The radical nipotency of the module category of a hereditary algebra of Dynkin type

Shiping Liu and Gordana Todorov

Maurice Auslander International Conference

April 26 - May 1, 2023

• A: connected non-simple artin algebra.

- A: connected non-simple artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- A: connected non-simple artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• rad(mod A): Jacobson radical of mod A.

- A: connected non-simple artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- rad(mod A): Jacobson radical of mod A.

Theorem (Auslander)

A representation-finite $\Leftrightarrow (\operatorname{rad}(\operatorname{mod} A))^m = 0$ for some $m \ge 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A: connected non-simple artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- rad(mod A): Jacobson radical of mod A.

Theorem (Auslander)

A representation-finite $\Leftrightarrow (\operatorname{rad}(\operatorname{mod} A))^m = 0$ for some $m \ge 1$.

Objective

Understand the representation theory of representation-finite artin algebras in terms of the nilpotency of rad(mod A).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Problem

• Given a class of representation-finite algebras A,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem

• Given a class of representation-finite algebras A, calculate the nilpotency of rad(mod A).

Problem

- Given a class of representation-finite algebras A, calculate the nilpotency of rad(mod A).
- **2** Given m > 0, find all A with rad(modA) of nilpotency m

Problem

- Given a class of representation-finite algebras A, calculate the nilpotency of rad(mod A).
- Given m > 0, find all A with rad(modA) of nilpotency m and study their representation theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Problem

- Given a class of representation-finite algebras A, calculate the nilpotency of rad(mod A).
- Given m > 0, find all A with rad(modA) of nilpotency m and study their representation theory.

In this talk, we calculate the nilpotency of rad(modA) in case A is hereditary.

• Let A be hereditary artin algebra.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• projective covers P_1, \ldots, P_n ;

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with

- projective covers P_1, \ldots, P_n ;
- injective envelopes I_1, \ldots, I_n .

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- projective covers P_1, \ldots, P_n ;
- injective envelopes I_1, \ldots, I_n .
- **3** Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- 3 Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \operatorname{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

Proposition

• The abelian group \mathbb{Z}^n has bases

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

Proposition

• The abelian group \mathbb{Z}^n has bases

• $\{\underline{\dim}P_1,\ldots,\underline{\dim}P_n\}$

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- 3 Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

Proposition

- The abelian group \mathbb{Z}^n has bases
 - $\{\underline{\dim}P_1,\ldots,\underline{\dim}P_n\}$
 - $\{\underline{\dim}I_1,\ldots,\underline{\dim}I_n\}.$

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

Proposition

- The abelian group \mathbb{Z}^n has bases
 - $\{\underline{\dim}P_1,\ldots,\underline{\dim}P_n\}$
 - $\{\underline{\dim}I_1,\ldots,\underline{\dim}I_n\}.$

• $\exists ! \text{ isomorphism } \Phi_A : \mathbb{Z}^n \to \mathbb{Z}^n : \underline{\dim} P_i \mapsto -\underline{\dim} I_i$

- Let A be hereditary artin algebra.
- 2 Let S_1, \ldots, S_n the non-iso simple modules in modA with
 - projective covers P_1, \ldots, P_n ;
 - injective envelopes I_1, \ldots, I_n .
- Write $\underline{\dim} M = (d_1, \ldots, d_n) \in \mathbb{Z}^n$, for $M \in \text{mod} A$,

with d_i multiplicity of S_i as composition factor of M.

Proposition

- The abelian group \mathbb{Z}^n has bases
 - $\{\underline{\dim}P_1,\ldots,\underline{\dim}P_n\}$
 - $\{\underline{\dim}I_1,\ldots,\underline{\dim}I_n\}.$
- $\exists ! \text{ isomorphism } \Phi_A : \mathbb{Z}^n \to \mathbb{Z}^n : \underline{\dim} P_i \mapsto -\underline{\dim} I_i$ called the Coxeter transformation of $K_0(A)$.

The *Ext-quiver* Q_A of artin algebra A is a valued quiver:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The *Ext-quiver* Q_A of artin algebra A is a valued quiver:

• the vertices are the non isomorphic simple A-modules.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The *Ext-quiver* Q_A of artin algebra A is a valued quiver:
 - the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\exists S \rightarrow T$ with valuation (d, d') in case

- The *Ext-quiver* Q_A of artin algebra A is a valued quiver:
 - the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\exists S \rightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^{1}_{A}(S, T) \neq 0$$

- The *Ext-quiver* Q_A of artin algebra A is a valued quiver:
 - the vertices are the non isomorphic simple A-modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\exists S \rightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^{1}_{A}(S, T) \neq 0$$

•
$$d = \dim_{\operatorname{End}(T)}\operatorname{Ext}^1_A(S, T)$$

- The *Ext-quiver* Q_A of artin algebra A is a valued quiver:
 - the vertices are the non isomorphic simple A-modules.

• $\exists S \rightarrow T$ with valuation (d, d') in case

•
$$\operatorname{Ext}^1_A(S,T) \neq 0$$

•
$$d = \dim_{\operatorname{End}(\mathcal{T})}\operatorname{Ext}^1_A(S, \mathcal{T})$$

• $d' = \dim \operatorname{Ext}^1_A(S, T)_{\operatorname{End}(S)}$.

Dynkin diagram

$$A_n:$$
 $1 - 2 - \cdots - n$
 $(n \ge 1)$
 $\mathbb{B}_n:$
 $1 \frac{(1,2)}{2} 2 - \cdots - n$
 $(n \ge 2)$
 $\mathbb{C}_n:$
 $1 \frac{(2,1)}{2} 2 - 3 - \cdots - n$
 $(n \ge 3)$
 $\mathbb{D}_n:$
 $2 - 3 - 4 - \cdots - n$
 $(n \ge 4)$

Dynkin diagram

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Dynkin diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let A be hereditary of finite representation type.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let A be hereditary of finite representation type.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• \overline{Q}_A is a Dynkin diagram.

Let A be hereditary of finite representation type.

- \overline{Q}_A is a Dynkin diagram.
- **2** Φ_A is of finite order c_A , called the *Coxeter order* for *A*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let A be hereditary of finite representation type.

- \overline{Q}_A is a Dynkin diagram.
- **2** Φ_A is of finite order c_A , called the *Coxeter order* for *A*.

				\mathbb{D}_n					
C _A	n+1	2 <i>n</i>	2 <i>n</i>	2(n-1)	12	18	30	12	6

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Liu, Todorov, 2023)

If A is hereditary artin algebra of finite representation type,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Liu, Todorov, 2023)

If A is hereditary artin algebra of finite representation type, then rad(modA) is of nilpotency $c_A - 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $f : X \to Y$ be non-zero map in mod A.

Let $f: X \to Y$ be non-zero map in modA.

• Then $f \in \operatorname{rad}^{s}(X, Y) \setminus \operatorname{rad}^{s+1}(X, Y)$ for some $s \ge 0$.

Let $f : X \to Y$ be non-zero map in modA.

• Then $f \in \operatorname{rad}^{s}(X, Y) \setminus \operatorname{rad}^{s+1}(X, Y)$ for some $s \ge 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Put dp(f) = s, called the *depth* of f.

Let $f: X \to Y$ be non-zero map in modA.

• Then $f \in \operatorname{rad}^{s}(X, Y) \setminus \operatorname{rad}^{s+1}(X, Y)$ for some $s \ge 0$.

• Put dp(f) = s, called the *depth* of f.

Observation

If dp(f) = s > 0 with X and Y indecomposable,

Let $f: X \to Y$ be non-zero map in modA.

- Then $f \in \operatorname{rad}^{s}(X, Y) \setminus \operatorname{rad}^{s+1}(X, Y)$ for some $s \ge 0$.
- Put dp(f) = s, called the *depth* of f.

Observation

If dp(f) = s > 0 with X and Y indecomposable, then AR-quiver Γ_A contains a path $X \rightsquigarrow Y$ of length s.

• Let *A* be of finite representation type.

• Let *A* be of finite representation type.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Objective Define the *depth* of modA by

- Let A be of finite representation type.
- Objective Define the *depth* of modA by

 $dp(modA) = max\{dp(f) \mid f \text{ non-zero maps in } modA\}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let A be of finite representation type.
- Define the *depth* of modA by
 dp(modA) = max{dp(f) | f non-zero maps in modA}.
- Then, dp(modA) + 1 is the nilpotency of rad(modA).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let A be of finite representation type.
- Define the *depth* of modA by
 dp(modA) = max{dp(f) | f non-zero maps in modA}.
- Then, dp(modA) + 1 is the nilpotency of rad(modA).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• For each simple module $S \in \text{mod}A$, we fix

- Let A be of finite representation type.
- Define the *depth* of modA by
 dp(modA) = max{dp(f) | f non-zero maps in modA}.
- Then, dp(modA) + 1 is the nilpotency of rad(modA).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For each simple module $S \in \text{mod}A$, we fix
 - a projective cover $\pi_{\!\scriptscriptstyle S}: P_{\!\scriptscriptstyle S} o S;$

- Let A be of finite representation type.
- Define the *depth* of modA by
 dp(modA) = max{dp(f) | f non-zero maps in modA}.
- Then, dp(modA) + 1 is the nilpotency of rad(modA).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For each simple module $S \in \text{mod}A$, we fix
 - a projective cover $\pi_{\!\scriptscriptstyle S}: P_{\!\scriptscriptstyle S} o S$;
 - an injective envelope $\iota_{s}:S\rightarrow\textit{I}_{s}.$

- Let A be of finite representation type.
- Define the *depth* of modA by
 dp(modA) = max{dp(f) | f non-zero maps in modA}.
- Then, dp(modA) + 1 is the nilpotency of rad(modA).
- For each simple module $S \in \text{mod}A$, we fix
 - a projective cover $\pi_{\!\scriptscriptstyle S}: P_{\!\scriptscriptstyle S} o S$;
 - an injective envelope $\iota_s: S \to I_s$.

Theorem (Chaio, Liu, 2012)

 $dp(modA) = max\{dp(\iota_s \circ \pi_s) \mid S \in modA \text{ is simple}\}.$

Construct translation quiver $\mathbb{Z}\Delta$ by knitting \mathbb{Z} copies of Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Construct translation quiver $\mathbb{Z}\Delta$ by knitting \mathbb{Z} copies of Δ .

Proposition

Assume that $\overline{\Delta}$ is a tree. Given any vertices a, b in $\mathbb{Z}\Delta$,

Construct translation quiver $\mathbb{Z}\Delta$ by knitting \mathbb{Z} copies of Δ .

Proposition

Assume that $\overline{\Delta}$ is a tree. Given any vertices a, b in $\mathbb{Z}\Delta$, all $a \rightsquigarrow b$ in $\mathbb{Z}\Delta$ have the same length, written as d(a, b).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let Γ be translation quiver with translation τ .

1 Let Γ be translation quiver with translation τ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

2 A connected subquiver Δ of Γ is called

1 Let Γ be translation quiver with translation τ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A connected subquiver Δ of Γ is called
 (1) mesh-complete if it contain any mesh

- Let Γ be translation quiver with translation τ .
- **2** A connected subquiver Δ of Γ is called (1) *mesh-complete* if it contain any mesh

- Let Γ be translation quiver with translation τ .
- **2** A connected subquiver Δ of Γ is called (1) *mesh-complete* if it contain any mesh

(2) a *section* provided that

- Let Γ be translation quiver with translation τ .
- **2** A connected subquiver Δ of Γ is called (1) *mesh-complete* if it contain any mesh

(2) a *section* provided that

• it contains no oriented cycle;

- **1** Let Γ be translation quiver with translation τ .
- A connected subquiver Δ of Γ is called
 (1) mesh-complete if it contain any mesh

(2) a *section* provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ -orbits of Γ ;

- **1** Let Γ be translation quiver with translation τ .
- A connected subquiver Δ of Γ is called
 (1) mesh-complete if it contain any mesh

(2) a *section* provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ -orbits of Γ ;

• it is *convex* in Γ , that is, it contains any path

- **1** Let Γ be translation quiver with translation τ .
- A connected subquiver Δ of Γ is called
 (1) mesh-complete if it contain any mesh

(2) a *section* provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ -orbits of Γ ;
- it is *convex* in Γ , that is, it contains any path $x_0 \to x_1 \to \cdots \to x_{s-1} \to x_s$ with $x_0, x_s \in \Delta$.

- **1** Let Γ be translation quiver with translation τ .
- A connected subquiver Δ of Γ is called
 (1) mesh-complete if it contain any mesh

(2) a *section* provided that

- it contains no oriented cycle;
- it meets exactly once each of the τ -orbits of Γ ;
- it is *convex* in Γ , that is, it contains any path $x_0 \to x_1 \to \cdots \to x_{s-1} \to x_s$ with $x_0, x_s \in \Delta$.
- If Γ contains a section Δ, then it embeds in ZΔ as a convex translation subquiver.

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

Characterization of representation-finite hereditary algebras

Theorem (Liu, Yin, 2022)

• A is hereditary representation-finite $\Leftrightarrow \Gamma_A$ has a non-trivial

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• the projective modules form a section Δ ;

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- the projective modules form a section Δ ;
- the injective modules also form a section.

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- the projective modules form a section Δ ;
- the injective modules also form a section.
- In this case,

Theorem (Liu, Yin, 2022)

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- the projective modules form a section Δ ;
- the injective modules also form a section.
- In this case,

•
$$arDelta\cong {\it Q}_{\it A}^{
m op}$$
;

Theorem (Liu, Yin, 2022)

 A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which

- the projective modules form a section Δ ;
- the injective modules also form a section.
- In this case,

•
$$arDelta\cong {\it Q}_{\it A}^{
m op}$$
;

• $\Gamma_A = \Gamma$, a convex subquiver of $\mathbb{Z}Q_A^{\mathrm{op}}$.

Theorem (Liu, Yin, 2022)

- A is hereditary representation-finite ⇔ Γ_A has a non-trivial connected mesh-complete translation subquiver Γ in which
 - the projective modules form a section Δ ;
 - the injective modules also form a section.
- In this case,

•
$$arDelta\cong {\it Q}_{\it A}^{
m op}$$
;

- $\Gamma_A = \Gamma$, a convex subquiver of $\mathbb{Z}Q_A^{op}$.
- Given $M, N \in \Gamma_A$, all $M \rightsquigarrow N$ have the same length.

Let A be hereditary of finite representation type.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let A be hereditary of finite representation type.

• If S is simple, then
$$dp(\iota_s \circ \pi_s) = d(P_s, I_s)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let *A* be hereditary of finite representation type.

- If S is simple, then $dp(\iota_s \circ \pi_s) = d(P_s, I_s)$.
- $dp(modA) = max\{d(P_s, I_s) \mid S \in modA \text{ is simple}\}.$

Let A be hereditary of finite representation type.

- If S is simple, then $dp(\iota_s \circ \pi_s) = d(P_s, I_s)$.
- $dp(\mathrm{mod} A) = \max\{d(P_s, I_s) \mid S \in \mathrm{mod} A \text{ is simple}\}.$

Proof.

• $\iota_s \circ \pi_s : P_s \to I_s$, sum of composites of $d(P_s, I_s)$ irred maps,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let A be hereditary of finite representation type.

- If S is simple, then $dp(\iota_s \circ \pi_s) = d(P_s, I_s)$.
- $dp(\mathrm{mod} A) = \max\{d(P_s, I_s) \mid S \in \mathrm{mod} A \text{ is simple}\}.$

Proof.

• $\iota_s \circ \pi_s : P_s \to I_s$, sum of composites of $d(P_s, I_s)$ irred maps, $\Longrightarrow dp(\iota_s \circ \pi_s) \ge d(P_s, I_s).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let A be hereditary of finite representation type.

- If S is simple, then $dp(\iota_s \circ \pi_s) = d(P_s, I_s)$.
- $dp(\mathrm{mod} A) = \max\{d(P_s, I_s) \mid S \in \mathrm{mod} A \text{ is simple}\}.$

Proof.

• $\iota_s \circ \pi_s : P_s \to I_s$, sum of composites of $d(P_s, I_s)$ irred maps, $\Longrightarrow dp(\iota_s \circ \pi_s) \ge d(P_s, I_s).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Γ_A contains no $P_s \rightsquigarrow I_s$ of length $> d(P_s, I_s)$,

Let A be hereditary of finite representation type.

- If S is simple, then $dp(\iota_s \circ \pi_s) = d(P_s, I_s)$.
- $dp(\mathrm{mod} A) = \max\{d(P_s, I_s) \mid S \in \mathrm{mod} A \text{ is simple}\}.$

Proof.

• $\iota_s \circ \pi_s : P_s \to I_s$, sum of composites of $d(P_s, I_s)$ irred maps, $\Longrightarrow dp(\iota_s \circ \pi_s) \ge d(P_s, I_s).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Γ_A contains no $P_s \rightsquigarrow I_s$ of length $> d(P_s, I_s)$, $\implies dp(\iota_s \circ \pi_s) \le d(P_s, I_s).$ • Let A be hereditary of Dynkin type.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^b(A)$ with $M \in \text{mod}A$,

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^b(A)$ with $M \in \text{mod}A$, Define $\underline{\dim}M[n] = (-1)^n \underline{\dim}M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^b(A)$ with $M \in \text{mod}A$, Define $\underline{\dim}M[n] = (-1)^n \underline{\dim}M$.

This extends additively to all complexes in $D^{b}(\text{mod}A)$.

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^b(A)$ with $M \in \text{mod}A$, Define $\underline{\dim}M[n] = (-1)^n \underline{\dim}M$.

This extends additively to all complexes in $D^{b}(\text{mod}A)$.

Proposition

•
$$X^{\bullet} \in D^{b}(\operatorname{mod} A)$$
 is indec $\Rightarrow \Phi_{A}^{-1}(\operatorname{\underline{\dim}} X^{\bullet}) = \operatorname{\underline{\dim}}(\tau^{-1}X^{\bullet}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Let A be hereditary of Dynkin type.
- Given stalk complex $M[n] \in D^b(A)$ with $M \in \text{mod}A$, Define $\underline{\dim}M[n] = (-1)^n \underline{\dim}M$.

This extends additively to all complexes in $D^{b}(\text{mod}A)$.

Proposition

•
$$X^{\bullet} \in D^{b}(\operatorname{mod} A)$$
 is indec $\Rightarrow \Phi_{A}^{-1}(\operatorname{\underline{\dim}} X^{\bullet}) = \operatorname{\underline{\dim}}(\tau^{-1}X^{\bullet}).$

 $S \in \operatorname{mod} A \text{ is simple} \Rightarrow P_s[2] = \tau^{-c_A} P_s.$

Let A be hereditary of Dynkin type Δ .

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

Let A be hereditary of Dynkin type Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

2 Given simple module S,

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

2 Given simple module S,

•
$$P_s[1] = \tau^{-1}I_s \Longrightarrow d(P_s, P_s[1]) = d(P_s, I_s) + 2.$$

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

2 Given simple module S,

•
$$P_{s}[1] = \tau^{-1}I_{s} \Longrightarrow d(P_{s}, P_{s}[1]) = d(P_{s}, I_{s}) + 2.$$

•
$$P_{s}[2] = \tau^{-c_{A}}P_{s} \Longrightarrow d(P_{s}, P_{s}[2]) = 2c_{A}.$$

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

2 Given simple module S,

•
$$P_s[1] = \tau^{-1}I_s \Longrightarrow d(P_s, P_s[1]) = d(P_s, I_s) + 2.$$

•
$$P_{s}[2] = \tau^{-c_{A}}P_{s} \Longrightarrow d(P_{s}, P_{s}[2]) = 2c_{A}$$

•
$$d(P_s, P_s[2]) = 2 d(P_s, P_s[1]) = 2(d(P_s, I_s) + 2).$$

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

2 Given simple module S,

•
$$P_s[1] = \tau^{-1} I_s \Longrightarrow d(P_s, P_s[1]) = d(P_s, I_s) + 2.$$

• $P[2] = \tau^{-c_4} P \Longrightarrow d(P - P[2]) - 2c$

•
$$P_s[2] = \tau^{-c_A} P_s \Longrightarrow d(P_s, P_s[2]) = 2c_A.$$

•
$$d(P_s, P_s[2]) = 2 d(P_s, P_s[1]) = 2(d(P_s, I_s) + 2).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

•
$$d(P_s, I_s) = c_A - 2.$$

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

Given simple module S,

•
$$P_{s}[1] = \tau^{-1}I_{s} \Longrightarrow d(P_{s}, P_{s}[1]) = d(P_{s}, I_{s}) + 2.$$

• $P_{s}[2] = \tau^{-c_{A}}P_{s} \Longrightarrow d(P_{s}, P_{s}[2]) = 2c_{A}.$
• $d(P_{s}, P_{s}[2]) = 2 d(P_{s}, P_{s}[1]) = 2(d(P_{s}, I_{s}) + 2).$
• $d(P_{s}, I_{s}) = c_{A} - 2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let A be hereditary of Dynkin type Δ .

• AR-quiver
$$\Gamma_{D^b(\text{mod}A)} = \mathbb{Z}\Delta$$
.

Given simple module S,

•
$$P_{s}[1] = \tau^{-1}I_{s} \Longrightarrow d(P_{s}, P_{s}[1]) = d(P_{s}, I_{s}) + 2.$$

• $P_{s}[2] = \tau^{-c_{A}}P_{s} \Longrightarrow d(P_{s}, P_{s}[2]) = 2c_{A}.$
• $d(P_{s}, P_{s}[2]) = 2 d(P_{s}, P_{s}[1]) = 2(d(P_{s}, I_{s}) + 2).$
• $d(P_{s}, I_{s}) = c_{A} - 2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• rad(mod A) is of nilpotency $c_A - 1$.