The radical nipotency of the module category of a hereditary algebra of Dynkin type

Shiping Liu and Gordana Todorov

Maurice Auslander International Conference

$$
\text { April } 26 \text { - May 1, } 2023
$$

Motivation

(1) A: connected non-simple artin algebra.

Motivation

(1) A : connected non-simple artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.

Motivation

(1) A : connected non-simple artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(3) $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.

Motivation

(1) A: connected non-simple artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(3) $\operatorname{rad}(\bmod A)$: Jacobson radical of $\bmod A$.

Theorem (Auslander)

A representation-finite $\Leftrightarrow(\operatorname{rad}(\bmod A))^{m}=0$ for some $m \geq 1$.

Motivation

(1) A: connected non-simple artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(3) $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.

Theorem (Auslander)

A representation-finite $\Leftrightarrow(\operatorname{rad}(\bmod A))^{m}=0$ for some $m \geq 1$.

Objective

Understand the representation theory of representation-finite artin algebras in terms of the nilpotency of $\operatorname{rad}(\bmod A)$.

Motivation

This objective can be accomplished by two approaches.

Motivation

This objective can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A,

Motivation

This objective can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A, calculate the nilpotency of $\operatorname{rad}(\bmod A)$.

Motivation

This objective can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A, calculate the nilpotency of $\operatorname{rad}(\bmod A)$.
(2) Given $m>0$, find all A with $\operatorname{rad}(\bmod A)$ of nilpotency m

Motivation

This objective can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A, calculate the nilpotency of $\operatorname{rad}(\bmod A)$.
(2) Given $m>0$, find all A with $\operatorname{rad}(\bmod A)$ of nilpotency m and study their representation theory.

Motivation

This objective can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A, calculate the nilpotency of $\operatorname{rad}(\bmod A)$.
(2) Given $m>0$, find all A with $\operatorname{rad}(\bmod A)$ of nilpotency m and study their representation theory.

In this talk, we calculate the nilpotency of $\operatorname{rad}(\bmod A)$
in case A is hereditary.

Coxeter Transformation

(1) Let A be hereditary artin algebra.

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$,

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(0) Write $\operatorname{dim} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Proposition

(1) The abelian group \mathbb{Z}^{n} has bases

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Proposition

(1) The abelian group \mathbb{Z}^{n} has bases

- $\left\{\underline{\operatorname{dim}} P_{1}, \ldots, \underline{\operatorname{dim}} P_{n}\right\}$

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Proposition

(1) The abelian group \mathbb{Z}^{n} has bases

- $\left\{\underline{\operatorname{dim}} P_{1}, \ldots, \underline{\operatorname{dim}} P_{n}\right\}$
- $\left\{\underline{\operatorname{dim}} I_{1}, \ldots, \underline{\operatorname{dim}} I_{n}\right\}$.

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Proposition

(1) The abelian group \mathbb{Z}^{n} has bases

- $\left\{\underline{\operatorname{dim}} P_{1}, \ldots, \underline{\operatorname{dim}} P_{n}\right\}$
- $\left\{\underline{\operatorname{dim}} I_{1}, \ldots, \underline{\operatorname{dim}} I_{n}\right\}$.
(2) \exists ! isomorphism $\Phi_{A}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}: \underline{\operatorname{dim}} P_{i} \mapsto-\underline{\operatorname{dim}} I_{i}$

Coxeter Transformation

(1) Let A be hereditary artin algebra.
(2) Let S_{1}, \ldots, S_{n} the non-iso simple modules in $\bmod A$ with

- projective covers P_{1}, \ldots, P_{n};
- injective envelopes I_{1}, \ldots, I_{n}.
(3) Write $\underline{\operatorname{dim}} M=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, for $M \in \bmod A$, with d_{i} multiplicity of S_{i} as composition factor of M.

Proposition

(1) The abelian group \mathbb{Z}^{n} has bases

- $\left\{\underline{\operatorname{dim}} P_{1}, \ldots, \underline{\operatorname{dim}} P_{n}\right\}$
- $\left\{\underline{\operatorname{dim}} I_{1}, \ldots, \underline{\operatorname{dim}} I_{n}\right\}$.
(2) \exists ! isomorphism $\Phi_{A}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}: \underline{\operatorname{dim}} P_{i} \mapsto-\underline{\operatorname{dim}} /_{i}$ called the Coxeter transformation of $K_{0}(A)$.

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver:

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver:
(0 the vertices are the non isomorphic simple A-modules.

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver :
(1) the vertices are the non isomorphic simple A-modules.
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver :
(1) the vertices are the non isomorphic simple A-modules.
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case

- $\operatorname{Ext}_{A}^{1}(S, T) \neq 0$

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver :
(1) the vertices are the non isomorphic simple A-modules.
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case

- $\operatorname{Ext}_{A}^{1}(S, T) \neq 0$
- $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}_{A}^{1}(S, T)$

Extension quiver

Definition

The Ext-quiver Q_{A} of artin algebra A is a valued quiver:
(0) the vertices are the non isomorphic simple A-modules.

- $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ in case
- $\operatorname{Ext}_{A}^{1}(S, T) \neq 0$
- $d=\operatorname{dim}_{\operatorname{End}(T)} \operatorname{Ext}_{A}^{1}(S, T)$
- $d^{\prime}=\operatorname{dim} \operatorname{Ext}_{A}^{1}(S, T)_{\operatorname{End}(S)}$.

Dynkin diagram

$\mathbb{A}_{n}: \quad 1-2-\cdots-n \quad(n \geq 1)$
$\mathbb{B}_{n}: \quad 1 \stackrel{(1,2)}{ } 2-\cdots-n \quad(n \geq 2)$
$\mathbb{C}_{n}: \quad 1 \stackrel{(2,1)}{2}-3-\cdots-n$
$(n \geq 3)$
$\mathbb{D}_{n}: \quad 2-3-4-\cdots-n$
$(n \geq 4)$

Dynkin diagram

$$
\mathbb{A}_{n}: \quad 1-2-\cdots-n \quad(n \geq 1)
$$

$\mathbb{B}_{n}: \quad 1 \stackrel{(1,2)}{ } 2-\cdots-n$
$(n \geq 2)$
$\mathbb{C}_{n}: \quad 1 \stackrel{(2,1)}{=} 2-3-\cdots-n$
$(n \geq 3)$
$\mathbb{D}_{n}: \quad 2-3-4-\cdots-n$
$(n \geq 4)$
$\mathbb{E}_{n}:$
$2-3-4-5-6-\cdots-n$
$(n=6,7,8)$

Dynkin diagram

$$
\begin{array}{lll}
\mathbb{A}_{n}: & 1-2-\cdots-n & (n \geq 1) \\
\mathbb{B}_{n}: & 1 \stackrel{(1,2)}{2-\cdots-n} & (n \geq 2) \\
\mathbb{C}_{n}: & 1 \stackrel{(2,1)}{2-3-\cdots-n} & (n \geq 3) \\
& 1 & (n \geq 4) \\
\mathbb{D}_{n}: & 2-3-4-\cdots-n & \\
& & \\
\mathbb{E}_{n}: & 2-3-4-5-6-\cdots-n & (n=6, \\
\mathbb{F}_{4}: & 1-2 \frac{(1,2)}{} 3-4 & \\
\mathbb{G}_{2}: & 1 \frac{(1,3)}{2} &
\end{array}
$$

Coxeter order

Proposition (ARS Book)
Let A be hereditary of finite representation type.

Coxeter order

Proposition (ARS Book)
Let A be hereditary of finite representation type.
(1) \bar{Q}_{A} is a Dynkin diagram.

Coxeter order

Proposition (ARS Book)
Let A be hereditary of finite representation type.
(1) \bar{Q}_{A} is a Dynkin diagram.
(2) Φ_{A} is of finite order c_{A}, called the Coxeter order for A.

Coxeter order

Proposition (ARS Book)

Let A be hereditary of finite representation type.
(1) \bar{Q}_{A} is a Dynkin diagram.
(2) Φ_{A} is of finite order c_{A}, called the Coxeter order for A.

\bar{Q}_{A}	\mathbb{A}_{n}	\mathbb{B}_{n}	\mathbb{C}_{n}	\mathbb{D}_{n}	\mathbb{E}_{6}	\mathbb{E}_{7}	\mathbb{E}_{8}	\mathbb{F}_{4}	\mathbb{G}_{2}
C_{A}	$n+1$	$2 n$	$2 n$	$2(n-1)$	12	18	30	12	6

Main Result of this talk

Theorem (Liu, Todorov, 2023)

If A is hereditary artin algebra of finite representation type,

Main Result of this talk

Theorem (Liu, Todorov, 2023)

If A is hereditary artin algebra of finite representation type, then $\operatorname{rad}(\bmod A)$ is of nilpotency $c_{A}-1$.

Depth of Map

Let A be of finite representation type.

Depth of Map

Let A be of finite representation type.
Let $f: X \rightarrow Y$ be non-zero map in $\bmod A$.

Depth of Map

Let A be of finite representation type.
Let $f: X \rightarrow Y$ be non-zero map in $\bmod A$.

- Then $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$ for some $s \geq 0$.

Depth of Map

Let A be of finite representation type.
Let $f: X \rightarrow Y$ be non-zero map in $\bmod A$.

- Then $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$ for some $s \geq 0$.
- Put $\operatorname{dp}(f)=s$, called the depth of f.

Depth of Map

Let A be of finite representation type.
Let $f: X \rightarrow Y$ be non-zero map in $\bmod A$.

- Then $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$ for some $s \geq 0$.
- Put $\operatorname{dp}(f)=s$, called the depth of f.

Observation

If $\operatorname{dp}(f)=s>0$ with X and Y indecomposable,

Depth of Map

Let A be of finite representation type.
Let $f: X \rightarrow Y$ be non-zero map in $\bmod A$.

- Then $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$ for some $s \geq 0$.
- Put $\operatorname{dp}(f)=s$, called the depth of f.

Observation

If $\operatorname{dp}(f)=s>0$ with X and Y indecomposable, then AR-quiver Γ_{A} contains a path $X \rightsquigarrow Y$ of length s.

Depth of Module Category

(1) Let A be of finite representation type.

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by
$\mathrm{dp}(\bmod A)=\max \{\mathrm{dp}(f) \mid f$ non-zero maps in $\bmod A\}$.

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

$$
\mathrm{dp}(\bmod A)=\max \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

(3) Then, $\operatorname{dp}(\bmod A)+1$ is the nilpotency of $\operatorname{rad}(\bmod A)$.

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

$$
\mathrm{dp}(\bmod A)=\max \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

(3) Then, $\operatorname{dp}(\bmod A)+1$ is the nilpotency of $\operatorname{rad}(\bmod A)$.
(9) For each simple module $S \in \bmod A$, we fix

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

$$
\mathrm{dp}(\bmod A)=\max \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

(3) Then, $\operatorname{dp}(\bmod A)+1$ is the nilpotency of $\operatorname{rad}(\bmod A)$.
(9) For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{s} \rightarrow S$;

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

$$
\mathrm{dp}(\bmod A)=\max \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

(3) Then, $\operatorname{dp}(\bmod A)+1$ is the nilpotency of $\operatorname{rad}(\bmod A)$.
(9) For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{s} \rightarrow S$;
- an injective envelope $\iota_{S}: S \rightarrow I_{S}$.

Depth of Module Category

(1) Let A be of finite representation type.
(2) Define the depth of $\bmod A$ by

$$
\mathrm{dp}(\bmod A)=\max \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\} .
$$

- Then, $\operatorname{dp}(\bmod A)+1$ is the nilpotency of $\operatorname{rad}(\bmod A)$.
(0) For each simple module $S \in \bmod A$, we fix
- a projective cover $\pi_{s}: P_{S} \rightarrow S$;
- an injective envelope $\iota_{s}: S \rightarrow I_{s}$.

Theorem (Chaio, Liu, 2012)

$$
\operatorname{dp}(\bmod A)=\max \left\{\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right) \mid S \in \bmod A \text { is simple }\right\} .
$$

Translation quiver

Let Δ be a quiver without oriented cycles.

Translation quiver

Let Δ be a quiver without oriented cycles.
Construct translation quiver $\mathbb{Z} \Delta$ by knitting \mathbb{Z} copies of Δ.

Translation quiver

Let Δ be a quiver without oriented cycles.
Construct translation quiver $\mathbb{Z} \Delta$ by knitting \mathbb{Z} copies of Δ.

Proposition

Assume that $\bar{\Delta}$ is a tree. Given any vertices a, b in $\mathbb{Z} \Delta$,

Translation quiver

Let Δ be a quiver without oriented cycles.
Construct translation quiver $\mathbb{Z} \Delta$ by knitting \mathbb{Z} copies of Δ.

Proposition

Assume that $\bar{\Delta}$ is a tree. Given any vertices a, b in $\mathbb{Z} \Delta$, all $a \rightsquigarrow b$ in $\mathbb{Z} \Delta$ have the same length, written as $d(a, b)$.

Translation quiver

(1) Let Γ be translation quiver with translation τ.

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh
(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that

- it contains no oriented cycle;

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ-orbits of Γ;

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ-orbits of Γ;
- it is convex in Γ, that is, it contains any path

Translation quiver

(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ-orbits of Γ;
- it is convex in Γ, that is, it contains any path $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{s-1} \rightarrow x_{s}$ with $x_{0}, x_{s} \in \Delta$.
(1) Let Γ be translation quiver with translation τ.
(2) A connected subquiver Δ of Γ is called
(1) mesh-complete if it contain any mesh

(2) a section provided that
- it contains no oriented cycle;
- it meets exactly once each of the τ-orbits of Γ;
- it is convex in Γ, that is, it contains any path $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{s-1} \rightarrow x_{s}$ with $x_{0}, x_{s} \in \Delta$.
(3) If Γ contains a section Δ, then it embeds in $\mathbb{Z} \Delta$ as a convex translation subquiver.

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;
- the injective modules also form a section.

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;
- the injective modules also form a section.
(2) In this case,

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;
- the injective modules also form a section.
(2) In this case,

$$
\Delta \cong Q_{A}^{\mathrm{op}}
$$

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;
- the injective modules also form a section.
(2) In this case,
- $\Delta \cong Q_{A}^{\mathrm{op}}$;
- $\Gamma_{A}=\Gamma$, a convex subquiver of $\mathbb{Z} Q_{A}^{\mathrm{op}}$.

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

(1) A is hereditary representation-finite $\Leftrightarrow \Gamma_{A}$ has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ;
- the injective modules also form a section.
(3) In this case,
- $\Delta \cong Q_{A}^{\mathrm{op}}$;
- $\Gamma_{A}=\Gamma$, a convex subquiver of $\mathbb{Z} Q_{A}^{\mathrm{op}}$.
- Given $M, N \in \Gamma_{A}$, all $M \rightsquigarrow N$ have the same length.

Corollary
Let A be hereditary of finite representation type.

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, I_{s}\right)$.

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, l_{s}\right)$.
(2) $d p(\bmod A)=\max \left\{d\left(P_{s}, I_{s}\right) \mid S \in \bmod A\right.$ is simple $\}$.

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, I_{s}\right)$.
(2) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{s}, I_{S}\right) \mid S \in \bmod A\right.$ is simple $\}$.

Proof.

- $\iota_{s} \circ \pi_{s}: P_{s} \rightarrow I_{s}$, sum of composites of $d\left(P_{s}, I_{s}\right)$ irred maps,

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, l_{s}\right)$.
(2) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{S}, I_{S}\right) \mid S \in \bmod A\right.$ is simple $\}$.

Proof.

- $\iota_{s} \circ \pi_{s}: P_{s} \rightarrow I_{s}$, sum of composites of $d\left(P_{s}, I_{s}\right)$ irred maps,

$$
\Longrightarrow \mathrm{dp}\left(\iota_{s} \circ \pi_{s}\right) \geq d\left(P_{s}, I_{s}\right)
$$

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, I_{s}\right)$.
(2) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{S}, I_{S}\right) \mid S \in \bmod A\right.$ is simple $\}$.

Proof.

- $\iota_{s} \circ \pi_{s}: P_{s} \rightarrow I_{s}$, sum of composites of $d\left(P_{s}, I_{s}\right)$ irred maps,

$$
\Longrightarrow \operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right) \geq d\left(P_{s}, I_{s}\right)
$$

- Γ_{A} contains no $P_{s} \rightsquigarrow I_{s}$ of length $>d\left(P_{s}, I_{s}\right)$,

Corollary

Let A be hereditary of finite representation type.
(1) If S is simple, then $\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right)=d\left(P_{s}, l_{s}\right)$.
(2) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{S}, I_{s}\right) \mid S \in \bmod A\right.$ is simple $\}$.

Proof.

- $\iota_{s} \circ \pi_{s}: P_{s} \rightarrow I_{s}$, sum of composites of $d\left(P_{s}, I_{s}\right)$ irred maps,

$$
\Longrightarrow \operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right) \geq d\left(P_{s}, I_{s}\right)
$$

- Γ_{A} contains no $P_{s} \rightsquigarrow I_{s}$ of length $>d\left(P_{s}, I_{s}\right)$,

$$
\Longrightarrow \mathrm{dp}\left(\iota_{s} \circ \pi_{s}\right) \leq d\left(P_{s}, l_{s}\right)
$$

- Let A be hereditary of Dynkin type.
- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^{b}(A)$ with $M \in \bmod A$,
- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^{b}(A)$ with $M \in \bmod A$, Define $\underline{\operatorname{dim}} M[n]=(-1)^{n} \underline{\operatorname{dim}} M$.
- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^{b}(A)$ with $M \in \bmod A$, Define $\underline{\operatorname{dim}} M[n]=(-1)^{n} \underline{\operatorname{dim}} M$.
This extends additively to all complexes in $D^{b}(\bmod A)$.
- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^{b}(A)$ with $M \in \bmod A$, Define $\operatorname{dim} M[n]=(-1)^{n} \underline{\operatorname{dim} M}$.
This extends additively to all complexes in $D^{b}(\bmod A)$.

Proposition

(1) $X \cdot \in D^{b}(\bmod A)$ is indec $\Rightarrow \Phi_{A}^{-1}(\underline{\operatorname{dim}} X \cdot)=\underline{\operatorname{dim}}\left(\tau^{-1} X \cdot\right)$.

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^{b}(A)$ with $M \in \bmod A$, Define $\operatorname{dim} M[n]=(-1)^{n} \underline{\operatorname{dim} M}$.
This extends additively to all complexes in $D^{b}(\bmod A)$.

Proposition

(1) $X \cdot \in D^{b}(\bmod A)$ is indec $\Rightarrow \Phi_{A}^{-1}(\underline{\operatorname{dim}} X \cdot)=\underline{\operatorname{dim}}\left(\tau^{-1} X \cdot\right)$.
(2) $S \in \bmod A$ is simple $\Rightarrow P_{S}[2]=\tau^{-c_{A}} P_{S}$.

Proof of Main Result

Let A be hereditary of Dynkin type Δ.

Proof of Main Result

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.

Proof of Main Result

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

Proof of Main Result

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, I_{s}\right)+2
$$

Proof of Main Result

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\begin{aligned}
& \text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, l_{s}\right)+2 \\
& \text { - } P_{s}[2]=\tau^{-c_{A}} P_{s} \Longrightarrow d\left(P_{S}, P_{s}[2]\right)=2 c_{A}
\end{aligned}
$$

Proof of Main Result

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\begin{aligned}
& \text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, I_{s}\right)+2 . \\
& \text { - } P_{s}[2]=\tau^{-c_{A}} P_{s} \Longrightarrow d\left(P_{s}, P_{s}[2]\right)=2 c_{A} . \\
& \text { - } d\left(P_{s}, P_{s}[2]\right)=2 d\left(P_{s}, P_{s}[1]\right)=2\left(d\left(P_{s}, I_{s}\right)+2\right) .
\end{aligned}
$$

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\begin{aligned}
& \text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, I_{s}\right)+2 \text {. } \\
& \text { - } P_{s}[2]=\tau^{-c_{A}} P_{s} \Longrightarrow d\left(P_{s}, P_{s}[2]\right)=2 c_{A} \text {. } \\
& \text { - } d\left(P_{s}, P_{s}[2]\right)=2 d\left(P_{s}, P_{s}[1]\right)=2\left(d\left(P_{s}, I_{s}\right)+2\right) \text {. } \\
& \text { - } d\left(P_{S}, I_{S}\right)=c_{A}-2 \text {. }
\end{aligned}
$$

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\begin{aligned}
& \text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, I_{s}\right)+2 . \\
& \text { - } P_{s}[2]=\tau^{-c_{A}} P_{s} \Longrightarrow d\left(P_{s}, P_{s}[2]\right)=2 c_{A} \\
& \text { - } d\left(P_{s}, P_{s}[2]\right)=2 d\left(P_{s}, P_{S}[1]\right)=2\left(d\left(P_{s}, l_{s}\right)+2\right) \text {. } \\
& \text { - } d\left(P_{s}, l_{s}\right)=c_{A}-2 .
\end{aligned}
$$

(0) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{S}, I_{S}\right) \mid S\right.$ simple $\}=c_{A}-2$.

Let A be hereditary of Dynkin type Δ.
(1) AR-quiver $\Gamma_{D^{b}(\bmod A)}=\mathbb{Z} \Delta$.
(2) Given simple module S,

$$
\begin{aligned}
& \text { - } P_{s}[1]=\tau^{-1} I_{s} \Longrightarrow d\left(P_{s}, P_{s}[1]\right)=d\left(P_{s}, I_{s}\right)+2 . \\
& \text { - } P_{s}[2]=\tau^{-c_{A}} P_{s} \Longrightarrow d\left(P_{s}, P_{s}[2]\right)=2 c_{A} \text {. } \\
& \text { - } d\left(P_{s}, P_{s}[2]\right)=2 d\left(P_{s}, P_{S}[1]\right)=2\left(d\left(P_{s}, l_{s}\right)+2\right) \text {. } \\
& \text { - } d\left(P_{S}, l_{s}\right)=c_{A}-2 .
\end{aligned}
$$

(0) $\operatorname{dp}(\bmod A)=\max \left\{d\left(P_{S}, I_{S}\right) \mid S\right.$ simple $\}=c_{A}-2$.
(-) $\operatorname{rad}(\bmod A)$ is of nilpotency $c_{A}-1$.

