The derived AR-components of algebras with radical squared zero

Shiping Liu (Université de Sherbrooke) joint with
Raymundo Bautista (UNAM in Morelia)

Advance in Representation Theory of Algebras VI

September 4-8, 2017
Luminy, France

Motivation

(1) A : elementary locally bounded category over a field k.

Motivation

(1) A : elementary locally bounded category over a field k.
(2) $\bmod A$: category of fin dim left A-modules.

Motivation

(1) A : elementary locally bounded category over a field k.
(2) $\bmod A$: category of fin dim left A-modules.

Remark

- $D^{b}(\bmod A)$ is Hom-finite Krull-Schmidt.

Motivation

(1) A : elementary locally bounded category over a field k.
(2) $\bmod A$: category of fin dim left A-modules.

Remark

- $D^{b}(\bmod A)$ is Hom-finite Krull-Schmidt.
- Thus, one may study AR-theory in $D^{b}(\bmod A)$.

Motivation

(1) A : elementary locally bounded category over a field k.
(2) $\bmod A$: category of fin dim left A-modules.

Remark

- $D^{b}(\bmod A)$ is Hom-finite Krull-Schmidt.
- Thus, one may study AR-theory in $D^{b}(\bmod A)$.

Question

What are the shapes of the AR-components of $D^{b}(\bmod A)$?

A brief history

A brief history

(1) In case A is fin dim hereditary, Happel described all the AR-components of $D^{b}(\bmod A)$.

A brief history

(1) In case A is fin dim hereditary, Happel described all the AR-components of $D^{b}(\bmod A)$.
(2) In case A is fin dim self-injective algebra,

A brief history

(1) In case A is fin dim hereditary, Happel described all the AR-components of $D^{b}(\bmod A)$.
(2) In case A is fin dim self-injective algebra,

- Wheeler proved that the stable AR-components of $D^{b}(\bmod A)$ are of shape $\mathbb{Z} \mathbb{A}_{\infty}$.

A brief history

(1) In case A is fin dim hereditary, Happel described all the AR-components of $D^{b}(\bmod A)$.
(2) In case A is fin dim self-injective algebra,

- Wheeler proved that the stable AR-components of $D^{b}(\bmod A)$ are of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
- Happel, Keller, Reiten proved that the non-stable ones are double infinite paths of simple complexes.

A brief history

(1) In case A is fin dim hereditary, Happel described all the AR-components of $D^{b}(\bmod A)$.
(2) In case A is fin dim self-injective algebra,

- Wheeler proved that the stable AR-components of $D^{b}(\bmod A)$ are of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
- Happel, Keller, Reiten proved that the non-stable ones are double infinite paths of simple complexes.

Objective

In case $\operatorname{rad}^{2}(A)=0$, describe the AR-components of $D^{b}(\bmod A)$.

Our methodology

We shall make use of
(1) Galois covering;

Our methodology

We shall make use of
(1) Galois covering;
(2) Representation theory of infinite quivers.

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.
(2) Let G be group acting admissibly on \mathcal{A}.

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.
(2) Let G be group acting admissibly on \mathcal{A}.

That is, given objects $X, Y \in \mathcal{A}$, we have

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.
(2) Let G be group acting admissibly on \mathcal{A}.

That is, given objects $X, Y \in \mathcal{A}$, we have

- $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.
(2) Let G be group acting admissibly on \mathcal{A}.

That is, given objects $X, Y \in \mathcal{A}$, we have

- $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;
- $X \in \operatorname{ind} \mathcal{A}$ and $e \neq g \in G \Rightarrow g \cdot X \neq X$.

Orbit category

(1) Let \mathcal{A} be Hom-finite Krull-Schmidt k-category.
(2) Let G be group acting admissibly on \mathcal{A}.

That is, given objects $X, Y \in \mathcal{A}$, we have

- $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;
- $X \in \operatorname{ind} \mathcal{A}$ and $e \neq g \in G \Rightarrow g \cdot X \neq X$.

Proposition

The G-orbit category \mathcal{A} / G is Hom-finite Krull-Schmidt k-category with a canonical embedding

$$
\sigma: \mathcal{A} \rightarrow \mathcal{A} / G: X \mapsto X ; f \mapsto f .
$$

Galois Covering

Definition

A k-linear functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is Galois G-covering provided

Galois Covering

Definition

A k-linear functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is Galois G-covering provided
\exists commutative diagram

AR-quiver under Galois covering

Theorem
Let $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be a Galois G-covering of k-categories.

AR-quiver under Galois covering

Theorem

Let $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be a Galois G-covering of k-categories.
(1) The functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ induces a Galois G-covering of translation quivers $\pi: \Gamma_{\mathcal{A}} \rightarrow \Gamma_{\mathcal{B}}$.

AR-quiver under Galois covering

Theorem

Let $\pi: \mathcal{A} \rightarrow \mathcal{B}$ be a Galois G-covering of k-categories.
(1) The functor $\pi: \mathcal{A} \rightarrow \mathcal{B}$ induces a Galois G-covering of translation quivers $\pi: \Gamma_{\mathcal{A}} \rightarrow \Gamma_{\mathcal{B}}$.
(2) The connected components of $\Gamma_{\mathcal{B}}$ are the images

$$
\pi(\Gamma)
$$

where Γ ranges over the connected components of $\Gamma_{\mathcal{A}}$.

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have
- S_{a} : simple A-module supported by $a ;$

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have
- S_{a} : simple A-module supported by a;
- P_{a} : minimal projective cover of $S[a]$.

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have
- S_{a} : simple A-module supported by $a ;$
- P_{a} : minimal projective cover of $S[a]$.
(3) $\operatorname{proj} A:=\operatorname{add}\left\{P_{a} \mid a \in Q_{0}\right\}$.

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have
- S_{a} : simple A-module supported by a;
- P_{a} : minimal projective cover of $S[a]$.
(3) $\operatorname{proj} A:=\operatorname{add}\left\{P_{a} \mid a \in Q_{0}\right\}$.
(9) A complex $X \cdot \in D^{b}(\bmod A)$ is called
- simple if $X \cdot \cong S[a][n]$ with $a \in Q_{0}$ and $n \in \mathbb{Z}$;

Setting

(1) We may assume $A=k Q /\left(k Q^{+}\right)^{2}$, where

- $Q=\left(Q_{0}, Q_{1}\right)$: a connected locally finite quiver.
- $k Q^{+}$: ideal generated by the arrows.
(2) Given $a \in Q_{0}$, we have
- S_{a} : simple A-module supported by $a ;$
- P_{a} : minimal projective cover of $S[a]$.
(3) $\operatorname{proj} A:=\operatorname{add}\left\{P_{a} \mid a \in Q_{0}\right\}$.
(9) A complex $X \cdot \in D^{b}(\bmod A)$ is called
- simple if $X \cdot \cong S[a][n]$ with $a \in Q_{0}$ and $n \in \mathbb{Z}$;
- perfect if $X \cdot \cong$ bounded complex over proj A.

Grading period of Q

Given walk $w=\alpha_{1}^{e_{1}} \cdots \alpha_{r}^{e_{r}}$ in $Q, \alpha_{i} \in Q_{1}, e_{1}= \pm 1$, write

$$
\partial(w)=e_{1}+\cdots+e_{r} .
$$

Grading period of Q

Given walk $w=\alpha_{1}^{e_{1}} \cdots \alpha_{r}^{e_{r}}$ in $Q, \alpha_{i} \in Q_{1}, e_{1}= \pm 1$, write

$$
\partial(w)=e_{1}+\cdots+e_{r} .
$$

Definition

The grading period of Q is an integer r_{Q} defined by

Grading period of Q

Given walk $w=\alpha_{1}^{e_{1}} \cdots \alpha_{r}^{e_{r}}$ in $Q, \alpha_{i} \in Q_{1}, e_{1}= \pm 1$, write

$$
\partial(w)=e_{1}+\cdots+e_{r} .
$$

Definition

The grading period of Q is an integer r_{Q} defined by

- $r_{Q}=0$ if $\partial(w)=0$ for all closed walks w in Q;

Grading period of Q

Given walk $w=\alpha_{1}^{e_{1}} \cdots \alpha_{r}^{e_{r}}$ in $Q, \alpha_{i} \in Q_{1}, e_{1}= \pm 1$, write

$$
\partial(w)=e_{1}+\cdots+e_{r} .
$$

Definition

The grading period of Q is an integer r_{Q} defined by

- $r_{Q}=0$ if $\partial(w)=0$ for all closed walks w in Q;
- $r_{Q}=\min \{|\partial(w)|>0 \mid w$ closed walks $\}$.

Example

(1) $r_{Q}=0$ if Q is as follows:

Example

(1) $r_{Q}=0$ if Q is as follows:

(2) $r_{Q}=2$ if Q is as follows:

Repetitive quiver

The repetitive quiver $Q^{\mathbb{Z}}$ of Q is defined as follows:

Repetitive quiver

The repetitive quiver $Q^{\mathbb{Z}}$ of Q is defined as follows:

- Vertices: $(a, i) ; a \in Q_{0} ; i \in \mathbb{Z}$.

Repetitive quiver

The repetitive quiver $Q^{\mathbb{Z}}$ of Q is defined as follows:

- Vertices: $(a, i) ; a \in Q_{0} ; i \in \mathbb{Z}$.
- Arrows: $(\alpha, i):(a, i) \rightarrow(b, i+1)$;
where $\alpha: a \rightarrow b \in Q_{1} ; i \in \mathbb{Z}$.

Repetitive quiver

The repetitive quiver $Q^{\mathbb{Z}}$ of Q is defined as follows:

- Vertices: $(a, i) ; a \in Q_{0} ; i \in \mathbb{Z}$.
- Arrows: $(\alpha, i):(a, i) \rightarrow(b, i+1)$;
where $\alpha: a \rightarrow b \in Q_{1} ; i \in \mathbb{Z}$.

Example

$$
\cdots \rightarrow(a,-2) \rightarrow(a,-1) \rightarrow(a, 0) \rightarrow(a, 1) \rightarrow(a, 2) \rightarrow \cdots
$$

A quiver covering

(1) Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.

A quiver covering

(1) Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
(2) It has an automorphism

$$
\rho: \tilde{Q} \longrightarrow \tilde{Q}:(a, n) \mapsto\left(a, n+r_{Q}\right) .
$$

A quiver covering

(1) Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
(2) It has an automorphism

$$
\rho: \tilde{Q} \longrightarrow \tilde{Q}:(a, n) \mapsto\left(a, n+r_{Q}\right) .
$$

(0) Setting $G=\langle\rho\rangle$ yields a Galois G-covering of quivers:

$$
\pi: \tilde{Q} \longrightarrow Q:(a, n) \mapsto a .
$$

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{0}.
(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of \tilde{Q}^{op} at $x^{\text {o }}$.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\text {op }}\right)=\operatorname{add}\left\{I_{x^{\circ}} \mid x \in \tilde{Q}_{0}\right\}$.

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{0}.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\text {op }}\right)=\operatorname{add}\left\{I_{x^{\circ}} \mid x \in \tilde{Q}_{0}\right\}$.

- A representation M of $\tilde{Q}^{\text {op }}$ is finitely co-presented if \exists

$$
0 \longrightarrow M \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow 0 ; \quad I_{0}, I_{1} \in \operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right)
$$

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{o}.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right)=\operatorname{add}\left\{I_{x^{\mathrm{o}}} \mid x \in \tilde{Q}_{0}\right\}$.
(3) A representation M of $\tilde{Q}^{\text {op }}$ is finitely co-presented if \exists

$$
0 \longrightarrow M \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow 0 ; \quad I_{0}, I_{1} \in \operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right)
$$

(9) $\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)$: finitely co-presented representations.

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{o}.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right)=\operatorname{add}\left\{I_{x^{\mathrm{o}}} \mid x \in \tilde{Q}_{0}\right\}$.
(3) A representation M of $\tilde{Q}^{\text {op }}$ is finitely co-presented if \exists

$$
0 \longrightarrow M \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow 0 ; \quad I_{0}, I_{1} \in \operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right)
$$

(9) $\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)$: finitely co-presented representations.
(6) $\operatorname{rep}^{b}\left(\tilde{Q}^{\mathrm{op}}\right)$: finite dimensional representations.

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{o}.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\text {op }}\right)=\operatorname{add}\left\{I_{x^{\circ}} \mid x \in \tilde{Q}_{0}\right\}$.
(0) A representation M of $\tilde{Q}^{\text {op }}$ is finitely co-presented if \exists

$$
0 \longrightarrow M \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow 0 ; \quad I_{0}, I_{1} \in \operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right) .
$$

(0) rep $^{-}\left(\tilde{Q}^{\text {op }}\right)$: finitely co-presented representations.

- $\operatorname{rep}^{b}\left(\tilde{Q}^{\text {op }}\right)$: finite dimensional representations.

Remark

- $\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\left(\supseteq \operatorname{rep}^{b}\left(\tilde{Q}^{\text {op }}\right)\right)$ is Hom-finite hereditary abelian.

Representations of \tilde{Q}^{op}

(1) For $x \in \tilde{Q}_{0}$, let $I_{x^{\circ}}$ be indec injective rep of $\tilde{Q}^{\text {op }}$ at x^{o}.
(2) Let $\operatorname{inj}\left(\tilde{Q}^{\text {op }}\right)=\operatorname{add}\left\{I_{x^{\circ}} \mid x \in \tilde{Q}_{0}\right\}$.
(0) A representation M of $\tilde{Q}^{\text {op }}$ is finitely co-presented if \exists

$$
0 \longrightarrow M \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow 0 ; \quad I_{0}, I_{1} \in \operatorname{inj}\left(\tilde{Q}^{\mathrm{op}}\right) .
$$

(0) rep $^{-}\left(\tilde{Q}^{\text {op }}\right)$: finitely co-presented representations.

- $\operatorname{rep}^{b}\left(\tilde{Q}^{\text {op }}\right)$: finite dimensional representations.

Remark

- $\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\left(\supseteq \operatorname{rep}^{b}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$ is Hom-finite hereditary abelian.
- AR-components of $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)$ have been described by Bautista, Liu and Paquette.

Group action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;

Group action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;

$$
\Rightarrow \rho \text {-action on } \operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right) ;
$$

Group action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;

$$
\begin{aligned}
& \Rightarrow \rho \text {-action on } \operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right) ; \\
& \Rightarrow \rho \text {-action on } D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) .
\end{aligned}
$$

Group action on $D^{b}\left(\right.$ rep $\left.^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;
$\Rightarrow \rho$-action on $\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)$;
$\Rightarrow \rho$-action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)$.
(2) Regarding $\rho \in \operatorname{Aut}\left(D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)\right.$, we obtain

Group action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;

$$
\begin{aligned}
& \Rightarrow \rho \text {-action on } \operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right) ; \\
& \Rightarrow \rho \text {-action on } D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) .
\end{aligned}
$$

(2) Regarding $\rho \in \operatorname{Aut}\left(D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)\right.$, we obtain

$$
\vartheta=\left[-r_{Q}\right] \circ \rho \in \operatorname{Aut}\left(D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)\right) .
$$

Group action on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)$

(1) The ρ-action on $\tilde{Q} \Rightarrow \rho$-action on $\tilde{Q}^{\text {op }}$;

$$
\begin{aligned}
& \Rightarrow \rho \text {-action on } \operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right) ; \\
& \Rightarrow \rho \text {-action on } D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) .
\end{aligned}
$$

(2) Regarding $\rho \in \operatorname{Aut}\left(D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)\right.$, we obtain

$$
\vartheta=\left[-r_{Q}\right] \circ \rho \in \operatorname{Aut}\left(D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)\right) .
$$

- The group

$$
\mathfrak{G}=\langle\vartheta\rangle
$$

acts admissibly on $D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\text {op }}\right)\right)$.

Derived Koszul push-down functor

Theorem

There exists Galois \mathfrak{G}-covering

$$
\mathfrak{F}_{\pi}: D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) \longrightarrow D^{b}(\bmod A)
$$

Derived Koszul push-down functor

Theorem

There exists Galois \mathfrak{G}-covering

$$
\mathfrak{F}_{\pi}: D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) \longrightarrow D^{b}(\bmod A)
$$

(1) If Γ is component of $\Gamma_{D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.

Derived Koszul push-down functor

Theorem

There exists Galois \mathfrak{G}-covering

$$
\mathfrak{F}_{\pi}: D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) \longrightarrow D^{b}(\bmod A)
$$

(1) If Γ is component of $\Gamma_{D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.
(2) A complex $X \cdot \in D^{b}(\bmod A)$ is

Derived Koszul push-down functor

Theorem

There exists Galois \mathfrak{G}-covering

$$
\mathfrak{F}_{\pi}: D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) \longrightarrow D^{b}(\bmod A)
$$

(1) If Γ is component of $\Gamma_{D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.
(2) A complex $X \cdot \in D^{b}(\bmod A)$ is

- simple $\Leftrightarrow X \cdot \cong \mathfrak{F}_{\pi}\left(I_{x^{\circ}}\right)$, for some $x \in \tilde{Q}^{\text {op }}$.

Derived Koszul push-down functor

Theorem

There exists Galois \mathfrak{G}-covering

$$
\mathfrak{F}_{\pi}: D^{b}\left(\operatorname{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right) \longrightarrow D^{b}(\bmod A)
$$

(1) If Γ is component of $\Gamma_{D^{b}\left(\mathrm{rep}^{-}\left(\tilde{Q}^{\mathrm{op}}\right)\right)}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.
(2) A complex $X \cdot \in D^{b}(\bmod A)$ is

- simple $\Leftrightarrow X \cdot \cong \mathfrak{F}_{\pi}\left(I_{x^{\circ}}\right)$, for some $x \in \tilde{Q}^{\text {op }}$.
- perfect $\Leftrightarrow M^{\cdot} \cong \mathfrak{F}_{\pi}(M)$ for some $M \in \operatorname{rep}^{b}\left(\tilde{Q}^{\mathrm{op}}\right)$.

Translation quiver with a section

Let (Γ, τ) be a translation quiver.

Let (Γ, τ) be a translation quiver.

Definition

A connected full subquiver Δ of Γ is called a section if it is

- acyclic ;
© convex in Γ; and
- meets every τ-orbit exactly once.

Proposition

If Γ contains a section Δ, then it embeds in $\mathbb{Z} \Delta$.

AR-components with simple complexes

Theorem

Let \mathscr{C} be a component of $\Gamma_{D^{b}(\bmod A)}$ with simple complexes.

AR-components with simple complexes

Theorem

Let \mathscr{C} be a component of $\Gamma_{D^{b}(\bmod A)}$ with simple complexes.
(1) The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.

AR-components with simple complexes

Theorem

Let \mathscr{C} be a component of $\Gamma_{D^{b}(\bmod A)}$ with simple complexes.
(1) The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.
(1) As a consequence, \mathscr{C} embeds in $\mathbb{Z} \tilde{Q}$.

AR-components with simple complexes

Theorem

Let \mathscr{C} be a component of $\Gamma_{D^{b}(\bmod A)}$ with simple complexes.

- The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.
(1) As a consequence, \mathscr{C} embeds in $\mathbb{Z} \tilde{Q}$.
- The components $\mathscr{C}[i], i \in \mathbb{Z} / r_{Q} \mathbb{Z}$, are the components of $\Gamma_{D^{b}(\bmod A)}$ containing simple complexes.

It contains a right-most section $\cong \mathbb{A}_{\infty}^{-}$.

It contains a left-most section $\cong \mathbb{A}_{\infty}^{+}$.

Wings

It contains a left-most section and a right-most section $\cong \mathbb{A}_{n}$.

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^{b}(\bmod A)}$ without simple complexes.

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^{b}(\bmod A)}$ without simple complexes.
(1) If \mathscr{C} contains only perfect complexes, then it is of shape

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^{b}(\bmod A)}$ without simple complexes.
(1) If \mathscr{C} contains only perfect complexes, then it is of shape

- $\mathbb{Z}_{\infty}, \mathbb{N}^{-} \mathbb{A}_{\infty}^{-}$or

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^{b}(\bmod A)}$ without simple complexes.
(1) If \mathscr{C} contains only perfect complexes, then it is of shape

- $\mathbb{Z}_{\infty}, \mathbb{N}^{-} \mathbb{A}_{\infty}^{-}$or
- $\mathbb{Z}_{\infty} /<\tau^{n}>$; only if Q is Euclidean with $r_{Q}=0$.

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^{b}(\bmod A)}$ without simple complexes.
(1) If \mathscr{C} contains only perfect complexes, then it is of shape

- $\mathbb{Z}_{\infty}, \mathbb{N}^{-} \mathbb{A}_{\infty}^{-}$or
- $\mathbb{Z}_{\infty} /<\tau^{n}>$; only if Q is Euclidean with $r_{Q}=0$.
(2) Otherwise, \mathscr{C} is a wing or of shape $\mathbb{N A}_{\infty}^{+}$, and whose non-perfect complexes generate the left-most section.

Finite global dimension case

Theorem

If $\operatorname{gdim}(A)<\infty$, then $A R$-components of $D^{b}(\bmod A)$ are of shapes

$$
\mathbb{Z} \tilde{Q}, \mathbb{Z A}_{\infty}, \mathbb{Z}_{\mathbb{A}_{\infty}} /<\tau^{n}>
$$

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;
(2) $2 r_{Q}$ components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;
(2) $2 r_{Q}$ components of shape $\mathbb{Z A}_{\infty}$.
(3) Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;
(2) $2 r_{Q}$ components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
(3) Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) n components being sectional double infinite path;

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;
(2) $2 r_{Q}$ components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
(3) Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) n components being sectional double infinite path;
(2) n components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.

Finiteness of the number of AR-components

Theorem

(1) Q Dynkin quiver $\Rightarrow \Gamma_{D^{b}(\bmod A)} \cong \mathbb{Z} Q$.
(2) Q non-oriented cycle with $r_{Q}>0 \Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) r_{Q} components of shape $\mathbb{Z} \mathbb{A}_{\infty}^{\infty}$;
(2) $2 r_{Q}$ components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
(3) Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^{b}(\bmod A)}$ consists of
(1) n components being sectional double infinite path;
(2) n components of shape $\mathbb{Z} \mathbb{A}_{\infty}$.
(9) In other cases, $\Gamma_{D^{b}(\bmod A)}$ has infinitely many components.

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a{ }_{b}$.

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a b$.
(2) Two simple modules $S=S[a]$ et $T=S[b]$.

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a b$.
(2) Two simple modules $S=S[a]$ et $T=S[b]$.
(3) Then $r_{Q}=2$ and $\tilde{Q}^{\text {op }}$ is a double infinite path.

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a{ }_{b}$.
(2) Two simple modules $S=S[a]$ et $T=S[b]$.
(3) Then $r_{Q}=2$ and $\tilde{Q}^{\text {op }}$ is a double infinite path.
(9) $\Gamma_{D^{b}(\bmod A)}$ has 4 components $\mathcal{R}[i], \mathcal{L}[i], i=0,1$; where

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a b$.
(2) Two simple modules $S=S[a]$ et $T=S[b]$.
(3) Then $r_{Q}=2$ and $\tilde{Q}^{\text {op }}$ is a double infinite path.
(9) $\Gamma_{D^{b}(\bmod A)}$ has 4 components $\mathcal{R}[i], \mathcal{L}[i], i=0,1$; where
(1) $\mathcal{R} \cong \mathbb{Z} \mathbb{A}_{\infty}$, of perfect complexes;

Example

(1) Let $A=k Q /\left(k Q^{+}\right)^{2}$, where $Q: a{ }_{b}$.
(2) Two simple modules $S=S[a]$ et $T=S[b]$.

- Then $r_{Q}=2$ and $\tilde{Q}^{\text {op }}$ is a double infinite path.
- $\Gamma_{D^{b}(\bmod A)}$ has 4 components $\mathcal{R}[i], \mathcal{L}[i], i=0,1$; where
(1) $\mathcal{R} \cong \mathbb{Z A}_{\infty}$, of perfect complexes;
(2) \mathcal{L} is a sectional double infinite path
$\cdots \longrightarrow S[-2] \longrightarrow T[-1] \longrightarrow S[0] \longrightarrow T[1] \longrightarrow S[2] \longrightarrow \cdots$

