Module categories of small radical nipotency

Shiping Liu*, Université de Sherbrooke Youqi Yin, Shaoxing University

Advances in Representation Theory of Algebras IX

$$
\begin{aligned}
& \text { Kingston, Ontario } \\
& \text { June 12-16, } 2023
\end{aligned}
$$

Motivation

(1) A : connected basic artin algebra.

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(3) ind A : category of indecomposable A-modules in $\bmod A$.

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.

0 ind A : category of indecomposable A-modules in $\bmod A$.
(0) $\operatorname{rad}(\bmod A)$: Jacobson radical of $\bmod A$.

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(0) ind A : category of indecomposable A-modules in $\bmod A$.
(1) $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.

- $\operatorname{rad}^{\infty}(\bmod A)=\cap_{m \geq 1} \operatorname{rad}^{m}(\bmod A)$.

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(0) ind A : category of indecomposable A-modules in $\bmod A$.
(1) $\operatorname{rad}(\bmod A)$: Jacobson radical of $\bmod A$.

- $\operatorname{rad}^{\infty}(\bmod A)=\cap_{m \geq 1} \operatorname{rad}^{m}(\bmod A)$.
- The central objective of the representation theory is to

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(0) ind A : category of indecomposable A-modules in $\bmod A$.
(1) $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.
(- $\operatorname{rad}^{\infty}(\bmod A)=\cap_{m \geq 1} \operatorname{rad}^{m}(\bmod A)$.

- The central objective of the representation theory is to - classify the indecomposable modules;

Motivation

(1) A : connected basic artin algebra.
(2) $\bmod A$: category of finitely generated left A-modules.
(0) ind A : category of indecomposable A-modules in $\bmod A$.
(1) $\operatorname{rad}(\bmod A):$ Jacobson radical of $\bmod A$.
(-) $\operatorname{rad}^{\infty}(\bmod A)=\cap_{m \geq 1} \operatorname{rad}^{m}(\bmod A)$.

- The central objective of the representation theory is to
- classify the indecomposable modules;
- describe the morphisms the indecomposable modules.

Motivation

For representation-finite algebras, their representation theory is believed to be determined by $\operatorname{rad}(\bmod A)$.

Motivation

For representation-finite algebras, their representation theory is believed to be determined by $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)
A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$.

Motivation

For representation-finite algebras, their representation theory is believed to be determined by $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)

A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$. In this case, write $n_{\mathrm{rad}(\bmod A)}$ for the nilpotency of $\operatorname{rad}(\bmod A)$.

Motivation

For representation-finite algebras, their representation theory is believed to be determined by $\operatorname{rad}(\bmod A)$.

Theorem (Auslander)

A representation-finite $\Longleftrightarrow \operatorname{rad}^{m}(\bmod A)=0$ for some $m \geq 1$.
In this case, write $n_{\mathrm{rad}(\bmod A)}$ for the nilpotency of $\operatorname{rad}(\bmod A)$.

Observation

$n_{\mathrm{rad}(\bmod A)}=1 \Longleftrightarrow A$ is simple.

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A,

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

(1) Given a class of representation-finite algebras A, calculate $n_{\mathrm{rad}(\bmod A)}$.

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

- Given a class of representation-finite algebras A, calculate $n_{\mathrm{rad}(\bmod A)}$.
(2) Given an integer $m>0$,

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

- Given a class of representation-finite algebras A, calculate $n_{\mathrm{rad}(\bmod A)}$.
(2) Given an integer $m>0$,
- find all algebras A with $n_{\operatorname{rad}(\bmod A)}=m$;

Motivation

Objective

In terms of the nilpotency of $\operatorname{rad}(\bmod A)$,

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

- Given a class of representation-finite algebras A, calculate $n_{\mathrm{rad}(\bmod A)}$.
(2) Given an integer $m>0$,
- find all algebras A with $n_{\operatorname{rad}(\bmod A)}=m$;
- study their representation theory.

A brief history

A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in $\operatorname{ind} A$,

A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in ind A, then $n_{\mathrm{rad}(\bmod A)} \leq 2^{b}-1$.

A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in ind A, then $n_{\operatorname{rad}(\bmod A)} \leq 2^{b}-1$.

- This estimate depends on a prior knowledge of all indecomposable modules.

A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in ind A, then $n_{\operatorname{rad}(\bmod A)} \leq 2^{b}-1$.

- This estimate depends on a prior knowledge of all indecomposable modules.
- In 2013, Chaio-Liu gave another approach, which seems more efficient and precise.

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

$$
\text { - } \operatorname{dp}(f)=\infty \text { if } f \in \operatorname{rad}^{\infty}(X, Y)
$$

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

$$
\text { - } \operatorname{dp}(f)=\infty \text { if } f \in \operatorname{rad}^{\infty}(X, Y)
$$

- $\operatorname{dp}(f)=s$ if $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$.

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

- $\operatorname{dp}(f)=\infty$ if $f \in \operatorname{rad}^{\infty}(X, Y)$;
- $\operatorname{dp}(f)=s$ if $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$.
(2) The depth of $\bmod A$ is defined by

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

- $\operatorname{dp}(f)=\infty$ if $f \in \operatorname{rad}^{\infty}(X, Y)$;
- $\operatorname{dp}(f)=s$ if $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$.
(2) The depth of $\bmod A$ is defined by

$$
\operatorname{dp}(\bmod A)=\sup \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

$$
\begin{aligned}
& \operatorname{dp}(f)=\infty \text { if } f \in \operatorname{rad}^{\infty}(X, Y) \\
& \operatorname{dp}(f)=s \text { if } f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)
\end{aligned}
$$

(2) The depth of $\bmod A$ is defined by

$$
\operatorname{dp}(\bmod A)=\sup \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

Observation

(1) A is representation-finite $\Longleftrightarrow \mathrm{dp}(\bmod A)<\infty$.

Depth of maps

Definition

(1) Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth is defined by

$$
\begin{aligned}
& \operatorname{dp}(f)=\infty \text { if } f \in \operatorname{rad}^{\infty}(X, Y) \\
& \operatorname{dp}(f)=s \text { if } f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)
\end{aligned}
$$

(2) The depth of $\bmod A$ is defined by

$$
\operatorname{dp}(\bmod A)=\sup \{\operatorname{dp}(f) \mid f \text { non-zero maps in } \bmod A\}
$$

Observation

(1) A is representation-finite $\Longleftrightarrow \operatorname{dp}(\bmod A)<\infty$.
(2) In this case, $n_{\operatorname{rad}(\bmod A)}=\operatorname{dp}(\bmod A)+1$.

Calculate $\operatorname{dp}(\bmod A)$

For each simple module $S \in \bmod A$, we fix

Calculate $\operatorname{dp}(\bmod A)$

For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{s} \rightarrow S$;

Calculate $\operatorname{dp}(\bmod A)$

For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{s} \rightarrow S$;
- an injective envelope $\iota_{s}: S \rightarrow I_{s}$;

Calculate dp $(\bmod A)$

For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{S} \rightarrow S$;
- an injective envelope $\iota_{s}: S \rightarrow I_{S}$;

Theorem (Chaio, Liu, 2013)

(1) A representation-finite $\Longleftrightarrow \mathrm{dp}\left(\theta_{s}\right)<\infty$. for all simple S.

Calculate $\mathrm{dp}(\bmod A)$

For each simple module $S \in \bmod A$, we fix

- a projective cover $\pi_{s}: P_{S} \rightarrow S$;
- an injective envelope $\iota_{s}: S \rightarrow I_{s}$;

Theorem (Chaio, Liu, 2013)

(1) A representation-finite $\Longleftrightarrow \mathrm{dp}\left(\theta_{s}\right)<\infty$. for all simple S.
(2) In this case, $\mathrm{dp}(\bmod A)=\max \left\{\operatorname{dp}\left(\iota_{s} \circ \pi_{s}\right) \mid S\right.$ simple $\}$.

Representation-finite hereditary artin algebras

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
(1) vertices are the non isomorphic simples in $\bmod A$;

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
(1) vertices are the non isomorphic simples in $\bmod A$;
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
(1) vertices are the non isomorphic simples in $\bmod A$;
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where

- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
(1) vertices are the non isomorphic simples in $\bmod A$;
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where

- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.
- $d^{\prime}=$ multiplicity of S in $\operatorname{soc}\left(I_{T} / T\right)$.

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
(0) vertices are the non isomorphic simples in $\bmod A$;
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where

- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.
- $d^{\prime}=$ multiplicity of S in $\operatorname{soc}\left(I_{T} / T\right)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver
© vertices are the non isomorphic simples in $\bmod A$;
(2) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where

- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.
- $d^{\prime}=$ multiplicity of S in $\operatorname{soc}\left(I_{T} / T\right)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite $\Longleftrightarrow Q_{A}$ is a Dynkin quiver.

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver

- vertices are the non isomorphic simples in $\bmod A$;
(3) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where
- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.
- $d^{\prime}=$ multiplicity of S in $\operatorname{soc}\left(I_{T} / T\right)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite $\Longleftrightarrow Q_{A}$ is a Dynkin quiver.
(2) Given any finite valued quiver Δ,

Representation-finite hereditary artin algebras

Definition

The Ext-quiver Q_{A} of A is a valued quiver

- vertices are the non isomorphic simples in $\bmod A$;
(3) $\exists S \rightarrow T$ with valuation $\left(d, d^{\prime}\right)$ if $\operatorname{Ext}^{1}(S, T) \neq 0$ where
- $d=$ multiplicity of T in $\operatorname{top}\left(\operatorname{rad} P_{S}\right)$.
- $d^{\prime}=$ multiplicity of S in $\operatorname{soc}\left(I_{T} / T\right)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite $\Longleftrightarrow Q_{A}$ is a Dynkin quiver.
(2) Given any finite valued quiver Δ, \exists hereditary algebra A with $Q_{A} \cong \Delta$.

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A}

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete,

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

- the projective modules generate a section Δ;

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

- the projective modules generate a section Δ;
- the injective modules generate a section Δ^{\prime}.

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

- the projective modules generate a section Δ;
- the injective modules generate a section Δ^{\prime}.
(2) In this case,
- $\Delta \cong Q_{A}^{\mathrm{op}}$;

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

- the projective modules generate a section Δ;
- the injective modules generate a section Δ^{\prime}.
(2) In this case,
- $\Delta \cong Q_{A}^{\mathrm{op}}$;
- $\Delta^{\prime} \cong Q_{A}$;

Proposition

(1) A is representation-finite hereditary \Longleftrightarrow its $A R$-quiver Γ_{A} contains a non-trivial connected mesh-complete, translation subquiver Γ in which

- the projective modules generate a section Δ;
- the injective modules generate a section Δ^{\prime}.
(2) In this case,
- $\Delta \cong Q_{A}^{\mathrm{op}}$;
- $\Delta^{\prime} \cong Q_{A}$;
- $\Gamma_{A}=\Gamma$.

Loewy length and $n_{\mathrm{rad}(\bmod A)}$

(1) $\ell \ell(A)$: Loewy length of A, that is, nilpotency of $\operatorname{rad} A$.

Loewy length and $n_{\mathrm{rad}(\bmod A)}$

(1) $\ell \ell(A)$: Loewy length of A, that is, nilpotency of $\operatorname{rad} A$.
(2) It is evident $\ell \ell(A) \leq n_{r a d}(\bmod A)$.

Loewy length and $n_{\operatorname{rad}(\bmod A)}$

(1) $\ell \ell(A)$: Loewy length of A, that is, nilpotency of $\operatorname{rad} A$.
(3) It is evident $\ell \ell(A) \leq n_{\operatorname{rad}(\bmod A)}$.

> Theorem
> $n_{\operatorname{rad}(\bmod A)}=\ell \ell(A) \Longleftrightarrow A$ is a hereditary algebra of type $\overrightarrow{\mathbb{A}}_{n}$.

$n_{\operatorname{rad}(\bmod A)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

$n_{\operatorname{rad}(\bmod A)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

$$
n_{\operatorname{rad}(\bmod A)}=\max \left\{\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-1 \mid S \text { simple in } \bmod A\right\} .
$$

$n_{\operatorname{rad}(\bmod A)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

$$
n_{\mathrm{rad}(\bmod A)}=\max \left\{\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-1 \mid S \text { simple in } \bmod A\right\} .
$$

'Theorem' (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type,

$n_{\operatorname{rad}(\bmod A)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

$$
n_{\operatorname{rad}(\bmod A)}=\max \left\{\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-1 \mid S \text { simple in } \bmod A\right\} .
$$

'Theorem' (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type, then $n_{\mathrm{rad}(\bmod A)}$ is the Coexter order of Q_{A}.

We shall find all algebras A with $n_{\operatorname{rad}(\bmod A)} \leq 4$.

String artin algebras

String artin algebras

Definition

Call A a string algebra provided that

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in$ ind $A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in$ ind $A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ socl is uniserial

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in$ ind $A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ socl is uniserial or a direct sum of two uniserial modules.

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ soc $/$ is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ soc $/$ is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $\operatorname{rad}^{4}(\bmod A)=0$, then the middle term of any $A R$-sequence

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ soc $/$ is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $\operatorname{rad}^{4}(\bmod A)=0$, then the middle term of any $A R$-sequence in $\bmod A$ has at most two indecomposable direct summands.

String artin algebras

Definition

Call A a string algebra provided that

- given projective $P \in \operatorname{ind} A, \operatorname{rad} P$ is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A, I /$ soc $/$ is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $\operatorname{rad}^{4}(\bmod A)=0$, then the middle term of any $A R$-sequence in $\bmod A$ has at most two indecomposable direct summands. Being representation-finite, A is string algebra (by Auslander).

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$, - S_{1}, S_{2} are simple;

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$,

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$, - S_{1}, S_{2} are simple ;

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple ;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I /$ soc $I=S_{1} \oplus S_{2}$,
- S_{1}, S_{2} are simple;
- $\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right), \operatorname{top}\left(\operatorname{rad} P_{S_{2}}\right)$ are simple.

Definition

(1) A projective $P \in \operatorname{ind} A$ is wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$,

- S_{1}, S_{2} are simple;
- $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right), \operatorname{soc}\left(I_{S_{2}} / S_{2}\right)$ are simple.
(2) An injective $I \in \operatorname{ind} A$ is co-wedged if $I /$ soc $I=S_{1} \oplus S_{2}$,
- S_{1}, S_{2} are simple;
- $\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right), \operatorname{top}\left(\operatorname{rad} P_{S_{2}}\right)$ are simple.

Remark

$P \in \operatorname{ind} A$ is wedged projective $\Longleftrightarrow D P \in \operatorname{ind} A^{\mathrm{op}}$ is co-wedged injective.

Example

Let $A=k Q / I$ with $a \in Q_{0}$.

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) I_{a} is co-wedged $\Longleftrightarrow \operatorname{supp}\left(I_{a}\right)$ has shape

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) I_{a} is co-wedged $\Longleftrightarrow \operatorname{supp}\left(I_{a}\right)$ has shape

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) I_{a} is co-wedged $\Longleftrightarrow \operatorname{supp}\left(I_{a}\right)$ has shape

- α is the only arrow starting in b

Example

Let $A=k Q / I$ with $a \in Q_{0}$.
(1) P_{a} is wedged $\Longleftrightarrow \operatorname{supp}\left(P_{a}\right)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
(2) I_{a} is co-wedged $\Longleftrightarrow \operatorname{supp}\left(I_{a}\right)$ has shape

- α is the only arrow starting in b
- β is the only arrow starting in c.

Wedged string algebras

Definition
Call A a wedged string algebra provided that

Wedged string algebras

Definition
Call A a wedged string algebra provided that

- every projective $P \in \operatorname{ind} A$ is uniserial or wedged;

Wedged string algebras

Definition
Call A a wedged string algebra provided that

- every projective $P \in \operatorname{ind} A$ is uniserial or wedged;
- every injective $I \in \operatorname{ind} A$ is uniserial or co-wedged.

Wedged string algebras

Definition

Call A a wedged string algebra provided that

- every projective $P \in \operatorname{ind} A$ is uniserial or wedged;
- every injective $I \in \operatorname{ind} A$ is uniserial or co-wedged.

Example

(1) Nakayama algebras.

Wedged string algebras

Definition

Call A a wedged string algebra provided that

- every projective $P \in \operatorname{ind} A$ is uniserial or wedged;
- every injective $I \in \operatorname{ind} A$ is uniserial or co-wedged.

Example

(1) Nakayama algebras.
(2) $k Q$, where Q is quiver of type \mathbb{A}_{n} with zigzag orientation.

Wedged string algebras

Definition

Call A a wedged string algebra provided that

- every projective $P \in \operatorname{ind} A$ is uniserial or wedged;
- every injective $I \in \operatorname{ind} A$ is uniserial or co-wedged.

Example

- Nakayama algebras.
(2) $k Q$, where Q is quiver of type \mathbb{A}_{n} with zigzag orientation.
- The algebra given by

Definition

A wedged string algebra A is called tri-string algebra if

Definition

A wedged string algebra A is called tri-string algebra if

- $\operatorname{rad}^{3}(A)=0$;

Definition

A wedged string algebra A is called tri-string algebra if
(1) $\operatorname{rad}^{3}(A)=0$;
(2) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$, for any simple S;

Definition

A wedged string algebra A is called tri-string algebra if

- $\operatorname{rad}^{3}(A)=0$;
(2) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$, for any simple S;
(3) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 4$ in case S is simple direct summand of

Definition

A wedged string algebra A is called tri-string algebra if
(1) $\operatorname{rad}^{3}(A)=0$;
(2) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$, for any simple S;
(3) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 4$ in case S is simple direct summand of - $\operatorname{rad} P$, where $P \in \operatorname{ind} A$ is wedged projective;

Definition

A wedged string algebra A is called tri-string algebra if

- $\operatorname{rad}^{3}(A)=0$;
(2) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$, for any simple S;
(3) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 4$ in case S is simple direct summand of
- $\operatorname{rad} P$, where $P \in \operatorname{ind} A$ is wedged projective;
- $I /$ soc l, where $I \in$ ind l is co-wedged injective;

Definition

A wedged string algebra A is called tri-string algebra if
(1) $\operatorname{rad}^{3}(A)=0$;
(2) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$, for any simple S;
(3) $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 4$ in case S is simple direct summand of

- $\operatorname{rad} P$, where $P \in \operatorname{ind} A$ is wedged projective;
- $I /$ soc I, where $I \in$ ind l is co-wedged injective;
(1) A wedged projective module and a co-wedged injective module have no common composition factor.

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0$

Theorem

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow$
A is hereditary algebra of type \mathbb{A}_{4} or tri-string algebra.

Theorem

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow$
A is hereditary algebra of type \mathbb{A}_{4} or tri-string algebra.

Example

Let A be given by

Theorem

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0 \Longleftrightarrow$
A is hereditary algebra of type \mathbb{A}_{4} or tri-string algebra.

Example

Let A be given by

(1) $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.

Theorem

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0$
\Longleftrightarrow
A is hereditary algebra of type \mathbb{A}_{4} or tri-string algebra.

Example

Let A be given by

(1) $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.
(2) A non-hereditary wedged string but not tri-string algebra.

Theorem

If A is an artin algebra, then $\operatorname{rad}^{4}(\bmod A)=0$
\Longleftrightarrow
A is hereditary algebra of type \mathbb{A}_{4} or tri-string algebra.

Example

Let A be given by

(1) $\operatorname{rad} P_{a}=S_{b} \oplus S_{c}$ with $\ell\left(P_{S_{b}}\right)+\ell\left(I_{S_{b}}\right)=5$.
(2) A non-hereditary wedged string but not tri-string algebra.
(3) $\operatorname{rad}^{4}(\bmod A) \neq 0$.

Classification

Theorem

(1) The algebras A with $n_{r a d}(\bmod A)=2$ are hereditary of type \mathbb{A}_{2}.

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.
- non-hereditary Nakayama algebras of Loewy length 2.

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.
- non-hereditary Nakayama algebras of Loewy length 2.
(3) The algebras A with $n_{r a d}(\bmod A)=4$ consist of

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.
- non-hereditary Nakayama algebras of Loewy length 2.
(3) The algebras A with $n_{r a d}(\bmod A)=4$ consist of
- hereditary algebras of type \mathbb{A}_{4}.

Classification

Theorem

(1) The algebras A with $n_{\operatorname{rad}(\bmod A)}=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.
- non-hereditary Nakayama algebras of Loewy length 2.
(3) The algebras A with $n_{r a d}(\bmod A)=4$ consist of
- hereditary algebras of type \mathbb{A}_{4}.
- non-hereditary Nakayama algebras of Loewy length 3.

Classification

Theorem

(1) The algebras A with $n_{r a d}(\bmod A)=2$ are hereditary of type \mathbb{A}_{2}.
(2) The algebras A with $n_{r a d}(\bmod A)=3$ consist of

- hereditary algebras of type \mathbb{A}_{3} or \mathbb{B}_{2}.
- non-hereditary Nakayama algebras of Loewy length 2.
(3) The algebras A with $n_{r a d}(\bmod A)=4$ consist of
- hereditary algebras of type \mathbb{A}_{4}.
- non-hereditary Nakayama algebras of Loewy length 3.
- non-hereditary non-Nakayama tri-string algebras.

Example

(1) Let A be given by

Example

(1) Let A be given by

Example

(1) Let A be given by

(3) A is non-hereditary non-Nakayama tri-string algebra.

Example

(1) Let A be given by

(3) A is non-hereditary non-Nakayama tri-string algebra.
(0) $\operatorname{rad}(\bmod A)$ is of nilpotency 4 .

The representation theory of tri-string algebras

Almost split sequences

Theorem
Let A be tri－string algebra with $M \in \operatorname{ind} A$ ．

Almost split sequences

Theorem
Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \operatorname{top} M \longrightarrow 0
$$

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \operatorname{top} M \longrightarrow 0
$$

(4) Let M be non-injective with $\ell(M)=2$ and an injective envelope I_{M}.

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \operatorname{top} M \longrightarrow 0
$$

(4) Let M be non-injective with $\ell(M)=2$ and an injective envelope I_{M}.

- If I_{M} is co-wedged, then \exists almost split sequence

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \operatorname{top} M \longrightarrow 0
$$

(9) Let M be non-injective with $\ell(M)=2$ and an injective envelope I_{M}.

- If I_{M} is co-wedged, then \exists almost split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \longrightarrow I_{M} / M \longrightarrow 0 .
$$

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \text { top } M \longrightarrow 0
$$

(4) Let M be non-injective with $\ell(M)=2$ and an injective envelope I_{M}.

- If I_{M} is co-wedged, then \exists almost split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \longrightarrow I_{M} / M \longrightarrow 0
$$

- If I_{M} is uniserial, then \exists almost split sequence

Almost split sequences

Theorem

Let A be tri-string algebra with $M \in \operatorname{ind} A$.
(1) $\ell(M) \leq 3$.
(2) If M is neither projective nor injective, then $\ell(M) \leq 2$.
(3) If M is non-injective with $\ell(M)=3$, then M is wedged projective with $\operatorname{rad} M=S_{1} \oplus S_{2}$ and almost split sequence

$$
0 \longrightarrow M \longrightarrow M / S_{1} \oplus M / S_{2} \longrightarrow \text { top } M \longrightarrow 0
$$

(4) Let M be non-injective with $\ell(M)=2$ and an injective envelope I_{M}.

- If I_{M} is co-wedged, then \exists almost split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \longrightarrow I_{M} / M \longrightarrow 0
$$

- If I_{M} is uniserial, then \exists almost split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \oplus \operatorname{top} M \longrightarrow I_{M} / \operatorname{soc} M \longrightarrow 0
$$

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0,
$$

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0,
$$

where M_{i} is the kernel of the projection $I_{S} \rightarrow S_{i}$.

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0,
$$

where M_{i} is the kernel of the projection $I_{S} \rightarrow S_{i}$.
(2) If S is direct summand of $\operatorname{rad} P$ with P wedged projective,

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0,
$$

where M_{i} is the kernel of the projection $I_{S} \rightarrow S_{i}$.
(2) If S is direct summand of $\operatorname{rad} P$ with P wedged projective, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow P \longrightarrow P / S \longrightarrow 0
$$

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0,
$$

where M_{i} is the kernel of the projection $I_{S} \rightarrow S_{i}$.
(2) If S is direct summand of $\operatorname{rad} P$ with P wedged projective, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow P \longrightarrow P / S \longrightarrow 0
$$

(3) In other cases, \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow N \longrightarrow N / S \longrightarrow 0
$$

Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .
(1) If I_{S} is co-wedged with $I_{S} / S=S_{1} \oplus S_{2}$, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I_{S} \longrightarrow 0
$$

where M_{i} is the kernel of the projection $I_{S} \rightarrow S_{i}$.
(2) If S is direct summand of $\operatorname{rad} P$ with P wedged projective, then \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow P \longrightarrow P / S \longrightarrow 0
$$

(3) In other cases, \exists almost split sequence

$$
0 \longrightarrow S \longrightarrow N \longrightarrow N / S \longrightarrow 0
$$

where $N=I_{S}$ in case $\ell\left(I_{S}\right)=2$, and $N=\operatorname{rad} I_{S}$ in case $\ell\left(I_{S}\right)=3$.

