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Motivation

1 Over an artin R-algebra, starting from the AR-duality

Ext1(DTrM ,−) ∼= HomR(Hom(−,M), I R)

2 Auslander-Reiten obtained almost split sequence

0 // DTrM // E //M // 0.

3 This has been generalized into

abelian categories;

triangulated categories.
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A brief history

1 Over an arbitrary ring, Auslander (1978) established the
existence of almost split sequence ending with fin.
presented module Z , using IEnd(Tr(Z)).

2 In a compactly generated triangulated category, Krause
(2000) established the existence of almost split triangle
ending with compact object Z , using IEnd(Z).

3 In a Hom-finite triangulated category over a field k = k̄ ,
Reiten and Van den Bergh (2002) obtained a criterion for
the existence of almost split triangles, using I = k .

4 In Ext-finite abelian category over artinian commutative
ring k , Lenzing and Zuazua (2004) obtained a criterion
for the existence of almost split sequences, using Ik .

5 In extension-closed subcategory of abelian category over
arbitrary commutative ring k , Liu, Ng and Paquette
(2013) obtained a criterion for the existence of an almost
split sequence, using Ik .
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Objective

To unify the previously mentioned existence theorems of an
almost split sequence or an almost split triangle.



Setting

Let T be a triangulated category with shift functor [1].

Definition

A full subcategory C of T is called

1 extension-closed if, given exact triangle X // Y // Z in

T with X ,Z ∈ C, we have Y ∈ C.

2 right triangulated it is closed under extensions and [1].

3 left triangulated if it is closed under extensions and [−1].
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Almost split sequence

From now on, C is an extension-closed subcategory of T .

Definition

A sequence X u // Y v // Z in C is called

1 pseudo-exact if it embeds in an exact triangle in T :

X u // Y v // Z w // X [1].

2 almost split if it is pseudo-exact with

u minimal left almost split in C;

v minimal right almost split in C.
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Properties of almost split sequences

Proposition

Given a pseudo-exact sequence X u // Y v // Z in C, the

following statements are equivalent.

1 The sequence is almost split in C.
2 u is left almost split and v is right almost split in C.

3 u is left almost split in C and End(Z ) is local.

4 v is right almost split in C and End(X ) is local.



Properties of almost split sequences

Proposition

Given a pseudo-exact sequence X u // Y v // Z in C, the

following statements are equivalent.

1 The sequence is almost split in C.

2 u is left almost split and v is right almost split in C.

3 u is left almost split in C and End(Z ) is local.

4 v is right almost split in C and End(X ) is local.



Properties of almost split sequences

Proposition

Given a pseudo-exact sequence X u // Y v // Z in C, the

following statements are equivalent.

1 The sequence is almost split in C.
2 u is left almost split and v is right almost split in C.

3 u is left almost split in C and End(Z ) is local.

4 v is right almost split in C and End(X ) is local.



Properties of almost split sequences

Proposition

Given a pseudo-exact sequence X u // Y v // Z in C, the

following statements are equivalent.

1 The sequence is almost split in C.
2 u is left almost split and v is right almost split in C.

3 u is left almost split in C and End(Z ) is local.

4 v is right almost split in C and End(X ) is local.



Properties of almost split sequences

Proposition

Given a pseudo-exact sequence X u // Y v // Z in C, the

following statements are equivalent.

1 The sequence is almost split in C.
2 u is left almost split and v is right almost split in C.

3 u is left almost split in C and End(Z ) is local.

4 v is right almost split in C and End(X ) is local.



Link to subcategories of abelian categories

C : an extension-closed subcategory of abelain category A.

Ĉ : the full subcategory of D(A) of complexes ∼= X ∈ C .

Lemma

1 C ∼= Ĉ , which is extension-closed in D(A).

2 The following statements are equivalent.

0 // X u // Y v // Z // 0 almost split sequence in C .

X u // Y v // Z is an almost split sequence in Ĉ .
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1 C ∼= Ĉ , which is extension-closed in D(A).

2 The following statements are equivalent.

0 // X u // Y v // Z // 0 almost split sequence in C .

X u // Y v // Z is an almost split sequence in Ĉ .



1 Let M ,N be objects in C.

2 Ext1C(M ,N) = HomT (M ,N[1]).

3 A morphism f : M → N in C is called

projectively trivial if w ◦ f = 0, for w ∈ Ext1C(N ,X ).

injectively trivial f ◦ w [−1] = 0, for w ∈ Ext1C(X ,M).

4 Hom C(M ,N) = Hom C(M ,N)/< inj-trivial morphisms>.

5 Hom C(M ,N) = HomC(M ,N)/<proj-trivial morphisms>.

Proposition

1 ExtC(M ,N) is an End(N)-End(M)-bimodule.

2 C left triangulated ⇒ Hom C(M ,N) = Hom C(M ,N).

3 C right triangulated ⇒ Hom C(M ,N) = Hom C(M ,N).
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Main Result

1 Let X ,Z ∈ C with End(X ), End(Z ) being local.

2 Consider ring homomorphisms

γ : Γ → End(X ) and σ : Σ → End(Z ).

3 S = End(Z )/rad(End(Z )) is Γ -Σ -bimodule.

4 Let Γ I and IΣ injective co-generators of ΓS and SΣ , resp.

Theorem

The following statements are equivalent.

1 C has almost split sequence X // Y // Z .

2 Ext1C(Z ,−) is a subfunctor of HomΓ (Hom C(−,X ), Γ I )

and Ext1C(Z ,X ) has non-zero End(X )-socle.

3 Ext1C(−,X ) is a subfunctor of HomΣ (Hom C(Z ,−), IΣ )

and Ext1C(Z ,X ) has non-zero End(Z )-socle.
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Cas particulier

Theorem

If γ : Γ → End(X ) and σ : Σ → End(Z ) are surjective, then
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left or right triangulated case

1 Let C be a left triangulated subcategory of T .

2 Let Z ∈ C with End(Z ) being local.

3 S = End(Z )/rad(End(Z )) is right End(Z )-simple.

4 I the injective envelope of S .

Theorem

If HomEnd(Z)(HomC(Z ,−), I ) ∼= Ext1C(−,X ) for some X ∈ C,

then C has almost split sequence X // Y // Z .

Remark

In case C is a right triangulated subcategory of T , then the
dual version of the above theorem holds.
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