Koszul duality for non-graded derived categories

Ales Bouhada, Min Huang, Shiping Liu*
Université de Sherbrooke

Algebra Forum

June 21-23, 2019
Changshu, China

Plan

(1) Introduction on Beilinson, Ginzburg and Soergel's work
(1) Introduction on Beilinson, Ginzburg and Soergel's work
(2) Preliminaries on quivers and path algebras
(1) Introduction on Beilinson, Ginzburg and Soergel's work
(2) Preliminaries on quivers and path algebras
(0) Quadratic algebras and quadratic duals
(1) Introduction on Beilinson, Ginzburg and Soergel's work
(2) Preliminaries on quivers and path algebras
(0) Quadratic algebras and quadratic duals

- Koszul algebras and Koszul functors
(1) Introduction on Beilinson, Ginzburg and Soergel's work
(2) Preliminaries on quivers and path algebras
(0) Quadratic algebras and quadratic duals
- Koszul algebras and Koszul functors
- Main results

Brief History

(1) Introduced by Beilinson, Ginzburg and Soergel (1996),

Koszul algebras appear in

Brief History

(1) Introduced by Beilinson, Ginzburg and Soergel (1996),

Koszul algebras appear in

- representation theory of Lie algebras;

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996),
Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996),
Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;
- representation theory of finite dimensional algebras.

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;
- representation theory of finite dimensional algebras.
(2) They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;
- representation theory of finite dimensional algebras.
(2 They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

$$
D^{b}\left(\operatorname{Mod}^{-}\left(k Q^{\mathrm{op}}\right)\right) \cong D^{b}\left(\operatorname{Mod}^{b} \wedge\right)
$$

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;
- representation theory of finite dimensional algebras.
(2 They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

$$
D^{b}\left(\operatorname{Mod}^{-}\left(k Q^{\mathrm{op}}\right)\right) \cong D^{b}\left(\operatorname{Mod}^{b} \wedge\right)
$$

- Q is locally finite gradable quiver;

Brief History

© Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;
- representation theory of finite dimensional algebras.
(2 They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

$$
D^{b}\left(\operatorname{Mod}^{-}\left(k Q^{\mathrm{op}}\right)\right) \cong D^{b}\left(\operatorname{Mod}^{b} \wedge\right)
$$

- Q is locally finite gradable quiver;
- $\Lambda=k Q /\left(k Q^{+}\right)^{2}$, Koszul with Koszul dual $k Q^{\text {op }}$.

Objective

To extend Beilinson-Ginzburg-Soergel Theorems and Bautista-Liu Theorem for Koszul algebras given by locally finite gradable quivers.

Objective

To extend Beilinson-Ginzburg-Soergel Theorems and Bautista-Liu Theorem for Koszul algebras given by locally finite gradable quivers.

The application of covering theory requires the study of modules over algebras without identity

Beilinson, Ginzburg and Soergel's Definition

(1) Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a positively graded ring.

Beilinson, Ginzburg and Soergel's Definition

(1) Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a positively graded ring.
(2) A is called a Koszul algebra provided

Beilinson, Ginzburg and Soergel's Definition

(1) Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a positively graded ring.
(2) A is called a Koszul algebra provided

- A_{0} is a semi-simple ring;

Beilinson, Ginzburg and Soergel's Definition

(1) Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a positively graded ring.
(3) A is called a Koszul algebra provided

- A_{0} is a semi-simple ring;
- ${ }_{A} A_{0}$ admits a linear projective resolution.

Beilinson, Ginzburg and Soergel's Definition

(1) Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a positively graded ring.
(3) A is called a Koszul algebra provided

- A_{0} is a semi-simple ring;
- ${ }_{A} A_{0}$ admits a linear projective resolution.

Proposition

If A is a Koszul algebra, then its Koszul dual A is also Koszul.

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i}
$$

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M^{*} of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i},
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.

- $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M^{\cdot} such that

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M^{*} of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i},
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.

- $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M • such that

$$
M_{j}^{i}=0 \text { in case } i \ll 0 \text { or } i+j \gg 0,
$$

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i},
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.

- $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M • such that

$$
M_{j}^{i}=0 \text { in case } i \ll 0 \text { or } i+j \gg 0,
$$

that is, M^{*} is supported in the lower triangle formed by a vertical line and a line of slope -1 .

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i}
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.
(3) $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i \ll 0 \text { or } i+j \gg 0
$$

that is, M^{-}is supported in the lower triangle formed by a vertical line and a line of slope -1 .
(9) $D^{\uparrow}(\operatorname{Gmod} B)$: derived category of complexes M • such that

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i}
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.
(3) $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i \ll 0 \text { or } i+j \gg 0
$$

that is, M^{-}is supported in the lower triangle formed by a vertical line and a line of slope -1 .
(9) $D^{\uparrow}(\operatorname{Gmod} B)$: derived category of complexes M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i \gg 0 \text { or } i+j \ll 0
$$

Special subcategories of graded derived categories

(1) Let $B=\oplus_{i=0}^{\infty} B_{i}$ be a positively graded algebra.
(2) Given a complex M - of graded left B-modules, write

$$
M^{i}=\oplus_{j \in \mathbb{Z}} M_{j}^{i}
$$

an put M_{j}^{i} in the (i, j)-position in \mathbb{R}^{2}.
(3) $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes $M \cdot$ such that

$$
M_{j}^{i}=0 \text { in case } i \ll 0 \text { or } i+j \gg 0
$$

that is, M^{-}is supported in the lower triangle formed by a vertical line and a line of slope -1 .
(9) $D^{\uparrow}(\operatorname{Gmod} B)$: derived category of complexes M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i \gg 0 \text { or } i+j \ll 0
$$

that is, M^{*} is supported in the upper triangle formed by a vertical line and a line of slope -1 .

Beilinson, Ginzburg and Soergel's Theorems

Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a Koszul algebra.

Beilinson, Ginzburg and Soergel's Theorems

Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a Koszul algebra.
Let $A^{!}$be the Koszul dual of A.

Beilinson, Ginzburg and Soergel's Theorems

Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a Koszul algebra.
Let $A^{!}$be the Koszul dual of A.

Theorem

If all A_{i} are finitely generated as left A_{0}-modules, then

$$
D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}\left(\operatorname{Gmod} A^{!}\right) .
$$

Beilinson, Ginzburg and Soergel's Theorems

Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a Koszul algebra.
Let A ! be the Koszul dual of A.

Theorem

If all A_{i} are finitely generated as left A_{0}-modules, then

$$
D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}\left(\operatorname{Gmod} A^{!}\right) .
$$

Theorem

If $A A, A_{A}$ are finitely generated and $A!$ is left noetherian, then

$$
D^{b}(\operatorname{gmod} A) \cong D^{b}\left(\operatorname{gmod} A^{!}\right) .
$$

Beilinson, Ginzburg and Soergel's Theorems

Let $A=\oplus_{i=0}^{\infty} A_{i}$ be a Koszul algebra.
Let $A^{!}$be the Koszul dual of A.

Theorem

If all A_{i} are finitely generated as left A_{0}-modules, then

$$
D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}\left(\operatorname{Gmod} A^{!}\right) .
$$

Theorem

If ${ }_{A} A, A_{A}$ are finitely generated and $A^{!}$is left noetherian, then

$$
D^{b}(\operatorname{gmod} A) \cong D^{b}\left(\operatorname{gmod} A^{!}\right) .
$$

Remark

Their proof involves spectral sequences.

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;
- $Q(x, y)$: all paths $x \rightsquigarrow y$.

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;
- $Q(x, y)$: all paths $x \rightsquigarrow y$.
(3) The opposite quiver Q^{op} is defined by
- $\left(Q^{\mathrm{op}}\right)_{0}=Q_{0}$;

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;
- $Q(x, y)$: all paths $x \rightsquigarrow y$.
(3) The opposite quiver Q^{op} is defined by
- $\left(Q^{\mathrm{op}}\right)_{0}=Q_{0}$;
- $\left(Q^{\mathrm{op}}\right)_{1}=\left\{\alpha^{\mathrm{o}}: y \rightarrow x \mid \alpha: x \rightarrow y \in Q_{1}\right\}$.

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;
- $Q(x, y)$: all paths $x \rightsquigarrow y$.
(3) The opposite quiver Q^{op} is defined by
- $\left(Q^{\mathrm{op}}\right)_{0}=Q_{0}$;
- $\left(Q^{\mathrm{op}}\right)_{1}=\left\{\alpha^{\mathrm{o}}: y \rightarrow x \mid \alpha: x \rightarrow y \in Q_{1}\right\}$.
(9) Let k be a field.

Setting

(1) Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where

- Q_{0} is a set of vertices x;
- Q_{1} is a set of arrows $\alpha: x \rightarrow y$.
(2) Given $x, y \in Q_{0}$, we define
- ε_{x} : path of length 0 at x;
- $Q_{n}(x, y)$: paths $x \rightsquigarrow y$ of length n;
- $Q(x, y)$: all paths $x \rightsquigarrow y$.
(3) The opposite quiver Q^{op} is defined by
- $\left(Q^{\mathrm{op}}\right)_{0}=Q_{0}$;
- $\left(Q^{\mathrm{op}}\right)_{1}=\left\{\alpha^{\mathrm{o}}: y \rightarrow x \mid \alpha: x \rightarrow y \in Q_{1}\right\}$.
(9) Let k be a field.
(6) Given k-space V, write $D V=\operatorname{Hom}_{k}(V, k)$.

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J: two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J : two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.
(9) Given $x \in Q_{0}$, we put
- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J : two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.
(4) Given $x \in Q_{0}$, we put
- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- $P_{x}=\Lambda e_{x}$, that is projective;

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J : two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.
(9) Given $x \in Q_{0}$, we put
- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- $P_{x}=\Lambda e_{x}$, that is projective;
- $S_{x}=P_{x} / J e_{x}$, that is simple;

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J: two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.
(9) Given $x \in Q_{0}$, we put
- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- $P_{x}=\Lambda e_{x}$, that is projective;
- $S_{x}=P_{x} / J e_{x}$, that is simple;
- $I_{x}=\oplus_{y \in Q_{0}} D\left(e_{x} \wedge e_{y}\right)$, not necessarily injective.

Quadratic algebras

(1) Let $k Q$ be path algebra of Q over k :

- k-basis: $\cup_{x, y \in Q_{0}} Q(x, y)$;
- multiplication: induced from concatenation of paths.
(2) $\Lambda=k Q / R=\{\bar{\gamma}=\gamma+R \mid \gamma \in k Q\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq k Q_{2}(x, y) ; x, y \in Q_{0}$.
(3) J : two-sided ideal in Λ generated by the $\bar{\alpha} ; \alpha \in Q_{1}$.
(9) Given $x \in Q_{0}$, we put
- $e_{x}=\varepsilon_{x}+R$, primitive idempotent;
- $P_{x}=\Lambda e_{x}$, that is projective;
- $S_{x}=P_{x} / J e_{x}$, that is simple;
- $I_{x}=\oplus_{y \in Q_{0}} D\left(e_{x} \wedge e_{y}\right)$, not necessarily injective.
(5) $\operatorname{proj} \wedge$: finite direct sum of the P_{x}, with $x \in Q_{0}$.
(1) The quadratic ideal R is called
(1) The quadratic ideal R is called
- admissible if, for $x \in Q_{0}$, there is $n_{x} \in \mathbb{N}$ such that any $x \rightsquigarrow$ or $\rightsquigarrow x$ of length $>n_{x}$ lies in R;
(1) The quadratic ideal R is called
- admissible if, for $x \in Q_{0}$, there is $n_{x} \in \mathbb{N}$ such that any $x \rightsquigarrow$ or $\rightsquigarrow x$ of length $>n_{x}$ lies in R;
- locally admissible if, for $x, y \in Q_{0}$, there is $n_{x, y} \in \mathbb{N}$ such that any $x \rightsquigarrow y$ of length $>n_{x, y}$ lies in R.
(1) The quadratic ideal R is called
- admissible if, for $x \in Q_{0}$, there is $n_{x} \in \mathbb{N}$ such that any $x \rightsquigarrow$ or $\rightsquigarrow x$ of length $>n_{x}$ lies in R;
- locally admissible if, for $x, y \in Q_{0}$, there is $n_{x, y} \in \mathbb{N}$ such that any $x \rightsquigarrow y$ of length $>n_{x, y}$ lies in R.
(2) The algebra Λ is called
- locally bounded if R is admissible;
(1) The quadratic ideal R is called
- admissible if, for $x \in Q_{0}$, there is $n_{x} \in \mathbb{N}$ such that any $x \rightsquigarrow$ or $\rightsquigarrow x$ of length $>n_{x}$ lies in R;
- locally admissible if, for $x, y \in Q_{0}$, there is $n_{x, y} \in \mathbb{N}$ such that any $x \rightsquigarrow y$ of length $>n_{x, y}$ lies in R.
(2) The algebra Λ is called
- locally bounded if R is admissible;
- strongly locally finite dimensional if R is locally admissible.
(1) The quadratic ideal R is called
- admissible if, for $x \in Q_{0}$, there is $n_{x} \in \mathbb{N}$ such that any $x \rightsquigarrow$ or $\rightsquigarrow x$ of length $>n_{x}$ lies in R;
- locally admissible if, for $x, y \in Q_{0}$, there is $n_{x, y} \in \mathbb{N}$ such that any $x \rightsquigarrow y$ of length $>n_{x, y}$ lies in R.
(2) The algebra Λ is called
- locally bounded if R is admissible;
- strongly locally finite dimensional if R is locally admissible.

Example

If Q is a double infinite path, then $k Q$ is strongly locally finite dimensional but not locally bounded.

Modules over strong locally fin dim algebras

Proposition
If Λ is strongly locally finite dimensional, then

Modules over strong locally fin dim algebras

Proposition

If Λ is strongly locally finite dimensional, then

- J is Jacobson radical of Λ;

Modules over strong locally fin dim algebras

Proposition

If \wedge is strongly locally finite dimensional, then

- J is Jacobson radical of Λ;
- P_{x} is indecomposable projective;

Modules over strong locally fin dim algebras

Proposition

If \wedge is strongly locally finite dimensional, then

- J is Jacobson radical of Λ;
- P_{x} is indecomposable projective;
- I_{x} is indecomposable injective.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

(9) Now, $R_{2}(x, y)^{\perp}=\left\{f \in D\left(k Q_{2}(x, y)\right) \mid f\left(R_{2}(x, y)\right)=0\right\}$

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

(9) Now, $R_{2}(x, y)^{\perp}=\left\{f \in D\left(k Q_{2}(x, y)\right) \mid f\left(R_{2}(x, y)\right)=0\right\}$ has a basis $\left\{\eta_{1}^{*}, \ldots, \eta_{s}^{*}\right\}$, where $\eta_{1}, \ldots, \eta_{s} \in k Q_{2}(x, y)$.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

(9) Now, $R_{2}(x, y)^{\perp}=\left\{f \in D\left(k Q_{2}(x, y)\right) \mid f\left(R_{2}(x, y)\right)=0\right\}$ has a basis $\left\{\eta_{1}^{*}, \ldots, \eta_{s}^{*}\right\}$, where $\eta_{1}, \ldots, \eta_{s} \in k Q_{2}(x, y)$.
(3) Put $\Omega^{!}(y, x)=\left\{\eta_{1}^{o}, \ldots, \eta_{s}^{o}\right\} \subseteq k Q_{2}^{o}(y, x)$.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

(9) Now, $R_{2}(x, y)^{\perp}=\left\{f \in D\left(k Q_{2}(x, y)\right) \mid f\left(R_{2}(x, y)\right)=0\right\}$ has a basis $\left\{\eta_{1}^{*}, \ldots, \eta_{s}^{*}\right\}$, where $\eta_{1}, \ldots, \eta_{s} \in k Q_{2}(x, y)$.
(3) Put $\Omega^{!}(y, x)=\left\{\eta_{1}^{o}, \ldots, \eta_{s}^{o}\right\} \subseteq k Q_{2}^{o}(y, x)$.
(0) Then $R^{!}=<\cup_{x, y \in Q_{0}} \Omega^{!}(y, x)>$ in $k Q^{\mathrm{op}}$.

Quadratic dual

The quadratic dual $\Lambda^{!}=k Q^{\mathrm{op}} / R^{!}$is defined as follows.
(1) Consider $R_{2}(x, y)=R \cap k Q_{2}(x, y)$, for given $x, y \in Q_{0}$.
(2) Let $Q_{2}(x, y)=\left\{p_{1}, \ldots, p_{t}\right\}$, that is basis of $k Q_{2}(x, y)$ having dual basis $\left\{p_{1}^{*}, \ldots, p_{t}^{*}\right\}$ in $D\left(k Q_{2}(x, y)\right)$.
(3) For $\gamma=\sum \lambda_{i} p_{i} \in k Q_{2}(x, y)$, writing $\gamma^{*}=\sum \lambda_{i} p_{i}^{*}$ yields

$$
k Q_{2}^{\circ}(y, x) \xrightarrow{\sim} D\left(k Q_{2}(x, y)\right): \gamma^{\circ} \mapsto \gamma^{*}
$$

(9) Now, $R_{2}(x, y)^{\perp}=\left\{f \in D\left(k Q_{2}(x, y)\right) \mid f\left(R_{2}(x, y)\right)=0\right\}$ has a basis $\left\{\eta_{1}^{*}, \ldots, \eta_{s}^{*}\right\}$, where $\eta_{1}, \ldots, \eta_{s} \in k Q_{2}(x, y)$.
(3) Put $\Omega^{!}(y, x)=\left\{\eta_{1}^{o}, \ldots, \eta_{s}^{o}\right\} \subseteq k Q_{2}^{o}(y, x)$.
(0) Then $R^{!}=<\cup_{x, y \in Q_{0}} \Omega^{!}(y, x)>$ in $k Q^{\mathrm{op}}$.
(1) By definition, $\Lambda^{!}$is quadratic with $\left(\Lambda^{!}\right)^{!}=\Lambda$.

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called Koszul if, for all $x \in Q_{0}$,

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called Koszul if, for all $x \in Q_{0}$,
S_{x} has a linear projective resolution over $\operatorname{proj} \Lambda$ as follows:

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called Koszul if, for all $x \in Q_{0}$,
S_{x} has a linear projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$
\cdots \longrightarrow P_{i} \xrightarrow{d_{i}} \cdots \longrightarrow P_{1} \xrightarrow{d_{1}} P^{0} \longrightarrow S_{x} \longrightarrow 0,
$$

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called Koszul if, for all $x \in Q_{0}$, S_{x} has a linear projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$
\cdots \longrightarrow P_{i} \xrightarrow{d_{i}} \cdots \longrightarrow P_{1} \xrightarrow{d_{1}} P^{0} \longrightarrow S_{x} \longrightarrow 0,
$$

where d_{i} is homogeneous of degree one, for all $i>0$.

Koszul algebras

(1) $\Lambda=\oplus_{i=0}^{\infty} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in \sum_{x, y \in Q_{0}} k Q_{n}(x, y)\right\}$.
(2) A mor. $f: \oplus_{i \in \mathbb{Z}} M_{i} \rightarrow \oplus_{i \in \mathbb{Z}} N_{i}$ between graded Λ-modules homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called Koszul if, for all $x \in Q_{0}$, S_{x} has a linear projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$
\cdots \longrightarrow P_{i} \xrightarrow{d_{i}} \cdots \longrightarrow P_{1} \xrightarrow{d_{1}} P^{0} \longrightarrow S_{x} \longrightarrow 0
$$

where d_{i} is homogeneous of degree one, for all $i>0$.

Theorem

Λ is Koszul $\Leftrightarrow \Lambda^{!}$is Koszul; called Koszul dual of Λ.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{i j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0,
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{i j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.
- $\beta_{i j}: y_{i} \rightarrow z_{i j}$ are the arrows starting with y_{i}.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{i j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0,
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.
- $\beta_{i j}: y_{i} \rightarrow z_{i j}$ are the arrows starting with y_{i}.
(3) Given any $x, y \in Q_{0}$,

$$
\text { - }\left(R_{2}(x, y)\right)^{\perp}=0^{\perp}=D\left(k Q_{2}(x, y)\right)
$$

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0,
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.
- $\beta_{i j}: y_{i} \rightarrow z_{i j}$ are the arrows starting with y_{i}.
(0) Given any $x, y \in Q_{0}$,
- $\left(R_{2}(x, y)\right)^{\perp}=0^{\perp}=D\left(k Q_{2}(x, y)\right)$;
- $\Omega^{!}(y, x)=Q_{2}^{\mathrm{op}}(y, x)$.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{i j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0,
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.
- $\beta_{i j}: y_{i} \rightarrow z_{i j}$ are the arrows starting with y_{i}.
(0) Given any $x, y \in Q_{0}$,

$$
\begin{aligned}
& \text { - }\left(R_{2}(x, y)\right)^{\perp}=0^{\perp}=D\left(k Q_{2}(x, y)\right) \text {; } \\
& \text { - } \Omega^{!}(y, x)=Q_{2}^{\text {op }}(y, x) .
\end{aligned}
$$

(1) Thus, $R^{!}=<Q_{2}^{\mathrm{op}}(y, x) \mid x, y \in Q_{0}>=\left(k Q^{+}\right)^{2}$.

Example

(1) Taking $R=0$ yields a Koszul algebra $\Lambda=k Q$.
(2) Indeed, S_{x} with $x \in Q_{0}$ has linear projective resolution

$$
0 \longrightarrow \oplus P_{z_{i j}} \xrightarrow{\left(\bar{\beta}_{i j}\right)} \oplus P_{y_{i}} \xrightarrow{\left(\bar{\alpha}_{i}\right)} P_{x} \longrightarrow S_{x} \longrightarrow 0
$$

- $\alpha_{i}: x \rightarrow y_{i}$ are the arrows starting with x.
- $\beta_{i j}: y_{i} \rightarrow z_{i j}$ are the arrows starting with y_{i}.
(3) Given any $x, y \in Q_{0}$,

$$
\begin{aligned}
& \text { - }\left(R_{2}(x, y)\right)^{\perp}=0^{\perp}=D\left(k Q_{2}(x, y)\right) \\
& \Omega^{!}(y, x)=Q_{2}^{\mathrm{op}}(y, x)
\end{aligned}
$$

(9) Thus, $R^{!}=<Q_{2}^{\mathrm{op}}(y, x) \mid x, y \in Q_{0}>=\left(k Q^{+}\right)^{2}$.
(5) That is, $\Lambda^{!}=k Q^{\mathrm{op}} /\left(k Q^{+}\right)^{2}$.

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\}
$$

(2) Q^{op} is also gradable with a grading $\left(Q_{0}^{\mathrm{op}}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\mathrm{op}}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\text {op }}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.
- Every $M \in \operatorname{Mod} \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { where } M_{j}=\oplus_{x \in Q^{n}} e_{x} M .
$$

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\text {op }}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.
- Every $M \in \operatorname{Mod} \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { where } M_{j}=\oplus_{x \in Q^{n}} e_{x} M .
$$

Definition

- Koszul functor $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)$;,

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\text {op }}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.
- Every $M \in \operatorname{Mod} \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { where } M_{j}=\oplus_{x \in Q^{n}} e_{x} M .
$$

Definition

- Koszul functor $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)$, where $F(M)^{n}=\oplus_{x \in\left(Q^{\text {op }}\right)^{n}} P_{x} \otimes e_{x} M$, for all $n \in \mathbb{Z}$.

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\text {op }}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.
- Every $M \in \operatorname{Mod} \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { where } M_{j}=\oplus_{x \in Q^{n}} e_{x} M .
$$

Definition

- Koszul functor $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)$, where $F(M)^{n}=\oplus_{x \in\left(Q^{\text {op }}\right)^{n}} P_{x} \otimes e_{x} M$, for all $n \in \mathbb{Z}$.
(3 Koszul inverse $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \mapsto G(N)$,

Koszul functor in the gradable setting

(1) Now, Q is gradable with grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$ such that

$$
Q_{1}=\left\{x \rightarrow y \mid(x, y) \in Q^{n} \times Q^{n+1}, n \in \mathbb{Z}\right\} .
$$

(2) $Q^{\text {op }}$ is also gradable with a grading $\left(Q_{0}^{\text {op }}\right)^{n}=Q^{-n}, n \in \mathbb{Z}$.

- Both Λ and $\Lambda^{!}$are strongly locally finite dimensional.
- Every $M \in \operatorname{Mod} \Lambda$ admits a Q-graduation

$$
M=\oplus_{j \in \mathbb{Z}} M_{j}, \text { where } M_{j}=\oplus_{x \in Q^{n}} e_{x} M .
$$

Definition

- Koszul functor $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \mapsto F(M)$, where $F(M)^{n}=\oplus_{x \in\left(Q^{\text {op }}\right)^{n}} P_{x} \otimes e_{x} M$, for all $n \in \mathbb{Z}$.
- Koszul inverse $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \mapsto G(N)$, where $G(N)^{n}=\oplus_{x \in Q^{n}} I_{x}^{!} \otimes e_{x} N$, for all $n \in \mathbb{Z}$.

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of $M \cdot$ such that

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{\cdot} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{\cdot} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.
(2) $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M -

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\perp}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{\cdot} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.
(2) $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M -

$$
M_{j}^{i}=0 \text { in case } i+p j \ll 0 \text { or } i-q j \gg 0,
$$

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\perp}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{\cdot} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.
(2) $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M -

$$
M_{j}^{i}=0 \text { in case } i+p j \ll 0 \text { or } i-q j \gg 0,
$$

the upper triangle formed by 2 line of slopes $-\frac{1}{p}, \frac{1}{q}$.

Special subcategories of complex categories

Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

- $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M^{*} such that

$$
M_{j}^{i}=0 \text { in case } i+p j \gg 0 \text { or } i-q j \ll 0,
$$

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}, \frac{1}{q}$.

- $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ subcategory of $C(\operatorname{Mod} \Lambda)$ of M -

$$
M_{j}^{i}=0 \text { in case } i+p j \ll 0 \text { or } i-q j \gg 0,
$$

the upper triangle formed by 2 line of slopes $-\frac{1}{p}, \frac{1}{q}$.

Remark

$C_{1,0}^{\downarrow}(\operatorname{Mod} \Lambda)=C^{\downarrow}(\operatorname{Mod} \Lambda)$ and $C_{1,0}^{\uparrow}(\operatorname{Mod} \Lambda)=C^{\uparrow}(\operatorname{Mod} \Lambda)$.

Result in the quadratic case

Theorem

(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces commutative diagram

Result in the quadratic case

Theorem

(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \\
F^{c} \downarrow
\end{gathered}
$$

$C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$,

Result in the quadratic case

Theorem

(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \\
F^{c} \downarrow
\end{gathered} \downarrow_{F^{K}} \quad \downarrow^{\circ}
$$

$C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$,
(2) $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$induces commutative diagram

Result in the quadratic case

Theorem

(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \\
F^{c} \downarrow
\end{gathered} \downarrow_{F^{K}} \quad \downarrow^{\circ}
$$

$$
C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

(2) $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \\
G^{c} \downarrow \\
\downarrow G^{K}
\end{gathered}
$$

$C_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.

Result in the quadratic case

Theorem

(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \\
F^{c} \downarrow \\
\downarrow F^{K} \\
C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda),
\end{gathered}
$$

(2) $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$induces commutative diagram

$$
\begin{gathered}
C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda) \\
G^{c} \downarrow \\
\downarrow G^{K}
\end{gathered}
$$

$C_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow K_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \longrightarrow D_{q+1, p-1}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$.
(3) We prove this by generalizing Acyclic Assembly Lemma on homology of total complexes of double complexes.

Main Result in the Koszul case

Let $\Lambda=k Q / R$ be Koszul, with Q locally finite gradable.

Main Result in the Koszul case

Let $\Lambda=k Q / R$ be Koszul, with Q locally finite gradable.
Theorem
For any $p \geq 1$ and $q \geq 0$, we have triangle-equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

Main Result in the Koszul case

Let $\Lambda=k Q / R$ be Koszul, with Q locally finite gradable.
Theorem
For any $p \geq 1$ and $q \geq 0$, we have triangle-equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) .
$$

Theorem

If $\Lambda, \Lambda^{!}$locally bounded, then $D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$.

Main Result in the Koszul case

Let $\Lambda=k Q / R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \geq 1$ and $q \geq 0$, we have triangle-equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

Theorem

If $\Lambda, \Lambda^{!}$locally bounded, then $D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$.

A path in Q is left infinite or right infinite if it has no starting point or no ending-point, respectively.

Main Result in the Koszul case

Let $\Lambda=k Q / R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \geq 1$ and $q \geq 0$, we have triangle-equivalence

$$
F^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) .
$$

Theorem

If $\wedge, \Lambda^{!}$locally bounded, then $D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$.

A path in Q is left infinite or right infinite if it has no starting point or no ending-point, respectively.

Corollary

If Q has no right infinite path or no left infinite path, then

$$
D^{b}\left(\operatorname{Mod}^{b} \wedge^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \wedge\right)
$$

