Auslander-Reiten Theory through Triangulated Categories

Shiping Liu, Hongwei Niu Université de Sherbrooke

CMS Summer Meeting 2018

June 2 - 3, Fredericton

• Over an artin *R*-algebra, starting from the AR-duality $\operatorname{Ext}^{1}(\operatorname{DTr} M, -) \cong \operatorname{Hom}_{R}(\operatorname{Hom}(-, M), I_{R})$

• Over an artin *R*-algebra, starting from the AR-duality $\operatorname{Ext}^{1}(\operatorname{DTr} M, -) \cong \operatorname{Hom}_{R}(\operatorname{\underline{Hom}}(-, M), I_{R})$

Q Auslander-Reiten obtained almost split sequence

$$0 \longrightarrow \mathrm{DTr} M \longrightarrow E \longrightarrow M \longrightarrow 0.$$

• Over an artin *R*-algebra, starting from the AR-duality

 $\operatorname{Ext}^{1}(\operatorname{DTr} M, -) \cong \operatorname{Hom}_{R}(\operatorname{Hom}(-, M), I_{R})$

Q Auslander-Reiten obtained almost split sequence

$$0 \longrightarrow \mathrm{DTr} M \longrightarrow E \longrightarrow M \longrightarrow 0.$$

- This has been generalized into
 - abelian categories;

• Over an artin *R*-algebra, starting from the AR-duality

 $\operatorname{Ext}^{1}(\operatorname{DTr} M, -) \cong \operatorname{Hom}_{R}(\operatorname{Hom}(-, M), I_{R})$

Q Auslander-Reiten obtained almost split sequence

$$0 \longrightarrow \mathrm{DTr} M \longrightarrow E \longrightarrow M \longrightarrow 0.$$

- This has been generalized into
 - abelian categories;
 - triangulated categories.

 Over an arbitrary ring, Auslander (1978) established the existence of almost split sequence ending with fin. presented module Z, using I_{End(Tr(Z))}.

- Over an arbitrary ring, Auslander (1978) established the existence of almost split sequence ending with fin. presented module Z, using I_{End(Tr(Z))}.
- In a compactly generated triangulated category, Krause (2000) established the existence of almost split triangle ending with compact object Z, using I_{End(Z)}.

- Over an arbitrary ring, Auslander (1978) established the existence of almost split sequence ending with fin. presented module Z, using I_{End(Tr(Z))}.
- In a compactly generated triangulated category, Krause (2000) established the existence of almost split triangle ending with compact object Z, using I_{End(Z)}.
- In a Hom-finite triangulated category over a field k = k
 , Reiten and Van den Bergh (2002) obtained a criterion for the existence of almost split triangles, using I = k.

- Over an arbitrary ring, Auslander (1978) established the existence of almost split sequence ending with fin. presented module Z, using I_{End(Tr(Z))}.
- In a compactly generated triangulated category, Krause (2000) established the existence of almost split triangle ending with compact object Z, using I_{End(Z)}.
- In a Hom-finite triangulated category over a field k = k
 , Reiten and Van den Bergh (2002) obtained a criterion for the existence of almost split triangles, using I = k.
- In Ext-finite abelian category over artinian commutative ring k, Lenzing and Zuazua (2004) obtained a criterion for the existence of almost split sequences, using I_k.

- Over an arbitrary ring, Auslander (1978) established the existence of almost split sequence ending with fin. presented module Z, using I_{End(Tr(Z))}.
- In a compactly generated triangulated category, Krause (2000) established the existence of almost split triangle ending with compact object Z, using I_{End(Z)}.
- In a Hom-finite triangulated category over a field k = k
 , Reiten and Van den Bergh (2002) obtained a criterion for the existence of almost split triangles, using I = k.
- In Ext-finite abelian category over artinian commutative ring k, Lenzing and Zuazua (2004) obtained a criterion for the existence of almost split sequences, using I_k.
- In extension-closed subcategory of abelian category over arbitrary commutative ring k, Liu, Ng and Paquette (2013) obtained a criterion for the existence of an almost split sequence, using Ik.

Objective

To unify the previously mentioned existence theorems of an almost split sequence or an almost split triangle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

<□ > < @ > < E > < E > E のQ @

Definition

A full subcategory ${\mathcal C}$ of ${\mathcal T}$ is called

Definition

A full subcategory ${\mathcal C}$ of ${\mathcal T}$ is called

• extension-closed if, given exact triangle $X \longrightarrow Y \longrightarrow Z$ in \mathcal{T} with $X, Z \in \mathcal{C}$, we have $Y \in \mathcal{C}$.

Definition

A full subcategory ${\mathcal C}$ of ${\mathcal T}$ is called

• extension-closed if, given exact triangle $X \longrightarrow Y \longrightarrow Z$ in \mathcal{T} with $X, Z \in \mathcal{C}$, we have $Y \in \mathcal{C}$.

• right triangulated it is closed under extensions and [1].

Definition

A full subcategory ${\mathcal C}$ of ${\mathcal T}$ is called

- extension-closed if, given exact triangle $X \longrightarrow Y \longrightarrow Z$ in \mathcal{T} with $X, Z \in \mathcal{C}$, we have $Y \in \mathcal{C}$.
- right triangulated it is closed under extensions and [1].
- *left triangulated* if it is closed under extensions and [-1].

From now on, ${\mathcal C}$ is an extension-closed subcategory of ${\mathcal T}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From now on, ${\mathcal C}$ is an extension-closed subcategory of ${\mathcal T}.$

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C is called

From now on, ${\mathcal C}$ is an extension-closed subcategory of ${\mathcal T}.$

Definition

- A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C is called
 - pseudo-exact if it embeds in an exact triangle in \mathcal{T} :

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

From now on, $\mathcal C$ is an extension-closed subcategory of $\mathcal T$.

Definition

- A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C is called
 - pseudo-exact if it embeds in an exact triangle in \mathcal{T} :

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

• almost split if it is pseudo-exact with

From now on, \mathcal{C} is an extension-closed subcategory of \mathcal{T} .

Definition

- A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C is called
 - pseudo-exact if it embeds in an exact triangle in \mathcal{T} :

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

almost split if it is pseudo-exact with

• u minimal left almost split in C;

From now on, \mathcal{C} is an extension-closed subcategory of \mathcal{T} .

Definition

- A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C is called
 - pseudo-exact if it embeds in an exact triangle in \mathcal{T} :

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

- almost split if it is pseudo-exact with
 - u minimal left almost split in C;
 - v minimal right almost split in C.

Given a pseudo-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C, the following statements are equivalent.

Given a pseudo-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C, the following statements are equivalent.

• The sequence is almost split in C.

Given a pseudo-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C, the following statements are equivalent.

- The sequence is almost split in C.
- **2** u is left almost split and v is right almost split in C.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a pseudo-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C, the following statements are equivalent.

- The sequence is almost split in C.
- **2** u is left almost split and v is right almost split in C.

• *u* is left almost split in C and End(Z) is local.

Given a pseudo-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in C, the following statements are equivalent.

- The sequence is almost split in C.
- **2** u is left almost split and v is right almost split in C.

- *u* is left almost split in C and End(Z) is local.
- v is right almost split in C and End(X) is local.

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 $\widehat{\mathscr{C}}$: the full subcategory of $D(\mathfrak{A})$ of complexes $\cong X \in \mathscr{C}$.

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 $\widehat{\mathscr{C}}$: the full subcategory of $D(\mathfrak{A})$ of complexes $\cong X \in \mathscr{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

•
$$\mathscr{C} \cong \widehat{\mathscr{C}}$$
, which is extension-closed in $D(\mathfrak{A})$.

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 $\widehat{\mathscr{C}}$: the full subcategory of $D(\mathfrak{A})$ of complexes $\cong X \in \mathscr{C}$.

Lemma

- $\mathscr{C} \cong \widehat{\mathscr{C}}$, which is extension-closed in $D(\mathfrak{A})$.
- The following statements are equivalent.

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 $\widehat{\mathscr{C}}$: the full subcategory of $D(\mathfrak{A})$ of complexes $\cong X \in \mathscr{C}$.

Lemma

•
$$\mathscr{C} \cong \widehat{\mathscr{C}}$$
, which is extension-closed in $D(\mathfrak{A})$.

• The following statements are equivalent.

•
$$0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$$
 almost split sequence in \mathscr{C} .

 ${\mathscr C}$: an extension-closed subcategory of abelain category ${\mathfrak A}.$

 $\widehat{\mathscr{C}}$: the full subcategory of $D(\mathfrak{A})$ of complexes $\cong X \in \mathscr{C}$.

Lemma

•
$$\mathscr{C} \cong \widehat{\mathscr{C}}$$
, which is extension-closed in $D(\mathfrak{A})$.

- The following statements are equivalent.
 - $0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$ almost split sequence in \mathscr{C} .
 - $X \xrightarrow{u} Y \xrightarrow{v} Z$ is an almost split sequence in $\widehat{\mathscr{C}}$.

• Let M, N be objects in C.

• Let M, N be objects in C.

2 $\operatorname{Ext}^{1}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{T}}(M, N[1]).$

- Let M, N be objects in C.
- 2 $\operatorname{Ext}^{1}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{T}}(M, N[1]).$
- **③** A morphism $f : M \to N$ in C is called

・ロト・日本・モート モー うへぐ

- Let M, N be objects in C.
- 2 $\operatorname{Ext}^{1}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{T}}(M, N[1]).$
- **③** A morphism $f : M \to N$ in C is called

• projectively trivial if $w \circ f = 0$, for $w \in \text{Ext}^1_{\mathcal{C}}(N, X)$.

- Let M, N be objects in C.
- 2 $\operatorname{Ext}^{1}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{T}}(M, N[1]).$
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \text{Ext}^1_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \text{Ext}^1_{\mathcal{C}}(X, M)$.

- Let M, N be objects in C.
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \operatorname{Ext}^1_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \text{Ext}^1_{\mathcal{C}}(X, M)$.

• $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{inj-trivial morphisms} >.$

- Let M, N be objects in C.
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \text{Ext}^1_{\mathcal{C}}(X, M)$.

- $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{inj-trivial morphisms} >.$
- $\underline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{proj-trivial morphisms} > .$

- Let M, N be objects in C.
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(X, M)$.
- $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{inj-trivial morphisms} >.$
- $\underline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{proj-trivial morphisms} > .$

Proposition

• $\operatorname{Ext}_{\mathcal{C}}(M, N)$ is an $\overline{\operatorname{End}}(N)$ - $\underline{\operatorname{End}}(M)$ -bimodule.

- Let M, N be objects in C.
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \operatorname{Ext}^1_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(X, M)$.
- $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{inj-trivial morphisms} >.$
- $\underline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{proj-trivial morphisms} > .$

Proposition

- $\operatorname{Ext}_{\mathcal{C}}(M, N)$ is an $\overline{\operatorname{End}}(N)$ - $\underline{\operatorname{End}}(M)$ -bimodule.
- C left triangulated $\Rightarrow \operatorname{Hom}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N).$

- Let M, N be objects in C.
- **③** A morphism $f: M \to N$ in C is called
 - projectively trivial if $w \circ f = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(N, X)$.
 - *injectively trivial* $f \circ w[-1] = 0$, for $w \in \operatorname{Ext}^{1}_{\mathcal{C}}(X, M)$.
- $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{inj-trivial morphisms} >.$
- $\underline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N) / < \operatorname{proj-trivial morphisms} > .$

Proposition

- $\operatorname{Ext}_{\mathcal{C}}(M, N)$ is an $\overline{\operatorname{End}}(N)$ - $\underline{\operatorname{End}}(M)$ -bimodule.
- C left triangulated $\Rightarrow \operatorname{Hom}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N).$
- C right triangulated $\Rightarrow \overline{\operatorname{Hom}}_{\mathcal{C}}(M, N) = \operatorname{Hom}_{\mathcal{C}}(M, N).$

• Let $X, Z \in C$ with End(X), End(Z) being local.

(ロ)、(型)、(E)、(E)、 E) の(の)

• Let $X, Z \in \mathcal{C}$ with $\operatorname{End}(X)$, $\operatorname{End}(Z)$ being local.

Onsider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let $X, Z \in C$ with End(X), End(Z) being local.

Onsider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

・ロト・日本・モート モー うへぐ

• $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.

• Let $X, Z \in C$ with End(X), End(Z) being local.

Onsider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

• $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.

• Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

• Let $X, Z \in \mathcal{C}$ with $\operatorname{End}(X)$, $\operatorname{End}(Z)$ being local.

Onsider ring homomorphisms

$$\gamma: \boldsymbol{\Gamma}
ightarrow \overline{\operatorname{End}}(\boldsymbol{X}) ext{ and } \sigma: \boldsymbol{\Sigma}
ightarrow \underline{\operatorname{End}}(\boldsymbol{Z}).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

• Let $X, Z \in C$ with End(X), End(Z) being local.

Onsider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

The following statements are equivalent.

• C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.

• Let $X, Z \in \mathcal{C}$ with End(X), End(Z) being local.

Consider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- Ext¹_C(Z, -) is a subfunctor of Hom_{Γ}(Hom_C(-, X), $_{\Gamma}I$)

• Let $X, Z \in \mathcal{C}$ with End(X), End(Z) being local.

Consider ring homomorphisms

$$\gamma: \Gamma \to \overline{\operatorname{End}}(X) \text{ and } \sigma: \Sigma \to \underline{\operatorname{End}}(Z).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- Ext¹_C(Z, -) is a subfunctor of Hom_Γ(Hom_C(-, X), _ΓI) and Ext¹_C(Z, X) has non-zero End(X)-socle.

• Let $X, Z \in \mathcal{C}$ with End(X), End(Z) being local.

Onsider ring homomorphisms

$$\gamma: \boldsymbol{\Gamma}
ightarrow \overline{\operatorname{End}}(\boldsymbol{X}) ext{ and } \sigma: \boldsymbol{\Sigma}
ightarrow \underline{\operatorname{End}}(\boldsymbol{Z}).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- $\operatorname{Ext}^{1}_{\mathcal{C}}(Z, -)$ is a subfunctor of $\operatorname{Hom}_{\Gamma}(\operatorname{Hom}_{\mathcal{C}}(-, X), \Gamma I)$ and $\operatorname{Ext}^{1}_{\mathcal{C}}(Z, X)$ has non-zero $\overline{\operatorname{End}}(X)$ -socle.
- Ext¹_C(-, X) is a subfunctor of Hom_{Σ}(Hom_C(Z, -), I_{Σ})

• Let $X, Z \in \mathcal{C}$ with End(X), End(Z) being local.

Onsider ring homomorphisms

$$\gamma: \boldsymbol{\Gamma}
ightarrow \overline{\operatorname{End}}(\boldsymbol{X}) ext{ and } \sigma: \boldsymbol{\Sigma}
ightarrow \underline{\operatorname{End}}(\boldsymbol{Z}).$$

- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is Γ - Σ -bimodule.
- Let $_{\Gamma}I$ and I_{Σ} injective co-generators of $_{\Gamma}S$ and S_{Σ} , resp.

Theorem

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- $\operatorname{Ext}^{1}_{\mathcal{C}}(Z, -)$ is a subfunctor of $\operatorname{Hom}_{\Gamma}(\operatorname{Hom}_{\mathcal{C}}(-, X), {}_{\Gamma}I)$ and $\operatorname{Ext}^{1}_{\mathcal{C}}(Z, X)$ has non-zero $\overline{\operatorname{End}}(X)$ -socle.
- $\operatorname{Ext}^{1}_{\mathcal{C}}(-,X)$ is a subfunctor of $\operatorname{Hom}_{\Sigma}(\operatorname{Hom}_{\mathcal{C}}(Z,-),I_{\Sigma})$ and $\operatorname{Ext}^{1}_{\mathcal{C}}(Z,X)$ has non-zero $\operatorname{End}(Z)$ -socle.

If $\gamma : \Gamma \to \overline{\operatorname{End}}(X)$ and $\sigma : \Sigma \to \underline{\operatorname{End}}(Z)$ are surjective, then the following statements are equivalent.

If $\gamma : \Gamma \to \overline{\operatorname{End}}(X)$ and $\sigma : \Sigma \to \underline{\operatorname{End}}(Z)$ are surjective, then the following statements are equivalent.

• C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.

If $\gamma : \Gamma \to \overline{\operatorname{End}}(X)$ and $\sigma : \Sigma \to \underline{\operatorname{End}}(Z)$ are surjective, then the following statements are equivalent.

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- **2** Ext¹_C(Z, -) is a subfunctor of Hom_{Γ}($\overline{Hom}_{C}(-, X), {}_{\Gamma}I$).

If $\gamma : \Gamma \to \overline{\operatorname{End}}(X)$ and $\sigma : \Sigma \to \underline{\operatorname{End}}(Z)$ are surjective, then the following statements are equivalent.

- C has almost split sequence $X \longrightarrow Y \longrightarrow Z$.
- **2** Ext¹_C(Z, -) is a subfunctor of Hom_{Γ}($\overline{\text{Hom}}_{C}(-, X), {}_{\Gamma}I$).
- Ext¹_C(-, X) is a subfunctor of Hom_{Σ}(Hom_C(Z, -), I_{Σ}).

• Let C be a left triangulated subcategory of T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let C be a left triangulated subcategory of T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Let $Z \in C$ with End(Z) being local.

- Let C be a left triangulated subcategory of T.
- 2 Let $Z \in C$ with End(Z) being local.
- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is right $\operatorname{End}(Z)$ -simple.

・ロト・日本・モート モー うへぐ

- Let C be a left triangulated subcategory of T.
- 2 Let $Z \in C$ with End(Z) being local.
- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is right $\operatorname{End}(Z)$ -simple.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• I the injective envelope of S.

- Let C be a left triangulated subcategory of T.
- 2 Let $Z \in C$ with End(Z) being local.
- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is right $\operatorname{End}(Z)$ -simple.
- I the injective envelope of S.

Theorem

If $\operatorname{Hom}_{\operatorname{End}(Z)}(\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Z,-),I)\cong\operatorname{Ext}^1_{\operatorname{\mathcal{C}}}(-,X)$ for some $X\in\operatorname{\mathcal{C}}$,

- Let C be a left triangulated subcategory of T.
- 2 Let $Z \in C$ with End(Z) being local.
- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is right $\operatorname{End}(Z)$ -simple.
- I the injective envelope of S.

Theorem

If $\operatorname{Hom}_{\operatorname{End}(Z)}(\operatorname{Hom}_{\mathcal{C}}(Z, -), I) \cong \operatorname{Ext}^{1}_{\mathcal{C}}(-, X)$ for some $X \in \mathcal{C}$, then \mathcal{C} has almost split sequence $X \longrightarrow Y \longrightarrow Z$.

- Let C be a left triangulated subcategory of T.
- 2 Let $Z \in C$ with End(Z) being local.
- $S = \operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))$ is right $\operatorname{End}(Z)$ -simple.
- I the injective envelope of S.

Theorem

If $\operatorname{Hom}_{\operatorname{End}(Z)}(\operatorname{Hom}_{\mathcal{C}}(Z, -), I) \cong \operatorname{Ext}^{1}_{\mathcal{C}}(-, X)$ for some $X \in \mathcal{C}$, then \mathcal{C} has almost split sequence $X \longrightarrow Y \longrightarrow Z$.

Remark

In case ${\cal C}$ is a right triangulated subcategory of ${\cal T},$ then the dual version of the above theorem holds.