}
\cdots \longrightarrow M^{M^{i, j+1}} \stackrel{h^{i, j+1}}{\longrightarrow} M^{i+1, j+1} \longrightarrow \cdots \\
\cdots \longrightarrow M_{v^{i, j}} \xrightarrow{\uparrow} \xrightarrow[h^{i, j, j}]{ } M^{i+1, j} \longrightarrow \cdots \\
\vdots \\
v^{i, j+1} v^{i, j}=0 ; h^{i+1, j} h^{i, j}=0 ; h^{i, j+1} \circ v^{i, j}+v^{i+1, j} \circ h^{i, j}=0 .
\end{gathered}
$$

(2) The complex $\left(M^{i, \cdot}, v^{i, \cdot}\right)$ is called i-th column of $M^{\cdot \cdot}$.

Double Complexes

(1) A double complex (M^{\cdot}, v^{*}, h^{*}) over \mathcal{A} is as follows:

$$
\begin{aligned}
& \cdots \longrightarrow M^{i, j+1} \xrightarrow{h^{i, j+1}} M^{i+1, j+1} \\
& \longrightarrow . \\
& v^{i, j, j} \uparrow \quad \uparrow_{v^{i+1, j}} \\
& \cdots \longrightarrow M^{i, j} \xrightarrow{h^{i, j}} M^{i+1, j} \\
& \uparrow \quad \uparrow \\
& v^{i, j+1} v^{i, j}=0 ; h^{i+1, j} h^{i, j}=0 ; h^{i, j+1} \circ v^{i, j}+v^{i+1, j} \circ h^{i, j}=0 .
\end{aligned}
$$

(2) The complex ($M^{i \cdot}, v^{i, \cdot}$) is called i-th column of M^{\cdots}.

- The complex $\left(M^{\cdot j}, h^{\cdot \cdot j}\right)$ is called j-th row of $M^{\cdot \cdots}$.

Double Complexes

(1) A double complex (M^{*}, v^{*}, h^{*}) over \mathcal{A} is as follows:

$$
\begin{aligned}
& \begin{array}{cc}
\vdots & \vdots \\
& \uparrow
\end{array} \\
& \cdots \longrightarrow M^{i, j+1} \xrightarrow{h^{i, j+1}} M^{i+1, j+1} \\
& v^{i, j} \uparrow \quad \uparrow_{v^{i+1, j}} \\
& \cdots \longrightarrow M^{i, j} \xrightarrow{h^{i, j}} M^{i+1, j} \\
& \begin{array}{cc}
\uparrow & \uparrow \\
\vdots & \vdots
\end{array} \\
& v^{i, j+1} v^{i, j}=0 ; h^{i+1, j} h^{i, j}=0 ; h^{i, j+1} \circ v^{i, j}+v^{i+1, j} \circ h^{i, j}=0 .
\end{aligned}
$$

(2) The complex $\left(M^{i \cdot}, v^{i, \cdot}\right)$ is called i-th column of $M^{\cdots} \cdot$.

- The complex $\left(M^{\cdot j}, h^{\cdot \cdot j}\right)$ is called j-th row of M^{\cdots}.
- Given $n \in \mathbb{Z},\left\{M^{i, n-i} \mid i \in \mathbb{Z}\right\}$ is the n-diagonal of M^{-}.

horizontal shift

(1) Let $\left(M^{\cdot}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(1) Let $\left(M^{\cdot}, v_{M}^{*}, h_{M}\right)$ be a double complex over \mathcal{A}.
(2) Define horizontal shift of M^{*} to be $\left(X \cdot \cdot, v_{x}^{\cdot *}, h_{x}^{*}\right)$, where
(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(0) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where

$$
\text { - } X^{i, j}=M^{i+1, j} ;
$$

(1) Let $\left(M^{-}, v_{M}^{*}, h_{M}\right)$ be a double complex over \mathcal{A}.
(0) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where

$$
\begin{aligned}
& \text { - } X^{i, j}=M^{i+1, j} ; \\
& \text { - } v_{X}^{i, j}=-v_{M}^{i+1, j} ;
\end{aligned}
$$

(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(3) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where

- $X^{i, j}=M^{i+1, j}$;
- $v_{x}^{i, j}=-v_{M}^{i+1, j, j}$;
- $h_{x}^{i, j}=-h_{M}^{i+1, j}$.
(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(0) Define horizontal shift of $M^{* \cdot}$ to be ($X^{*}, v_{x}^{\bullet}, h_{\ddot{x}}$), where
- $X^{i, j}=M^{i+1, j}$;
- $v_{x}^{i, j}=-v_{M}^{i+1, j, j} ;$
- $h_{x}^{i, j}=-h_{M}^{i+1, j}$.
- In other words,
- Objects shifted horizontally to the left by one step;
(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(c) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where
- $X^{i, j}=M^{i+1, j}$;
- $v_{X}^{i, j}=-v_{M}^{i+1, j}$;
- $h_{x}^{i, j}=-h_{M}^{i+1, j}$.
(3) In other words,
- Objects shifted horizontally to the left by one step;
- Signs of differentials are changed.
(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(c) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where
- $X^{i, j}=M^{i+1, j}$;
- $v_{X}^{i, j}=-v_{M}^{i+1, j}$;
- $h_{x}^{i, j}=-h_{M}^{i+1, j}$.
(3) In other words,
- Objects shifted horizontally to the left by one step;
- Signs of differentials are changed.
(9) Write $M^{\bullet} \cdot[1]$ for the horizontal shift of $M \cdot$.
(1) Let $\left(M^{*}, v_{M}^{*}, h_{M}^{*}\right)$ be a double complex over \mathcal{A}.
(0) Define horizontal shift of $M^{* \cdot}$ to be $\left(X^{*}, v_{x}^{*}, h_{\ddot{x}}\right)$, where
- $X^{i, j}=M^{i+1, j}$;
- $v_{x}^{i, j}=-v_{M}^{i+1, j, j} ;$
- $h_{x}^{i, j}=-h_{M}^{i+1, j}$.
- In other words,
- Objects shifted horizontally to the left by one step;
- Signs of differentials are changed.
(0) Write $M *[1]$ for the horizontal shift of $M *$.
- The vertical shift of M^{-*} can be defined similarly.

Double complex morphisms

(1) Let $M \cdot \cdot$ and $N \cdot \cdot$ be double complexes over \mathcal{A}.

Double complex morphisms

(1) Let $M \cdot \cdot$ and $N \cdot \cdot$ be double complexes over \mathcal{A}.
(2) A morphism $f^{*}: M^{\cdot} \rightarrow N^{\cdot}$ consists of morphisms

Double complex morphisms

(1) Let $M \cdot \cdot$ and $N \cdot \cdot$ be double complexes over \mathcal{A}.
(2) A morphism $f^{*}: M^{\cdot \cdot} \rightarrow N^{\cdot}$ consists of morphisms $f^{i, j}: M^{i, j} \rightarrow N^{i, j}$ in \mathcal{A} such that

Double complex morphisms

© Let $M \cdot{ }^{\bullet}$ and $N \cdot$ be double complexes over \mathcal{A}.
(c) A morphism $f^{*}: M^{\cdot *} \rightarrow N^{\cdot}$ consists of morphisms $f^{i, j}: M^{i, j} \rightarrow N^{i, j}$ in \mathcal{A} such that

commutes, for all $i, j \in \mathbb{Z}$.

Double complex morphisms

© Let $M \cdot{ }^{\bullet}$ and $N \cdot$ be double complexes over \mathcal{A}.
(2) A morphism $f^{*}: M^{\cdot \cdot} \rightarrow N^{\cdot}$ consists of morphisms $f^{i, j}: M^{i, j} \rightarrow N^{i, j}$ in \mathcal{A} such that

commutes, for all $i, j \in \mathbb{Z}$.
© Given j, we have complex morphism $f^{\cdot \cdot j}: M^{\cdot j} \rightarrow N^{\cdot j}$.

Double complex morphisms

© Let $M \cdot{ }^{\bullet}$ and $N \cdot$ be double complexes over \mathcal{A}.
(2) A morphism $f^{*}: M^{\cdot *} \rightarrow N^{\cdot}$ consists of morphisms $f^{i, j}: M^{i, j} \rightarrow N^{i, j}$ in \mathcal{A} such that

commutes, for all $i, j \in \mathbb{Z}$.
(0) Given j, we have complex morphism $f^{\cdot j}: M^{\cdot j} \rightarrow N^{\cdot j}$.
© Given $i \in \mathbb{Z}$, we have complex morphism $f^{i, .}: M^{i}, \rightarrow N^{i} .$.

horizontally null-homotopic morphisms

(1) A morphism $f^{\cdot}: M^{\bullet} \rightarrow N^{\bullet \cdot}$ is horizontally null-homotopic

horizontally null-homotopic morphisms

(1) A morphism $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet \cdot}$ is horizontally null-homotopic if there exist $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j}$, with $i, j \in \mathbb{Z}$, such that

horizontally null-homotopic morphisms

(1) A morphism $f^{\bullet \cdot}: M^{\bullet \cdot} \rightarrow N^{\bullet \cdot}$ is horizontally null-homotopic if there exist $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j}$, with $i, j \in \mathbb{Z}$, such that - $u^{i+1, j} \circ h_{M}^{i, j}+h_{N}^{i-1, j} \circ u^{i, j}=f^{i, j}$;

horizontally null-homotopic morphisms

(1) A morphism $f^{\bullet \cdot}: M^{\bullet \cdot} \rightarrow N^{\bullet \cdot}$ is horizontally null-homotopic if there exist $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j}$, with $i, j \in \mathbb{Z}$, such that

- $u^{i+1, j} \circ h_{M}^{i, j}+h_{N}^{i-1, j} \circ u^{i, j}=f^{i, j}$;
- $v_{N}^{i-1, j} \circ u^{i, j}+u^{i, j+1} \circ v_{M}^{i, j}=0$.

horizontally null-homotopic morphisms

(1) A morphism $f^{\cdot \cdot}: M^{\cdot \cdot} \rightarrow N^{\cdot \cdot}$ is horizontally null-homotopic if there exist $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j}$, with $i, j \in \mathbb{Z}$, such that

- $u^{i+1, j} \circ h_{M}^{i, j}+h_{N}^{i-1, j} \circ u^{i, j}=f^{i, j}$;
- $v_{N}^{i-1, j} \circ u^{i, j}+u^{i, j+1} \circ v_{M}^{i, j}=0$.

Horizontal cone of a double complex morphism

(1) Let $f^{*}: M^{*} \rightarrow N^{*}$ be a morphism in $D C(\mathcal{A})$.

Horizontal cone of a double complex morphism

(1) Let $f^{\cdot \cdots}: M^{*} \rightarrow N^{* \cdot}$ be a morphism in $D C(\mathcal{A})$.
(2) The horizontal cone $H_{f \cdot .}$ is double complex $\left(H^{\cdot}, v^{\bullet \cdot}, h^{\bullet}\right)$,

Horizontal cone of a double complex morphism

(1) Let $f^{\cdot \cdot}: M^{*} \rightarrow N^{\cdot}$ be a morphism in $D C(\mathcal{A})$.
(2) The horizontal cone $H_{f} .$. is double complex $\left(H^{\bullet}, v^{\bullet}, h^{\bullet}\right)$,

- $H^{i, j}=M^{i+1, j} \oplus N^{i, j}$;
(1) Let $f^{*}: M^{*} \rightarrow N^{\cdot}$ be a morphism in $D C(\mathcal{A})$.
(2) The horizontal cone $H_{f \cdot .}$ is double complex $\left(H^{\cdot}, v^{\bullet}, h^{\bullet}\right)$,
- $H^{i, j}=M^{i+1, j} \oplus N^{i, j}$;
- $h^{i, j}=\left(\begin{array}{cc}-h_{M}^{i+1, j} & 0 \\ f^{i+1, j} & h_{N}^{i, j}\end{array}\right) ; v^{i, j}=\left(\begin{array}{cc}-v_{M}^{i+1, j} & 0 \\ 0 & v_{N}^{i, j}\end{array}\right)$.
(1) Let $f^{*}: M^{*} \rightarrow N^{\cdot}$ be a morphism in $D C(\mathcal{A})$.
(2) The horizontal cone $H_{f \cdot .}$ is double complex $\left(H^{\cdot}, v^{\bullet}, h^{\bullet}\right)$,
- $H^{i, j}=M^{i+1, j} \oplus N^{i, j}$;
- $h^{i, j}=\left(\begin{array}{cc}-h_{M}^{i+1, j} & 0 \\ f^{i+1, j} & h_{N}^{i, j}\end{array}\right) ; v^{i, j}=\left(\begin{array}{cc}-v_{M}^{i+1, j} & 0 \\ 0 & v_{N}^{i, j}\end{array}\right)$.
- In other words
- The j-th row of $H_{f . .}$ is the cone of $f \cdot j: M^{\cdot j} \rightarrow N^{\cdot j}$;

Horizontal cone of a double complex morphism

(1) Let $f^{*}: M^{*} \rightarrow N^{*}$ be a morphism in $D C(\mathcal{A})$.
(2) The horizontal cone $H_{f \cdot .}$ is double complex $\left(H^{\cdot}, v^{\bullet}, h^{\bullet}\right)$,

- $H^{i, j}=M^{i+1, j} \oplus N^{i, j}$;
- $h^{i, j}=\left(\begin{array}{cc}-h_{M}^{i+1, j} & 0 \\ f^{i+1, j} & h_{N}^{i, j}\end{array}\right) ; v^{i, j}=\left(\begin{array}{cc}-v_{M}^{i+1, j} & 0 \\ 0 & v_{N}^{i, j}\end{array}\right)$.
- In other words
- The j-th row of $H_{f . .}$ is the cone of $f \cdot j: M^{\cdot j} \rightarrow N^{\cdot j}$;
- The vertical differentials of $H_{f . .}$ are direct sums of vertical differentials.

Short exact sequence of double complexes

(1) $D C(\mathcal{A})$: the abelian category of double complexes over \mathcal{A}.

Short exact sequence of double complexes

(1) $D C(\mathcal{A})$: the abelian category of double complexes over \mathcal{A}.
(2) A short exact sequence in $D C(\mathcal{A})$ is a sequence

Short exact sequence of double complexes

(1) $D C(\mathcal{A})$: the abelian category of double complexes over \mathcal{A}.
(2) A short exact sequence in $D C(\mathcal{A})$ is a sequence

$$
0 \longrightarrow L \cdot \xrightarrow{f \cdot} M \cdot \xrightarrow{g *} N \cdot \cdot \longrightarrow
$$

Short exact sequence of double complexes

(1) $D C(\mathcal{A})$: the abelian category of double complexes over \mathcal{A}.
(2) A short exact sequence in $D C(\mathcal{A})$ is a sequence

$$
0 \longrightarrow L \cdot \xrightarrow{f \cdot} M \cdot \xrightarrow{g *} N \cdot \cdot \longrightarrow
$$

in $D C(\mathcal{A})$ such, for all $i, j \in \mathbb{Z}$, that

Short exact sequence of double complexes

(1) $D C(\mathcal{A})$: the abelian category of double complexes over \mathcal{A}.
(2) A short exact sequence in $D C(\mathcal{A})$ is a sequence

$$
0 \longrightarrow L \cdot \xrightarrow{f \cdot} M \cdot \xrightarrow{g *} N \cdot \cdot \longrightarrow
$$

in $D C(\mathcal{A})$ such, for all $i, j \in \mathbb{Z}$, that

$$
0 \longrightarrow L^{i, j} \xrightarrow{f^{i, j}} M^{i, j} \xrightarrow{g^{i, j}} N^{i, j} \longrightarrow 0
$$

is exact in \mathcal{A}.

Total complex of a double complex
(1) For $M^{* \cdot} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

Total complex of a double complex
(1) For $M^{*} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

$$
\text { - } \mathbb{T}\left(M^{\bullet \cdot}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i} ;
$$

Total complex of a double complex
(1) For $M^{\cdot *} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

- $\mathbb{T}\left(M^{*}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i}$;
- $d_{\mathbb{T}(M \cdot \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as

Total complex of a double complex
(1) For $M^{*} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

- $\mathbb{T}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i}$;
- $d_{\mathbb{T}(M \cdot \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as an infinite matrix $\left(d_{\mathbb{T}(M \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where

Total complex of a double complex
(1) For $M^{*} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

- $\mathbb{T}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i} ;$
- $d_{\mathbb{T}(M \cdot \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as an infinite matrix $\left(d_{\mathbb{T}(M \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where $d_{\mathbb{T}(M \cdot)}^{n}(j, i): M^{i, n-i} \rightarrow M^{j, n+1-j}$ is given by
(1) For $M^{* *} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by
- $\mathbb{T}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i} ;$
- $d_{\mathbb{T}(M \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as an infinite matrix $\left(d_{\mathbb{T}(M \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where

$$
\begin{aligned}
d_{\mathbb{T}(M \cdot)}^{n}(j, i): M^{i, n-i} & \rightarrow M^{j, n+1-j} \\
d_{\mathbb{T}(M \cdot)}^{n}(j, i) & = \begin{cases}v_{M}^{i, n-i}, & j=i ; \\
h_{M}^{i, n-i}, & j=i+1 ; \\
0, & j \neq i, i+1 .\end{cases}
\end{aligned}
$$

(1) For $M^{* *} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

- $\mathbb{T}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i}$;
- $d_{\mathbb{T}(M \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as an infinite matrix $\left(d_{\mathbb{T}(M \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where

$$
\begin{aligned}
d_{\mathbb{T}(M \cdot)}^{n}(j, i): M^{i, n-i} & \rightarrow M^{j, n+1-j} \\
d_{\mathbb{T}(M \cdot)}^{n}(j, i) & = \begin{cases}v_{M}^{i, n-i}, & j=i ; \\
h_{M}^{i, n-i}, & j=i+1 ; \\
0, & j \neq i, i+1 .\end{cases}
\end{aligned}
$$

(2) Given $f^{* \cdot}: M^{*} \rightarrow N^{*}$, define $\mathbb{T}\left(f \cdot{ }^{*}\right): \mathbb{T}\left(M^{*}\right) \rightarrow \mathbb{T}\left(N \cdot{ }^{-}\right)$by
(1) For $M^{\cdot *} \in D C(\mathcal{A})$, define total complex $\mathbb{T}\left(M^{*}\right) \in C(\mathcal{A})$ by

- $\mathbb{T}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i}$;
- $d_{\mathbb{T}(M \cdot)}^{n}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j}$ written as an infinite matrix $\left(d_{\mathbb{T}(M \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where

$$
\begin{aligned}
d_{\mathbb{T}(M \cdot)}^{n}(j, i): M^{i, n-i} & \rightarrow M^{j, n+1-j} \\
d_{\mathbb{T}(M \cdot)}^{n}(j, i) & = \begin{cases}v_{M}^{i, n-i}, & j=i ; \\
h_{M}^{i, n-i}, & j=i+1 ; \\
0, & j \neq i, i+1 .\end{cases}
\end{aligned}
$$

$$
\mathbb{T}(f \cdot)^{n}=\oplus_{i \in \mathbb{Z}} f^{i, n-i}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{i \in \mathbb{Z}} N^{i, n-i} .
$$

Properties of total complex

Proposition

Taking total complexes yields an exact functor

$$
\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A}): M^{*} \mapsto \mathbb{T}(M \cdot \cdot) ; f \cdot \cdots \mapsto \mathbb{T}(f \cdot \cdot)
$$

Properties of total complex

Proposition

Taking total complexes yields an exact functor

$$
\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A}): M^{*} \mapsto \mathbb{T}\left(M \cdot{ }^{-}\right) ; f \cdot{ }^{*} \mapsto \mathbb{T}\left(f \cdot{ }^{*}\right)
$$

(1) If $M^{*} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\cdot}[1]\right)=\mathbb{T}\left(M^{*}\right)[1]$.

Properties of total complex

Proposition

Taking total complexes yields an exact functor

$$
\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A}): M^{*} \mapsto \mathbb{T}(M \cdot) ; f \cdot{ }^{*} \mapsto \mathbb{T}\left(f \cdot{ }^{*}\right)
$$

(1) If $M^{*} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\cdot}[1]\right)=\mathbb{T}\left(M^{*}\right)[1]$.
(2) If $f^{\cdot \cdot}: M^{\cdot} \rightarrow N^{\cdot \cdot}$ is morphism in $D C(\mathcal{A})$, then

Properties of total complex

Proposition

Taking total complexes yields an exact functor

$$
\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A}): M^{*} \mapsto \mathbb{T}(M \cdot) ; f \cdot{ }^{*} \mapsto \mathbb{T}\left(f \cdot{ }^{*}\right)
$$

(1) If $M^{*} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\cdot}[1]\right)=\mathbb{T}\left(M^{*}\right)[1]$.
(2) If $f^{\cdot \cdot}: M^{\cdot} \rightarrow N^{\cdot \cdot}$ is morphism in $D C(\mathcal{A})$, then

- $\mathbb{T}\left(H_{f \cdot \cdot)}\right)=C_{\mathbb{T}(f \cdot \cdot)}$.

Properties of total complex

Proposition

Taking total complexes yields an exact functor

$$
\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A}): M^{*} \mapsto \mathbb{T}(M \cdot) ; f \cdot{ }^{*} \mapsto \mathbb{T}\left(f \cdot{ }^{*}\right)
$$

(1) If $M^{*} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\cdot}[1]\right)=\mathbb{T}\left(M^{*}\right)[1]$.
(2) If $f^{\cdot \cdot}: M^{\cdot} \rightarrow N^{\cdot \cdot}$ is morphism in $D C(\mathcal{A})$, then

- $\mathbb{T}\left(H_{f \cdot \cdot}\right)=C_{\mathbb{T}(f \cdot \cdot)}$.
- $\mathbb{T}(f \cdot \cdot)$ is null-homotopic in case $f *$ is horizontally null-homotopic.

Generalization of Acyclic Assembly Lemma

(1) Let M^{*} be a double complex over \mathcal{A}.

Generalization of Acyclic Assembly Lemma

(1) Let M^{*} be a double complex over \mathcal{A}.
(2) We say that M^{*} is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;

Generalization of Acyclic Assembly Lemma

(1) Let M^{*} be a double complex over \mathcal{A}.
(2) We say that M^{*} is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;

Generalization of Acyclic Assembly Lemma

(1) Let M " be a double complex over \mathcal{A}.
(2) We say that $M^{-\prime}$ is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;
- diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;

Generalization of Acyclic Assembly Lemma

© Let M^{*} be a double complex over \mathcal{A}.
(2) We say that $M^{-\prime}$ is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;
- diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
- diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Generalization of Acyclic Assembly Lemma

(1) Let M " be a double complex over \mathcal{A}.
(2) We say that $M^{-\prime}$ is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;
- diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
- diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

$\mathbb{T}\left(M^{*}\right)$ is acyclic provided that $M \cdot$ is

Generalization of Acyclic Assembly Lemma

(1) Let M " be a double complex over \mathcal{A}.
(2) We say that $M^{-\prime}$ is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;
- diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
- diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

$\mathbb{T}\left(M^{*}\right)$ is acyclic provided that M^{*} is

- diagonally bounded-below with acyclic rows, or

Generalization of Acyclic Assembly Lemma

(1) Let M " be a double complex over \mathcal{A}.
(2) We say that $M^{-\prime}$ is

- n-diagonally bounded-below if $M^{i, n-i}=0$ for $i \ll 0$;
- n-diagonally bounded-above if $M^{i, n-i}=0$ for $i \gg 0$;
- diagonally bounded-below if it is n-diagonally bounded-below for all $n \in \mathbb{Z}$;
- diagonally bounded-above if it is n-diagonally bounded-above for all $n \in \mathbb{Z}$.

Proposition

$\mathbb{T}\left(M^{*}\right)$ is acyclic provided that M^{*} is

- diagonally bounded-below with acyclic rows, or
- diagonally bounded-above with acyclic columns.

Extension of a functor

(1) Consider an exact functor

$$
\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B}): M \rightarrow \mathfrak{F}(M) ; f \mapsto \mathfrak{F}(f)
$$

Extension of a functor

(1) Consider an exact functor

$$
\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B}): M \rightarrow \mathfrak{F}(M) ; f \mapsto \mathfrak{F}(f)^{*} .
$$

(2) Given $M^{\cdot} \in C(\mathcal{A})$, applying \mathfrak{F} to each component M^{i},

Extension of a functor

(1) Consider an exact functor

$$
\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B}): M \rightarrow \mathfrak{F}(M) ; f \mapsto \mathfrak{F}(f)^{*} .
$$

(2) Given $M^{\cdot} \in C(\mathcal{A})$, applying \mathfrak{F} to each component M^{i}, we obtain double complex $\mathfrak{F}\left(M^{\cdot}\right)$ over \mathcal{B} as follows:

Extension of a functor

(1) Consider an exact functor

$$
\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B}): M \rightarrow \mathfrak{F}(M) ; f \mapsto \mathfrak{F}(f)^{*} .
$$

(2) Given $M^{\cdot} \in C(\mathcal{A})$, applying \mathfrak{F} to each component M^{i}, we obtain double complex $\mathfrak{F}\left(M^{\cdot}\right)$ over \mathcal{B} as follows:

(1) Let $f^{\cdot}: M^{\cdot} \rightarrow N^{\cdot}$ be a morphism in $C(\mathcal{A})$.
(1) Let $f \cdot: M^{\cdot} \rightarrow N^{\cdot}$ be a morphism in $C(\mathcal{A})$.
(2) For all $i, j \in \mathbb{Z}$, we have commutative diagram

(1) Let $f \cdot: M^{\cdot} \rightarrow N \cdot$ be a morphism in $C(\mathcal{A})$.
(2) For all $i, j \in \mathbb{Z}$, we have commutative diagram

- The morphisms $\mathfrak{F}\left(f^{i}\right)^{j}$ with $i, j \in \mathbb{Z}$ form a morphism
(1) Let $f \cdot: M^{\cdot} \rightarrow N^{\cdot}$ be a morphism in $C(\mathcal{A})$.
(3) For all $i, j \in \mathbb{Z}$, we have commutative diagram

(3) The morphisms $\mathfrak{F}\left(f^{i}\right)^{j}$ with $i, j \in \mathbb{Z}$ form a morphism $\mathfrak{F}\left(f^{\cdot}\right) \cdot \mathfrak{F}\left(M^{*}\right) \cdot \rightarrow \mathfrak{F}\left(N^{*}\right) \cdot$ in $D C(\mathcal{B})$.

Proposition

An exact functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces an exact functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\cdot} \mapsto \mathfrak{F}\left(M^{\cdot}\right)^{\cdot} ; f^{\cdot} \mapsto \mathfrak{F}\left(f^{\cdot}\right)^{*}
$$

Proposition

An exact functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces an exact functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\cdot} \mapsto \mathfrak{F}\left(M^{\cdot}\right)^{\cdot} ; f^{\cdot} \mapsto \mathfrak{F}\left(f^{\cdot}\right)^{*}
$$

(1) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{D C}(M \cdot[1])=\mathfrak{F}^{D C}\left(M^{*}\right)[1]$.

Proposition

An exact functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces an exact functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\bullet} \mapsto \mathfrak{F}\left(M^{\cdot}\right)^{\bullet} ; f^{\bullet} \mapsto \mathfrak{F}\left(f^{\bullet}\right)^{*}
$$

(1) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{D C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{D C}\left(M^{\cdot}\right)[1]$.
(2) If f. is a morphism in $C(\mathcal{A})$, then

Proposition

An exact functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces an exact functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\cdot} \mapsto \mathfrak{F}\left(M^{\cdot}\right)^{\cdot} ; f^{\cdot} \mapsto \mathfrak{F}\left(f^{\cdot}\right)^{*}
$$

(1) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{D C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{D C}\left(M^{\cdot}\right)[1]$.
(2) If $f \cdot$ is a morphism in $C(\mathcal{A})$, then

- $\mathfrak{F}^{D C}\left(C_{f \cdot}\right)=H_{\mathfrak{F}^{D C}(f \cdot)}$;

Proposition

An exact functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces an exact functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\cdot} \mapsto \mathfrak{F}\left(M^{\cdot}\right)^{\cdot} ; f^{\cdot} \mapsto \mathfrak{F}\left(f^{\cdot}\right)^{*} .
$$

(1) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{D C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{D C}\left(M^{\cdot}\right)[1]$.
(2) If $f \cdot$ is a morphism in $C(\mathcal{A})$, then

- $\mathfrak{F}^{D C}\left(C_{f \cdot}\right)=H_{\mathfrak{F}^{D C}(f \cdot)}$;
- $\mathfrak{F}^{D C}(f \cdot)$ is horizontally null-homotopic in case $f \cdot$ is null-homotopic.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\mathfrak{F}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\mathfrak{F}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)$.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\mathfrak{F}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)$.
(2) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}(M \cdot[1])=\mathfrak{F}^{C}\left(M^{\cdot}\right)[1]$.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\tilde{\mathfrak{F}}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)$:
(2) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{C}\left(M^{*}\right)[1]$.
(3) If $f \cdot$ is morphism in $C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(C_{f}.\right)=C_{\mathfrak{F}^{C}(f)}$.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\tilde{F}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)$:
(2) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{C}\left(M^{*}\right)[1]$.
(3) If $f \cdot$ is morphism in $C(\mathcal{A})$, then $\left.\mathfrak{F}^{C}\left(C_{f}.\right)=C_{\mathfrak{V}^{C}(f \cdot)}\right)$.
(4) If $f \cdot$ is null-homotopic morphism in $C(\mathcal{A})$, then $\mathfrak{F}^{C}(f \cdot)$ is null-homotopic.

Extension of a functor

(1) Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be an exact functor.
(2) Let \mathfrak{F}^{C} be the composite of the following functors

$$
C(\mathcal{A}) \xrightarrow{\mathfrak{F}^{D C}} D C(\mathcal{B}) \xrightarrow{\mathbb{T}} C(\mathcal{B})
$$

Proposition

(1) If $M \in \mathcal{A}$, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)$:
(2) If $M^{\cdot} \in C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(M^{\cdot}[1]\right)=\mathfrak{F}^{C}\left(M^{*}\right)[1]$.
(3) If $f \cdot$ is morphism in $C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(C_{f} \cdot\right)=C_{\mathfrak{F}}\left(f_{f}\right)$.
(4) If $f \cdot$ is null-homotopic morphism in $C(\mathcal{A})$, then $\mathfrak{F}^{C}(f \cdot)$ is null-homotopic.

Example

Consider $\sigma: \mathcal{A} \rightarrow C(\mathcal{A}): M \rightarrow M[0]$. Then $\sigma^{C}=1_{C(\mathcal{A})}$.

Corollary

Any exact functor $\mathfrak{F}: \mathcal{A} \rightarrow \mathcal{B}$ induces a commutative diagram

where \mathfrak{F}^{K} is triangle-exact.

Corollary

Any exact functor $\mathfrak{F}: \mathcal{A} \rightarrow \mathcal{B}$ induces a commutative diagram

$$
\begin{array}{ll}
C(\mathcal{A}) & \longrightarrow K(\mathcal{B}) \\
\mathfrak{F}^{c} \downarrow & \downarrow \mathfrak{F}^{K} \\
C(\mathcal{B}) \longrightarrow K(\mathcal{B}),
\end{array}
$$

where \mathfrak{F}^{K} is triangle-exact.

Proposition

If $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ and $\mathfrak{G}: \mathcal{B} \rightarrow C(\mathcal{C})$ are exact functors, then

$$
\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}=\mathfrak{G}^{C} \circ \mathfrak{F}^{C} .
$$

(1) To pass \mathfrak{F}^{C} to the derived categories, we need that F^{C} sends quasi-isomorphisms to quasi-isomorphisms.
(1) To pass \mathfrak{F}^{C} to the derived categories, we need that F^{C} sends quasi-isomorphisms to quasi-isomorphisms.
(2) Since \mathfrak{F}^{C} is compatible with taking cones, it suffices that \mathfrak{F}^{C} sends acyclic complexes to acyclic ones.
(1) To pass \mathfrak{F}^{C} to the derived categories, we need that F^{C} sends quasi-isomorphisms to quasi-isomorphisms.
(2) Since \mathfrak{F}^{C} is compatible with taking cones, it suffices that \mathfrak{F}^{C} sends acyclic complexes to acyclic ones.
(0) In general, \mathfrak{F}^{C} does not send all acyclic complexes to acyclic ones.
(1) To pass \mathfrak{F}^{C} to the derived categories, we need that F^{C} sends quasi-isomorphisms to quasi-isomorphisms.
(2) Since \mathfrak{F}^{C} is compatible with taking cones, it suffices that \mathfrak{F}^{C} sends acyclic complexes to acyclic ones.
(3) In general, \mathfrak{F}^{C} does not send all acyclic complexes to acyclic ones.
(9) We are obliged to consider special subcategories of complex category.

Passage to the derived categories

(1) Let $C^{\dagger}(\mathcal{A})$ be an additive subcategory of $C(\mathcal{A})$ such that

Passage to the derived categories

- Let $C^{\dagger}(\mathcal{A})$ be an additive subcategory of $C(\mathcal{A})$ such that $\mathfrak{F}^{D C}\left(M^{\cdot}\right)$ is diagonally bounded-below for all $M^{\cdot} \in C^{\dagger}(\mathcal{A})$.
- Let $C^{\dagger}(\mathcal{A})$ be an additive subcategory of $C(\mathcal{A})$ such that $\mathfrak{F}^{D C}\left(M^{\cdot}\right)$ is diagonally bounded-below for all $M^{\cdot} \in C^{\dagger}(\mathcal{A})$.
(2) $C^{\ddagger}(\mathcal{B})=\mathfrak{F}^{C}\left(C^{\dagger}(\mathcal{A})\right)$ is an additive subcategory of $C(\mathcal{B})$.

Passage to the derived categories

(1) Let $C^{\dagger}(\mathcal{A})$ be an additive subcategory of $C(\mathcal{A})$ such that $\mathfrak{F}^{D C}\left(M^{\cdot}\right)$ is diagonally bounded-below for all $M^{\cdot} \in C^{\dagger}(\mathcal{A})$.
(2) $C^{\ddagger}(\mathcal{B})=\mathfrak{F}^{C}\left(C^{\dagger}(\mathcal{A})\right)$ is an additive subcategory of $C(\mathcal{B})$.

Theorem

(1) There exists a commutative diagram

where $\mathfrak{F}^{K}, \mathfrak{F}^{D}$ are triangle-exact.

Passage to the derived categories

(1) Let $C^{\dagger}(\mathcal{A})$ be an additive subcategory of $C(\mathcal{A})$ such that $\mathfrak{F}^{D C}\left(M^{\cdot}\right)$ is diagonally bounded-below for all $M^{\cdot} \in C^{\dagger}(\mathcal{A})$.
(2) $C^{\ddagger}(\mathcal{B})=\mathfrak{F}^{C}\left(C^{\dagger}(\mathcal{A})\right)$ is an additive subcategory of $C(\mathcal{B})$.

Theorem

(1) There exists a commutative diagram

where $\mathfrak{F}^{K}, \mathfrak{F}^{D}$ are triangle-exact.
(2) If $\mathfrak{F}, \mathfrak{G}: \mathcal{A} \rightarrow C(\mathcal{B})$ are quasi-isomorphic, then $\mathfrak{F}^{D}, \mathfrak{G}^{D}: D(\mathcal{A}) \rightarrow D(\mathcal{B})$ are isomorphic.

Koszul functor in the gradable setting
© Consider a Koszul algebra

$$
\Lambda=k Q / R,
$$

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$,

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, that is,

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, that is,

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

(2) Given $x \in Q_{0}$, we put

- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- P_{x}, indecomposable projective module at x;

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, that is,

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

(2) Given $x \in Q_{0}$, we put

- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- P_{x}, indecomposable projective module at x;
- I_{x}, indecomposable injective module at x.

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, that is,

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

(2) Given $x \in Q_{0}$, we put

- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- P_{x}, indecomposable projective module at x;
- I_{x}, indecomposable injective module at x.
(3) The Koszul dual is

$$
\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}
$$

Koszul functor in the gradable setting

(1) Consider a Koszul algebra

$$
\Lambda=k Q / R,
$$

where Q is locally finite with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, that is,

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) Given $x \in Q_{0}$, we put

- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- P_{x}, indecomposable projective module at x;
- I_{x}, indecomposable injective module at x.
(3) The Koszul dual is

$$
\Lambda^{!}=k Q^{\mathrm{op}} / R^{!},
$$

where Q^{op} has grading $\left(Q_{0}^{\mathrm{op}}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

Koszul functors

(1) We define Koszul functor

$$
F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)
$$

(1) We define Koszul functor

$$
F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)
$$

such, for $n \in \mathbb{Z}$, that

$$
F(M)^{n}=\oplus_{x \in\left(Q^{\circ \mathrm{op}}\right)^{n}} P_{x} \otimes e_{x} M
$$

(1) We define Koszul functor

$$
F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)
$$

such, for $n \in \mathbb{Z}$, that

$$
F(M)^{n}=\oplus_{x \in\left(Q^{\mathrm{op}}\right)^{n}} P_{x} \otimes e_{x} M .
$$

(2) We define Koszul inverse

$$
G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \mapsto G(N)
$$

(1) We define Koszul functor

$$
F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)
$$

such, for $n \in \mathbb{Z}$, that

$$
F(M)^{n}=\oplus_{x \in\left(Q^{\mathrm{op}}\right)^{n}} P_{x} \otimes e_{x} M .
$$

(2) We define Koszul inverse

$$
G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \mapsto G(N)
$$

such, for $n \in \mathbb{Z}$, that

$$
G(N)^{n}=\oplus_{x \in Q^{n}} I_{x}^{!} \otimes e_{x} N,
$$

(1) We define Koszul functor

$$
F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)
$$

such, for $n \in \mathbb{Z}$, that

$$
F(M)^{n}=\oplus_{x \in\left(Q^{\circ \mathrm{op}}\right)^{n}} P_{x} \otimes e_{x} M
$$

(2) We define Koszul inverse

$$
G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \mapsto G(N)^{\cdot}
$$

such, for $n \in \mathbb{Z}$, that

$$
G(N)^{n}=\oplus_{x \in Q^{n}} I_{x}^{!} \otimes e_{x} N
$$

where $I_{x}^{!}$is indecomposable injective $\Lambda^{!}$-module.

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j}
$$

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j}
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ category of complexes M^{\cdot} with

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j} .
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\perp}(\operatorname{Mod} \Lambda)$ category of complexes $M \cdot$ with

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j} .
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\perp}(\operatorname{Mod} \Lambda)$ category of complexes $M \cdot$ with

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j} .
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ category of complexes $M \cdot$ with

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

- $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ category of complexes M.

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j} \text {, wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j} .
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ category of complexes $M \cdot$ with

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

- $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ category of complexes M^{-}

$$
M_{j}^{i}=0 \text { in case } i+p j \ll 0 \text { or } i-q j \gg 0,
$$

Special subcategories of complex categories

(1) Every module $M \in \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j} \text {, wher } M_{j}=\oplus_{x \in Q^{j}} e_{x} M_{j} .
$$

(2) Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\perp}(\operatorname{Mod} \Lambda)$ category of complexes $M \cdot$ with

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

that is, M concentrates in lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

- $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ category of complexes M.

$$
M_{j}^{i}=0 \text { in case } i+p j \ll 0 \text { or } i-q j \gg 0,
$$

that is, M concentrates in upper triangle formed by 2 line of slopes $-\frac{1}{p}, \frac{1}{q}$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(2) $G^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(2) $G^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(3) $F^{C} \circ G$ quasi-iso to $\sigma: \operatorname{Mod} \Lambda \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(2) $G^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(3) $F^{C} \circ G$ quasi-iso to $\sigma: \operatorname{Mod} \Lambda \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(9) $F^{C} \circ G^{C}=\left(F^{C} \circ G\right)^{C}$ quasi-iso to $\sigma^{C}=\mathbb{1}_{C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)}$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(2) $G^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(3) $F^{C} \circ G$ quasi-iso to $\sigma: \operatorname{Mod} \Lambda \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(4) $F^{C} \circ G^{C}=\left(F^{C} \circ G\right)^{C}$ quasi-iso to $\sigma^{C}=\mathbb{1}_{C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)}$.
(6) $F^{D} \circ G^{D} \cong \mathbb{1}_{D_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)}$.

Main Result

Theorem

If $\Lambda=k Q / R$ is Koszul, then F induces triangle equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

with a quasi-inverse $G^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(1) $F^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(2) $G^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(3) $F^{C} \circ G$ quasi-iso to $\sigma: \operatorname{Mod} \Lambda \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.
(4) $F^{C} \circ G^{C}=\left(F^{C} \circ G\right)^{C}$ quasi-iso to $\sigma^{C}=\mathbb{1}_{C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)}$.
(6) $F^{D} \circ G^{D} \cong \mathbb{1}_{D_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)}$.
(Similarly, $F^{D} \circ G^{D} \cong \mathbb{1}_{D_{q+1, p-1}^{\downarrow}(\operatorname{Mod} \Lambda)}$.

Consequences

Theorem

If both Λ and Λ are locally bounded, then

$$
D^{b}\left(\operatorname{Mod}^{b} \wedge^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \wedge\right) .
$$

Consequences

Theorem

If both Λ and Λ are locally bounded, then

$$
D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)
$$

A path in Q is left infinite or right infinite if it has no starting point or no ending-point, respectively.

Consequences

Theorem

If both Λ and Λ are locally bounded, then

$$
D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)
$$

A path in Q is left infinite or right infinite if it has no starting point or no ending-point, respectively.

Corollary

If Q has no right infinite path or no left infinite path, then

$$
D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)
$$

