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Motivation

1 A: connected non-simple artin algebra.

2 modA: category of finitely generated left A-modules.

3 rad(modA): Jacobson radical of modA.

Theorem (Auslander)

A representation-finite ⇔ (rad(modA))m = 0 for some m ≥ 1.

Objective

Understand the representation theory of representation-finite
artin algebras in terms of the nilpotency of rad(modA).
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This objective can be accomplished by two approaches.

Problem

1 Given a class of representation-finite algebras A,

calculate the nilpotency of rad(modA).

2 Given m > 0, find all A with rad(modA) of nilpotency m

and study their representation theory.

In this talk, we calculate the nilpotency of rad(modA)

in case A is hereditary.
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Coxeter Transformation

1 Let A be hereditary artin algebra.

2 Let S1, . . . , Sn the non-iso simple modules in modA with

projective covers P1, . . . ,Pn;

injective envelopes I1, . . . , In.

3 Write dimM = (d1, . . . , dn) ∈ Zn, for M ∈ modA,

with di multiplicity of Si as composition factor of M .

Proposition

1 The abelian group Zn has bases

{dimP1, . . . ,dimPn}
{dimI1, . . . ,dimIn}.

2 ∃! isomorphism ΦA : Zn → Zn : dimPi 7→ −dimIi

called the Coxeter transformation of K0(A).
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Extension quiver

Definition

The Ext-quiver QA of artin algebra A is a valued quiver :

1 the vertices are the non isomorphic simple A-modules.

2 ∃ S → T with valuation (d , d ′) in case

Ext1A(S ,T ) ̸= 0

d = dim End(T )Ext
1
A(S ,T )

d ′ = dimExt1A(S ,T )End(S).
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Coxeter order

Proposition (ARS Book)

Let A be hereditary of finite representation type.

1 QA is a Dynkin diagram.

2 ΦA is of finite order c
A
, called the Coxeter order for A.

QA An Bn Cn Dn E6 E7 E8 F4 G2

c
A

n+1 2n 2n 2(n−1) 12 18 30 12 6
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Depth of Map

Let A be of finite representation type.

Let f : X → Y be non-zero map in modA.

Then f ∈rads(X ,Y )\rads+1(X ,Y ) for some s ≥ 0.

Put dp(f ) = s, called the depth of f .

Observation

If dp(f ) = s > 0 with X and Y indecomposable,

then AR-quiver ΓA contains a path X⇝Y of length s.
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Depth of Module Category

1 Let A be of finite representation type.

2 Define the depth of modA by

dp(modA) = max{dp(f ) | f non-zero maps in modA}.
3 Then, dp(modA) + 1 is the nilpotency of rad(modA).

4 For each simple module S ∈ modA, we fix

a projective cover π
S
: P

S
→ S ;

an injective envelope ι
S
: S → I

S
.

Theorem (Chaio, Liu, 2012)

dp(modA) = max{dp(ι
S
◦π

S
) | S ∈ modA is simple}.
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Translation quiver

Let ∆ be a quiver without oriented cycles.

Construct translation quiver Z∆ by knitting Z copies of ∆.

Proposition

Assume that ∆ is a tree. Given any vertices a, b in Z∆,

all a⇝ b in Z∆ have the same length, written as d(a, b).
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Translation quiver

1 Let Γ be translation quiver with translation τ .

2 A connected subquiver ∆ of Γ is called

(1) mesh-complete if it contain any mesh

y1 ))
τx

55

))
x , where τx , x ∈ ∆.

ys
55

(2) a section provided that

it contains no oriented cycle;

it meets exactly once each of the τ -orbits of Γ ;

it is convex in Γ , that is, it contains any path
x0 → x1 → · · · → xs−1 → xs with x0, xs ∈ ∆.

3 If Γ contains a section ∆, then it embeds in Z∆
as a convex translation subquiver.
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Let A be hereditary of Dynkin type.

Given stalk complex M[n] ∈ Db(A) with M ∈ modA,

Define dimM[n] = (−1)ndimM .

This extends additively to all complexes in Db(modA).

Proposition

1 X. ∈ Db(modA) is indec ⇒ Φ−1
A (dimX.) = dim(τ−1X.).

2 S ∈ modA is simple ⇒ P
S
[2] = τ−c

AP
S
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