Oriented cycles and global dimension of algebras

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)

Algebra Seminar Hunan Normal University

July 11, 2013

Motivation

A : fin. dim. algebra over field k.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

æ

Motivation

A : fin. dim. algebra over field k. modA: category of fin. dim. right A-modules.

イロト イポト イヨト イヨト

э

Motivation

A : fin. dim. algebra over field k.

modA: category of fin. dim. right A-modules.

Definition

 $\operatorname{gdim} A = \sup \{ \operatorname{pdim} M \mid M \in \operatorname{mod} A \}$

イロン イヨン イヨン イヨン

Motivation

A : fin. dim. algebra over field k.

modA: category of fin. dim. right A-modules.

Definition

 $\begin{aligned} \text{gdim} A &= \sup\{\text{pdim} M \mid M \in \text{mod} A\} \\ &= \sup\{\text{pdim} S \mid S \in \text{mod} A \text{ simple}\}. \end{aligned}$

Motivation

A : fin. dim. algebra over field k.

modA: category of fin. dim. right A-modules.

Definition

 $\begin{aligned} \text{gdim} A &= \sup\{\text{pdim} M \mid M \in \text{mod} A\} \\ &= \sup\{\text{pdim} S \mid S \in \text{mod} A \text{ simple}\}. \end{aligned}$

Problem

How to determine gdimA is finite or infinite ?

Gabriel's Theorem

Theorem

If
$$ar{k} = k$$
, then $A \stackrel{
m Mor}{\sim} kQ/I$, where

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

・ロト ・回ト ・ヨト ・ヨト

æ

Gabriel's Theorem

Theorem

If
$$\bar{k} = k$$
, then $A \stackrel{\text{Mor}}{\sim} kQ/I$, where
 $Q = (Q_0, Q_1)$ is finite quiver.

・ロト ・回ト ・ヨト ・ヨト

æ

Gabriel's Theorem

Theorem

If
$$\bar{k} = k$$
, then $A \stackrel{\text{Mor}}{\sim} kQ/I$, where

- $Q = (Q_0, Q_1)$ is finite quiver.
- kQ is path algebra of Q over k,

イロン イヨン イヨン イヨン

Gabriel's Theorem

Theorem

If
$$\bar{k} = k$$
, then $A \stackrel{\text{Mor}}{\sim} kQ/I$, where

- $Q = (Q_0, Q_1)$ is finite quiver.
- kQ is path algebra of Q over k, $I \lhd kQ$ with $(kQ^+)^r \subseteq I \subseteq (kQ^+)^2$,

Gabriel's Theorem

Theorem

If
$$\bar{k} = k$$
, then $A \stackrel{\text{Mor}}{\sim} kQ/I$, where

•
$$\mathit{Q} = (\mathit{Q}_0, \mathit{Q}_1)$$
 is finite quiver.

•
$$kQ$$
 is path algebra of Q over k ,
 $I \lhd kQ$ with $(kQ^+)^r \subseteq I \subseteq (kQ^+)^2$,
 $r \ge 2$ and $kQ^+ = < Q_1 >$

・ロト ・回ト ・ヨト ・ヨト

æ

Gabriel's Theorem

Theorem

If
$$\bar{k} = k$$
, then $A \stackrel{\text{Mor}}{\sim} kQ/I$, where

•
$$\mathcal{Q}=(\mathcal{Q}_0,\mathcal{Q}_1)$$
 is finite quiver.

•
$$kQ$$
 is path algebra of Q over k ,
 $I \lhd kQ$ with $(kQ^+)^r \subseteq I \subseteq (kQ^+)^2$,
 $r \ge 2$ and $kQ^+ = < Q_1 >$.

Question

Can one decide gdim(A) is finite or infinite in terms of the quiver Q?

・ロト ・日本 ・モート ・モート

Setting

• A = kQ/I, with k an arbitrary field.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

æ

Setting

- A = kQ/I, with k an arbitrary field.
- Q has trivial paths $\varepsilon_a, a \in Q_0$.

イロト イポト イヨト イヨト

э

- A = kQ/I, with k an arbitrary field.
- Q has trivial paths $\varepsilon_a, a \in Q_0$.
- A has complete set {e_a = ē_a | a ∈ Q₀} of orthogonal primitive idempotents, where u
 u = u + I ∈ A.

- A = kQ/I, with k an arbitrary field.
- Q has trivial paths $\varepsilon_a, a \in Q_0$.
- A has complete set {e_a = ē_a | a ∈ Q₀} of orthogonal primitive idempotents, where *ū* = u + I ∈ A.
- The indec. proj. A-modules are

- A = kQ/I, with k an arbitrary field.
- Q has trivial paths $\varepsilon_a, a \in Q_0$.
- A has complete set {e_a = ē_a | a ∈ Q₀} of orthogonal primitive idempotents, where u
 u = u + I ∈ A.
- The indec. proj. A-modules are

$$P_a = e_a A = k < \bar{p} \mid p : a \rightsquigarrow >, \ a \in Q_0.$$

- A = kQ/I, with k an arbitrary field.
- Q has trivial paths $\varepsilon_a, a \in Q_0$.
- A has complete set {e_a = ē_a | a ∈ Q₀} of orthogonal primitive idempotents, where u
 u = u + I ∈ A.
- The indec. proj. A-modules are

$$P_a = e_a A = k < \bar{p} \mid p : a \rightsquigarrow >, \ a \in Q_0.$$

• The simple *A*-modules are

$$S_a = P_a/\mathrm{rad}P_a, \ a \in Q_0.$$

The no oriented cycle case

Proposition

If Q has no oriented cycle, then gdim A < maximal length of the paths in Q.

The no oriented cycle case

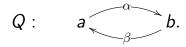
Proposition

If Q has no oriented cycle, then gdim A < maximal length of the paths in Q.

Remark

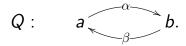
For $gdim A = \infty$, the existence of oriented cycles in Q is necessary but not sufficient.

• Consider the following quiver



Examples

• Consider the following quiver



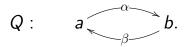
イロト イポト イヨト イヨト

• If $A = kQ / \langle \alpha \beta \rangle$, then gdim A = 2.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Examples

• Consider the following quiver



イロト イポト イヨト イヨト

- If $A = kQ / \langle \alpha \beta \rangle$, then gdim A = 2.
- If $B = kQ / \langle \alpha \beta, \beta \alpha \rangle$, then $gdim B = \infty$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqe Oriented cycles and global dimension of algebras

Problem and Conjectures

Problem

What kind of oriented cycles make $gdim A = \infty$?

Problem and Conjectures

Problem

What kind of oriented cycles make $gdim A = \infty$?

No Loop Conjecture (Zacharia, 1980)

If Q has a loop, then $\operatorname{gdim} A = \infty$.

Problem and Conjectures

Problem

What kind of oriented cycles make $gdim A = \infty$?

No Loop Conjecture (Zacharia, 1980)

If Q has a loop, then $\operatorname{gdim} A = \infty$.

Strong No Loop Conjecture (Zacharia, 1980)

If Q has loop at a vertex a, then $pdim S_a = \infty$.

Solution of the conjectures

The No Loop Conjecture was established by Igusa in 1990, using a result of Lenzing in 1969.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Solution of the conjectures

The No Loop Conjecture was established by Igusa in 1990, using a result of Lenzing in 1969.

The Strong No Loop Conjecture was established by Igusa, Liu, Paquette in 1990, by localizing Lenzing's result.

Hochschild homology group $HH_0(A)$

Definition

1) For $x, y \in A$, write [x, y] = xy - yx.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

Hochschild homology group $HH_0(A)$

Definition

1) For
$$x, y \in A$$
, write $[x, y] = xy - yx$.
2) $[A, A] = \{\sum_{i} [x_i, y_i] \mid x_i, y_i \in A\}.$

イロン イヨン イヨン イヨン

Hochschild homology group $HH_0(A)$

Definition

イロン イヨン イヨン イヨン

Hochschild homology group $HH_0(A)$

Definition

イロト イヨト イヨト イヨト

э

Loops are not commutators

Proposition

If σ is a loop in Q, then $0 \neq \overline{\sigma} \notin [A, A]$. In particular, $HH_0(A)$ is not radical-trivial.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqe Oriented cycles and global dimension of algebras

Loops are not commutators

Proposition

If σ is a loop in Q, then $0 \neq \overline{\sigma} \notin [A, A]$. In particular, $HH_0(A)$ is not radical-trivial.

Proof. Let
$$x, y \in A$$
. Write
 $x = \sum_{a \in Q_0} \lambda_a e_a + \sum_{\alpha \in Q_1} \lambda_\alpha \overline{\alpha} + \overline{u}, \ u \in (kQ^+)^2,$
 $y = \sum_{b \in Q_0} \mu_b e_b + \sum_{\beta \in Q_1} \mu_\beta \overline{\beta} + \overline{v}, \ v \in (kQ^+)^2.$
 $[x, y] = \sum_{\alpha \in Q_1} \lambda_\alpha (\mu_{t(\alpha)} - \mu_{s(\alpha)})\overline{\alpha}$
 $+ \sum_{\beta \in Q_1} \mu_\beta (\lambda_{s(\beta)} - \lambda_{t(\beta)})\overline{\beta} + \overline{w}, \ w \in (kQ^+)^2.$
 $\overline{\sigma} \in [A, A] \Rightarrow \overline{\sigma} = \sum_{\alpha \in \Omega} \nu_\alpha \overline{\alpha} + \overline{u}, \ s(\alpha) \neq t(\alpha), \ u \in (kQ^+)^2,$
 $\Rightarrow \sigma - \sum_{\alpha \in \Omega} \nu_\alpha \alpha - u \in I,$
 $\Rightarrow \sigma - \sum_{\alpha \in \Omega} \nu_\alpha \alpha \in (kQ^+)^2, \text{ absurd.}$

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paque Oriented cycles and global dimension of algebras

Trace of matrices over A

Definition

For $M = (x_{ij})_{n \times n} \in M_n(A)$, one defines $\operatorname{tr}(M) = (x_{11} + \cdots + x_{nn}) + [A, A] \in \operatorname{HH}_0(A).$

Trace of matrices over A

Definition

For
$$M = (x_{ij})_{n \times n} \in M_n(A)$$
, one defines
 $\operatorname{tr}(M) = (x_{11} + \cdots + x_{nn}) + [A, A] \in \operatorname{HH}_0(A).$

Proposition

If
$$M \in M_{m \times n}(A)$$
 and $N \in M_{n \times m}(A)$, then
 $\operatorname{tr}(MN) = \operatorname{tr}(NM).$

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

• Let $\varphi \in \operatorname{End}_A(P)$ with $P \in \operatorname{mod} A$ projective.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqe Oriented cycles and global dimension of algebras

イロト イヨト イヨト イヨト

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

Let φ ∈ End_A(P) with P ∈ modA projective.
If P = 0, define tr(φ) = 0 ∈ HH₀(A).

イロト イポト イヨト イヨト

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

- Let $\varphi \in \operatorname{End}_A(P)$ with $P \in \operatorname{mod} A$ projective.
- If P = 0, define $tr(\varphi) = 0 \in HH_0(A)$.
- Otherwise, $P = e_1 A \oplus \cdots \oplus e_n A$, with e_1, \ldots, e_n primitive idempotents.

イロト イポト イヨト イヨト

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

- Let $\varphi \in \operatorname{End}_A(P)$ with $P \in \operatorname{mod} A$ projective.
- If P = 0, define $tr(\varphi) = 0 \in HH_0(A)$.
- Otherwise, $P = e_1 A \oplus \cdots \oplus e_n A$, with e_1, \ldots, e_n primitive idempotents.
- Write $\varphi = (x_{ij})_{n \times n}$, with $x_{ij} = \varphi(e_i) \in e_j A e_i$.

イロト イポト イヨト イヨト

Trace of endomorphisms of projective modules

Definition (Hattori, Stallings)

- Let $\varphi \in \operatorname{End}_A(P)$ with $P \in \operatorname{mod} A$ projective.
- If P = 0, define $tr(\varphi) = 0 \in HH_0(A)$.
- Otherwise, $P = e_1 A \oplus \cdots \oplus e_n A$, with e_1, \ldots, e_n primitive idempotents.
- Write $\varphi = (x_{ij})_{n \times n}$, with $x_{ij} = \varphi(e_i) \in e_j A e_i$.

O Define

$$\operatorname{tr}(\varphi) = \operatorname{tr}((x_{ij})_{n \times n}) \in \operatorname{HH}_0(A),$$

イロト イポト イヨト イヨト

Trace of endomorphisms of modules of fin proj dimension

• Let $M \in \text{mod}A$ have fin proj resolution

$$0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

Trace of endomorphisms of modules of fin proj dimension

• Let $M \in \text{mod}A$ have fin proj resolution

$$0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

• Given $\varphi \in \operatorname{End}_A(M)$, construct comm. diagram

Trace of endomorphisms of modules of fin proj dimension

• Let $M \in \text{mod}A$ have fin proj resolution

$$0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

• Given $\varphi \in \operatorname{End}_A(M)$, construct comm. diagram

イロト イポト イヨト イヨト

• Define $\operatorname{tr}(\varphi) = \sum_{i=0}^{n} (-1)^{i} \operatorname{tr}(\varphi_{i}) \in \operatorname{HH}_{0}(A).$

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $gdim(A) < \infty$, then $HH_0(A)$ is radical-trivial.

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $gdim(A) < \infty$, then $HH_0(A)$ is radical-trivial.

Proof. gdim(A) < $\infty \Rightarrow$ tr(φ) is defined for any $\varphi : M \rightarrow M$.

Solution of No Loop Conjecture

Theorem (Lenzing, 1969)

If $gdim(A) < \infty$, then $HH_0(A)$ is radical-trivial.

Proof. gdim(A) < $\infty \Rightarrow$ tr(φ) is defined for any $\varphi : M \rightarrow M$.

Theorem (Igusa, 1990)

If $gdim(A) < \infty$, then Q has no loop.

イロン イヨン イヨン イヨン

Localizing algebra

From now on, fix $e = e_{a_1} + \cdots + e_{a_r}$, $a_i \in Q_0$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

3

Localizing algebra

From now on, fix $e = e_{a_1} + \cdots + e_{a_r}$, $a_i \in Q_0$. Set $A_e = A/A(1-e)A$.

3

Localizing algebra

From now on, fix $e = e_{a_1} + \cdots + e_{a_r}$, $a_i \in Q_0$. Set $A_e = A/A(1-e)A$.

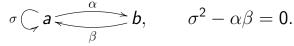
Remark

If σ is a loop at some of the a_i , then it remain a loop in the quiver of A_e .

イロン イヨン イヨン イヨン

Example

Let A be given by



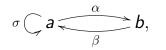
・ロン ・回 と ・ ヨ と ・ ヨ と

3

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Pag Oriented cycles and global dimension of algebras

Example

Let A be given by



$$\sigma^2 - \alpha\beta = \mathbf{0}.$$

・ロン ・回と ・ヨン ・ヨン

æ

Then A_{e_a} is given by

$$\sigma \bigcirc \mathbf{a}, \qquad \sigma^2 = \mathbf{0}.$$

Localizing Hochschild Homology

Consider algebra morphism

$$p_e: A \rightarrow A_e: x \mapsto x + A(1-e)A_e$$

Localizing Hochschild Homology

Consider algebra morphism

$$p_e: A \rightarrow A_e: x \mapsto x + A(1-e)A.$$

This induces group morphism

$$egin{array}{rcl} H_e:& \operatorname{HH}_0(A)&
ightarrow&\operatorname{HH}_0(A_e)\ &&x+[A,A]&\mapsto& p_e(x)+[A_e,A_e]. \end{array}$$

- 4 回 と 4 き と 4 き と

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_A(P)$ with P projective.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_{A}(P)$ with P projective. Define *e*-*trace* of φ by

$$\operatorname{tr}_e(\varphi) = H_e(\operatorname{tr}(\varphi)) \in \operatorname{HH}_0(A_e).$$

e-trace of endomorphisms of projectives

Given $\varphi \in \operatorname{End}_{A}(P)$ with P projective. Define *e*-*trace* of φ by

$$\operatorname{tr}_e(\varphi) = H_e(\operatorname{tr}(\varphi)) \in \operatorname{HH}_0(A_e).$$

Lemma

Let $\varphi \in \operatorname{End}_A(P)$ with P projective. If P, eA have no common summand, then $\operatorname{tr}_e(\varphi) = 0$.

イロン イヨン イヨン イヨン

e-bounded modules

Definition

A projective resolution in $\operatorname{mod} A$

$$\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

is *e-bounded* if P_i , *eA* have no common summand, for i >> 0.

e-bounded modules

Definition

A projective resolution in $\operatorname{mod} A$

$$\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

is *e-bounded* if P_i , *eA* have no common summand, for i >> 0.

イロト イポト イヨト イヨト

In this case, *M* is called *e-bounded*.

Another interpretation

Set $S_e = eA/e \operatorname{rad} A$, semi-simple supported by e.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロト イポト イヨト イヨト

3

Another interpretation

Set $S_e = eA/e \operatorname{rad} A$, semi-simple supported by e.

Proposition

M is e-bounded $\Leftrightarrow \operatorname{Ext}_{\mathcal{A}}^{i}(M, S_{e}) = 0$, for i >> 0.

Another interpretation

Set $S_e = eA/e \operatorname{rad} A$, semi-simple supported by e.

Proposition

1 is e-bounded
$$\Leftrightarrow \operatorname{Ext}_{\mathcal{A}}^{i}(M, S_{e}) = 0$$
, for $i >> 0$.

Corollary

N

$\operatorname{idim} S_e < \infty \Rightarrow \text{ every } M \in \operatorname{mod} A \text{ is } e\text{-bounded}.$

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

・ロン ・回と ・ヨン ・ヨン

e-trace of endomorphisms of e-bounded modules

• Let *M* have *e*-bounded projective resolution

 $\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$

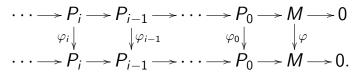
3

e-trace of endomorphisms of e-bounded modules

• Let *M* have *e*-bounded projective resolution

$$\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

• Given $\varphi \in \operatorname{End}_A(M)$, construct comm. diagram

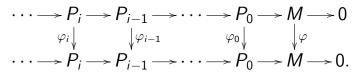


e-trace of endomorphisms of e-bounded modules

• Let *M* have *e*-bounded projective resolution

$$\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

• Given $\varphi \in \operatorname{End}_A(M)$, construct comm. diagram



イロト イポト イヨト イヨト

• Define $\operatorname{tr}_e(\varphi) = \sum_{i=0}^{\infty} (-1)^i \operatorname{tr}_e(\varphi_i) \in \operatorname{HH}_0(A_e).$

e-trace of endomorphisms of e-bounded modules

• Let *M* have *e*-bounded projective resolution

$$\cdots \longrightarrow P_i \longrightarrow P_{i-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0.$$

• Given $\varphi \in \operatorname{End}_A(M)$, construct comm. diagram

• Define $\operatorname{tr}_e(\varphi) = \sum_{i=0}^{\infty} (-1)^i \operatorname{tr}_e(\varphi_i) \in \operatorname{HH}_0(A_e).$

Remark

 $\operatorname{idim} S_e < \infty \Rightarrow \operatorname{tr}_e(\varphi)$ defined for any $\varphi : M \to M$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Main result on localized Hochschild homology

Theorem

If $\operatorname{idim} S_e < \infty$ or $\operatorname{pdim} S_e < \infty$, then $\operatorname{HH}_0(A_e)$ is radical-trivial.

Main result on localized Hochschild homology

Theorem

If $\operatorname{idim} S_e < \infty$ or $\operatorname{pdim} S_e < \infty$, then $\operatorname{HH}_0(A_e)$ is radical-trivial.

Proof. Let $\operatorname{idim} S_e < \infty$. Apply tr_e to the filtration $0 = u^{n+1}A \subseteq u^nA \subseteq \cdots \subseteq uA \subseteq A.$

Main result on localized Hochschild homology

Theorem

If $\operatorname{idim} S_e < \infty$ or $\operatorname{pdim} S_e < \infty$, then $\operatorname{HH}_0(A_e)$ is radical-trivial.

Proof. Let $\operatorname{idim} S_e < \infty$. Apply tr_e to the filtration $0 = u^{n+1}A \subseteq u^nA \subseteq \cdots \subseteq uA \subseteq A$. If $\operatorname{pdim} S_e < \infty$, then $\operatorname{idim} S_{e^\circ} < \infty$

Main result on localized Hochschild homology

Theorem

If $\operatorname{idim} S_e < \infty$ or $\operatorname{pdim} S_e < \infty$, then $\operatorname{HH}_0(A_e)$ is radical-trivial.

Proof. Let $\operatorname{idim} S_e < \infty$. Apply tr_e to the filtration $0 = u^{n+1}A \subseteq u^nA \subseteq \cdots \subseteq uA \subseteq A$. If $\operatorname{pdim} S_e < \infty$, then $\operatorname{idim} S_{e^\circ} < \infty$ $\Rightarrow \operatorname{HH}_0(A_{e^\circ}^\circ) = \operatorname{HH}_0((A_e)^\circ)$ radical-trivial.

Main result on localized Hochschild homology

Theorem

If $\operatorname{idim} S_e < \infty$ or $\operatorname{pdim} S_e < \infty$, then $\operatorname{HH}_0(A_e)$ is radical-trivial.

Proof. Let $\operatorname{idim} S_e < \infty$. Apply tr_e to the filtration $0 = u^{n+1}A \subseteq u^nA \subseteq \cdots \subseteq uA \subseteq A$. If $\operatorname{pdim} S_e < \infty$, then $\operatorname{idim} S_{e^\circ} < \infty$ $\Rightarrow \operatorname{HH}_0(A_{e^\circ}^\circ) = \operatorname{HH}_0((A_e)^\circ)$ radical-trivial. $\Rightarrow \operatorname{HH}_0(A_e)$ radical-trivial.

Main Result

Theorem

Let A = kQ/I. If Q has loop at a vertex a, then $pdimS_a = idimS_a = \infty$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

Main Result

Theorem

Let A = kQ/I. If Q has loop at a vertex a, then $\mathrm{pdim}S_a = \mathrm{idim}S_a = \infty$.

Proof. Let σ be loop at $a \in Q_0$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqe Oriented cycles and global dimension of algebras

Main Result

Theorem

Let A = kQ/I. If Q has loop at a vertex a, then $\mathrm{pdim}S_a = \mathrm{idim}S_a = \infty$.

Proof. Let σ be loop at $a \in Q_0$. $\Rightarrow \sigma$ is loop in the quiver of A_{e_a} .

イロン イヨン イヨン イヨン

Main Result

Theorem

Let A = kQ/I. If Q has loop at a vertex a, then $pdimS_2 = idimS_2 = \infty$.

Proof. Let σ be loop at $a \in Q_0$. $\Rightarrow \sigma$ is loop in the quiver of A_{e_a} . $\Rightarrow HH_0(A_{e_a})$ not radical-trivial.

Main Result

Theorem

Let A = kQ/I. If Q has loop at a vertex a, then

$$\operatorname{pdim} S_a = \operatorname{idim} S_a = \infty.$$

Proof. Let σ be loop at $a \in Q_0$. $\Rightarrow \sigma$ is loop in the quiver of A_{e_a} . $\Rightarrow HH_0(A_{e_a})$ not radical-trivial. $\Rightarrow idim S_a = pdim S_a = \infty$.

Combinatorial terminology

Let A = kQ/I.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

イロン イヨン イヨン イヨン

æ

Combinatorial terminology

Let
$$A = kQ/I$$
.

Definition

• A *minimal relation* for A is an element

$$\rho = \lambda_1 p_1 + \cdots + \lambda_r p_r \in I,$$

where $\lambda_i \in k^*$, p_i distinct parallel paths, such that $\sum_{i \in \Omega} \lambda_i p_i \notin I$ for any $\Omega \subset \{1, \ldots, r\}$.

Combinatorial terminology

Let
$$A = kQ/I$$
.

Definition

• A *minimal relation* for A is an element

$$\rho = \lambda_1 p_1 + \cdots + \lambda_r p_r \in I,$$

where $\lambda_i \in k^*$, p_i distinct parallel paths, such that $\sum_{i \in \Omega} \lambda_i p_i \notin I$ for any $\Omega \subset \{1, \ldots, r\}$.

イロト イポト イヨト イヨト

• A path p in Q is *nonzero* in A if $p \notin I$.

Combinatorial terminology

Let
$$A = kQ/I$$
.

Definition

• A *minimal relation* for A is an element

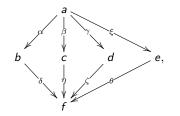
$$\rho = \lambda_1 p_1 + \cdots + \lambda_r p_r \in I,$$

where $\lambda_i \in k^*$, p_i distinct parallel paths, such that $\sum_{i \in \Omega} \lambda_i p_i \notin I$ for any $\Omega \subset \{1, \ldots, r\}$.

- A path p in Q is *nonzero* in A if $p \notin I$.
- A path p in Q is *free* in A if it is not summand of any minimal relation for A.

Example

• Let A be given by



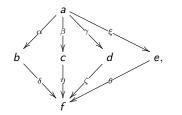
 $\gamma \zeta = \mathbf{0}, \ \alpha \delta = \beta \eta.$

イロト イヨト イヨト イヨト

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqe Oriented cycles and global dimension of algebras

Example

• Let A be given by



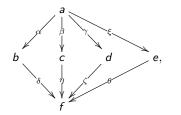
 $\gamma \zeta = \mathbf{0}, \ \alpha \delta = \beta \eta.$

イロト イポト イヨト イヨト

• $\alpha \delta - \beta \eta$ is a minimal relation for A.

Example

• Let A be given by



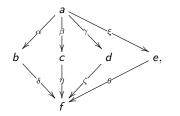
 $\gamma \zeta = \mathbf{0}, \ \alpha \delta = \beta \eta.$

- ∢ ≣ >

αδ – βη is a minimal relation for A.
ξθ is free in A.

Example

• Let A be given by



 $\gamma \zeta = \mathbf{0}, \ \alpha \delta = \beta \eta.$

- $\alpha \delta \beta \eta$ is a minimal relation for A.
- $\xi\theta$ is free in A.
- $\alpha\delta \beta\eta + \gamma\zeta$ is relation, not minimal relation.

Oriented cycles

• Let $\sigma = \alpha_1 \alpha_2 \cdots \alpha_r$ be oriented cycle, $\alpha_i \in Q_1$.

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Oriented cycles

- Let $\sigma = \alpha_1 \alpha_2 \cdots \alpha_r$ be oriented cycle, $\alpha_i \in Q_1$.
- Onsider its cyclic permutations:

$$\sigma_1 = \sigma, \ \sigma_2 = \alpha_2 \cdots \alpha_r \alpha_1, \dots, \sigma_r = \alpha_r \alpha_1 \cdots \alpha_{r-1}.$$

Oriented cycles

- Let $\sigma = \alpha_1 \alpha_2 \cdots \alpha_r$ be oriented cycle, $\alpha_i \in Q_1$.
- Onsider its cyclic permutations:

 $\sigma_1 = \sigma, \ \sigma_2 = \alpha_2 \cdots \alpha_r \alpha_1, \ldots, \sigma_r = \alpha_r \alpha_1 \cdots \alpha_{r-1}.$

イロト イポト イヨト イヨト

• σ is called *cyclically non-zero* in A if each of $\sigma_1, \dots, \sigma_r$ is non-zero in A.

Oriented cycles

- Let $\sigma = \alpha_1 \alpha_2 \cdots \alpha_r$ be oriented cycle, $\alpha_i \in Q_1$.
- Onsider its cyclic permutations:

 $\sigma_1 = \sigma, \ \sigma_2 = \alpha_2 \cdots \alpha_r \alpha_1, \ldots, \sigma_r = \alpha_r \alpha_1 \cdots \alpha_{r-1}.$

- σ is called *cyclically non-zero* in A if each of $\sigma_1, \dots, \sigma_r$ is non-zero in A.
- σ is cyclically free in A if each of σ₁,..., σ_r is free in A.

Oriented cycles

- Let $\sigma = \alpha_1 \alpha_2 \cdots \alpha_r$ be oriented cycle, $\alpha_i \in Q_1$.
- Onsider its cyclic permutations:

 $\sigma_1 = \sigma, \ \sigma_2 = \alpha_2 \cdots \alpha_r \alpha_1, \dots, \sigma_r = \alpha_r \alpha_1 \cdots \alpha_{r-1}.$

イロト イポト イヨト イヨト

- σ is called *cyclically non-zero* in *A* if each of $\sigma_1, \dots, \sigma_r$ is non-zero in *A*.
- σ is cyclically free in A if each of σ₁,..., σ_r is free in A.

Remark

A loop in Q is cyclically free in A.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

・ロト ・回ト ・ヨト ・ヨト

Э

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqu Oriented cycles and global dimension of algebras

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

イロン イヨン イヨン イヨン

æ

• Path $\gamma\delta$ nonzero, but not free in A.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

- Path $\gamma\delta$ nonzero, but not free in A.
- Cycle $\mu\nu$ nonzero, not cyclically nonzero in A.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = <\delta\gamma, \, \nu\mu, \, (\beta\alpha)^2 - \gamma\delta, \, (\beta\alpha)^3 >$$

- Path $\gamma\delta$ nonzero, but not free in A.
- Cycle $\mu\nu$ nonzero, not cyclically nonzero in A.
- Cycle $\beta \alpha$ is cyclically free in *A*.

Lemma

Let σ be oriented cycle in Q. If σ is cyclically free in A, then $\bar{\sigma} \notin [A, A]$.

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

소리가 소문가 소문가 소문가

3

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is cyclically free in A, then

$$\operatorname{pdim} S_{e_{\sigma}} = \operatorname{idim} S_{e_{\sigma}} = \infty.$$

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is cyclically free in A, then

$$\operatorname{pdim} S_{e_{\sigma}} = \operatorname{idim} S_{e_{\sigma}} = \infty.$$

イロト イポト イヨト イヨト

Proof. Assume σ cyclically free in *A*.

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is cyclically free in A, then

$$\operatorname{pdim} S_{e_{\sigma}} = \operatorname{idim} S_{e_{\sigma}} = \infty.$$

イロト イポト イヨト イヨト

Proof. Assume σ cyclically free in A. $\Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}} = A/A(1 - e_{\sigma})A$.

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is cyclically free in A, then

$$\operatorname{pdim} S_{e_{\sigma}} = \operatorname{idim} S_{e_{\sigma}} = \infty.$$

イロト イポト イヨト イヨト

Proof. Assume σ cyclically free in A. $\Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}} = A/A(1 - e_{\sigma})A$. $\Rightarrow HH_0(A_{e_{\sigma}})$ not radically-trivial.

Further result

If σ is oriented cycle passing through the vertices a_1, \ldots, a_s , put $e_{\sigma} = e_{a_1} + \cdots + e_{a_s}$.

Theorem

Let A = kQ/I with σ oriented cycle in Q. If σ is cyclically free in A, then

$$\operatorname{pdim} S_{e_{\sigma}} = \operatorname{idim} S_{e_{\sigma}} = \infty.$$

Proof. Assume σ cyclically free in A. $\Rightarrow \sigma$ cyclically free in $A_{e_{\sigma}} = A/A(1 - e_{\sigma})A$. $\Rightarrow HH_0(A_{e_{\sigma}})$ not radically-trivial. $\Rightarrow pdim S_{e_{\sigma}} = idim S_{e_{\sigma}} = \infty$.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

・ロト ・回ト ・ヨト ・ヨト

Э

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paqu Oriented cycles and global dimension of algebras

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

イロト イポト イヨト イヨト

æ

• The cycle $\beta \alpha$ is cyclically free in A.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta} 3 \underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu} 4$$

$$I = \langle \delta \gamma, \nu \mu, (\beta \alpha)^2 - \gamma \delta, (\beta \alpha)^3 \rangle$$
.

- The cycle $\beta \alpha$ is cyclically free in A.
- S_1 or S_2 is of infinite projective dimension.

Example

• Let
$$A = kQ/I$$
, where

$$Q: \qquad 1\underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta}^{\alpha}2\underbrace{\overset{\gamma}{\underset{\delta}{\longrightarrow}}}_{\delta}3\underbrace{\overset{\mu}{\underset{\nu}{\longrightarrow}}}_{\nu}4$$

$$I = <\delta\gamma, \, \nu\mu, \, (\beta\alpha)^2 - \gamma\delta, \, (\beta\alpha)^3 >$$

- The cycle $\beta \alpha$ is cyclically free in A.
- S_1 or S_2 is of infinite projective dimension.
- S_1 or S_2 is of infinite injective dimension.

Monomial algebras

A = kQ/I is monomial if I generated by some paths of length ≥ 2.

Monomial algebras

- A = kQ/I is monomial if I generated by some paths of length ≥ 2.
- In this case, an oriented cycle in Q is cyclically free in A ⇔ it is cyclically nonzero in A.

Monomial algebras

- A = kQ/I is monomial if I generated by some paths of length ≥ 2.
- In this case, an oriented cycle in Q is cyclically free in A ⇔ it is cyclically nonzero in A.

Corollary

Let A = kQ/I be monomial. If Q has oriented cycle which is cyclically nonzero in A, then $gdim A = \infty$.

Example

• Let A be monomial given by

$$Q: \qquad 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longleftarrow}}}_{\beta} 2, \qquad \alpha \beta \alpha = 0.$$

イロン イヨン イヨン イヨン

æ

Kiyoshi Igusa (Brandeis) Shiping Liu (Sherbrooke) Charles Paq Oriented cycles and global dimension of algebras

Example

• Let A be monomial given by

$$Q: \qquad 1 \underbrace{\alpha}_{\beta} 2, \qquad \alpha \beta \alpha = 0.$$

イロト イポト イヨト イヨト

• $\alpha\beta$ is cyclically nonzero in A.

Example

• Let A be monomial given by

$$Q: \qquad 1 \underbrace{\alpha}_{\beta} 2, \qquad \alpha \beta \alpha = 0.$$

- $\alpha\beta$ is cyclically nonzero in A.
- $g \dim A = \infty.$

Further Conjectures

Extension Conjecture

Let A = kQ/I. If Q has a loop at a vertex a, then $\operatorname{Ext}^{i}(S_{a}, S_{a}) \neq 0$ for infinitely many integers *i*.

・ロト ・回ト ・ヨト ・ヨト

Further Conjectures

Extension Conjecture

Let A = kQ/I. If Q has a loop at a vertex a, then $\operatorname{Ext}^{i}(S_{a}, S_{a}) \neq 0$ for infinitely many integers *i*.

Remark

The extension conjecture holds true for monomial algebras and special biserial algebras.

イロン イヨン イヨン イヨン

Further Conjectures

Extension Conjecture

Let A = kQ/I. If Q has a loop at a vertex a, then $\operatorname{Ext}^{i}(S_{a}, S_{a}) \neq 0$ for infinitely many integers *i*.

Remark

The extension conjecture holds true for monomial algebras and special biserial algebras.

No Loop Conjecture

Let A be artin algebra. If $gdim(A) < \infty$, then $Ext^1(S, S) = 0$ for all simple S.