Module categories with a null forth power of the radical

Shiping Liu* and Youqi Yin

Special session on Representation Theory of Algebras CMS Winter Meeting 2022

December 2 - 5, Toronto

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let A be a basic connected artin algebra.

- Let A be a basic connected artin algebra.
- $\bullet \mod A$: category of finitely generated left A-modules.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• ind A: subcategory of indecomposable A-modules.

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ind A: subcategory of indecomposable A-modules.
- rad(mod A): Jacobson radical of mod A.

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ind A: subcategory of indecomposable A-modules.
- rad(mod A): Jacobson radical of mod A.
- $rad^m (mod A) : m$ -th power of rad (mod A).

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.
- ind A: subcategory of indecomposable A-modules.
- rad(mod A): Jacobson radical of mod A.
- $rad^m (mod A) : m$ -th power of rad (mod A).

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m \pmod{A} = 0$ for some $m \ge 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.
- ind A: subcategory of indecomposable A-modules.
- rad(mod A): Jacobson radical of mod A.
- $rad^m (mod A) : m$ -th power of rad (mod A).

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m \pmod{A} = 0$ for some $m \ge 1$.

Observation

The algebra A is simple $\iff \operatorname{rad}(\operatorname{mod} A) = 0$.

- Let A be a basic connected artin algebra.
- mod A: category of finitely generated left A-modules.
- ind A: subcategory of indecomposable A-modules.
- rad(mod A): Jacobson radical of mod A.
- $\operatorname{rad}^m(\operatorname{mod} A)$: *m*-th power of $\operatorname{rad}(\operatorname{mod} A)$.

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m \pmod{A} = 0$ for some $m \ge 1$.

Observation

The algebra A is simple $\iff \operatorname{rad}(\operatorname{mod} A) = 0$.

Problem

Can we classify the representation-finite artin algebras in terms of the nilpotency of rad(mod A)

Let A = kQ/I be finite dimensional algebra, where

(ロ)、(型)、(E)、(E)、 E) の(()

Let A = kQ/I be finite dimensional algebra, where

• k is a field

Let A = kQ/I be finite dimensional algebra, where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- k is a field
- Q is a finite connected quiver.

Let A = kQ/I be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

• (Lo) rad(mod A) is of nilpotency $2 \iff Q$ is of type \mathbb{A}_2 .

Let A = kQ/I be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

• (Lo) rad(mod A) is of nilpotency $2 \iff Q$ is of type \mathbb{A}_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• (Damavandi) If A is a Nakayama algebra, then

Let A = kQ/I be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

• (Lo) rad(mod A) is of nilpotency $2 \iff Q$ is of type \mathbb{A}_2 .

• (Damavandi) If A is a Nakayama algebra, then rad(mod A) is of nilpotency $3 \iff A = k \vec{\mathbb{A}}_3$

Let A = kQ/I be finite dimensional algebra, where

- k is a field
- Q is a finite connected quiver.

Proposition

• (Lo) rad(mod A) is of nilpotency $2 \iff Q$ is of type \mathbb{A}_2 .

• (Damavandi) If A is a Nakayama algebra, then rad(mod A) is of nilpotency $3 \iff A = k \vec{\mathbb{A}}_3$ or A is non hereditary with rad²(A) = 0.

Objective

Give a complete list of artin algebras A with $rad^4(mod A) = 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

• the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

• the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\exists S \rightarrow T$ with valuation (d, d') in case

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

• the vertices are the non isomorphic simple A-modules.

- $\exists S \rightarrow T$ with valuation (d, d') in case
 - $\operatorname{Ext}^1(S, T) \neq 0$

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

• the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\exists S
ightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^1(S, T) \neq 0$$

$$d = \dim_{\operatorname{End}(T)} \operatorname{Ext}^1(S, T)$$

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

• the vertices are the non isomorphic simple A-modules.

• $\exists S
ightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^1(S, T) \neq 0$$

$$o \quad d = \dim_{\operatorname{End}(T)}\operatorname{Ext}^1(S, T)$$

•
$$d' = \dim \operatorname{Ext}^1(S, T)_{\operatorname{End}(S)}$$

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S
 ightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^1(S, T) \neq 0$$

$$o \ d = \dim_{\mathrm{End}(T)} \mathrm{Ext}^1(S, T)$$

•
$$d' = \dim \operatorname{Ext}^1(S, T)_{\operatorname{End}(S)}$$

Definition

Let \varDelta be a finite valued quiver or valued diagram.

Definition

The *Ext-quiver* Q_A of A is a valued quiver in which

- the vertices are the non isomorphic simple A-modules.
- $\exists S \rightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^1(S, T) \neq 0$$

$$o \ d = \dim_{\mathrm{End}(T)} \mathrm{Ext}^1(S, T)$$

•
$$d' = \dim \operatorname{Ext}^1(S, T)_{\operatorname{End}(S)}$$

Definition

Let Δ be a finite valued quiver or valued diagram.

A hereditary algebra A is of type Δ if $Q_A \cong \Delta$ or $\overline{Q_A} \cong \Delta$.

If A is a connected hereditary artin algebra, then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

If A is a connected hereditary artin algebra, then

• rad(mod A) of nilpotency $3 \iff A$ of type \mathbb{A}_3 or \mathbb{B}_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

If A is a connected hereditary artin algebra, then

• rad(mod A) of nilpotency $3 \iff A$ of type \mathbb{A}_3 or \mathbb{B}_2 .

2 rad(mod A) of nilpotency $n \in \{1, 2, 4\} \iff A$ of type \mathbb{A}_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If A is a non-hereditary Nakayama artin algebra, then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If A is a non-hereditary Nakayama artin algebra, then $\operatorname{rad}^4(\operatorname{mod} A) = 0 \iff \operatorname{rad}^3(\operatorname{mod} A) = 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Definition

Call A a string algebra provided that

 Given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Call A a string algebra provided that

- Given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules.
- Given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

Definition

Call A a string algebra provided that

- Given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules.
- Given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

Remark

For algebras defined by a quiver with relations, this definition coincides with the one given by Butler-Ringel.

Definition

Call A a string algebra provided that

- Given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules.
- Given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

Remark

For algebras defined by a quiver with relations, this definition coincides with the one given by Butler-Ringel.

Problem

Is it possible to establish Butler and Ringel's theorem for a string artin algebra ?

• by P_M the projective cover of M

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- by P_M the projective cover of M
- by I_M the injective envelope of M

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• S_1, S_2 are simple;

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• An injective $I \in ind A$ is *co-wedged* if $I/soc I = S_1 \oplus S_2$,

A D N A 目 N A E N A E N A B N A C N

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• An injective $I \in \operatorname{ind} A$ is *co-wedged* if $I/\operatorname{soc} I = S_1 \oplus S_2$,

A D N A 目 N A E N A E N A B N A C N

• S_1, S_2 are simple;

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $soc(I_{S_1}/S_1), soc(I_{S_2}/S_2)$ are simple.

• An injective $I \in \operatorname{ind} A$ is *co-wedged* if $I/\operatorname{soc} I = S_1 \oplus S_2$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- S_1, S_2 are simple;
- $top(rad P_{S_1}), top(rad P_{S_2})$ are simple.

- by P_M the projective cover of M
- by I_M the injective envelope of M
- by $\ell(M)$ the composition length of M.

Definition

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• An injective $I \in \operatorname{ind} A$ is *co-wedged* if $I/\operatorname{soc} I = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $top(rad P_{S_1}), top(rad P_{S_2})$ are simple.

Remark

 $P \in \operatorname{ind} A$ is wedged projective $\iff DP$ is co-wedged injective.

Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged \iff

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- α is the only arrow ending in ${\it b}$

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- 2 The indecomposable injective module I_a is co-wedged \iff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged ⇔ its support is of wedge shape

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- One indecomposable injective module *l_a* is co-wedged its support is of shape

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged ⇔ its support is of wedge shape

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- One indecomposable injective module *l_a* is co-wedged its support is of shape

- Let A = kQ/I be finite dimensional with some vertex *a* in *Q*.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- One indecomposable injective module *l_a* is co-wedged its support is of shape

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• α is the only arrow starting in ${\it b}$

- Let A = kQ/I be finite dimensional with some vertex a in Q.
 - The indecomposable projective module P_a is wedged its support is of wedge shape

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- One indecomposable injective module *l_a* is co-wedged its support is of shape

・ロト・西ト・田・王・ 日・

- α is the only arrow starting in ${\it b}$
- β is the only arrow starting in c.

Definition

Definition

Call A a *tri-string algebra* if the following are satisfied.
rad³(A) = 0;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;

Definition

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;

Definition

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \leq 5$.

Definition

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$,

Definition

Call A a tri-string algebra if the following are satisfied.

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;

- If S is simple, then $\ell(P_S) + \ell(I_S) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.

Definition

Call A a tri-string algebra if the following are satisfied.

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \le 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.
- If I is co-wedged injective with $I/\text{soc}I = S_1 \oplus S_2$,

Definition

Call A a tri-string algebra if the following are satisfied.

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.
- If I is co-wedged injective with $I/\text{soc}I = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.

Definition

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \leq 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.
- If I is co-wedged injective with $I/\text{soc}I = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \le 4$, for i = 1, 2.
- A wedged projective module and a co-wedged injective module have no common composition factor.

Definition

Call A a tri-string algebra if the following are satisfied.

- $rad^{3}(A) = 0;$
- Any indec. projective module is uniserial or wedged;
- Any indec. injective module is uniserial or co-wedged;
- If S is simple, then $\ell(P_S) + \ell(I_S) \le 5$.
- If P is wedged projective with $\operatorname{rad} P = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \leq 4$, for i = 1, 2.
- If I is co-wedged injective with $I/\text{soc}I = S_1 \oplus S_2$, then $\ell(P_{S_i}) + \ell(I_{S_i}) \le 4$, for i = 1, 2.
- A wedged projective module and a co-wedged injective module have no common composition factor.

Local Nakayama algebras of Loewy length 3 satisfy all but (4).

Proposition

If A is a tri-string artin algebra, then $rad^4(mod A) = 0$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

If A connected artin algebra, then $rad^4 (mod A) = 0 \iff A$ is

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Theorem

If A connected artin algebra, then $rad^4(mod A) = 0 \iff A$ is

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• hereditary of type \mathbb{B}_2 or \mathbb{A}_n with $1 \leq n \leq 4$,

Theorem

If A connected artin algebra, then $rad^4(mod A) = 0 \iff A$ is

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- hereditary of type \mathbb{B}_2 or \mathbb{A}_n with $1 \leq n \leq 4$,
- non-hereditary Nakayama of Loewy length \leq 3, or

Theorem

If A connected artin algebra, then $rad^4(mod A) = 0 \iff A$ is

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- hereditary of type \mathbb{B}_2 or \mathbb{A}_n with $1 \leq n \leq 4$,
- non-hereditary Nakayama of Loewy length \leq 3, or
- a non-hereditary non-Nakayama tri-string algebra.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

<ロト <回ト < 注ト < 注ト

æ

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Q A is non-hereditary non-Nakayama tri-string algebra.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- 2 A is non-hereditary non-Nakayama tri-string algebra.
- rad(mod A) is of nilpotency 4.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

3 Then $\operatorname{rad} P_a = S_b \oplus S_c$ with $\ell(P_{S_b}) + \ell(I_{S_b}) = 5$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 3 Then $\operatorname{rad} P_a = S_b \oplus S_c$ with $\ell(P_{S_b}) + \ell(I_{S_b}) = 5$.
- Thus, A is not tri-string algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 3 Then $\operatorname{rad} P_a = S_b \oplus S_c$ with $\ell(P_{S_b}) + \ell(I_{S_b}) = 5$.
- Thus, A is not tri-string algebra.
- $\operatorname{rad}^4(\operatorname{mod} A) \neq 0.$