Standard Auslander-Reiten components of a Krull-Schmidt category

Shiping Liu (Sherbrooke)
Charles Paquette (New Brunswick)

Maurice Auslander International Conference

Woods Hole, MA, USA April 18 - 23, 2013

• A : finite dimensional k-algebra with $\bar{k} = k$.

- A : finite dimensional k-algebra with $\bar{k} = k$.
- mod A: category of fin dim left A-modules.

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\operatorname{mod} A$: category of fin dim left A-modules.
- Want to describe maps in $\operatorname{mod} A$ between indecomposables.

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\operatorname{mod} A$: category of fin dim left A-modules.
- Want to describe maps in mod A between indecomposables.
- One introduces Auslander-Reiten quiver $\Gamma_{\mathrm{mod}A}$.

- A : finite dimensional k-algebra with $\bar{k} = k$.
- $\operatorname{mod} A$: category of fin dim left A-modules.
- Want to describe maps in $\operatorname{mod} A$ between indecomposables.
- ullet One introduces Auslander-Reiten quiver $\Gamma_{\mathrm{mod}A}$.
- In general, $\Gamma_{\text{mod}A}$ describes maps not in $\text{rad}^{\infty}(\text{mod}A)$.

 Γ : component of $\Gamma_{\text{mod}A}$.

 Γ : component of $\Gamma_{\text{mod }A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

 Γ : component of $\Gamma_{\mathrm{mod}\mathcal{A}}$. $\mathrm{add}(\Gamma)$: additive category of modules in Γ .

 Γ : component of $\Gamma_{\text{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

 Γ is *standard* if $add(\Gamma) \cong k(\Gamma)$.

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

 Γ is *standard* if $add(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

 Γ is *standard* if $add(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

1) (R, BG) A is rep-finite with $char k \neq 2$.

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

 Γ is *standard* if $add(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

- 1) (R, BG) A is rep-finite with $char k \neq 2$.
- 2) (Ringel) A is tame concealed or tubular.

 Γ : component of $\Gamma_{\mathrm{mod}A}$.

 $\operatorname{add}(\Gamma)$: additive category of modules in Γ .

 $k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

 Γ is *standard* if $add(\Gamma) \cong k(\Gamma)$.

Example

 Γ is standard in case

- 1) (R, BG) A is rep-finite with $char k \neq 2$.
- 2) (Ringel) A is tame concealed or tubular.
- 3) (Ringel) Γ is preprojective or preinjective.

Description of standard components in a module category

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

Description of standard components in a module category

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

1) If Γ is standard, then all but finitely many τ -orbits in Γ are periodic.

Description of standard components in a module category

Theorem (Skowronski)

Let Γ be component of $\Gamma_{\mathrm{mod}A}$.

- 1) If Γ is standard, then all but finitely many τ -orbits in Γ are periodic.
- 2) If Γ is regular and standard, then Γ is stable tube or $\Gamma \cong \mathbb{Z}\Delta$, where Δ a finite acyclic quiver.

Let A additive category with $f: X \to Y$.

Let A additive category with $f: X \to Y$.

Definition

• f is source morphism provided

Let A additive category with $f: X \to Y$.

- f is source morphism provided
 - *f* is not section,

Let A additive category with $f: X \to Y$.

- f is source morphism provided
 - f is not section,
 - any non-section $g: X \to M$ factors through f,

Let A additive category with $f: X \to Y$.

- f is source morphism provided
 - f is not section,
 - any non-section $g: X \to M$ factors through f,
 - if $h: Y \to Y$ with f = hf, then h automorphism.

Let A additive category with $f: X \to Y$.

- f is source morphism provided
 - f is not section,
 - any non-section $g: X \to M$ factors through f,
 - if $h: Y \to Y$ with f = hf, then h automorphism.
- In dual situation, f is sink morphism.

Definition

Definition

$$\bullet Y \neq 0,$$

Definition

- $\bullet Y \neq 0,$
- f is source morphism, and pseudo-kernel of g,

Definition

- $\bullet Y \neq 0,$
- f is source morphism, and pseudo-kernel of g,
- g is sink morphism, and pseudo-cokernel of f.

Definition

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided

- $\bullet Y \neq 0,$
- f is source morphism, and pseudo-kernel of g,
- g is sink morphism, and pseudo-cokernel of f.

REMARK. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.

Let A be Hom-finite Krull-Schmidt k-category.

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write $d_{X,Y} = \dim_k \operatorname{rad}(X, Y)/\operatorname{rad}^2(X, Y).$

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write $d_{X,Y} = \dim_k \operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y).$

Definition

AR-quiver $\Gamma_{_{A}}$ of \mathcal{A} is translation quiver as follows:

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write $d_{X,Y} = \dim_k \operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y)$.

Definition

AR-quiver Γ_{A} of A is translation quiver as follows:

• *vertices*: the non-isomorphic indecomposables in \mathcal{A} .

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X,Y\in\mathcal{A}$ are indecomposable, write $d_{X,Y}=\dim_k \operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y).$

Definition

AR-quiver Γ_{A} of A is translation quiver as follows:

- *vertices*: the non-isomorphic indecomposables in \mathcal{A} .
- arrows: given X, Y, the number of arrows $X \to Y$ is $d_{X,Y}$.

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X,Y\in\mathcal{A}$ are indecomposable, write $d_{X,Y}=\dim_k \operatorname{rad}(X,Y)/\operatorname{rad}^2(X,Y).$

Definition

AR-quiver Γ_{A} of A is translation quiver as follows:

- *vertices*: the non-isomorphic indecomposables in \mathcal{A} .
- arrows: given X, Y, the number of arrows $X \to Y$ is $d_{X,Y}$.
- translation: if $X \longrightarrow Y \longrightarrow Z$ almost split, then $\tau Z = X$.

Objective

Question

• How to decide a component of Γ_A is standard?

Objective

Question

- How to decide a component of Γ_A is standard?
- Are there new types of standard components?
- We consider these problems for components with a section

Let (Γ, τ) be connected translation quiver.

Let (Γ, τ) be connected translation quiver.

Definition

A connected full subquiver Δ of Γ is *section* if

Let (Γ, τ) be connected translation quiver.

Definition

A connected full subquiver Δ of Γ is *section* if

 $oldsymbol{\circ}$ Δ contains no oriented cycle,

Let (Γ, τ) be connected translation quiver.

Definition

A connected full subquiver Δ of Γ is *section* if

- \bullet Δ contains no oriented cycle,
- Δ meets each τ -orbit in Γ exactly once,

Let (Γ, τ) be connected translation quiver.

Definition

A connected full subquiver Δ of Γ is *section* if

- Δ contains no oriented cycle,
- Δ meets each τ -orbit in Γ exactly once,
- Δ is convex in Γ .

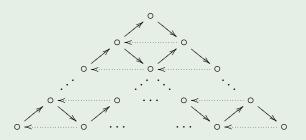
Example

Consider a *finite wing* as follows:

Example Consider a *finite wing* as follows:

Example

Consider a *finite wing* as follows:



The two longest paths are sections.

Let Δ be acyclic quiver.

Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

• $\mathbb{N}\Delta = <(x,i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta.$

Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

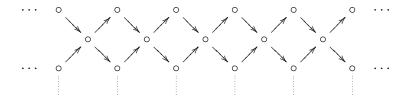
Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

- $\mathbb{N}\Delta = \langle (x,i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta$.
- $\mathbb{N}^-\Delta = <(x,-i) \mid x \in \Delta_0, i \in \mathbb{N} > \subseteq \mathbb{Z}\Delta$.

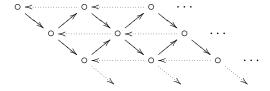
The translation quiver $\mathbb{Z}\mathbb{A}_{\infty}$ is as follows:



If \mathbb{A}^+_∞ denotes a right infinite path

If \mathbb{A}^+_∞ denotes a right infinite path

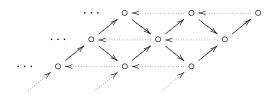
then \mathbb{NA}^+_{∞} is follows:



If \mathbb{A}_{∞}^- denotes a left infinite path

If \mathbb{A}_{∞}^- denotes a left infinite path

then $\mathbb{N}^-\mathbb{A}_{\infty}^-$ is as follows:



Let Γ be component of Γ_A with a section Δ .

Let Γ be component of Γ_A with a section Δ .

Proposition

• Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}$, $X \in \Delta$.

Let Γ be component of Γ_A with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Let Γ be component of Γ_A with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Notation

Let Γ be component of Γ_A with a section Δ .

Proposition

- Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}, X \in \Delta$.
- Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Notation

• Let Γ be component of Γ_A .

- Let Γ be component of Γ_A .
- **2** Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.

- Let Γ be component of Γ_A .
- **2** Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.
- **1** Γ is τ -periodic if every $X \in \Gamma$ is τ -periodic.

- Let Γ be component of Γ_A .
- **2** Γ is *stable* if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.
- **1** Γ is τ -periodic if every $X \in \Gamma$ is τ -periodic.

Theorem

If Γ is stable, then Γ is τ -periodic or $\Gamma\cong\mathbb{Z}\Delta$ with Δ acyclic quiver.

Let Γ be component of Γ_A with a section Δ .

Let Γ be component of Γ_A with a section Δ .

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

Let Γ be component of Γ_A with a section Δ .

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

 $\bullet \ \operatorname{add}(\Delta) \cong k\Delta,$

Let Γ be component of Γ_A with a section Δ .

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

- $\bullet \ \operatorname{add}(\Delta) \cong k\Delta,$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta \cup \Delta^-) = 0,$

Let Γ be component of Γ_A with a section Δ .

Theorem

If Δ^+ no left- ∞ path and Δ^- no right- ∞ path, then Γ is standard \Leftrightarrow

- $\bullet \ \operatorname{add}(\Delta) \cong k\Delta,$
- $\bullet \ \operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta \cup \Delta^-) = 0,$
- $\bullet \operatorname{Hom}_{\mathcal{A}}(\Delta, \Delta^{-}) = 0.$

Theorem

Let A be abelian or triangulated.

Theorem

Let A be abelian or triangulated.

Let Γ be component of Γ_A .

Theorem

Let A be abelian or triangulated.

Let Γ be component of Γ_A .

Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in A.

$\mathsf{Theorem}$

Let A be abelian or triangulated.

Let Γ be component of Γ_A .

Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in A.

Then Γ is standard $\Leftrightarrow \operatorname{Hom}_{\mathcal{A}}(\Delta^+, \Delta^-) = 0$.

• An object X is $\frac{brick}{}$ if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.

- An object X is **brick** if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

- An object X is **brick** if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

Theorem

Let Γ be component of Γ_A .

- An object X is **brick** if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

Theorem

Let Γ be component of Γ_A .

If Γ is wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^+$, $\mathbb{N}^-\mathbb{A}_{\infty}^-$, then

- An object X is **brick** if $\operatorname{End}_{\mathcal{A}}(X) \cong k$.
- Two objects X, Y are orthogonal if $\operatorname{Hom}_{\mathcal{A}}(X, Y) = 0$ and $\operatorname{Hom}_{\mathcal{A}}(Y, X) = 0$.

Theorem

Let Γ be component of Γ_A .

If Γ is wing or $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^+$, $\mathbb{N}^-\mathbb{A}_{\infty}^-$, then

 Γ is standard \Leftrightarrow the quasi-simple objects are orthogonal bricks.

Q: connected quiver, which is

Q : connected quiver, which is

locally finite, and

Q: connected quiver, which is

- · locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

Q: connected quiver, which is

- · locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

 P_x : indec projective representation of Q at x.

Q: connected quiver, which is

- · locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

 P_x : indec projective representation of Q at x.

 I_x : indec. injective representation of Q at x.

Q: connected quiver, which is

- · locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

 P_x : indec projective representation of Q at x.

 I_x : indec. injective representation of Q at x.

 $\operatorname{proj}(Q)$: additive category of the P_x , $x \in Q_0$.

Finitely presented representations

Definition

A representation *M* of *Q* is *finitely presented* if

Finitely presented representations

Definition

A representation *M* of *Q* is *finitely presented* if

 \exists projective resolution

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$
,

Finitely presented representations

Definition

A representation *M* of *Q* is *finitely presented* if

 \exists projective resolution

$$0 \to P_1 \to P_0 \to M \to 0,$$

where $P_0, P_1 \in \text{proj}(Q)$.

Category of finitely presented representations

 $rep^+(Q)$: finitely presented representations of Q.

Category of finitely presented representations

 $\operatorname{rep}^+(Q)$: finitely presented representations of Q.

Proposition

 $rep^+(Q)$ is Hom-finite, hereditary, abelian.

Classes of AR-components

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

• preprojective if Γ contains some of the P_x .

Classes of AR-components

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if Γ contains some of the P_x .
- preinjective if Γ contains some of the I_x .

Classes of AR-components

Definition

A component Γ of $\Gamma_{\operatorname{rep}^+(Q)}$ is called

- preprojective if Γ contains some of the P_x .
- preinjective if Γ contains some of the I_x .
- regular if Γ contains none of the P_x , I_x .

Theorem

Let Q connected, strongly locally finite.

Theorem

Let Q connected, strongly locally finite.

• The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.

$\mathsf{Theorem}$

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^-Q^{\operatorname{op}}$.

Theorem

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^-Q^{\operatorname{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

Theorem

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^-Q^{\operatorname{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{op}$.

 $\exists !$ preprojective component $\mathcal P$ of which Δ is section.

Theorem

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^-Q^{\operatorname{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{op}$.

 $\exists !$ preprojective component $\mathcal P$ of which Δ is section.

 $\Delta^- = \emptyset$ and Δ^+ no left- ∞ path.

Theorem

Let Q connected, strongly locally finite.

- The unique preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\operatorname{op}}$.
- The preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^-Q^{\operatorname{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\mathrm{op}}$.

 $\exists !$ preprojective component $\mathcal P$ of which Δ is section.

 $\Delta^- = \emptyset$ and Δ^+ no left- ∞ path.

 $\operatorname{add}(\Delta) \cong kQ^{\operatorname{op}} \text{ and } \operatorname{Hom}(\Delta^+, \Delta) = 0.$

Regular components

Theorem

Let Q connected, infinite, strongly locally finite.

Regular components

Theorem

Let Q connected, infinite, strongly locally finite.

• The regular components of $\Gamma_{\operatorname{rep}^+(Q)}$ are wings or $\mathbb{Z}\mathbb{A}_{\infty}, \mathbb{N}\mathbb{A}_{\infty}^+, \mathbb{N}^-\mathbb{A}_{\infty}^-$.

Regular components

$\mathsf{Theorem}$

Let Q connected, infinite, strongly locally finite.

- The regular components of $\Gamma_{\operatorname{rep}^+(Q)}$ are wings or $\mathbb{Z}\mathbb{A}_{\infty}, \mathbb{N}\mathbb{A}_{\infty}^+, \mathbb{N}^-\mathbb{A}_{\infty}^-$.
- The regular components are all standard $\Leftrightarrow Q$ of infinite Dynkin types $\mathbb{A}_{\infty}, \mathbb{A}_{\infty}^{\infty}, \mathbb{D}_{\infty}$.

Infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver.

Infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver.

• $\Gamma_{rep^+(Q)}$ has at most four components, at most two regular, all standard.

Infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver.

- $\Gamma_{rep^+(Q)}$ has at most four components, at most two regular, all standard.
- Wings, $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^+$, $\mathbb{N}^-\mathbb{A}_{\infty}^-$ all appear in this setting.

• Let Q be connected, strongly locally finite.

- Let Q be connected, strongly locally finite.
- $D^b(\operatorname{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.

- Let Q be connected, strongly locally finite.
- $D^b(\operatorname{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.
- $m{O}_{D^b(\operatorname{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q , containing

- Let Q be connected, strongly locally finite.
- $D^b(\operatorname{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.
- $m{\circ}$ $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q , containing
 - the preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- Let Q be connected, strongly locally finite.
- $D^b(\operatorname{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.
- $m{\circ}$ $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q , containing
 - the preprojective component of $\Gamma_{\operatorname{rep}^+(Q)}$.
 - shift by -1 of all preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}.$

Theorem

Let Q be connected, strongly locally finite.

Theorem

Let Q be connected, strongly locally finite.

• \mathcal{C}_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.

Theorem

Let Q be connected, strongly locally finite.

- \mathcal{C}_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- Q no infinite path $\Rightarrow \mathcal{C}_Q \cong \mathbb{Z}Q^{\mathrm{op}}$.

Theorem

Let Q be connected, strongly locally finite.

- \mathcal{C}_Q is standard and embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- Q no infinite path $\Rightarrow \mathcal{C}_Q \cong \mathbb{Z}Q^{\operatorname{op}}$.
- Q of infinite Dynkin type $\Rightarrow \Gamma_{D^b(\operatorname{rep}^+(Q))}$ has at most 3 components up to shift, all standard.

Let A be finite dimensional k-algebra.

Let A be finite dimensional k-algebra.

Let Γ be component of $\Gamma_{\text{mod}A}$.

Let A be finite dimensional k-algebra.

Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

• If Γ has a section Δ , then it is standard $\Leftrightarrow \operatorname{Hom}_A(X, \tau Y) = 0$ for $X, Y \in \Delta$.

Let A be finite dimensional k-algebra.

Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

- If Γ has a section Δ , then it is standard $\Leftrightarrow \operatorname{Hom}_A(X, \tau Y) = 0$ for $X, Y \in \Delta$.
- Γ is standard with a section $\Leftrightarrow \Gamma$ is a connecting component of AR-quiver of a tilted factor algebra of A.