Module categories of small radical nipotency

Shiping Liu^{*}, Université de Sherbrooke Youqi Yin, Shaoxing University

Advances in Representation Theory of Algebras IX Kingston, Ontario

.

June 12 - 16, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A : connected basic artin algebra.

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- ind A: category of indecomposable A-modules in mod A.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- ind A: category of indecomposable A-modules in mod A.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• rad(mod A): Jacobson radical of mod A.

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- **(3)** ind A: category of indecomposable A-modules in mod A.

- rad(mod A): Jacobson radical of mod A.
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) = \cap_{m \ge 1} \operatorname{rad}^{m}(\operatorname{mod} A).$

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- **(3)** ind A: category of indecomposable A-modules in mod A.
- rad(mod A): Jacobson radical of mod A.
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) = \cap_{m \ge 1} \operatorname{rad}^{m}(\operatorname{mod} A).$
- The central objective of the representation theory is to

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- **(3)** ind A: category of indecomposable A-modules in modA.
- rad(mod A): Jacobson radical of mod A.
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) = \cap_{m \ge 1} \operatorname{rad}^{m}(\operatorname{mod} A).$
- O The central objective of the representation theory is to

• classify the indecomposable modules;

- A : connected basic artin algebra.
- **2** mod *A*: category of finitely generated left *A*-modules.
- **(3)** ind A: category of indecomposable A-modules in mod A.
- rad(mod A): Jacobson radical of mod A.
- $\operatorname{rad}^{\infty}(\operatorname{mod} A) = \cap_{m \ge 1} \operatorname{rad}^{m}(\operatorname{mod} A).$
- O The central objective of the representation theory is to
 - classify the indecomposable modules;
 - describe the morphisms the indecomposable modules.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m(\operatorname{mod} A) = 0$ for some $m \ge 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m(\operatorname{mod} A) = 0$ for some $m \ge 1$. In this case, write $n_{\operatorname{rad}(\operatorname{mod} A)}$ for the nilpotency of $\operatorname{rad}(\operatorname{mod} A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Auslander)

A representation-finite $\iff \operatorname{rad}^m(\operatorname{mod} A) = 0$ for some $m \ge 1$. In this case, write $n_{\operatorname{rad}(\operatorname{mod} A)}$ for the nilpotency of $\operatorname{rad}(\operatorname{mod} A)$.

Observation

 $n_{\mathrm{rad}(\mathrm{mod}A)} = 1 \iff A$ is simple.

Objective

In terms of the nilpotency of rad(mod A),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Objective

In terms of the nilpotency of rad(mod A),

• classify representation-finite artin algebras;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Objective

In terms of the nilpotency of rad(mod A),

classify representation-finite artin algebras;

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• study their representation theory.

Objective

In terms of the nilpotency of rad(mod A),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objective

In terms of the nilpotency of rad(modA),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

• Given a class of representation-finite algebras A,

Objective

In terms of the nilpotency of rad(modA),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

 Given a class of representation-finite algebras A, calculate n_{rad(modA)}.

Objective

In terms of the nilpotency of rad(mod A),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

 Given a class of representation-finite algebras A, calculate n_{rad(modA)}.

• Given an integer m > 0,

Objective

In terms of the nilpotency of rad(mod A),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

 Given a class of representation-finite algebras A, calculate n_{rad(modA)}.

- Given an integer m > 0,
 - find all algebras A with $n_{rad(modA)} = m$;

Objective

In terms of the nilpotency of rad(modA),

- classify representation-finite artin algebras;
- study their representation theory.

This can be accomplished by two approaches.

Problem

 Given a class of representation-finite algebras A, calculate n_{rad(modA)}.

- Given an integer m > 0,
 - find all algebras A with $n_{rad(modA)} = m$;
 - study their representation theory.

A brief history

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

If b is the maximal length of modules in indA,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If b is the maximal length of modules in $\operatorname{ind} A$, then $n_{\operatorname{rad}(\operatorname{mod} A)} \leq 2^b - 1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

If b is the maximal length of modules in $\operatorname{ind} A$, then $n_{\operatorname{rad}(\operatorname{mod} A)} \leq 2^b - 1$.

• This estimate depends on a prior knowledge of all indecomposable modules.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If b is the maximal length of modules in $\operatorname{ind} A$, then $n_{\operatorname{rad}(\operatorname{mod} A)} \leq 2^b - 1.$

- This estimate depends on a prior knowledge of all indecomposable modules.
- In 2013, Chaio-Liu gave another approach, which seems more efficient and precise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Depth of maps

Definition

• Given a map $f: X \to Y$ in modA, its depth is defined by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Depth of maps

Definition

• Given a map $f: X \to Y$ in modA, its depth is defined by

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $dp(f) = \infty$ if $f \in rad^{\infty}(X, Y)$;

Depth of maps

Definition

• Given a map $f: X \to Y$ in modA, its depth is defined by

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $dp(f) = \infty$ if $f \in rad^{\infty}(X, Y)$;
- dp(f) = s if $f \in rad^{s}(X, Y) \setminus rad^{s+1}(X, Y)$.

• Given a map $f: X \to Y$ in modA, its depth is defined by

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $dp(f) = \infty$ if $f \in rad^{\infty}(X, Y)$;
- dp(f) = s if $f \in rad^{s}(X, Y) \setminus rad^{s+1}(X, Y)$.

• The *depth* of mod*A* is defined by

- Given a map $f: X \to Y$ in modA, its depth is defined by
 - $dp(f) = \infty$ if $f \in rad^{\infty}(X, Y)$;
 - dp(f) = s if $f \in rad^{s}(X, Y) \setminus rad^{s+1}(X, Y)$.

• The *depth* of mod*A* is defined by

 $dp(modA) = sup\{dp(f) \mid f \text{ non-zero maps in } modA\}.$

• Given a map $f: X \to Y$ in modA, its depth is defined by

•
$$dp(f) = \infty$$
 if $f \in rad^{\infty}(X, Y)$;

• dp(f) = s if $f \in rad^{s}(X, Y) \setminus rad^{s+1}(X, Y)$.

• The *depth* of mod*A* is defined by

 $dp(modA) = sup\{dp(f) \mid f \text{ non-zero maps in } modA\}.$

Observation

• A is representation-finite $\iff dp(modA) < \infty$.

• Given a map $f: X \to Y$ in modA, its depth is defined by

•
$$dp(f) = \infty$$
 if $f \in rad^{\infty}(X, Y)$;

• dp(f) = s if $f \in rad^{s}(X, Y) \setminus rad^{s+1}(X, Y)$.

• The *depth* of mod*A* is defined by

 $dp(modA) = sup\{dp(f) \mid f \text{ non-zero maps in } modA\}.$

Observation

- A is representation-finite $\iff dp(modA) < \infty$.
- In this case, $n_{rad(modA)} = dp(modA) + 1$.

For each simple module $S \in \operatorname{mod} A$, we fix

(ロ)、(型)、(E)、(E)、 E) の(()

For each simple module $S \in \operatorname{mod} A$, we fix

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• a projective cover $\pi_s: P_s \to S$;

For each simple module $S \in \operatorname{mod} A$, we fix

- a projective cover $\pi_s: P_s \to S;$
- an injective envelope $\iota_s: S \to I_s;$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For each simple module $S\in \operatorname{mod} A$, we fix

- a projective cover $\pi_s: P_s \to S;$
- an injective envelope $\iota_s : S \rightarrow I_s$;

Theorem (Chaio, Liu, 2013)

• A representation-finite $\iff dp(\theta_s) < \infty$. for all simple S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For each simple module $S \in \operatorname{mod} A$, we fix

- a projective cover $\pi_s: P_s \to S;$
- an injective envelope $\iota_s : S \rightarrow I_s$;

Theorem (Chaio, Liu, 2013)

- A representation-finite $\iff dp(\theta_s) < \infty$. for all simple S.
- In this case, $dp(modA) = max\{dp(\iota_s \circ \pi_s) \mid S \text{ simple }\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Definition

The *Ext-quiver* Q_A of A is a valued quiver

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - vertices are the non isomorphic simples in $\operatorname{mod} A$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - **e** $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - vertices are the non isomorphic simples in modA;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where

• d =multiplicity of Tin top(rad P_S).

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - \bullet vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where

- d =multiplicity of T in top(rad P_S).
- d' = multiplicity of S in $\operatorname{soc}(I_T/T)$.

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - \bullet vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where
 - d =multiplicity of T in top(rad P_S).
 - d' = multiplicity of S in $\operatorname{soc}(I_T/T)$.

Proposition (ARS Book)

 \bullet If A is hereditary, then it is representation-finite

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - \bullet vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where
 - d =multiplicity of T in top(rad P_S).
 - d' = multiplicity of S in $soc(I_T/T)$.

Proposition (ARS Book)

• If A is hereditary, then it is representation-finite $\iff Q_A$ is a Dynkin quiver.

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - \bullet vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where
 - d =multiplicity of T in top(rad P_S).
 - d' = multiplicity of S in $soc(I_T/T)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite $\iff Q_A$ is a Dynkin quiver.
- Given any finite valued quiver Δ ,

Definition

- The *Ext-quiver* Q_A of A is a valued quiver
 - \bullet vertices are the non isomorphic simples in $\operatorname{mod} A$;
 - $\exists S \to T$ with valuation (d, d') if $\operatorname{Ext}^1(S, T) \neq 0$ where
 - d =multiplicity of T in top(rad P_S).
 - d' = multiplicity of S in $soc(I_T/T)$.

Proposition (ARS Book)

- If A is hereditary, then it is representation-finite $\iff Q_A$ is a Dynkin quiver.
- Given any finite valued quiver Δ , \exists hereditary algebra A with $Q_A \cong \Delta$.

• A is representation-finite hereditary \iff its AR-quiver Γ_A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A is representation-finite hereditary \iff its AR-quiver Γ_A contains a non-trivial connected mesh-complete,

 A is representation-finite hereditary ⇐⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- A is representation-finite hereditary ⇐⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which
 - the projective modules generate a section Δ ;

- A is representation-finite hereditary ⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which
 - the projective modules generate a section Δ ;
 - the injective modules generate a section Δ' .

・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

- A is representation-finite hereditary ⇐⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which
 - the projective modules generate a section Δ ;
 - the injective modules generate a section Δ' .

In this case,

•
$$arDelta\cong {\it Q}_{\it A}^{
m op}$$
;

- A is representation-finite hereditary ⇐⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which
 - the projective modules generate a section Δ ;
 - the injective modules generate a section Δ' .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- In this case,
 - $\Delta \cong Q_A^{\mathrm{op}}$;
 - $\Delta'\cong Q_A;$

- A is representation-finite hereditary ⇐⇒ its AR-quiver Γ_A contains a non-trivial connected mesh-complete, translation subquiver Γ in which
 - the projective modules generate a section Δ ;
 - the injective modules generate a section Δ' .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- In this case,
 - $\Delta \cong Q_A^{\mathrm{op}};$
 - $\Delta'\cong Q_A;$
 - $\Gamma_A = \Gamma$.

• $\ell\ell(A)$: Loewy length of A, that is, nilpotency of radA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• $\ell\ell(A)$: Loewy length of A, that is, nilpotency of radA.

2 It is evident $\ell\ell(A) \leq n_{\operatorname{rad}(\operatorname{mod} A)}$.

- $\ell\ell(A)$: Loewy length of A, that is, nilpotency of radA.
- 2 It is evident $\ell\ell(A) \leq n_{\mathrm{rad}(\mathrm{mod}A)}$.

Theorem

$$n_{\operatorname{rad}(\operatorname{mod} A)} = \ell \ell(A) \iff A$$
 is a hereditary algebra of type $\overline{\mathbb{A}}_n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$n_{\mathrm{rad}(\mathrm{mod}A)}$ for special classes of algebras

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$n_{\mathrm{rad}(\mathrm{mod}\mathcal{A})}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

$n_{rad(modA)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

 $n_{\operatorname{rad}(\operatorname{mod} A)} = \max\{\ell(P_S) + \ell(I_S) - 1 \mid S \text{ simple in } \operatorname{mod} A\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$n_{rad(modA)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

 $n_{\operatorname{rad}(\operatorname{mod} A)} = \max\{\ell(P_S) + \ell(I_S) - 1 \mid S \text{ simple in } \operatorname{mod} A\}.$

'Theorem' (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type,

$n_{\mathrm{rad}(\mathrm{mod}A)}$ for special classes of algebras

Theorem

If A is a Nakayama algebra, then

 $n_{\operatorname{rad}(\operatorname{mod} A)} = \max\{\ell(P_S) + \ell(I_S) - 1 \mid S \text{ simple in } \operatorname{mod} A\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

'Theorem' (Liu, Todorov, 2023)

If A is hereditary artin algebra of Dynkin type, then $n_{rad(modA)}$ is the Coexter order of Q_A . We shall find all algebras A with $n_{rad(modA)} \leq 4$.

・ロト・(型ト・(型ト・(型ト))

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Definition

Call A a string algebra provided that

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Definition

Call A a string algebra provided that

• given projective $P \in \operatorname{ind} A$, $\operatorname{rad} P$ is uniserial

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Definition

Call A a string algebra provided that

• given projective $P \in \operatorname{ind} A$, $\operatorname{rad} P$ is uniserial

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

or a direct sum of two uniserial modules;

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective $I \in \operatorname{ind} A$, $I/\operatorname{soc} I$ is uniserial

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $rad^4(mod A) = 0$, then the middle term of any AR-sequence

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $rad^4(mod A) = 0$, then the middle term of any AR-sequence in mod A has at most two indecomposable direct summands.

Definition

Call A a string algebra provided that

- given projective P ∈ ind A, radP is uniserial or a direct sum of two uniserial modules;
- given injective *I* ∈ ind *A*, *I*/soc*I* is uniserial or a direct sum of two uniserial modules.

For algebras defined by a bound quiver, this coincides with Butler and Ringel's definition of a string algebra.

Proposition

If $rad^4(mod A) = 0$, then the middle term of any AR-sequence in mod A has at most two indecomposable direct summands. Being representation-finite, A is string algebra (by Auslander).

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

• S_1, S_2 are simple;

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• An injective $I \in ind A$ is *co-wedged* if $I/soc I = S_1 \oplus S_2$,

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $\operatorname{soc}(I_{S_1}/S_1), \operatorname{soc}(I_{S_2}/S_2)$ are simple.

• An injective $I \in ind A$ is *co-wedged* if $I/soc I = S_1 \oplus S_2$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• S_1, S_2 are simple;

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $soc(I_{S_1}/S_1), soc(I_{S_2}/S_2)$ are simple.

• An injective $I \in ind A$ is *co-wedged* if $I/soc I = S_1 \oplus S_2$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• S_1, S_2 are simple;

• $top(rad P_{S_1}), top(rad P_{S_2})$ are simple.

• A projective $P \in \operatorname{ind} A$ is *wedged* if $\operatorname{rad} P = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $soc(I_{S_1}/S_1), soc(I_{S_2}/S_2)$ are simple.

• An injective $I \in ind A$ is *co-wedged* if $I/soc I = S_1 \oplus S_2$,

- S_1, S_2 are simple;
- $top(rad P_{S_1}), top(rad P_{S_2})$ are simple.

Remark

 $P \in \operatorname{ind} A$ is wedged projective $\iff DP \in \operatorname{ind} A^{\operatorname{op}}$ is co-wedged injective.

Let A = kQ/I with $a \in Q_0$.

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff \operatorname{supp}(P_a)$ has a wedge shape

・ロト・四ト・モート ヨー うへの

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff \operatorname{supp}(P_a)$ has a wedge shape

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff \operatorname{supp}(P_a)$ has a wedge shape

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• α is the only arrow ending in b

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff \operatorname{supp}(P_a)$ has a wedge shape

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- α is the only arrow ending in b
- β is the only arrow ending in c.

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff supp(P_a)$ has a wedge shape

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- α is the only arrow ending in ${\it b}$
- β is the only arrow ending in c.
- $I_a \text{ is co-wedged} \iff \operatorname{supp}(I_a) \text{ has shape}$

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff supp(P_a)$ has a wedge shape

- $\bullet \ \alpha$ is the only arrow ending in b
- β is the only arrow ending in c.
- $I_a \text{ is co-wedged} \iff \operatorname{supp}(I_a) \text{ has shape}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff supp(P_a)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
- $I_a \text{ is co-wedged} \iff \operatorname{supp}(I_a) \text{ has shape}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• α is the only arrow starting in b

Let A = kQ/I with $a \in Q_0$.

• P_a is wedged $\iff \operatorname{supp}(P_a)$ has a wedge shape

- α is the only arrow ending in b
- β is the only arrow ending in c.
- $I_a \text{ is co-wedged} \iff \operatorname{supp}(I_a) \text{ has shape}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- α is the only arrow starting in b
- β is the only arrow starting in c.

Definition

Call A a wedged string algebra provided that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

Call A a *wedged string algebra* provided that

• every projective $P \in indA$ is uniserial or wedged;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

Call A a *wedged string algebra* provided that

- every projective $P \in indA$ is uniserial or wedged;
- every injective $I \in indA$ is uniserial or co-wedged.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Call A a *wedged string algebra* provided that

- every projective $P \in indA$ is uniserial or wedged;
- every injective $I \in indA$ is uniserial or co-wedged.

Example

• Nakayama algebras.

Definition

Call A a *wedged string algebra* provided that

- every projective $P \in indA$ is uniserial or wedged;
- every injective $I \in indA$ is uniserial or co-wedged.

Example

- Nakayama algebras.
- kQ, where Q is quiver of type \mathbb{A}_n with zigzag orientation.

Definition

Call A a *wedged string algebra* provided that

- every projective $P \in indA$ is uniserial or wedged;
- every injective $I \in indA$ is uniserial or co-wedged.

Example

- Nakayama algebras.
- kQ, where Q is quiver of type \mathbb{A}_n with zigzag orientation.
- **o** The algebra given by

A wedged string algebra A is called *tri-string algebra* if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A wedged string algebra A is called *tri-string algebra* if • $rad^{3}(A) = 0;$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A wedged string algebra A is called *tri-string algebra* if

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

•
$$rad^{3}(A) = 0;$$

$$o \ \ell(P_S) + \ell(I_S) \leq 5, \text{ for any simple } S;$$

A wedged string algebra A is called *tri-string algebra* if

•
$$rad^{3}(A) = 0;$$

- $\ell(P_S) + \ell(I_S) \le 5$, for any simple S;
- $\ell(P_S) + \ell(I_S) \le 4$ in case S is simple direct summand of

A wedged string algebra A is called *tri-string algebra* if

•
$$\operatorname{rad}^3(A) = 0;$$

- $\ell(P_S) + \ell(I_S) \le 5$, for any simple S;
- ℓ(P_S) + ℓ(I_S) ≤ 4 in case S is simple direct summand of
 radP, where P ∈ indA is wedged projective;

A wedged string algebra A is called *tri-string algebra* if

- $rad^{3}(A) = 0;$
- $\ell(P_S) + \ell(I_S) \le 5$, for any simple S;
- $\ell(P_S) + \ell(I_S) \le 4$ in case S is simple direct summand of
 - $\operatorname{rad} P$, where $P \in \operatorname{ind} A$ is wedged projective;
 - $I/\operatorname{soc} I$, where $I \in \operatorname{ind} I$ is co-wedged injective;

A wedged string algebra A is called *tri-string algebra* if

- $rad^{3}(A) = 0;$
- $\ell(P_S) + \ell(I_S) \le 5$, for any simple S;
- $\ell(P_S) + \ell(I_S) \le 4$ in case S is simple direct summand of
 - $\operatorname{rad} P$, where $P \in \operatorname{ind} A$ is wedged projective;
 - $I/\operatorname{soc} I$, where $I \in \operatorname{ind} I$ is co-wedged injective;
- A wedged projective module and a co-wedged injective module have no common composition factor.

Theorem

If A is an artin algebra, then $rad^4(modA) = 0 \iff$

Theorem

If A is an artin algebra, then $rad^4(modA) = 0 \iff$ A is hereditary algebra of type \mathbb{A}_4 or tri-string algebra.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem

If A is an artin algebra, then $rad^4(modA) = 0 \iff$ A is hereditary algebra of type \mathbb{A}_4 or tri-string algebra.

If A is an artin algebra, then $rad^4(modA) = 0 \iff$ A is hereditary algebra of type \mathbb{A}_4 or tri-string algebra.

Example

If A is an artin algebra, then $rad^4(modA) = 0 \iff$ A is hereditary algebra of type \mathbb{A}_4 or tri-string algebra.

Example

- $\operatorname{rad} P_a = S_b \oplus S_c$ with $\ell(P_{S_b}) + \ell(I_{S_b}) = 5$.
- A non-hereditary wedged string but not tri-string algebra.

If A is an artin algebra, then $rad^4(modA) = 0 \iff$ A is hereditary algebra of type \mathbb{A}_4 or tri-string algebra.

Example

- $\operatorname{rad} P_a = S_b \oplus S_c$ with $\ell(P_{S_b}) + \ell(I_{S_b}) = 5$.
- A non-hereditary wedged string but not tri-string algebra.
- $\operatorname{rad}^4(\operatorname{mod} A) \neq 0.$

1 The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 The algebras A with $n_{rad(modA)} = 3$ consist of

• The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .

- **1** The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .
- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .
 - non-hereditary Nakayama algebras of Loewy length 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **1** The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .
- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .
 - non-hereditary Nakayama algebras of Loewy length 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3 The algebras A with $n_{rad(modA)} = 4$ consist of

- **1** The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .
- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .
 - non-hereditary Nakayama algebras of Loewy length 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **3** The algebras A with $n_{rad(modA)} = 4$ consist of
 - hereditary algebras of type \mathbb{A}_4 .

- **1** The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .
- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .
 - non-hereditary Nakayama algebras of Loewy length 2.
- **3** The algebras A with $n_{rad(modA)} = 4$ consist of
 - hereditary algebras of type A₄.
 - non-hereditary Nakayama algebras of Loewy length 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **1** The algebras A with $n_{rad(modA)} = 2$ are hereditary of type \mathbb{A}_2 .
- 2 The algebras A with $n_{rad(modA)} = 3$ consist of
 - hereditary algebras of type \mathbb{A}_3 or \mathbb{B}_2 .
 - non-hereditary Nakayama algebras of Loewy length 2.
- 3 The algebras A with $n_{rad(modA)} = 4$ consist of
 - hereditary algebras of type A₄.
 - non-hereditary Nakayama algebras of Loewy length 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• non-hereditary non-Nakayama tri-string algebras.

• Let A be given by

◆□▶ ◆圖▶ ◆国▶ ◆国▶ → 国 → ��や

Example

• Let *A* be given by

<ロト <回ト < 注ト < 注ト

æ

Example

• Let A be given by

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

A is non-hereditary non-Nakayama tri-string algebra.

Example

• Let A be given by

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

- *Q A* is non-hereditary non-Nakayama tri-string algebra.
- rad(mod A) is of nilpotency 4.

The representation theory of tri-string algebras

Theorem

Let A be tri-string algebra with $M \in indA$.

Theorem

Let A be tri-string algebra with $M \in indA$.

 $(M) \leq 3.$

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- 2 If M is neither projective nor injective, then $\ell(M) \leq 2$.

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- 2 If M is neither projective nor injective, then $\ell(M) \leq 2$.
- 3 If M is non-injective with $\ell(M) = 3$, then M is wedged projective

Theorem

Let A be tri-string algebra with $M \in indA$.

 $(M) \leq 3.$

- **2** If M is neither projective nor injective, then $\ell(M) \leq 2$.
- If *M* is non-injective with $\ell(M) = 3$, then *M* is wedged projective with rad*M* = *S*₁ ⊕ *S*₂ and almost split sequence

Theorem

Let A be tri-string algebra with $M \in indA$.

 $(M) \leq 3.$

2 If M is neither projective nor injective, then $\ell(M) \leq 2$.

If M is non-injective with ℓ(M) = 3, then M is wedged projective with radM = S₁ ⊕ S₂ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- **2** If *M* is neither projective nor injective, then $\ell(M) \leq 2$.
- 3 If M is non-injective with $\ell(M) = 3$, then M is wedged projective with $\operatorname{rad} M = S_1 \oplus S_2$ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

4 Let M be non-injective with $\ell(M) = 2$ and an injective envelope I_M .

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- **2** If *M* is neither projective nor injective, then $\ell(M) \leq 2$.
- 3 If M is non-injective with $\ell(M) = 3$, then M is wedged projective with $\operatorname{rad} M = S_1 \oplus S_2$ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

Let M be non-injective with l(M) = 2 and an injective envelope I_M.
 If I_M is co-wedged, then ∃ almost split sequence

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- 2 If M is neither projective nor injective, then $\ell(M) \leq 2$.
- If M is non-injective with ℓ(M) = 3, then M is wedged projective with radM = S₁ ⊕ S₂ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

Let M be non-injective with l(M) = 2 and an injective envelope I_M.
 If I_M is co-wedged, then ∃ almost split sequence

$$0 \longrightarrow M \longrightarrow I_M \longrightarrow I_M/M \longrightarrow 0.$$

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- **2** If *M* is neither projective nor injective, then $\ell(M) \leq 2$.
- If M is non-injective with $\ell(M) = 3$, then M is wedged projective with $radM = S_1 \oplus S_2$ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

- Let M be non-injective with $\ell(M) = 2$ and an injective envelope I_M .
 - If I_M is co-wedged, then \exists almost split sequence

$$0 \longrightarrow M \longrightarrow I_M \longrightarrow I_M/M \longrightarrow 0.$$

• If I_M is uniserial, then \exists almost split sequence

Theorem

Let A be tri-string algebra with $M \in indA$.

- $(M) \leq 3.$
- **2** If *M* is neither projective nor injective, then $\ell(M) \leq 2$.
- If M is non-injective with $\ell(M) = 3$, then M is wedged projective with $radM = S_1 \oplus S_2$ and almost split sequence

$$0 \longrightarrow M \longrightarrow M/S_1 \oplus M/S_2 \longrightarrow \operatorname{top} M \longrightarrow 0.$$

- Let M be non-injective with $\ell(M) = 2$ and an injective envelope I_M .
 - If I_M is co-wedged, then \exists almost split sequence

$$0 \longrightarrow M \longrightarrow I_M \longrightarrow I_M/M \longrightarrow 0.$$

• If I_M is uniserial, then \exists almost split sequence

$$0 \longrightarrow M \longrightarrow I_M \oplus \operatorname{top} M \longrightarrow I_M / \operatorname{soc} M \longrightarrow 0.$$

Theorem

Let A be tri-string algebra with S non-injective simple .

Theorem

Let A be tri-string algebra with S non-injective simple .

1 If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

Theorem

Let A be tri-string algebra with S non-injective simple .

● If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

Theorem

Let A be tri-string algebra with S non-injective simple .

● If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

where M_i is the kernel of the projection $I_S \rightarrow S_i$.

Theorem

Let A be tri-string algebra with S non-injective simple .

● If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

where M_i is the kernel of the projection $I_S \rightarrow S_i$.

2 If S is direct summand of radP with P wedged projective,

Theorem

Let A be tri-string algebra with S non-injective simple .

1 If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

where M_i is the kernel of the projection $I_S \rightarrow S_i$.

 If S is direct summand of radP with P wedged projective, then ∃ almost split sequence

$$0 \longrightarrow S \longrightarrow P \longrightarrow P/S \longrightarrow 0.$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

Let A be tri-string algebra with S non-injective simple .

1 If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

where M_i is the kernel of the projection $I_S \rightarrow S_i$.

If S is direct summand of radP with P wedged projective, then ∃ almost split sequence

$$0 \longrightarrow S \longrightarrow P \longrightarrow P/S \longrightarrow 0.$$

(3) In other cases, \exists almost split sequence

$$0 \longrightarrow S \longrightarrow N \longrightarrow N/S \longrightarrow 0,$$

Let A be tri-string algebra with S non-injective simple .

1 If I_S is co-wedged with $I_S/S = S_1 \oplus S_2$, then \exists almost split sequence

$$0 \longrightarrow S \longrightarrow M_1 \oplus M_2 \longrightarrow I_S \longrightarrow 0$$

where M_i is the kernel of the projection $I_S \rightarrow S_i$.

If S is direct summand of radP with P wedged projective, then ∃ almost split sequence

$$0 \longrightarrow S \longrightarrow P \longrightarrow P/S \longrightarrow 0.$$

() In other cases, \exists almost split sequence

$$0 \longrightarrow S \longrightarrow N \longrightarrow N/S \longrightarrow 0,$$

where $N = I_S$ in case $\ell(I_S) = 2$, and $N = \operatorname{rad} I_S$ in case $\ell(I_S) = 3$.