Koszul duality for non-graded derived categories

Ales Bouhada, Min Huang, Shiping Liu* Université de Sherbrooke

Algebra Forum

June 21 - 23, 2019 Changshu, China

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

(ロ)、(型)、(E)、(E)、 E) の(の)

Preliminaries on quivers and path algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Preliminaries on quivers and path algebras
- Quadratic algebras and quadratic duals

・ロト・日本・モート モー うへぐ

- Preliminaries on quivers and path algebras
- Quadratic algebras and quadratic duals
- Koszul algebras and Koszul functors

・ロト・日本・モート モー うへぐ

- Preliminaries on quivers and path algebras
- Quadratic algebras and quadratic duals
- Koszul algebras and Koszul functors
- Main results

 Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

 Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• representation theory of Lie algebras;

 Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in

- representation theory of Lie algebras;
- algebraic geometry;

- Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in
 - representation theory of Lie algebras;
 - algebraic geometry;
 - representation theory of finite dimensional algebras.

- Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in
 - representation theory of Lie algebras;
 - algebraic geometry;
 - representation theory of finite dimensional algebras.

They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.

- Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in
 - representation theory of Lie algebras;
 - algebraic geometry;
 - representation theory of finite dimensional algebras.
- They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

 $D^{b}(\mathrm{Mod}^{-}(kQ^{\mathrm{op}})) \cong D^{b}(\mathrm{Mod}^{b}\Lambda),$

- Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in
 - representation theory of Lie algebras;
 - algebraic geometry;
 - representation theory of finite dimensional algebras.
- They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

 $D^{b}(\mathrm{Mod}^{-}(kQ^{\mathrm{op}})) \cong D^{b}(\mathrm{Mod}^{b}\Lambda),$

• Q is locally finite gradable quiver;

- Introduced by Beilinson, Ginzburg and Soergel (1996), Koszul algebras appear in
 - representation theory of Lie algebras;
 - algebraic geometry;
 - representation theory of finite dimensional algebras.
- They established equivalence of a pair of subcategories of respective graded derived categories of a Koszul algebra and its Koszul dual.
- Bautista and Liu (2017) proved

 $D^b(\mathrm{Mod}^-(kQ^{\mathrm{op}}))\cong D^b(\mathrm{Mod}^b\Lambda),$

- Q is locally finite gradable quiver;
- $\Lambda = kQ/(kQ^+)^2$, Koszul with Koszul dual kQ^{op} .

Objective

To extend Beilinson-Ginzburg-Soergel Theorems and Bautista-Liu Theorem for Koszul algebras given by locally finite gradable quivers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objective

To extend Beilinson-Ginzburg-Soergel Theorems and Bautista-Liu Theorem for Koszul algebras given by locally finite gradable quivers.

The application of covering theory requires the study of modules over algebras without identity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a positively graded ring.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a positively graded ring.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 A is called a Koszul algebra provided

• Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a positively graded ring.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A is called a Koszul algebra provided

• A₀ is a semi-simple ring;

- Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a positively graded ring.
- A is called a Koszul algebra provided
 - A₀ is a semi-simple ring;
 - $_AA_0$ admits a linear projective resolution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a positively graded ring.

2 A is called a Koszul algebra provided

- A₀ is a semi-simple ring;
- $_AA_0$ admits a linear projective resolution.

Proposition

If A is a Koszul algebra, then its Koszul dual A[!] is also Koszul.

• Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.

・ロト・日本・モート モー うへぐ

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- 2 Given a complex M of graded left B-modules, write

$$M^i = \oplus_{j \in \mathbb{Z}} M^i_j,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i = \oplus_{j \in \mathbb{Z}} M^i_j,$$

an put M_i^i in the (i, j)-position in \mathbb{R}^2 .

• $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M^{\bullet} such that

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i = \oplus_{j \in \mathbb{Z}} M^i_j,$$

an put M_i^i in the (i, j)-position in \mathbb{R}^2 .

• $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M^{\bullet} such that $M_j^i = 0$ in case $i \ll 0$ or $i + j \gg 0$,

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i=\oplus_{j\in\mathbb{Z}}M^i_j,$$

an put M_i^i in the (i, j)-position in \mathbb{R}^2 .

3 $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M such that

$$M_{i}^{i} = 0$$
 in case $i << 0$ or $i + j >> 0$,

that is, M^{\bullet} is supported in the lower triangle formed by a vertical line and a line of slope -1.

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i=\oplus_{j\in\mathbb{Z}}M^i_j,$$

an put M_i^i in the (i, j)-position in \mathbb{R}^2 .

3 $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M such that

 $M_{i}^{i} = 0$ in case i << 0 or i + j >> 0,

that is, M^{\bullet} is supported in the lower triangle formed by a vertical line and a line of slope -1.

• $D^{\uparrow}(\operatorname{Gmod} B)$: derived category of complexes M such that

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i=\oplus_{j\in\mathbb{Z}}M^i_j,$$

an put M_i^i in the (i, j)-position in \mathbb{R}^2 .

3 $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M such that

$$M_{i}^{i} = 0$$
 in case $i << 0$ or $i + j >> 0$,

that is, M^{\bullet} is supported in the lower triangle formed by a vertical line and a line of slope -1.

• $D^{\uparrow}(\operatorname{Gmod} B)$: derived category of complexes M^{\bullet} such that $M_j^i = 0$ in case i >> 0 or i + j << 0,

- Let $B = \bigoplus_{i=0}^{\infty} B_i$ be a positively graded algebra.
- **2** Given a complex M of graded left B-modules, write

$$M^i=\oplus_{j\in\mathbb{Z}}M^i_j,$$

an put M_j^i in the (i, j)-position in \mathbb{R}^2 .

3 $D^{\downarrow}(\operatorname{Gmod} B)$: derived category of complexes M such that

$$M_{i}^{i} = 0$$
 in case $i << 0$ or $i + j >> 0$,

that is, M^{\bullet} is supported in the lower triangle formed by a vertical line and a line of slope -1.

D[↑](GmodB): derived category of complexes M[•] such that
 Mⁱ_j = 0 in case i >> 0 or i + j << 0,
 that is, M[•] is supported in the upper triangle formed by a vertical line and a line of slope −1.

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a Koszul algebra.

・ロト・日本・モート モー うへぐ

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a Koszul algebra.

Let $A^!$ be the Koszul dual of A.

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a Koszul algebra.

Let $A^!$ be the Koszul dual of A.

Theorem

If all A_i are finitely generated as left A_0 -modules, then $D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}(\operatorname{Gmod} A^!).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a Koszul algebra.

Let $A^!$ be the Koszul dual of A.

Theorem

If all A_i are finitely generated as left A_0 -modules, then $D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}(\operatorname{Gmod} A^!).$

Theorem

If ${}_{A}A$, A_{A} are finitely generated and $A^{!}$ is left noetherian, then $D^{b}(\operatorname{gmod} A) \cong D^{b}(\operatorname{gmod} A^{!}).$

Let $A = \bigoplus_{i=0}^{\infty} A_i$ be a Koszul algebra.

Let $A^!$ be the Koszul dual of A.

Theorem

If all A_i are finitely generated as left A_0 -modules, then $D^{\downarrow}(\operatorname{Gmod} A) \cong D^{\uparrow}(\operatorname{Gmod} A^!).$

Theorem

If ${}_{A}A$, A_{A} are finitely generated and $A^{!}$ is left noetherian, then $D^{b}(\operatorname{gmod} A) \cong D^{b}(\operatorname{gmod} A^{!}).$

Remark

Their proof involves spectral sequences.

Setting

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Q_0 is a set of vertices x;

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given
$$x, y \in Q_0$$
, we define

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.
- **2** Given $x, y \in Q_0$, we define
 - ε_x : path of length 0 at x;

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Q(x, y) : all paths $x \rightsquigarrow y$.

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;

- Q(x, y) : all paths $x \rightsquigarrow y$.
- **③** The opposite quiver $Q^{\rm op}$ is defined by

•
$$(Q^{\mathrm{op}})_0 = Q_0;$$

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;
- Q(x, y) : all paths $x \rightsquigarrow y$.

③ The *opposite quiver* Q^{op} is defined by

•
$$(Q^{\operatorname{op}})_0 = Q_0;$$

• $(Q^{\operatorname{op}})_1 = \{\alpha^{\operatorname{o}} : y \to x \mid \alpha : x \to y \in Q_1\}.$

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;
- Q(x, y) : all paths $x \rightsquigarrow y$.

③ The *opposite quiver* Q^{op} is defined by

•
$$(Q^{\mathrm{op}})_0 = Q_0;$$

• $(Q^{\mathrm{op}})_1 = \{\alpha^{\mathrm{o}} : y \to x \mid \alpha : x \to y \in Q_1\}.$

Let k be a field.

• Let $Q = (Q_0, Q_1)$ be a locally finite quiver, where

- Q_0 is a set of vertices x;
- Q_1 is a set of arrows $\alpha : x \to y$.

2 Given $x, y \in Q_0$, we define

- ε_x : path of length 0 at x;
- $Q_n(x, y)$: paths $x \rightsquigarrow y$ of length n;
- Q(x, y) : all paths $x \rightsquigarrow y$.

③ The *opposite quiver* Q^{op} is defined by

•
$$(Q^{\operatorname{op}})_0 = Q_0;$$

• $(Q^{\operatorname{op}})_1 = \{\alpha^{\operatorname{o}} : y \to x \mid \alpha : x \to y \in Q_1\}.$

4 Let k be a field.

Solven k-space V, write $DV = Hom_k(V, k)$.

• Let kQ be path algebra of Q over k:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Let kQ be path algebra of Q over k:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;

• Let kQ be path algebra of Q over k:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

・ロト・日本・モート モー うへぐ

• Let kQ be path algebra of Q over k:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

3 $\Lambda = kQ/R = \{ \bar{\gamma} = \gamma + R \mid \gamma \in kQ \}$, a quadratic algebra

• Let kQ be path algebra of Q over k:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2 $\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

• Let kQ be path algebra of Q over k:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2 $\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

③ J : two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.

• Let *kQ* be path algebra of *Q* over *k*:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2
$$\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$$
, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

- J : two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.
- Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;

• Let *kQ* be path algebra of *Q* over *k*:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2
$$\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$$
, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

- **③** J: two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.
- Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - $P_x = \Lambda e_x$, that is projective;

• Let *kQ* be path algebra of *Q* over *k*:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2
$$\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$$
, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

- **③** J: two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.
- Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - $P_x = \Lambda e_x$, that is projective;
 - $S_x = P_x/Je_x$, that is simple;

Let kQ be path algebra of Q over k:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2
$$\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$$
, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

- **③** J : two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.
- Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - $P_x = \Lambda e_x$, that is projective;
 - $S_x = P_x/Je_x$, that is simple;
 - $I_x = \oplus_{y \in Q_0} D(e_x \Lambda e_y)$, not necessarily injective.

• Let *kQ* be path algebra of *Q* over *k*:

- k-basis: $\cup_{x,y \in Q_0} Q(x,y)$;
- multiplication: induced from concatenation of paths.

2
$$\Lambda = kQ/R = \{\bar{\gamma} = \gamma + R \mid \gamma \in kQ\}$$
, a quadratic algebra with R generated by $\Omega(x, y) \subseteq kQ_2(x, y)$; $x, y \in Q_0$.

- **③** J: two-sided ideal in Λ generated by the $\bar{\alpha}$; $\alpha \in Q_1$.
- Given $x \in Q_0$, we put
 - $e_x = \varepsilon_x + R$, primitive idempotent;
 - $P_x = \Lambda e_x$, that is projective;
 - $S_x = P_x/Je_x$, that is simple;
 - $I_x = \bigoplus_{y \in Q_0} D(e_x \Lambda e_y)$, not necessarily injective.
- proj A: finite direct sum of the P_x , with $x \in Q_0$.

• The quadratic ideal R is called

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• The quadratic ideal *R* is called

 admissible if, for x ∈ Q₀, there is n_x ∈ N such that any x → or → x of length > n_x lies in R;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The quadratic ideal *R* is called
 - admissible if, for x ∈ Q₀, there is n_x ∈ N such that any x → or → x of length > n_x lies in R;
 - locally admissible if, for x, y ∈ Q₀, there is n_{x,y} ∈ N such that any x → y of length > n_{x,y} lies in R.

- The quadratic ideal R is called
 - admissible if, for x ∈ Q₀, there is n_x ∈ N such that any x → or → x of length > n_x lies in R;
 - locally admissible if, for x, y ∈ Q₀, there is n_{x,y} ∈ N such that any x → y of length > n_{x,y} lies in R.

- The algebra Λ is called
 - *locally bounded* if *R* is admissible;

- The quadratic ideal R is called
 - admissible if, for x ∈ Q₀, there is n_x ∈ N such that any x → or → x of length > n_x lies in R;
 - locally admissible if, for x, y ∈ Q₀, there is n_{x,y} ∈ N such that any x → y of length > n_{x,y} lies in R.
- The algebra Λ is called
 - *locally bounded* if *R* is admissible;
 - *strongly locally finite dimensional* if *R* is locally admissible.

- The quadratic ideal R is called
 - admissible if, for x ∈ Q₀, there is n_x ∈ N such that any x → or → x of length > n_x lies in R;
 - locally admissible if, for x, y ∈ Q₀, there is n_{x,y} ∈ N such that any x → y of length > n_{x,y} lies in R.
- O The algebra Λ is called
 - *locally bounded* if *R* is admissible;
 - *strongly locally finite dimensional* if *R* is locally admissible.

Example

If Q is a double infinite path, then kQ is strongly locally finite dimensional but not locally bounded.

Modules over strong locally fin dim algebras

Proposition

If Λ is strongly locally finite dimensional, then

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Modules over strong locally fin dim algebras

Proposition

If Λ is strongly locally finite dimensional, then

• J is Jacobson radical of Λ;

Modules over strong locally fin dim algebras

Proposition

If Λ is strongly locally finite dimensional, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- J is Jacobson radical of Λ ;
- *P_x* is indecomposable projective;

Proposition

If Λ is strongly locally finite dimensional, then

- J is Jacobson radical of Λ;
- *P_x* is indecomposable projective;
- *I_x* is indecomposable injective.

The quadratic dual $\Lambda^! = kQ^{op}/R^!$ is defined as follows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

• Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.

・ロト・日本・モート モー うへぐ

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \ldots, p_t\}$, that is basis of $kQ_2(x, y)$

・ロト・日本・モート モー うへぐ

The quadratic dual $\Lambda^! = kQ^{op}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.

The quadratic dual $\Lambda^! = kQ^{op}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.
- For $\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$, writing $\gamma^* = \sum \lambda_i p_i^*$ yields

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let Q₂(x, y) = {p₁,..., p_t}, that is basis of kQ₂(x, y) having dual basis {p₁^{*},..., p_t^{*}} in D(kQ₂(x, y)).
 3 For γ = ∑λ_ip_i ∈ kQ₂(x, y), writing γ^{*} = ∑λ_ip_i^{*} yields

$$kQ_2^{\mathrm{o}}(y,x) \stackrel{\sim}{\longrightarrow} D(kQ_2(x,y)): \gamma^{\mathrm{o}} \mapsto \gamma^*.$$

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.

• For
$$\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$$
, writing $\gamma^* = \sum \lambda_i p_i^*$ yields
 $kQ_2^{\circ}(y, x) \xrightarrow{\sim} D(kQ_2(x, y)) : \gamma^{\circ} \mapsto \gamma^*.$

• Now, $R_2(x,y)^{\perp} = \{f \in D(kQ_2(x,y)) \mid f(R_2(x,y)) = 0\}$

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.
- For $\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$, writing $\gamma^* = \sum \lambda_i p_i^*$ yields $kQ_2^{\circ}(y, x) \xrightarrow{\sim} D(kQ_2(x, y)) : \gamma^{\circ} \mapsto \gamma^*.$
- Now, $R_2(x, y)^{\perp} = \{ f \in D(kQ_2(x, y)) \mid f(R_2(x, y)) = 0 \}$ has a basis $\{\eta_1^*, \dots, \eta_s^*\}$, where $\eta_1, \dots, \eta_s \in kQ_2(x, y)$.

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.
- For $\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$, writing $\gamma^* = \sum \lambda_i p_i^*$ yields $kQ_2^{\circ}(y, x) \xrightarrow{\sim} D(kQ_2(x, y)) : \gamma^{\circ} \mapsto \gamma^*.$
- Now, R₂(x, y)[⊥] = {f ∈ D(kQ₂(x, y)) | f(R₂(x, y)) = 0} has a basis {η₁^{*},...,η_s^{*}}, where η₁,...,η_s ∈ kQ₂(x, y).
 Put Ω[!](y, x) = {η₁^o,...,η_s^o} ⊆ kQ₂^o(y, x).

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.
- For $\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$, writing $\gamma^* = \sum \lambda_i p_i^*$ yields $kQ_2^{\circ}(y, x) \xrightarrow{\sim} D(kQ_2(x, y)) : \gamma^{\circ} \mapsto \gamma^*.$
- Now, $R_2(x, y)^{\perp} = \{f \in D(kQ_2(x, y)) \mid f(R_2(x, y)) = 0\}$ has a basis $\{\eta_1^*, \dots, \eta_s^*\}$, where $\eta_1, \dots, \eta_s \in kQ_2(x, y)$.
- Put $\Omega^!(y,x) = \{\eta_1^{\mathrm{o}}, \ldots, \eta_s^{\mathrm{o}}\} \subseteq kQ_2^{\mathrm{o}}(y,x).$
- Then $R^! = \langle \bigcup_{x,y \in Q_0} \Omega^!(y,x) \rangle$ in kQ^{op} .

The quadratic dual $\Lambda^! = kQ^{\text{op}}/R^!$ is defined as follows.

- Consider $R_2(x, y) = R \cap kQ_2(x, y)$, for given $x, y \in Q_0$.
- 2 Let $Q_2(x, y) = \{p_1, \dots, p_t\}$, that is basis of $kQ_2(x, y)$ having dual basis $\{p_1^*, \dots, p_t^*\}$ in $D(kQ_2(x, y))$.
- For $\gamma = \sum \lambda_i p_i \in kQ_2(x, y)$, writing $\gamma^* = \sum \lambda_i p_i^*$ yields $kQ_2^{\circ}(y, x) \xrightarrow{\sim} D(kQ_2(x, y)) : \gamma^{\circ} \mapsto \gamma^*.$
- Now, $R_2(x, y)^{\perp} = \{f \in D(kQ_2(x, y)) \mid f(R_2(x, y)) = 0\}$ has a basis $\{\eta_1^*, \dots, \eta_s^*\}$, where $\eta_1, \dots, \eta_s \in kQ_2(x, y)$.
- Put $\Omega^{!}(y,x) = \{\eta_{1}^{\mathrm{o}}, \ldots, \eta_{s}^{\mathrm{o}}\} \subseteq kQ_{2}^{\mathrm{o}}(y,x).$
- Then $R^! = \langle \bigcup_{x,y \in Q_0} \Omega^!(y,x) \rangle$ in kQ^{op} .
- By definition, $\Lambda^!$ is quadratic with $(\Lambda^!)^! = \Lambda$.

• $\Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n$, where $\Lambda_n = \{\bar{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y)\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n$$
, where $\Lambda_n = \{\bar{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y)\}.$

2 A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ -modules

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \overline{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \overline{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called *Koszul* if, for all $x \in Q_0$,

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \overline{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called *Koszul* if, for all $x \in Q_0$,

 ${\it S}_x$ has a *linear* projective resolution over ${\rm proj}\,\Lambda$ as follows:

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \bar{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called *Koszul* if, for all $x \in Q_0$,

 S_x has a *linear* projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$\cdots \longrightarrow P_i \xrightarrow{d_i} \cdots \longrightarrow P_1 \xrightarrow{d_1} P^0 \longrightarrow S_x \longrightarrow 0$$

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \bar{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra A is called *Koszul* if, for all $x \in Q_0$,

 S_x has a *linear* projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$\cdots \longrightarrow P_i \xrightarrow{d_i} \cdots \longrightarrow P_1 \xrightarrow{d_1} P^0 \longrightarrow S_x \longrightarrow 0,$$

where d_i is homogeneous of degree one, for all i > 0.

$$\bullet \Lambda = \bigoplus_{i=0}^{\infty} \Lambda_n, \text{ where } \Lambda_n = \{ \bar{\gamma} \mid \gamma \in \sum_{x,y \in Q_0} kQ_n(x,y) \}.$$

② A mor. $f : \bigoplus_{i \in \mathbb{Z}} M_i \to \bigoplus_{i \in \mathbb{Z}} N_i$ between graded Λ-modules homogeneous of degree *n* if $f(M_i) \subseteq N_{i+n}$, for all $i \in \mathbb{Z}$.

Definition

A quadratic algebra Λ is called *Koszul* if, for all $x \in Q_0$,

 S_x has a *linear* projective resolution over $\operatorname{proj} \Lambda$ as follows:

$$\cdots \longrightarrow P_i \xrightarrow{d_i} \cdots \longrightarrow P_1 \xrightarrow{d_1} P^0 \longrightarrow S_x \longrightarrow 0,$$

where d_i is homogeneous of degree one, for all i > 0.

Theorem

 Λ is Koszul $\Leftrightarrow \Lambda^!$ is Koszul; called Koszul dual of Λ .

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

- Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.
- **2** Indeed, S_x with $x \in Q_0$ has linear projective resolution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \oplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \oplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\alpha_i : x \to y_i$ are the arrows starting with x.

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \bigoplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \bigoplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\alpha_i : x \to y_i$ are the arrows starting with x.
- $\beta_{ij}: y_i \rightarrow z_{ij}$ are the arrows starting with y_i .

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \oplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \oplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

- $\alpha_i : x \to y_i$ are the arrows starting with x.
- $\beta_{ij}: y_i \rightarrow z_{ij}$ are the arrows starting with y_i .
- Given any x, y ∈ Q₀,
 (R₂(x, y))[⊥] = 0[⊥] = D(kQ₂(x, y));

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \oplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \oplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

• $\alpha_i : x \to y_i$ are the arrows starting with x.

• $\beta_{ij}: y_i \rightarrow z_{ij}$ are the arrows starting with y_i .

3 Given any $x, y \in Q_0$,

• $(R_2(x,y))^{\perp} = 0^{\perp} = D(kQ_2(x,y));$

•
$$\Omega^!(y,x) = Q_2^{\mathrm{op}}(y,x).$$

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \oplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \oplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

• $\alpha_i : x \to y_i$ are the arrows starting with x.

• $\beta_{ij}: y_i \rightarrow z_{ij}$ are the arrows starting with y_i .

• Thus, $R^! = \langle Q_2^{op}(y, x) | x, y \in Q_0 \rangle = (kQ^+)^2$.

• Taking R = 0 yields a Koszul algebra $\Lambda = kQ$.

2 Indeed, S_x with $x \in Q_0$ has linear projective resolution

$$0 \longrightarrow \oplus P_{z_{ij}} \xrightarrow{(\bar{\beta}_{ij})} \oplus P_{y_i} \xrightarrow{(\bar{\alpha}_i)} P_x \longrightarrow S_x \longrightarrow 0,$$

• $\alpha_i : x \to y_i$ are the arrows starting with x.

• $\beta_{ij}: y_i \rightarrow z_{ij}$ are the arrows starting with y_i .

• Thus, $R^! = \langle Q_2^{op}(y, x) | x, y \in Q_0 \rangle = (kQ^+)^2$. • That is, $\Lambda^! = kQ^{op}/(kQ^+)^2$.

• Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$

• Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$

2 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 2 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.

③ Both Λ and $\Lambda^!$ are strongly locally finite dimensional.

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 3 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.
- **③** Both Λ and $\Lambda^!$ are strongly locally finite dimensional.
- Every $M \in Mod \Lambda$ admits a *Q*-graduation

$$M = \bigoplus_{j \in \mathbb{Z}} M_j$$
, where $M_j = \bigoplus_{x \in Q^n} e_x M$.

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 3 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.
- **③** Both Λ and $\Lambda^!$ are strongly locally finite dimensional.
- Every $M \in Mod \Lambda$ admits a *Q*-graduation

$$M = \bigoplus_{j \in \mathbb{Z}} M_j$$
, where $M_j = \bigoplus_{x \in Q^n} e_x M$.

Definition

• Koszul functor $F : \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda) : M \mapsto F(M)^{\cdot}$,

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 3 Q^{op} is also gradable with a grading $(Q_0^{\mathrm{op}})^n = Q^{-n}, n \in \mathbb{Z}.$
- **③** Both Λ and $\Lambda^!$ are strongly locally finite dimensional.
- Every $M \in Mod \Lambda$ admits a *Q*-graduation

$$M = \bigoplus_{j \in \mathbb{Z}} M_j$$
, where $M_j = \bigoplus_{x \in Q^n} e_x M$.

Definition

• Koszul functor $F : \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda) : M \mapsto F(M)^{\bullet}$, where $F(M)^n = \bigoplus_{x \in (Q^{\operatorname{op}})^n} P_x \otimes e_x M$, for all $n \in \mathbb{Z}$.

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 3 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.
- **③** Both Λ and $\Lambda^!$ are strongly locally finite dimensional.
- Every $M \in Mod \Lambda$ admits a *Q*-graduation

$$M = \bigoplus_{j \in \mathbb{Z}} M_j$$
, where $M_j = \bigoplus_{x \in Q^n} e_x M$.

Definition

- Koszul functor $F : \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda) : M \mapsto F(M)^{\bullet}$, where $F(M)^n = \bigoplus_{x \in (Q^{\operatorname{op}})^n} P_x \otimes e_x M$, for all $n \in \mathbb{Z}$.
- Koszul inverse $G : \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!) : N \mapsto G(N)$.

- Now, Q is gradable with grading $Q_0 = \bigcup_{n \in \mathbb{Z}} Q^n$ such that $Q_1 = \{x \to y \mid (x, y) \in Q^n \times Q^{n+1}, n \in \mathbb{Z}\}.$
- 3 Q^{op} is also gradable with a grading $(Q_0^{\text{op}})^n = Q^{-n}, n \in \mathbb{Z}$.
- **③** Both Λ and $\Lambda^!$ are strongly locally finite dimensional.
- Every $M \in Mod \Lambda$ admits a *Q*-graduation

$$M = \bigoplus_{j \in \mathbb{Z}} M_j$$
, where $M_j = \bigoplus_{x \in Q^n} e_x M$.

Definition

- Koszul functor $F : \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda) : M \mapsto F(M)^{\bullet}$, where $F(M)^n = \bigoplus_{x \in (Q^{\operatorname{op}})^n} P_x \otimes e_x M$, for all $n \in \mathbb{Z}$.
- Koszul inverse $G : \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!) : N \mapsto G(N)^{\bullet}$, where $G(N)^n = \bigoplus_{x \in Q^n} I_x^! \otimes e_x N$, for all $n \in \mathbb{Z}$.

Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define

Given $p,q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we define

• $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ subcategory of $C(\mathrm{Mod}\Lambda)$ of M such that

Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define

• $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ subcategory of $C(\mathrm{Mod}\Lambda)$ of M such that

 $M_{i}^{i} = 0$ in case i + pj >> 0 or i - qj << 0,

Given $p, q \in \mathbb{R}$ with $p \ge 1$ and $q \ge 0$, we define

• $C_{p,q}^{\downarrow}(\mathrm{Mod}\Lambda)$ subcategory of $C(\mathrm{Mod}\Lambda)$ of M such that

$$M_i^i = 0$$
 in case $i + pj >> 0$ or $i - qj \ll 0$,

the lower triangle formed by 2 lines of slopes $-\frac{1}{p}$, $\frac{1}{q}$.

Given $p,q\in\mathbb{R}$ with $p\geq 1$ and $q\geq 0$, we define

 C[↓]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] such that
 Mⁱ_j = 0 in case i + pj >> 0 or i - qj << 0, the lower triangle formed by 2 lines of slopes -¹/_p, ¹/_q.
 C[↑]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•]

Given $p,q\in\mathbb{R}$ with $p\geq 1$ and $q\geq 0$, we define

C[↓]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] such that Mⁱ_j = 0 in case i + pj >> 0 or i - qj << 0, the lower triangle formed by 2 lines of slopes -¹/_p, ¹/_q.
C[↑]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] Mⁱ_j = 0 in case i + pj << 0 or i - qj >> 0,

Special subcategories of complex categories

Given $p,q\in\mathbb{R}$ with $p\geq 1$ and $q\geq 0$, we define

C[↓]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] such that Mⁱ_j = 0 in case i + pj >> 0 or i - qj << 0, the lower triangle formed by 2 lines of slopes -¹/_p, ¹/_q.
C[↑]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] Mⁱ_j = 0 in case i + pj << 0 or i - qj >> 0, the upper triangle formed by 2 line of slopes -¹/_p, ¹/_q.

Special subcategories of complex categories

Given $p,q\in\mathbb{R}$ with $p\geq 1$ and $q\geq 0$, we define

C[↓]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] such that Mⁱ_j = 0 in case i + pj >> 0 or i - qj << 0, the lower triangle formed by 2 lines of slopes -¹/_p, ¹/_q.
C[↑]_{p,q}(ModΛ) subcategory of C(ModΛ) of M[•] Mⁱ_j = 0 in case i + pj << 0 or i - qj >> 0, the upper triangle formed by 2 line of slopes -¹/_p, ¹/_q.

Remark

 $C_{1,0}^{\downarrow}(\mathrm{Mod}\Lambda) = C^{\downarrow}(\mathrm{Mod}\Lambda) \text{ and } C_{1,0}^{\uparrow}(\mathrm{Mod}\Lambda) = C^{\uparrow}(\mathrm{Mod}\Lambda).$

Theorem

 $\bullet \ F: \operatorname{Mod} \Lambda^! \to C(\operatorname{Mod} \Lambda) \text{ induces commutative diagram}$

Theorem

• $F : \operatorname{Mod} \Lambda^{!} \to C(\operatorname{Mod} \Lambda)$ induces commutative diagram $C_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \longrightarrow K_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \longrightarrow D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!})$ $F^{c} \downarrow \qquad \qquad \downarrow F^{\kappa} \qquad \qquad \downarrow F^{D}$ $C_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda),$

Theorem

• $F : \operatorname{Mod} \Lambda^{!} \to C(\operatorname{Mod} \Lambda)$ induces commutative diagram $C_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \longrightarrow K_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \longrightarrow D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!})$ $F^{c} \downarrow \qquad \qquad \downarrow F^{\kappa} \qquad \qquad \downarrow F^{D}$ $C_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow K_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \longrightarrow D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda),$

2 $G : \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!)$ induces commutative diagram

Theorem

2 $G : \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!)$ induces commutative diagram

$$\begin{split} & C_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda) \longrightarrow K_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda) \longrightarrow D_{p,q}^{\uparrow}(\mathrm{Mod}\Lambda) \\ & {}_{G^{c}} \downarrow \qquad \qquad \qquad \downarrow_{G^{\kappa}} \qquad \qquad \qquad \downarrow_{G^{D}} \\ & C_{q+1,p-1}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \longrightarrow K_{q+1,p-1}^{\downarrow}(\mathrm{Mod}\Lambda^{!}) \longrightarrow D_{q+1,p-1}^{\downarrow}(\mathrm{Mod}\Lambda^{!}). \end{split}$$

Theorem

 $G : \operatorname{Mod} \Lambda \to C(\operatorname{Mod} \Lambda^!) \text{ induces commutative diagram}$

We prove this by generalizing Acyclic Assembly Lemma on homology of total complexes of double complexes.

Let $\Lambda = kQ/R$ be Koszul, with Q locally finite gradable.

Let $\Lambda = kQ/R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \ge 1$ and $q \ge 0$, we have triangle-equivalence $F^{D}: D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \to D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda).$

Let $\Lambda = kQ/R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \ge 1$ and $q \ge 0$, we have triangle-equivalence $F^{D}: D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \to D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda).$

Theorem

If Λ , $\Lambda^!$ locally bounded, then $D^b(Mod^b\Lambda^!) \cong D^b(Mod^b\Lambda)$.

Let $\Lambda = kQ/R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \ge 1$ and $q \ge 0$, we have triangle-equivalence $F^{D}: D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \to D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda).$

Theorem

If Λ , $\Lambda^!$ locally bounded, then $D^b(Mod^b\Lambda^!) \cong D^b(Mod^b\Lambda)$.

A path in Q is *left infinite* or *right infinite* if it has no starting point or no ending-point, respectively.

Let $\Lambda = kQ/R$ be Koszul, with Q locally finite gradable.

Theorem

For any $p \ge 1$ and $q \ge 0$, we have triangle-equivalence $F^{D}: D_{p,q}^{\downarrow}(\operatorname{Mod} \Lambda^{!}) \to D_{q+1,p-1}^{\uparrow}(\operatorname{Mod} \Lambda).$

Theorem

If Λ , $\Lambda^!$ locally bounded, then $D^b(Mod^b\Lambda^!) \cong D^b(Mod^b\Lambda)$.

A path in Q is *left infinite* or *right infinite* if it has no starting point or no ending-point, respectively.

Corollary

If Q has no right infinite path or no left infinite path, then $D^b(\operatorname{Mod}^b \Lambda^!) \cong D^b(\operatorname{Mod}^b \Lambda).$