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Motivation

1 A : connected basic artin algebra.

2 modA: category of finitely generated left A-modules.

3 indA: category of indecomposable A-modules in modA.

4 rad(modA): Jacobson radical of modA.

5 rad∞(modA) = ∩m≥1rad
m(modA).

6 The central objective of the representation theory is to

classify the indecomposable modules;

describe the morphisms the indecomposable modules.
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Motivation

For representation-finite algebras, their representation

theory is believed to be determined by rad(modA).

Theorem (Auslander)

A representation-finite⇐⇒radm(modA)=0 for some m≥1.

In this case, write n rad(modA) for the nilpotency of rad(modA).

Observation

n rad(modA) = 1 ⇐⇒ A is simple.
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Motivation

Objective

In terms of the nilpotency of rad(modA),

classify representation-finite artin algebras;

study their representation theory.

This can be accomplished by two approaches.

Problem

1 Given a class of representation-finite algebras A,

calculate n rad(modA).

2 Given an integer m > 0,

find all algebras A with n rad(modA) = m;

study their representation theory.
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A brief history

Lemma (Harada-Sai)

If b is the maximal length of modules in indA,

then n rad(modA) ≤ 2b − 1.

This estimate depends on a prior knowledge of all
indecomposable modules.

In 2013, Chaio-Liu gave another approach, which seems
more efficient and precise.
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Depth of maps

Definition

1 Given a map f : X → Y in modA, its depth is defined by

dp(f ) = ∞ if f ∈ rad∞(X ,Y );

dp(f ) = s if f ∈rads(X ,Y )\rads+1(X ,Y ).

2 The depth of modA is defined by

dp(modA) = sup{dp(f ) | f non-zero maps in modA}.

Observation

1 A is representation-finite ⇐⇒dp(modA) < ∞.

2 In this case, n rad(modA) = dp(modA) + 1.
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Calculate dp(modA)

For each simple module S ∈ modA, we fix

a projective cover π
S
: P

S
→ S ;

an injective envelope ι
S
: S → I

S
;

Theorem (Chaio, Liu, 2013)

1 A representation-finite⇐⇒dp(θ
S
)<∞. for all simple S .

2 In this case, dp(modA) = max{dp(ι
S
◦ π

S
) | S simple }.
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Representation-finite hereditary artin algebras

Definition

The Ext-quiver QA of A is a valued quiver

1 vertices are the non isomorphic simples in modA;

2 ∃ S → T with valuation (d , d ′) if Ext1(S ,T ) ̸= 0

where

d = multiplicity of T in top(radPS).

d ′ = multiplicity of S in soc(IT/T ).

Proposition (ARS Book)

1 If A is hereditary, then it is representation-finite

⇐⇒ QA is a Dynkin quiver.

2 Given any finite valued quiver ∆,

∃ hereditary algebra A with QA
∼= ∆.
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Proposition

1 A is representation-finite hereditary ⇐⇒ its AR-quiver ΓA

contains a non-trivial connected mesh-complete,

translation subquiver Γ in which

the projective modules generate a section ∆;

the injective modules generate a section ∆′.

2 In this case,

∆ ∼= Qop
A ;

∆′ ∼= QA;

ΓA = Γ .
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If A is a Nakayama algebra, then

n rad(modA) = max{ℓ(PS)+ ℓ(IS)− 1 | S simple in modA}.

‘Theorem’ (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type,

then nrad(modA) is the Coexter order of QA.
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We shall find all algebras A with n rad(modA) ≤ 4.



String artin algebras

Definition

Call A a string algebra provided that

given projective P ∈ indA, radP is uniserial

or a direct sum of two uniserial modules;

given injective I ∈ indA, I/socI is uniserial

or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with

Butler and Ringel’s definition of a string algebra.

Proposition

If rad4(modA) = 0, then the middle term of any AR-sequence

in modA has at most two indecomposable direct summands.
Being representation-finite, A is string algebra (by Auslander ).
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Definition

1 A projective P ∈ indA is wedged if radP = S1 ⊕ S2,

S1, S2 are simple ;

soc(IS1/S1), soc(IS2/S2) are simple.

2 An injective I ∈ indA is co-wedged if I/socI = S1 ⊕ S2,

S1, S2 are simple ;

top(radPS1), top(radPS2) are simple.

Remark

P ∈ indA is wedged projective ⇐⇒ DP ∈ indAop is co-wedged
injective.
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Example

Let A = kQ/I with a ∈ Q0.

1 Pa is wedged ⇐⇒ supp(Pa) has a wedge shape

aα
yy

β

%%
b c

α is the only arrow ending in b

β is the only arrow ending in c .

2 Ia is co-wedged ⇐⇒ supp(Ia) has shape

b α
%%

cβ

yy
a

α is the only arrow starting in b

β is the only arrow starting in c .
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Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Wedged string algebras

Definition

Call A a wedged string algebra provided that

every projective P ∈ indA is uniserial or wedged;

every injective I ∈ indA is uniserial or co-wedged.

Example

1 Nakayama algebras.

2 kQ, where Q is quiver of type An with zigzag orientation.

3 The algebra given by
◦

""||◦ ◦
""

◦
||◦



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Definition

A wedged string algebra A is called tri-string algebra if

1 rad3(A) = 0;

2 ℓ(PS) + ℓ(IS) ≤ 5, for any simple S ;

3 ℓ(PS) + ℓ(IS) ≤ 4 in case S is simple direct summand of

radP , where P ∈ indA is wedged projective;

I/socI , where I ∈ indI is co-wedged injective;

4 A wedged projective module and a co-wedged injective
module have no common composition factor.



Theorem

If A is an artin algebra, then rad4(modA) = 0 ⇐⇒

A is hereditary algebra of type A4 or tri-string algebra.

Example

Let A be given by
a

��

// b //

��

◦

c ◦

1 radPa = Sb ⊕ Sc with ℓ(PSb) + ℓ(ISb) = 5.

2 A non-hereditary wedged string but not tri-string algebra.

3 rad4(modA) ̸= 0.
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Classification

Theorem

1 The algebras A with n rad(modA)=2 are hereditary of type A2.

2 The algebras A with n rad(modA) = 3 consist of

hereditary algebras of type A3 or B2.

non-hereditary Nakayama algebras of Loewy length 2.

3 The algebras A with n rad(modA) = 4 consist of

hereditary algebras of type A4.

non-hereditary Nakayama algebras of Loewy length 3.

non-hereditary non-Nakayama tri-string algebras.
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Example

1 Let A be given by

◦ // ◦ //

��

◦ // ◦ // ◦ // ◦ // ◦ // ◦ // ◦

◦ ◦ // ◦

OO

2 A is non-hereditary non-Nakayama tri-string algebra.

3 rad(modA) is of nilpotency 4.
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The representation theory of tri-string algebras



Almost split sequences

Theorem

Let A be tri-string algebra with M ∈ indA.

1 ℓ(M) ≤ 3.

2 If M is neither projective nor injective, then ℓ(M) ≤ 2.

3 If M is non-injective with ℓ(M) = 3, then M is wedged projective

with radM = S1 ⊕ S2 and almost split sequence

0 // M // M/S1 ⊕M/S2 // topM // 0.

4 Let M be non-injective with ℓ(M) = 2 and an injective envelope IM .

If IM is co-wedged, then ∃ almost split sequence

0 // M // IM // IM/M // 0.

If IM is uniserial, then ∃ almost split sequence

0 // M // IM ⊕ topM // IM/socM // 0.
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Almost split sequences

Theorem

Let A be tri-string algebra with S non-injective simple .

1 If IS is co-wedged with IS/S = S1 ⊕ S2, then ∃ almost split sequence

0 // S // M1 ⊕M2
// IS // 0,

where Mi is the kernel of the projection IS → Si .

2 If S is direct summand of radP with P wedged projective,

then ∃ almost split sequence

0 // S // P // P/S // 0.

3 In other cases, ∃ almost split sequence

0 // S // N // N/S // 0,

where N = IS in case ℓ(IS) = 2, and N = radIS in case ℓ(IS) = 3.
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