Auslander-Reiten Theory in Tri-eaxct Categories

Shiping Liu^{*}, Hongwei Niu Université de Sherbrooke

Maurice Auslander International Conference Woods Hole Oceanographic Institution

October 26 - 30, 2022

There have been two parallel Auslander-Reiten theories

- in abelian categories and their extension-closed subcategories (by Aulander, Reiten, Bautista, Lenzing, Zuazua, etc);
- in triangulated categories and their extension-closed subcategories (by Happel, Reiten, Van den Bergh, Jørgensen, etc).

Objective

To unify these two theories under the setting of tri-exact categories without Hom-finiteness.

Preliminaries

- R: a commutative ring.
- **2** I_R : a minimal injective co-generator for ModR.
- $D = \operatorname{Hom}_{R}(-, I_{R}) : \operatorname{Mod} R \to \operatorname{Mod} R \text{ is exact.}$
- An *R*-module *M* is *reflexive* if \exists isomorphism

$$\sigma_{_{\!M}}: M \to D^2M: x \mapsto [f \mapsto f(x)].$$

(5) An *R*-category C is called *Hom-reflexive* provided that

 $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is reflexive over R, for all $X, Y \in \mathcal{C}$.

Proposition

The category RModR of reflexive R-modules

- is abelian;
- contains all R-modules of finite length;
- admits a duality $D : \operatorname{RMod} R \to \operatorname{RMod} R$.

 Let C be tri-exact R-category, that is an extension-closed subcategory of a triangulated R-category A with shift [1].

2 Given
$$X, Z \in C$$
, we put

$$\operatorname{Ext}^1_{\mathcal{C}}(Z,X) := \operatorname{Hom}_{\mathcal{A}}(Z,X[1]).$$

• An extension $\delta \in \operatorname{Ext}^1_{\mathcal{C}}(Z, X)$ defines an exact triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{\delta} X[1] \in \mathcal{A},$$

where $X \xrightarrow{u} Y \xrightarrow{v} Z$ is called a *tri-exact sequence* in C.

The tri-exact sequences in C form a tri-exact structure.

Pull-back and push-out

Definition

A morphism $f: X \to Y$ in \mathcal{C} is called

• projectively trivial if $\operatorname{Ext}^{1}_{\mathcal{C}}(f, M) = 0$, for all $M \in \mathcal{C}$,

$$\begin{array}{c} M \longrightarrow N' \longrightarrow X \stackrel{0}{\longrightarrow} M[1] \\ \| & & \downarrow \\ M \longrightarrow N \stackrel{\not \vdash}{\longrightarrow} Y \stackrel{\delta}{\longrightarrow} M[1]. \end{array}$$

2 *injectively trivial* if $\operatorname{Ext}^{1}_{\mathcal{C}}(M, f) = 0$, for all $M \in \mathcal{C}$,

Stable categories of tri-exact categories

Given $X, Y \in \mathcal{C}$, we put

•
$$\underline{\operatorname{Hom}}_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y)/\mathscr{P}(X,Y),$$

where $\mathscr{P}(X, Y)$: projectively trivial morphisms.

Remark

- $\operatorname{Ext}^{1}_{\mathcal{C}}(X, Y)$ is a $\overline{\operatorname{End}}(Y)$ - $\underline{\operatorname{End}}(X)$ -bimodule.
- $\bullet~\mbox{If}~\mathcal{C}$ is a triangulated category, then

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y) = \overline{\operatorname{Hom}}_{\mathcal{C}}(X,Y).$$

Definition

A tri-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ defined by $\delta \in \operatorname{Ext}^{1}_{\mathcal{C}}(Z, X)$

is called *almost split sequence* if

• u is minimal left almost split in $\mathcal C$;

• v is minimal right almost split in C.

or equivalently,

- $\delta \in \text{Soc}(\text{Ext}^1_{\mathcal{C}}(Z, X)_{\underline{\text{End}}(Z)});$
- $\delta \in \operatorname{Soc}(_{\overline{\operatorname{End}}(X)}\operatorname{Ext}^1_{\mathcal{C}}(Z,X)).$

 \mathscr{C} : an extension-closed subcategory of abelian category \mathfrak{A} . $\widehat{\mathscr{C}}$:= add($X[0] \mid X \in \mathscr{C}$) in the derived category $D(\mathfrak{A})$.

Proposition

- $\mathscr{C} \cong \widehat{\mathscr{C}}$, an extension-closed subcategory of $D(\mathfrak{A})$.
- The exact structure on C is equivalent to the tri-exact structure on C.
- $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ is almost split sequence in \mathscr{C} $\Leftrightarrow X[0] \longrightarrow Y[0] \longrightarrow Z[0]$ is almost split sequence in $\widehat{\mathscr{C}}$.
- Every almost split sequence in $\widehat{\mathscr{C}}$ is of the above form.

Given X, Z ∈ C with End(X) and End(Z) being local,
When does C have an almost split sequence

$$X \longrightarrow Y \longrightarrow Z$$

Existence of almost split sequence

- Ring homomorphisms $\Gamma \to \overline{\operatorname{End}}(X)$ and $\Sigma \to \underline{\operatorname{End}}(Z)$.
- **2** $_{\Gamma}I$: injective co-generator of $_{\Gamma}\operatorname{End}(X)/\operatorname{rad}(\operatorname{End}(X))$.
- I_{Σ} : injective co-generator of $\operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))_{\Sigma}$.

Theorem

 $C \text{ has an almost split sequence } X \longrightarrow Y \longrightarrow Z$ $\Leftrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(-,X) \text{ is a subfunctor of } \operatorname{Hom}_{\Sigma}(\operatorname{Hom}_{\mathcal{C}}(Z,-),I_{\Sigma});$ $\operatorname{Soc}(\operatorname{Ext}^{1}_{\mathcal{C}}(Z,X)_{\operatorname{End}(Z)}) \neq 0.$ $\Leftrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(Z,-) \text{ is a subfunctor of } \operatorname{Hom}_{\Gamma}(\operatorname{Hom}_{\mathcal{C}}(-,X),\Gamma I);$ $\operatorname{Soc}(\operatorname{End}(X)\operatorname{Ext}^{1}_{\mathcal{C}}(Z,X)) \neq 0.$

Theorem

If $\overline{\operatorname{Hom}}_{\mathcal{C}}(M, X)$, $\underline{\operatorname{Hom}}_{\mathcal{C}}(Z, M) \in \operatorname{RMod} R$, for all $M \in \mathcal{C}$, then \mathcal{C} has almost split sequence $X \longrightarrow Y \longrightarrow Z$ $\iff 0 \neq \operatorname{Ext}^{1}_{\mathcal{C}}(-, X) \cong D\underline{\operatorname{Hom}}_{\mathcal{C}}(Z, -).$ $\iff 0 \neq \operatorname{Ext}^{1}_{\mathcal{C}}(Z, -) \cong D\overline{\operatorname{Hom}}_{\mathcal{C}}(-, X).$

- Let \mathfrak{A} an abelian *R*-category.
- **2** We shall study the existence of almost split triangles
 - in the derived category $D(\mathfrak{A})$;
 - in the bounded derived category $D^b(\mathfrak{A})$.
- $D^{b}(\mathfrak{A})$ is a triangulated subcategory of $D(\mathfrak{A})$.

Let \mathcal{P} be a subcategory of projective objects of \mathfrak{A} .

Definition

A functor $\nu: \mathcal{P} \to \mathfrak{A}$ is called *Nakayama functor* if

$$\operatorname{Hom}_{\mathfrak{A}}(-,\nu P)\cong D\operatorname{Hom}_{\mathfrak{A}}(P,-), ext{ for all } P\in \mathcal{P}.$$

In this case,

- νP is injective in \mathfrak{A} , for all $P \in \mathcal{P}$.
- If \mathcal{P} is Hom-reflexive, then ν co-restricts to an equivalence $\nu : \mathcal{P} \xrightarrow{\cong} \nu \mathcal{P},$

 $\nu \mathcal{P}$ is Hom-reflexive subcategory of injective objects of \mathfrak{A} .

Lemma

Let A be any R-algebra.

projA: finitely generated projective left A-modules. We obtain a Nakayama functor

$$u_{A} = D\operatorname{Hom}_{A}(-, A) : \operatorname{proj} A \to \operatorname{Mod} A$$

- **1** Let $\nu : \mathcal{P} \to \mathfrak{A}$ Nakayama functor, with \mathcal{P} Hom-reflexive.
- The bounded homotopy categories K^b(P) and K^b(vP) are Hom-reflexive triangulated subcategories of D(A).

Proposition

 ∃ an induced triangle exact functor ν : K^b(P) → D(𝔅) such that, for all P[•] ∈ K^b(P),

$$\operatorname{Hom}_{D(\mathfrak{A})}(-,\nu P^{\boldsymbol{\cdot}})\cong D\operatorname{Hom}_{D(\mathfrak{A})}(P^{\boldsymbol{\cdot}},-).$$

$$\nu: K^b(\mathcal{P}) \stackrel{\cong}{\longrightarrow} K^b(\nu\mathcal{P}).$$

Theorem

Let $\nu : \mathcal{P} \to \mathfrak{A}$ be Nakayama functor, where \mathcal{P} Hom-reflexive.

 If P[•] ∈ K^b(P) with End(P[•]) local, then D^b(𝔅) has an almost split triangle

$$\nu P^{\boldsymbol{\cdot}}[-1] \longrightarrow M^{\boldsymbol{\cdot}} \longrightarrow P^{\boldsymbol{\cdot}} \longrightarrow \nu P^{\boldsymbol{\cdot}},$$

which is also almost split in $D(\mathfrak{A})$.

If I ∈ K^b(vP) with End(I) local, then D^b(𝔅) has an almost split triangle

$$I \stackrel{\cdot}{\longrightarrow} M \stackrel{\cdot}{\longrightarrow} \nu^{-} I \stackrel{\cdot}{:} [1] \stackrel{}{\longrightarrow} I \stackrel{\cdot}{:} [1],$$

which is also almost split in $D(\mathfrak{A})$.

Theorem

- Let $\nu : \mathcal{P} \rightarrow \mathfrak{A}$ be Nakayama functor, where \mathcal{P} is Hom-reflexive.
- (1) Consider $M^{\bullet} \in D^{b}(\mathfrak{A})$ such that $\operatorname{End}(M^{\bullet})$ is local.
 - a) If M[•] has projective resolution over P, then D^b(𝔅) has almost split triangle X[•] → Y[•] → M[•] → X[•][1] ⇔ M[•] ≅ P[•] ∈ K^b(P). If so, it is almost split in D(𝔅).
 - b) If M[•] has injective co-resolution over vP, then D^b(𝔅) has almost split triangle M[•] → Y[•] → Z[•] → M[•][1] ⇔ M[•] ≅ I[•] ∈ K^b(vP). If so, it is almost split in D(𝔅).
- (2) If 𝔅 is Krull-Schmidt with enough projectives in 𝒫, enough injectives in ν𝒫, then D^b(𝔅) has almost split triangles
 ⇔ every object in 𝔅 has
 - a finite projective resolution over \mathcal{P} ;
 - a finite injective co-resolution over $\nu \mathcal{P}$.

Application

- Let A be a noetherian R-algebra, where R is complete, noetherian, and local.
- **2** Then projA and injA are Hom-reflexive.
- **(3)** mod^+A : finitely generated A-modules
- mod⁻*A*: finitely co-generated *A*-modules.

Theorem

(2) If M[•] ∈ D^b(mod⁻A) is indecomposable, then D^b(ModA) has almost split triangle M[•] → Y[•] → Z[•] → M[•][1] ⇔ M[•] ≅ I[•] ∈ K^b(injA). If so, Z[•] ∈ D^b(mod⁺A).

Application

- $\Lambda = kQ/(kQ^+)^2$, with k a field, Q a locally finite quiver.
- 3 Write $P_x = \Lambda e_x$ and $I_x = D(e_x \Lambda)$, for $x \in Q_0$.
- Set $\operatorname{proj} \Lambda = \operatorname{add}(P_x \mid x \in Q_0)$, which is Hom-finite.
- We have a Nakayama functor

$$\nu_{\Lambda}: \operatorname{proj} \Lambda \to \operatorname{Mod} \Lambda: P_{X} \mapsto I_{X}.$$

Theorem

- Every almost split triangle in D^b(modA) is an almost split triangle in D(ModA).
- (2) $D^{b}(\text{mod}A)$ has (left, right) almost split triangles \iff Q has no (left, right) infinite path.