Module categories with a null forth power of the radical

Shiping Liu* and Youqi Yin

Special session on
 Representation Theory of Algebras
 CMS Winter Meeting 2022

December 2-5, Toronto

Motivation

- Let A be a basic connected artin algebra.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.
- $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.
- $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.
- $\operatorname{rad}^{m}(\bmod A): m$-th power of $\operatorname{rad}(\bmod A)$.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.
- $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.
- $\operatorname{rad}^{m}(\bmod A): m$-th power of $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)

A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.
- $\operatorname{rad}(\bmod A)$: Jacobson radical of $\bmod A$.
- $\operatorname{rad}^{m}(\bmod A): m$-th power of $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)

A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$.

Observation

The algebra A is simple $\Longleftrightarrow \operatorname{rad}(\bmod A)=0$.

Motivation

- Let A be a basic connected artin algebra.
- $\bmod A$: category of finitely generated left A-modules.
- ind A : subcategory of indecomposable A-modules.
- $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.
- $\operatorname{rad}^{m}(\bmod A): m$-th power of $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)

A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$.

Observation

The algebra A is simple $\Longleftrightarrow \operatorname{rad}(\bmod A)=0$.

Problem

Can we classify the representation-finite artin algebras in terms of the nilnotency of $\operatorname{rad}(\bmod A)$

Preliminary results

Let $A=k Q / I$ be finite dimensional algebra, where

Preliminary results

Let $A=k Q / /$ be finite dimensional algebra, where

- k is a field

Preliminary results

Let $A=k Q / l$ be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Preliminary results

Let $A=k Q / l$ be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

(1) (Lo) $\operatorname{rad}(\bmod A)$ is of nilpotency $2 \Longleftrightarrow Q$ is of type \mathbb{A}_{2}.

Preliminary results

Let $A=k Q / l$ be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

(1) (Lo) $\operatorname{rad}(\bmod A)$ is of nilpotency $2 \Longleftrightarrow Q$ is of type \mathbb{A}_{2}.
(2) (Damavandi) If A is a Nakayama algebra, then

Preliminary results

Let $A=k Q / l$ be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

(1) (Lo) $\operatorname{rad}(\bmod A)$ is of nilpotency $2 \Longleftrightarrow Q$ is of type \mathbb{A}_{2}.
(2) (Damavandi) If A is a Nakayama algebra, then $\operatorname{rad}(\bmod A)$ is of nilpotency $3 \Longleftrightarrow A=k \overrightarrow{\mathbb{A}}_{3}$

Preliminary results

Let $A=k Q / l$ be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

(1) (Lo) $\operatorname{rad}(\bmod A)$ is of nilpotency $2 \Longleftrightarrow Q$ is of type \mathbb{A}_{2}.
(2) (Damavandi) If A is a Nakayama algebra, then $\operatorname{rad}(\bmod A)$ is of nilpotency $3 \Longleftrightarrow A=k \overrightarrow{\mathbb{A}}_{3}$ or A is non hereditary with $\operatorname{rad}^{2}(A)=0$.

Objective of this talk

Objective

Give a complete list of artin algebras A with $\operatorname{rad}^{4}(\bmod A)=0$.

Hereditary artin algebras

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
(1) $\operatorname{Ext}^{1}(S, T) \neq 0$

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
(1) $\operatorname{Ext}^{1}(S, T) \neq 0$
(2) $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}^{1}(S, T)$

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
(1) $\operatorname{Ext}^{1}(S, T) \neq 0$
(2) $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}^{1}(S, T)$
(3 $d^{\prime}=\operatorname{dim} \operatorname{Ext}^{1}(S, T)_{\operatorname{End}(S)}$.

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
(1) $\operatorname{Ext}^{1}(S, T) \neq 0$
(2) $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}^{1}(S, T)$
(3 $d^{\prime}=\operatorname{dim} \operatorname{Ext}^{1}(S, T) \operatorname{End}(S)$.

Definition

Let Δ be a finite valued quiver or valued diagram.

Hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
(1) $\operatorname{Ext}^{1}(S, T) \neq 0$
(2) $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}^{1}(S, T)$
(3 $d^{\prime}=\operatorname{dim} \operatorname{Ext}^{1}(S, T)_{\operatorname{End}(S)}$.

Definition

Let Δ be a finite valued quiver or valued diagram.
A hereditary algebra A is of type Δ if $Q_{A} \cong \Delta$ or $\overline{Q_{A}} \cong \Delta$.

Hereditary case

Lemma

If A is a connected hereditary artin algebra, then

Hereditary case

Lemma

If A is a connected hereditary artin algebra, then
(1) $\operatorname{rad}(\bmod A)$ of nilpotency $3 \Longleftrightarrow A$ of type \mathbb{A}_{3} or \mathbb{B}_{2}.

Hereditary case

Lemma

If A is a connected hereditary artin algebra, then
(1) $\operatorname{rad}(\bmod A)$ of nilpotency $3 \Longleftrightarrow A$ of type \mathbb{A}_{3} or \mathbb{B}_{2}.
(2) $\operatorname{rad}(\bmod A)$ of nilpotency $n \in\{1,2,4\} \Longleftrightarrow A$ of type \mathbb{A}_{n}.

Non-hereditary Nakayama case

Lemma

If A is a non-hereditary Nakayama artin algebra, then

Non-hereditary Nakayama case

Lemma

If A is a non-hereditary Nakayama artin algebra, then

$$
\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow \operatorname{rad}^{3}(\bmod A)=0
$$

String artin algebras

String artin algebras

Definition

Call A a string algebra provided that

- Given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules.

String artin algebras

Definition

Call A a string algebra provided that

- Given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules.
- Given injective $I \in \operatorname{ind} A, I / \mathrm{soc} l$ is uniserial or a direct sum of two uniserial modules.

String artin algebras

Definition

Call A a string algebra provided that

- Given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules.
- Given injective $I \in \operatorname{ind} A, I / \mathrm{soc} I$ is uniserial or a direct sum of two uniserial modules.

Remark

For algebras defined by a quiver with relations, this definition coincides with the one given by Butler-Ringel.

String artin algebras

Definition

Call A a string algebra provided that

- Given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules.
- Given injective $I \in \operatorname{ind} A, I / \mathrm{soc} I$ is uniserial or a direct sum of two uniserial modules.

Remark

For algebras defined by a quiver with relations, this definition coincides with the one given by Butler-Ringel.

Problem

Is it possible to establish Butler and Ringel's theorem for a string artin algebra ?

Given $M \in \bmod A$, we denote

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$,

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$,
- S_{1}, S_{2} are simple;

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$,
- S_{1}, S_{2} are simple;
- $\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right), \operatorname{top}\left(\operatorname{rad} P_{S_{2}}\right)$ are simple.

Given $M \in \bmod A$, we denote

- by P_{M} the projective cover of M
- by I_{M} the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$,
- S_{1}, S_{2} are simple;
- $\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right), \operatorname{top}\left(\operatorname{rad} P_{S_{2}}\right)$ are simple.

Remark

$P \in \operatorname{ind} A$ is wedged projective $\Longleftrightarrow D P$ is co-wedged injective.

Example

Let $A=k Q / /$ be finite dimensional with some vertex a in Q.

Example

Let $A=k Q / l$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(3) The indecomposable injective module I_{a} is co-wedged \Longleftrightarrow

Example

Let $A=k Q / l$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) The indecomposable injective module I_{a} is co-wedged \Longleftrightarrow its support is of shape

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) The indecomposable injective module I_{a} is co-wedged \Longleftrightarrow its support is of shape

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(3) The indecomposable injective module I_{a} is co-wedged \Longleftrightarrow its support is of shape

- α is the only arrow starting in b

Example

Let $A=k Q / I$ be finite dimensional with some vertex a in Q.
(1) The indecomposable projective module P_{a} is wedged its support is of wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) The indecomposable injective module I_{a} is co-wedged \Longleftrightarrow its support is of shape

- α is the only arrow starting in b
- β is the only arrow starting in c.

Tri-string algebras

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
© Any indec. projective module is uniserial or wedged;

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.
(1) $\operatorname{rad}^{3}(A)=0$;
(2) Any indec. projective module is uniserial or wedged;
(3) Any indec. injective module is uniserial or co-wedged;

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged ;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.
(1) $\operatorname{rad}^{3}(A)=0$;
(2) Any indec. projective module is uniserial or wedged;
(3) Any indec. injective module is uniserial or co-wedged;
(1) If S is simple, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.
© If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$,

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged ;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{s}\right)+\ell\left(I_{S}\right) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- If I is co-wedged injective with $I / \mathrm{soc} I=S_{1} \oplus S_{2}$,

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- If I is co-wedged injective with $I / \mathrm{soc} I=S_{1} \oplus S_{2}$, then $\ell\left(P_{S_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{s}\right)+\ell\left(I_{S}\right) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- If I is co-wedged injective with $I / \mathrm{soc} I=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- A wedged projective module and a co-wedged injective module have no common composition factor.

Tri-string algebras

Definition

Call A a tri-string algebra if the following are satisfied.

- $\operatorname{rad}^{3}(A)=0$;
(3) Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell\left(P_{s}\right)+\ell\left(I_{S}\right) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- If I is co-wedged injective with $I / \mathrm{soc} I=S_{1} \oplus S_{2}$, then $\ell\left(P_{s_{i}}\right)+\ell\left(I_{s_{i}}\right) \leq 4$, for $i=1,2$.
- A wedged projective module and a co-wedged injective module have no common composition factor.

Local Nakayama algebras of Loewy length 3 satisfy all but (4).

Proposition

If A is a tri-string artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0$.

Main Result

Theorem

If A connected artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow A$ is

Main Result

Theorem

If A connected artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow A$ is

- hereditary of type \mathbb{B}_{2} or \mathbb{A}_{n} with $1 \leq n \leq 4$,

Main Result

Theorem

If A connected artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow A$ is

- hereditary of type \mathbb{B}_{2} or \mathbb{A}_{n} with $1 \leq n \leq 4$,
- non-hereditary Nakayama of Loewy length ≤ 3, or

Main Result

Theorem

If A connected artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow A$ is

- hereditary of type \mathbb{B}_{2} or \mathbb{A}_{n} with $1 \leq n \leq 4$,
- non-hereditary Nakayama of Loewy length ≤ 3, or
- a non-hereditary non-Nakayama tri-string algebra.

Example

(1) Let A be given by the bound quiver

Example

(1) Let A be given by the bound quiver

Example

(1) Let A be given by the bound quiver

(2) A is non-hereditary non-Nakayama tri-string algebra.

Example

(1) Let A be given by the bound quiver

(2) A is non-hereditary non-Nakayama tri-string algebra.
(3) $\operatorname{rad}(\bmod A)$ is of nilpotency 4 .

Example

(1) Let A be given by the bound quiver

Example

(1) Let A be given by the bound quiver

Example

(1) Let A be given by the bound quiver

(2) Then $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.

Example

(1) Let A be given by the bound quiver

(2) Then $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.
(3) Thus, A is not tri-string algebra.

Example

(1) Let A be given by the bound quiver

(2) Then $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.
(3) Thus, A is not tri-string algebra.
(9) $\operatorname{rad}^{4}(\bmod A) \neq 0$.

