Almost split sequences in tri-eaxct categories

Shiping Liu^{*}, Hongwei Niu Université de Sherbrooke

Advance in Representation Theory of Algebras

In memory of

Daniel Simson and Andrzej Skowroński

September 19 - 23, 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Under the Hom-finite setting, many researchers have studied the existence of

- almost split sequences in abelian categories and exact categories (Aulander, Reiten, Bautista, Lenzing, Zuazua, etc);
- almost split triangles in triangulated categories and their extension-closed subcategories (Happel, Reiten, Van den Bergh, Jørgensen, etc).

Auslander's Theorem

- Λ: any ring.
- $Z \in \operatorname{Mod} A$ finitely presented, non-projective, $\operatorname{End}(Z)$ local.
- $\Sigma := \operatorname{End}(\operatorname{Tr} Z)^{\operatorname{op}}.$
- *I*: the injective envelope of $\operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))_{\Sigma}$.

$$X := \operatorname{Hom}_{\Sigma}(\operatorname{Tr} Z, I) \in \operatorname{Mod} A.$$

Theorem (Auslander)

- $\operatorname{Ext}^{1}_{\Lambda}(-,X) \cong \operatorname{Hom}_{\Sigma}(\operatorname{Hom}_{\Lambda}(Z,-),I).$
- **2** $\operatorname{Mod} A$ has an almost split sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

- \mathcal{A} : triangulated category, generated by the compact objects.
- $Z \in \mathcal{A}$ compact with $\Sigma = \operatorname{End}(Z)$ being local.
- *I*: the injective envelope of $\operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))_{\Sigma}$.

Theorem (Krause)

• (BROWN) There exists
$$X \in \mathcal{A}$$
 such that
 $\operatorname{Hom}_{\mathcal{A}}(-, X) \cong \operatorname{Hom}_{\Sigma}(\operatorname{Hom}_{\mathcal{A}}(Z, -), I).$

2 \mathcal{A} has an almost split triangle

$$X[-1] \longrightarrow Y \longrightarrow Z \longrightarrow X.$$

Objective

To unify various existence theorems of

- almost split sequences in abelian categories
- almost split triangles in triangulated categories

under setting of tri-exact categories without Hom-finiteness.

Application

Existence of almost split triangles in $D(\mathfrak{A})$ and $D^b(\mathfrak{A})$, where \mathfrak{A} is abelian category without Hom-finiteness.

Tri-exact categories

Let C be a tri-exact category, that is an extension-closed subcategory of a triangulated category A with shift [1].
Given X, Y ∈ C, we put

$$\operatorname{Ext}^{1}_{\mathcal{C}}(X, Y) := \operatorname{Hom}_{\mathcal{A}}(X, Y[1]).$$

Definition

- A morphism $f: X \to Y$ in \mathcal{C} is called
 - projectively trivial if, for all $M \in C$,

 $\operatorname{Ext}^{1}_{\mathcal{C}}(f, M) : \operatorname{Ext}^{1}_{\mathcal{C}}(Y, M) \to \operatorname{Ext}^{1}_{\mathcal{C}}(X, M) : \delta \mapsto \delta \circ f = 0;$

• *injectively trivial* if, for all $M \in C$,

 $\operatorname{Ext}^1_{\mathcal{C}}(M,f) : \operatorname{Ext}^1_{\mathcal{C}}(M,X) \to \operatorname{Ext}^1_{\mathcal{C}}(M,Y) : \delta \mapsto f[1] \circ \delta = 0.$

Given $X, Y \in \mathcal{C}$, we put

Remark

- $\operatorname{Ext}^{1}_{\mathcal{C}}(X, Y)$ is a $\overline{\operatorname{End}}(Y)$ - $\underline{\operatorname{End}}(X)$ -bimodule.
- $\bullet\,$ If ${\mathcal C}$ is a triangulated category, then

$$\underline{\operatorname{Hom}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X,Y) = \overline{\operatorname{Hom}}(X,Y).$$

Tri-exact structure and almost split sequences

An extension $\delta \in \operatorname{Ext}^1_{\mathcal{C}}(Z, X[1])$ defines exact triangle in \mathcal{A}

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{\delta} X[1].$$

Call $X \xrightarrow{u} Y \xrightarrow{v} Z$ tri-exact sequence in C defined by δ .

Remark

The tri-exact sequences in $\mathcal C$ yields a tri-exact structure.

Definition

A tri-exact sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{C} is almost split if

- *u* is minimal left almost split;
- v is minimal right almost split.

 \mathscr{C} : an extension-closed subcategory of abelian category \mathfrak{A} . $\mathscr{C}[0]$: the additive subcategory of $D(\mathfrak{A})$ generated by the complexes isomorphic to X[0] with $X \in \mathscr{C}$.

Proposition

- $\mathscr{C}[0]$ is an extension-closed subcategory of $D(\mathfrak{A})$.
- $\operatorname{Ext}^1_{\mathscr{C}}(X,Y) \cong \operatorname{Ext}^1_{\mathscr{C}[0]}(X[0],Y[0]), \text{ for all } X,Y \in \mathscr{C}.$
- $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$ is almost split sequence in \mathscr{C}

 $\Leftrightarrow X[0] \longrightarrow Y[0] \longrightarrow Z[0] \text{ is almost split sequence in } \mathscr{C}[0].$

• Every almost split sequence in $\mathscr{C}[0]$ is of the above form.

- Let $X, Z \in C$ with End(X) and End(Z) being local.
- **2** Ring homomorphisms $\Gamma \to \overline{\operatorname{End}}(X)$ and $\Sigma \to \underline{\operatorname{End}}(Z)$.
- **3** $_{\Gamma}I$: injective co-generator of $_{\Gamma}\operatorname{End}(X)/\operatorname{rad}(\operatorname{End}(X))$.
- I_{Σ} : injective co-generator of $\operatorname{End}(Z)/\operatorname{rad}(\operatorname{End}(Z))_{\Sigma}$.

Theorem

 \mathcal{C} has an almost split sequence $X \longrightarrow Y \longrightarrow Z$

 $\Leftrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(-,X) \text{ is subfunctor of } \operatorname{Hom}_{\Sigma}(\operatorname{Hom}_{\mathcal{C}}(Z,-),I_{\Sigma});$ Soc $(\operatorname{Ext}^{1}_{\mathcal{C}}(Z,X)_{\operatorname{End}(Z)}) \neq 0.$

 $\Leftrightarrow \operatorname{Ext}^{1}_{\mathcal{C}}(Z,-) \text{ is subfunctor of } \operatorname{Hom}_{\Gamma}(\operatorname{\overline{Hom}}_{\mathcal{C}}(-,X), \Gamma I);$ Soc $(\operatorname{End}(X)\operatorname{Ext}^{1}_{\mathcal{C}}(Z,X)) \neq 0.$

If C is tri-exact R-category, where R commutative ring, we may choose $\Gamma = \Sigma = R$. Application to almost split triangles in derived categories of abelian categories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Happel's Result

 Λ : a finite dimensional algebra over a field k. mod Λ : the category of finite dimensional Λ -modules.

Theorem

(1) If $M^{{\scriptscriptstyle\bullet}} \in D^b(\mathrm{mod} \Lambda)$ is indecomposable, then

• $D^b(\operatorname{mod} A)$ has an almost split triangle in

$$X^{\boldsymbol{\cdot}} \longrightarrow Y^{\boldsymbol{\cdot}} \longrightarrow M^{\boldsymbol{\cdot}} \longrightarrow X^{\boldsymbol{\cdot}}[1]$$

 $\iff M^{\bullet} \cong P^{\bullet}$, a bounded complex of projective modules.

• $D^b(\operatorname{mod} A)$ has an almost split triangle

$$M^{\centerdot} \longrightarrow Y^{\centerdot} \longrightarrow Z^{\centerdot} \longrightarrow M^{\centerdot}[1]$$

 $\iff M^{\bullet} \cong I^{\bullet}$, a bounded complex of injective modules.

(2) $D^{b}(\text{mod}\Lambda)$ has almost split triangles $\iff \text{gdim}(\Lambda) < \infty$.

Reflexive modules

- *R*: a commutative ring.
- **2** I_R : a minimal injective co-generator for ModR.
- $D = \operatorname{Hom}_{R}(-, I_{R}) : \operatorname{Mod} R \to \operatorname{Mod} R \text{ is exact.}$
- An *R*-module *M* is *reflexive* if \exists isomorphism

$$\sigma_{_{\!M}}: M \to D^2M: x \mapsto [f \mapsto f(x)].$$

Proposition

The category RModR of reflexive R-modules

- is abelian;
- contains all R-modules of finite length;
- admits duality $D : \operatorname{RMod} R \to \operatorname{RMod} R$.

• An *R*-category \mathcal{A} is called *Hom-reflexive* if $\operatorname{Hom}_{\mathcal{A}}(X, Y) \in \operatorname{RMod} R$, for all $X, Y \in \mathcal{A}$.

Projective resolutions

- \mathfrak{A} : an abelian *R*-category.
- $\mathcal{P}:$ a subcategory of projective objects of $\mathfrak{A}.$
- $\mathcal{I}:$ a subcategory of injective objects of $\mathfrak{A}.$

Definition

- Let X^{\bullet} be a complex over \mathfrak{A} .
 - A *projective resolution over* \mathcal{P} of X^{\bullet} is quasi-isomorphism

$$p$$
: P · $\rightarrow X$ ·

where P^{\bullet} is a bounded-above complex over \mathcal{P} .

• An *injective co-resolution* over \mathcal{I} of X^{\cdot} is quasi-iso

$$q^{\bullet} \colon X^{\bullet} \to I^{\bullet}$$

where I^{\bullet} is a bounded-below complex over \mathcal{I} .

Necessity for the existence of an almost split sequence

- \mathfrak{A} : an abelian *R*-category.
- $\mathcal{P}:$ a subcategory of projective objects of $\mathfrak{A}.$
- $\mathcal{I}:$ a subcategory of injective objects of $\mathfrak{A}.$

Theorem

Consider an almost split triangle

$$X \stackrel{\bullet}{\longrightarrow} Y \stackrel{\bullet}{\longrightarrow} Z \stackrel{\bullet}{\longrightarrow} X \stackrel{\bullet}{[1]}$$

in $D^*(\mathfrak{A})$ with $* \in \{\emptyset, b\}$.

- If Z has a projective resolution over P, then Z ≅ P, a bounded complex over P.
- If X · has an injective co-resolution over I, then X · ≅ I ·, a bounded complex over I.

Let A be any R-algebra.

Theorem

If $D^{b}(ModA)$ has an almost split triangle

$$X^{\boldsymbol{\cdot}} \longrightarrow Y^{\boldsymbol{\cdot}} \longrightarrow Z^{\boldsymbol{\cdot}} \longrightarrow X^{\boldsymbol{\cdot}}[1],$$

then

Q· ≃ P·, a bounded complex of projective A-modules.
X· ≃ I·, a bounded complex of injective A-modules.

We shall study the sufficiency for the existence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \mathfrak{A} : an abelian *R*-category.

 $\mathcal P$: a subcategory of projective objects of $\mathfrak A.$

Definition

A functor $\nu: \mathcal{P} \to \mathfrak{A}$ is called *Nakayama functor* if

$$\operatorname{Hom}_{\mathfrak{A}}(-,\nu P)\cong D\operatorname{Hom}_{\mathfrak{A}}(P,-), \text{ for all } P\in \mathcal{P}.$$

In this case,

- νP is injective in \mathfrak{A} , for all $P \in \mathcal{P}$.
- $K^{b}(\mathcal{P})$ and $K^{b}(\nu \mathcal{P})$: triangulated subcategories of $D(\mathfrak{A})$.

Lemma

Given any R-algebra A, we obtain a Nakayama functor

 $\nu_{A} = D \operatorname{Hom}_{A}(-, A) : \operatorname{proj} A \to \operatorname{Mod} A,$

projA: category of finitely generated projective A-modules.
injA := ν(projA), a category of injective A-modules.

Many more abelain categories with Nakayama functor

• ModA, where A = kQ/I is locally finite dimensional.

Proposition

Let $\nu : \mathcal{P} \to \mathfrak{A}$ be a Nakayama functor.

- It induces a triangle functor $\nu : K^b(\mathcal{P}) \to D(\mathfrak{A})$.
- For any $P^{\bullet} \in K^{b}(\mathcal{P})$, we have $\operatorname{Hom}_{D(\mathfrak{A})}(-, \nu P^{\bullet}) \cong D\operatorname{Hom}_{D(\mathfrak{A})}(P^{\bullet}, -).$
- If \mathcal{P} Hom-reflexive over R, then ν co-restricts to an equiv $\nu : \mathcal{P} \xrightarrow{\cong} \nu \mathcal{P},$

which induces an equivalence

$$\nu: K^{b}(\mathcal{P}) \xrightarrow{\cong} K^{b}(\nu \mathcal{P}).$$

Theorem

Let $\nu : \mathcal{P} \to \mathfrak{A}$ be a Nakayama functor. If $P^{\bullet} \in K^{b}(\mathcal{P})$ with $\operatorname{End}(P^{\bullet})$ and $\operatorname{End}(\nu P^{\bullet})$ local, then $D^{b}(\mathfrak{A})$ has an almost split triangle

$$\nu P^{\boldsymbol{\cdot}}[-1] \longrightarrow M^{\boldsymbol{\cdot}} \longrightarrow P^{\boldsymbol{\cdot}} \longrightarrow \nu P^{\boldsymbol{\cdot}},$$

which is also an almost split triangle in $D(\mathfrak{A})$.

Remark

With $\nu_A : \operatorname{proj} A \to \operatorname{Mod} A$, where A is R-algebra, the above result applies to $D^b(\operatorname{Mod} A)$ and $D(\operatorname{Mod} A)$. Let $\nu: \mathcal{P} \rightarrow \mathfrak{A}$ be Nakayama functor,

- \mathcal{P} is Hom-reflexive over R;
- \mathfrak{A} has enough projectives in \mathcal{P} ; enough injectives in $\nu \mathcal{P}$.

Theorem

(1) If $M^{\bullet} \in D^{b}(\mathfrak{A})$ such that $\operatorname{End}(M^{\bullet})$ is local, then

- $D^{b}(\mathfrak{A})$ has almost split triangle $X \to Y \to M \to X$ ·[1] $\iff M \colon \cong P \colon \in K^{b}(\mathcal{P})$; in this case, $X \colon \cong \nu P$ ·.
- $D^{b}(\mathfrak{A})$ has almost split triangle $M^{\bullet} \longrightarrow Y^{\bullet} \longrightarrow Z^{\bullet} \longrightarrow M^{\bullet}[1]$ $\iff M^{\bullet} \cong I^{\bullet} \in K^{b}(\nu \mathcal{P})$; in this case, $Z^{\bullet} \cong \nu^{-}I^{\bullet}$.
- (2) If 𝔅 Krull-Schmidt, then D^b(𝔅) has almost split triangles
 ⇔ every object in 𝔅 has
 - a finite projective resolution over \mathcal{P} ;
 - a finite injective co-resolution over $\nu \mathcal{P}$.

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Let $M^{\boldsymbol{\cdot}} \in D^{b}(\operatorname{Mod} A)$ with $\operatorname{End}(M^{\boldsymbol{\cdot}})$ being local.

• If M is a complex over mod^+A , then $D^b(ModA)$ has an

Theorem

Let $M^{\bullet} \in D^{b}(ModA)$ with $End(M^{\bullet})$ being local.

• If M^{\bullet} is a complex over $\operatorname{mod}^{+}A$, then $D^{b}(\operatorname{Mod}A)$ has an almost split triangle $X^{\bullet} \longrightarrow Y^{\bullet} \longrightarrow M^{\bullet} \longrightarrow X^{\bullet}[1] \iff$

Theorem

Let $M^{\bullet} \in D^{b}(ModA)$ with $End(M^{\bullet})$ being local.

If M[•] is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X[•] → Y[•] → M[•] → X[•][1] ⇔ M[•] has a bounded projective resolution P[•] over projA;

Theorem

Let $M^{\bullet} \in D^{b}(ModA)$ with $End(M^{\bullet})$ being local.

If M[•] is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X[•] → Y[•] → M[•] → X[•][1] ⇔ M[•] has a bounded projective resolution P[•] over projA; in this case, X[•] ≅ νP[•][-1], a complex over mod⁻A.

Theorem

- If M[•] is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X[•] → Y[•] → M[•] → X[•][1] ⇔ M[•] has a bounded projective resolution P[•] over projA; in this case, X[•] ≅ νP[•][-1], a complex over mod⁻A.
- If M^{\bullet} is a complex over mod⁻A, then $D^{b}(ModA)$ has an

Theorem

- If M[•] is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X[•] → Y[•] → M[•] → X[•][1] ⇔ M[•] has a bounded projective resolution P[•] over projA; in this case, X[•] ≅ νP[•][-1], a complex over mod⁻A.
- If M^{\bullet} is a complex over $\operatorname{mod}^{-}A$, then $D^{b}(\operatorname{Mod}A)$ has an almost split triangle $M^{\bullet} \longrightarrow Y^{\bullet} \longrightarrow Z^{\bullet} \longrightarrow M^{\bullet}[1] \iff$

Theorem

- If M• is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X·→ Y·→ M·→ X·[1] ⇔
 M• has a bounded projective resolution P• over projA; in this case, X· ≅ νP·[-1], a complex over mod⁻A.
- If M[•] is a complex over mod[−]A, then D^b(ModA) has an almost split triangle M[•] → Y[•] → Z[•] → M[•][1] ⇔ M[•] has a bounded injective co-resolution I[•] over injA;

Theorem

- If M• is a complex over mod⁺A, then D^b(ModA) has an almost split triangle X·→ Y·→ M·→ X·[1] ⇔
 M• has a bounded projective resolution P• over projA; in this case, X· ≅ νP·[-1], a complex over mod⁻A.
- If M[•] is a complex over mod⁻A, then D^b(ModA) has an almost split triangle M[•] → Y[•] → Z[•] → M[•][1] ⇔ M[•] has a bounded injective co-resolution I[•] over injA; in this case, Z[•] ≅ ν⁻I[•][1], a complex over mod⁺A.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where R is complete noetherian local commutative ring.

(ロ)、(型)、(E)、(E)、 E) の(の)

where R is complete noetherian local commutative ring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

The global dimension of A is finite.

where R is complete noetherian local commutative ring.

Corollary

The global dimension of A is finite.

⇐ Every indecomposable complex in D^b(mod⁻A) is starting term of an almost split triangle in D^b(ModA).

where R is complete noetherian local commutative ring.

Corollary

The global dimension of A is finite.

- ⇐ Every indecomposable complex in D^b(mod⁻A) is starting term of an almost split triangle in D^b(ModA).
- \iff Every indecomposable complex in $D^{b}(\text{mod}^{+}A)$ is ending term of an almost split triangle in $D^{b}(\text{Mod}A)$.