The derived AR-components of algebras with radical squared zero

Shiping Liu (Université de Sherbrooke) *joint with* Raymundo Bautista (UNAM in Morelia)

Advance in Representation Theory of Algebras VI

September 4 - 8, 2017 Luminy, France

• A : elementary locally bounded category over a field k.

Motivation

• A : elementary locally bounded category over a field k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 mod *A*: category of fin dim left *A*-modules.

• A : elementary locally bounded category over a field k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 mod*A*: category of fin dim left *A*-modules.

Remark

• $D^{b}(\text{mod}A)$ is Hom-finite Krull-Schmidt.

- A : elementary locally bounded category over a field k.
- **2** mod *A*: category of fin dim left *A*-modules.

Remark

- $D^b(\text{mod}A)$ is Hom-finite Krull-Schmidt.
- Thus, one may study AR-theory in $D^b(\text{mod}A)$.

- A : elementary locally bounded category over a field k.
- **2** mod *A*: category of fin dim left *A*-modules.

Remark

- $D^b(\text{mod}A)$ is Hom-finite Krull-Schmidt.
- Thus, one may study AR-theory in $D^b(\text{mod}A)$.

Question

What are the shapes of the AR-components of $D^{b}(\text{mod}A)$?

In case A is fin dim hereditary, Happel described all the AR-components of D^b(modA).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In case A is fin dim hereditary, Happel described all the AR-components of D^b(modA).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In case A is fin dim self-injective algebra,

- In case A is fin dim hereditary, Happel described all the AR-components of D^b(modA).
- 2 In case A is fin dim self-injective algebra,
 - Wheeler proved that the stable AR-components of $D^b(\operatorname{mod} A)$ are of shape $\mathbb{Z}\mathbb{A}_\infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In case A is fin dim hereditary, Happel described all the AR-components of D^b(modA).
- 2 In case A is fin dim self-injective algebra,
 - Wheeler proved that the stable AR-components of $D^b(\operatorname{mod} A)$ are of shape $\mathbb{Z}\mathbb{A}_\infty$.
 - Happel, Keller, Reiten proved that the non-stable ones are double infinite paths of simple complexes.

- In case A is fin dim hereditary, Happel described all the AR-components of D^b(modA).
- In case A is fin dim self-injective algebra,
 - Wheeler proved that the stable AR-components of $D^b(\operatorname{mod} A)$ are of shape $\mathbb{Z}\mathbb{A}_\infty$.
 - Happel, Keller, Reiten proved that the non-stable ones are double infinite paths of simple complexes.

(日) (同) (三) (三) (三) (○) (○)

Objective

In case $\operatorname{rad}^2(A) = 0$, describe the AR-components of $D^b \pmod{A}$.

We shall make use of

Galois covering;

We shall make use of

- Galois covering;
- Representation theory of infinite quivers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let A be Hom-finite Krull-Schmidt *k*-category.

• Let A be Hom-finite Krull-Schmidt *k*-category.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Let G be group acting admissibly on A.

• Let A be Hom-finite Krull-Schmidt *k*-category.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Let G be group acting admissibly on A.
 That is, given objects X, Y ∈ A, we have

- Let A be Hom-finite Krull-Schmidt *k*-category.
- Let G be group acting admissibly on A. That is, given objects $X, Y \in A$, we have
 - $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let A be Hom-finite Krull-Schmidt *k*-category.
- Solution 2 Let G be group acting admissibly on \mathcal{A} . That is, given objects $X, Y \in \mathcal{A}$, we have
 - $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $X \in \operatorname{ind} A$ and $e \neq g \in G \Rightarrow g \cdot X \not\cong X$.

- Let A be Hom-finite Krull-Schmidt *k*-category.
- Let G be group acting admissibly on A. That is, given objects $X, Y \in A$, we have
 - $\mathcal{A}(X, g \cdot Y) \neq 0$ for at most finitely many $g \in G$;
 - $X \in \operatorname{ind} \mathcal{A}$ and $e \neq g \in G \Rightarrow g \cdot X \not\cong X$.

Proposition

The *G*-orbit category A/G is Hom-finite Krull-Schmidt *k*-category with a canonical embedding

$$\sigma: \mathcal{A} \to \mathcal{A}/G: X \mapsto X; f \mapsto f.$$

Definition

A *k*-linear functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

Definition

A k-linear functor $\pi : \mathcal{A} \to \mathcal{B}$ is Galois G-covering provided

 $\exists \ \mathsf{commutative} \ \mathsf{diagram}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem

Let $\pi : \mathcal{A} \to \mathcal{B}$ be a Galois *G*-covering of *k*-categories.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem

Let $\pi : \mathcal{A} \to \mathcal{B}$ be a Galois *G*-covering of *k*-categories.

O The functor π : A → B induces a Galois G-covering of translation quivers π : Γ_A → Γ_B.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let $\pi : \mathcal{A} \to \mathcal{B}$ be a Galois *G*-covering of *k*-categories.

- The functor π : A → B induces a Galois G-covering of translation quivers π : Γ_A → Γ_B.
- **2** The connected components of $\Gamma_{\mathcal{B}}$ are the images

 $\pi(\Gamma),$

where Γ ranges over the connected components of Γ_A .

• We may assume $A = kQ/(kQ^+)^2$, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We may assume $A = kQ/(kQ^+)^2$, where

• $Q = (Q_0, Q_1)$: a connected locally finite quiver.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We may assume $A = kQ/(kQ^+)^2$, where

• $Q = (Q_0, Q_1)$: a connected locally finite quiver.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• kQ^+ : ideal generated by the arrows.

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.

- kQ^+ : ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.

- kQ^+ : ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have
 - S_a : simple A-module supported by a;

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.

- kQ^+ : ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have
 - *S_a* : simple *A*-module supported by *a*;
 - P_a : minimal projective cover of S[a].

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.

- kQ^+ : ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have
 - *S_a* : simple *A*-module supported by *a*;
 - P_a : minimal projective cover of S[a].
- proj $A := \operatorname{add} \{ P_a \mid a \in Q_0 \}.$

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.
 - kQ^+ : ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have
 - S_a : simple A-module supported by a;
 - P_a : minimal projective cover of S[a].
- proj $A := \operatorname{add} \{ P_a \mid a \in Q_0 \}.$
- A complex $X \in D^b \pmod{A}$ is called
 - simple if $X^{\bullet} \cong S[a][n]$ with $a \in Q_0$ and $n \in \mathbb{Z}$;

- We may assume $A = kQ/(kQ^+)^2$, where
 - $Q = (Q_0, Q_1)$: a connected locally finite quiver.
 - *kQ*⁺: ideal generated by the arrows.
- **2** Given $a \in Q_0$, we have
 - S_a : simple A-module supported by a;
 - P_a : minimal projective cover of S[a].
- proj $A := \operatorname{add} \{ P_a \mid a \in Q_0 \}.$
- A complex $X \cdot \in D^b(\operatorname{mod} A)$ is called
 - *simple* if $X^{\bullet} \cong S[a][n]$ with $a \in Q_0$ and $n \in \mathbb{Z}$;
 - *perfect* if $X^{\bullet} \cong$ bounded complex over $\operatorname{proj} A$.

Grading period of Q

Given walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$ in Q, $\alpha_i \in Q_1, e_1 = \pm 1$, write $\partial(w) = e_1 + \cdots + e_r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Grading period of Q

Given walk
$$w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$$
 in Q , $\alpha_i \in Q_1, e_1 = \pm 1$, write
 $\partial(w) = e_1 + \cdots + e_r$.

Definition

The grading period of Q is an integer r_{o} defined by

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで
Grading period of Q

Given walk
$$w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$$
 in Q , $\alpha_i \in Q_1, e_1 = \pm 1$, write
 $\partial(w) = e_1 + \cdots + e_r$.

Definition

The grading period of Q is an integer r_{o} defined by

•
$$r_{\rho} = 0$$
 if $\partial(w) = 0$ for all closed walks w in Q;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Grading period of Q

Given walk
$$w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$$
 in Q , $\alpha_i \in Q_1, e_1 = \pm 1$, write
 $\partial(w) = e_1 + \cdots + e_r$.

Definition

The grading period of Q is an integer r_o defined by

•
$$r_{\rho} = 0$$
 if $\partial(w) = 0$ for all closed walks w in Q;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

•
$$r_q = \min\{|\partial(w)| > 0 \mid w \text{ closed walks}\}.$$

• $r_{Q} = 0$ if Q is as follows:

<□ > < @ > < E > < E > E のQ @

•
$$r_Q = 0$$
 if Q is as follows:
 $a \frown b$.
• $r_Q = 2$ if Q is as follows:
 $a \frown b$.

(ロ)、(型)、(E)、(E)、 E) の(の)

The *repetitive quiver* $Q^{\mathbb{Z}}$ of Q is defined as follows:

The *repetitive quiver* $Q^{\mathbb{Z}}$ of Q is defined as follows:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Vertices: (a, i); $a \in Q_0$; $i \in \mathbb{Z}$.

Repetitive quiver

The *repetitive quiver* $Q^{\mathbb{Z}}$ of Q is defined as follows:

- Vertices: (a, i); $a \in Q_0$; $i \in \mathbb{Z}$.
- Arrows: (α, i) : $(a, i) \rightarrow (b, i + 1)$;

where $\alpha : a \rightarrow b \in Q_1$; $i \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Repetitive quiver

The *repetitive quiver* $Q^{\mathbb{Z}}$ of Q is defined as follows:

- Vertices: (a, i); $a \in Q_0$; $i \in \mathbb{Z}$.
- Arrows: (α, i) : $(a, i) \rightarrow (b, i+1)$;

where
$$\alpha : a \rightarrow b \in Q_1$$
; $i \in \mathbb{Z}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.

- Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
- It has an automorphism

$$\rho: \tilde{Q} \longrightarrow \tilde{Q}: (a, n) \mapsto (a, n + r_{Q}).$$

- Fix a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
- It has an automorphism

$$\rho: \tilde{Q} \longrightarrow \tilde{Q}: (a, n) \mapsto (a, n + r_{Q}).$$

3 Setting $G = < \rho >$ yields a Galois G-covering of quivers:

$$\pi: \tilde{Q} \longrightarrow Q: (a, n) \mapsto a.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For $x \in \tilde{Q}_0$, let $I_{x^{\mathrm{o}}}$ be indec injective rep of \tilde{Q}^{op} at x^{o} .

General For x ∈ Q̃₀, let I_{x°} be indec injective rep of Q̃^{op} at x°.
Let inj(Q̃^{op}) = add{I_{x°} | x ∈ Q̃₀}.

$\overline{\mathsf{Representations}}$ of $ilde{Q}^{\mathrm{op}}$

- For x ∈ Q̃₀, let I_{x°} be indec injective rep of Q̃^{op} at x°.
 ≥ Let inj(Q̃^{op}) = add{I_{x°} | x ∈ Q̃₀}.
- A representation M of \tilde{Q}^{op} is *finitely co-presented* if \exists

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0; \quad I_0, I_1 \in \operatorname{inj}(\tilde{Q}^{\operatorname{op}}).$$

・ロト・日本・モート モー うへぐ

- For x ∈ Q˜₀, let I_{x°} be indec injective rep of Q˜^{op} at x°.
 ≥ Let inj(Q˜^{op}) = add{I_{x°} | x ∈ Q˜₀}.
- **③** A representation M of \tilde{Q}^{op} is *finitely co-presented* if \exists

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0; \quad I_0, I_1 \in \operatorname{inj}(\tilde{Q}^{\operatorname{op}}).$$

• $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.

- For x ∈ Q˜₀, let I_{x°} be indec injective rep of Q˜^{op} at x°.
 ≥ Let inj(Q˜^{op}) = add{I_{x°} | x ∈ Q˜₀}.
- A representation M of \tilde{Q}^{op} is *finitely co-presented* if \exists

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0; \quad I_0, I_1 \in \operatorname{inj}(\tilde{Q}^{\operatorname{op}}).$$

- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.
- $\operatorname{rep}^{b}(\tilde{Q}^{\operatorname{op}})$: finite dimensional representations.

- For x ∈ Q̃₀, let I_{x°} be indec injective rep of Q̃^{op} at x°.
 Let inj(Q̃^{op}) = add{I_{x°} | x ∈ Q̃₀}.
- A representation M of \tilde{Q}^{op} is *finitely co-presented* if \exists

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0; \quad I_0, I_1 \in \operatorname{inj}(\tilde{Q}^{\operatorname{op}}).$$

- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.
- $\operatorname{rep}^{b}(\tilde{Q}^{\operatorname{op}})$: finite dimensional representations.

Remark

• $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}) (\supseteq \operatorname{rep}^{b}(\tilde{Q}^{\operatorname{op}}))$ is Hom-finite hereditary abelian.

- For x ∈ Q̃₀, let I_{x°} be indec injective rep of Q̃^{op} at x°.
 ≥ Let inj(Q̃^{op}) = add{I_{x°} | x ∈ Q̃₀}.
- A representation M of \tilde{Q}^{op} is *finitely co-presented* if \exists

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0; \quad I_0, I_1 \in \operatorname{inj}(\tilde{Q}^{\operatorname{op}}).$$

- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.
- $\operatorname{rep}^{b}(\tilde{Q}^{\operatorname{op}})$: finite dimensional representations.

Remark

- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}) (\supseteq \operatorname{rep}^{b}(\tilde{Q}^{\operatorname{op}}))$ is Hom-finite hereditary abelian.
- AR-components of $D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))$ have been described by Bautista, Liu and Paquette.

• The
$$\rho$$
-action on $\tilde{Q} \Rightarrow \rho$ -action on \tilde{Q}^{op} ;

• The
$$\rho$$
-action on $\tilde{Q} \Rightarrow \rho$ -action on \tilde{Q}^{op} ;
 $\Rightarrow \rho$ -action on $\operatorname{rep}^{-}(\tilde{Q}^{\text{op}})$;

• The
$$\rho$$
-action on $\tilde{Q} \Rightarrow \rho$ -action on \tilde{Q}^{op} ;
 $\Rightarrow \rho$ -action on $\operatorname{rep}^{-}(\tilde{Q}^{\text{op}})$;
 $\Rightarrow \rho$ -action on $D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\text{op}}))$.

• The
$$\rho$$
-action on $\tilde{Q} \Rightarrow \rho$ -action on \tilde{Q}^{op} ;
 $\Rightarrow \rho$ -action on $\operatorname{rep}^{-}(\tilde{Q}^{\text{op}})$;
 $\Rightarrow \rho$ -action on $D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\text{op}}))$.

2 Regarding $\rho \in Aut(D^{b}(rep^{-}(\tilde{Q}^{op})))$, we obtain

$$\vartheta = [-r_{\varrho}] \circ \rho \in \operatorname{Aut}(D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}))).$$

• The
$$\rho$$
-action on $\tilde{Q} \Rightarrow \rho$ -action on \tilde{Q}^{op} ;
 $\Rightarrow \rho$ -action on $\text{rep}^{-}(\tilde{Q}^{\text{op}})$;
 $\Rightarrow \rho$ -action on $D^{b}(\text{rep}^{-}(\tilde{Q}^{\text{op}}))$.

• Regarding $\rho \in \operatorname{Aut}(D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})))$, we obtain $\vartheta = [-r_q] \circ \rho \in \operatorname{Aut}(D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))).$

The group

$$\mathfrak{G} = < \vartheta >$$

acts admissibly on $D^b(\operatorname{rep}^-(ilde Q^{\operatorname{op}})).$

There exists Galois &-covering

$$\mathfrak{F}_{\pi}: D^b(\operatorname{rep}^-(ilde{Q}^{\operatorname{op}})) \longrightarrow D^b(\operatorname{mod} A).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

There exists Galois &-covering

$$\mathfrak{F}_{\pi}: D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \longrightarrow D^{b}(\operatorname{mod} A).$$

• If Γ is component of $\Gamma_{D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.

There exists Galois &-covering

$$\mathfrak{F}_{\pi}: D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \longrightarrow D^{b}(\operatorname{mod} A).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If Γ is component of $\Gamma_{D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}))}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.

② A complex X ∈ $D^b(\text{mod}A)$ is

There exists Galois &-covering

$$\mathfrak{F}_{\pi}: D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \longrightarrow D^{b}(\operatorname{mod} A).$$

• If Γ is component of $\Gamma_{D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.

2 A complex
$$X \in D^b(\text{mod} A)$$
 is

• simple $\Leftrightarrow X^{{\scriptscriptstyle \bullet}} \cong \mathfrak{F}_{\pi}(I_{x^{\mathrm{o}}})$, for some $x \in \widetilde{Q}^{\mathrm{op}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There exists Galois &-covering

$$\mathfrak{F}_{\pi}: D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \longrightarrow D^{b}(\operatorname{mod} A).$$

- If Γ is component of $\Gamma_{D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))}$, then $\mathfrak{F}_{\pi}(\Gamma) \cong \Gamma$.
- ② A complex X ∈ $D^b(modA)$ is
 - simple $\Leftrightarrow X^{{\scriptscriptstyle \bullet}} \cong \mathfrak{F}_{\pi}(I_{x^{\mathrm{o}}})$, for some $x \in \widetilde{Q}^{\mathrm{op}}$.
 - perfect $\Leftrightarrow M^{{\scriptscriptstyle\bullet}}\cong \mathfrak{F}_{\pi}(M)$ for some $M\in {
 m rep}^b(ilde{Q}^{
 m op}).$

Let (Γ, τ) be a translation quiver.

Translation quiver with a section

Let (Γ, τ) be a translation quiver.

Definition

A connected full subquiver Δ of Γ is called a *section* if it is

- acyclic ;
- onvex in Γ; and
- meets every τ -orbit exactly once.

Proposition

If Γ contains a section Δ , then it embeds in $\mathbb{Z}\Delta$.

AR-components with simple complexes

Theorem

Let \mathscr{C} be a component of $\Gamma_{D^b(\operatorname{mod} A)}$ with simple complexes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathscr{C} be a component of $\Gamma_{D^b(\text{mod }A)}$ with simple complexes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.

Let \mathscr{C} be a component of $\Gamma_{D^b(\text{mod }A)}$ with simple complexes.

- The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.
- **2** As a consequence, \mathscr{C} embeds in $\mathbb{Z}\tilde{Q}$.

Let \mathscr{C} be a component of $\Gamma_{D^b(\text{mod }A)}$ with simple complexes.

- The simple complexes in \mathscr{C} form a section $\cong \tilde{Q}$.
- **2** As a consequence, \mathscr{C} embeds in $\mathbb{Z}\tilde{Q}$.
- The components C[i], i ∈ Z/r_QZ, are the components of Γ_{D^b(mod A)} containing simple complexes.

Translation quiver of shape $\mathbb{N}^-\mathbb{A}^-_\infty$

イロト イポト イヨト イヨト

æ

It contains a right-most section $\cong \mathbb{A}_{\infty}^{-}$.
Translation quivers of shape $\mathbb{N}^+\mathbb{A}^+_\infty$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

It contains a left-most section $\cong \mathbb{A}^+_{\infty}$.

It contains a left-most section and a right-most section $\cong \mathbb{A}_n$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AR-components without simple complexes

Theorem

Let \mathscr{C} component of $\Gamma_{D^b(\operatorname{mod} A)}$ without simple complexes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathscr{C} component of $\Gamma_{D^b(\text{mod }A)}$ without simple complexes.

 ${\small \bigcirc } \ \ If \ {\mathscr C} \ \ contains \ only \ \ perfect \ \ complexes, \ then \ it \ is \ of \ shape$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathscr{C} component of $\Gamma_{D^b(\operatorname{mod} A)}$ without simple complexes.

 ${\small \bigcirc } \ \ {\rm If} \ {\mathscr C} \ {\rm contains} \ {\rm only} \ {\rm perfect} \ {\rm complexes}, \ {\rm then} \ {\rm it} \ {\rm is} \ {\rm of} \ {\rm shape}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\mathbb{Z}\mathbb{A}_{\infty}, \ \mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$$
 or

Let \mathscr{C} component of $\Gamma_{D^b(\text{mod }A)}$ without simple complexes.

 ${\rm 0}~$ If ${\mathscr C}$ contains only perfect complexes, then it is of shape

•
$$\mathbb{Z}\mathbb{A}_{\infty}, \ \mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$$
 or

• $\mathbb{Z}\mathbb{A}_{\infty}/{<}\tau^{n}>$; only if Q is Euclidean with $r_{q} = 0$.

Let \mathscr{C} component of $\Gamma_{D^b(\text{mod }A)}$ without simple complexes.

 $\textbf{0} \ \ \text{If} \ \mathscr{C} \ \text{contains only perfect complexes, then it is of shape}$

• $\mathbb{Z}\mathbb{A}_{\infty}, \ \mathbb{N}^{-}\mathbb{A}_{\infty}^{-}$ or

• $\mathbb{Z}\mathbb{A}_{\infty}/\langle \tau^n \rangle$; only if Q is Euclidean with $r_q = 0$.

Otherwise, *C* is a wing or of shape NA⁺_∞, and whose non-perfect complexes generate the left-most section.

If $gdim(A) < \infty$, then AR-components of $D^b(modA)$ are of shapes

 $\mathbb{Z}\tilde{Q}, \mathbb{Z}\mathbb{A}_{\infty}, \mathbb{Z}\mathbb{A}_{\infty}/\!<\!\tau^{n}\!>.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finiteness of the number of AR-components

Theorem

• Q Dynkin quiver
$$\Rightarrow \Gamma_{D^b(\text{mod } A)} \cong \mathbb{Z}Q.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod }A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_Q > 0 \Rightarrow \Gamma_{D^b(\text{mod } A)}$ consists of

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod }A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_{_Q} > 0 \Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ consists of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1) r_{Q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod } A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_{_Q} > 0 \Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ consists of

- (1) r_{Q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
- (2) $2r_{q}$ components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod}A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_{_Q} > 0 \Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ consists of
 - (1) r_{q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
 - (2) $2r_{q}$ components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.
- Q oriented cycle of *n* arrows $\Rightarrow \Gamma_{D^b(\text{mod }A)}$ consists of

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod} A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_{_Q} > 0 \Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ consists of
 - (1) r_{q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
 - (2) $2r_{Q}$ components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.
- **3** Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^b(\text{mod }A)}$ consists of
 - (1) n components being sectional double infinite path;

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod} A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_Q > 0 \Rightarrow \Gamma_{D^b(\text{mod } A)}$ consists of
 - (1) r_{Q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
 - (2) $2r_{Q}$ components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.
- **3** Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^b(\text{mod }A)}$ consists of
 - (1) n components being sectional double infinite path;

(2) *n* components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.

- Q Dynkin quiver $\Rightarrow \Gamma_{D^b(\text{mod} A)} \cong \mathbb{Z}Q.$
- 3 Q non-oriented cycle with $r_{_Q} > 0 \Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ consists of
 - (1) r_{q} components of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
 - (2) $2r_{Q}$ components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.
- **3** Q oriented cycle of n arrows $\Rightarrow \Gamma_{D^b(\text{mod }A)}$ consists of
 - (1) n components being sectional double infinite path;
 - (2) *n* components of shape $\mathbb{Z}\mathbb{A}_{\infty}$.
- In other cases, $\Gamma_{D^b(\text{mod }A)}$ has infinitely many components.

• Let $A = kQ/(kQ^+)^2$, where $Q : a \longrightarrow b$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Let $A = kQ/(kQ^+)^2$, where Q: a b.
- **2** Two simple modules S = S[a] et T = S[b].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Let $A = kQ/(kQ^+)^2$, where $Q : a \frown b$.
- **2** Two simple modules S = S[a] et T = S[b].
- Then $r_q = 2$ and \tilde{Q}^{op} is a double infinite path.

・ロト・日本・モート モー うへぐ

- Let $A = kQ/(kQ^+)^2$, where $Q : a \longrightarrow b$.
- **2** Two simple modules S = S[a] et T = S[b].
- Then $r_{Q} = 2$ and \tilde{Q}^{op} is a double infinite path.
- $\Gamma_{D^b(\text{mod }A)}$ has 4 components $\mathcal{R}[i], \mathcal{L}[i], i = 0, 1$; where

• Let
$$A = kQ/(kQ^+)^2$$
, where $Q : a \longrightarrow b$.

- **2** Two simple modules S = S[a] et T = S[b].
- Then $r_q = 2$ and \tilde{Q}^{op} is a double infinite path.
- *Γ_{D^b(mod A)}* has 4 components *R*[*i*], *L*[*i*], *i* = 0, 1; where
 R ≅ ZA_∞, of perfect complexes;

• Let
$$A = kQ/(kQ^+)^2$$
, where $Q : a \longrightarrow b$.

- **2** Two simple modules S = S[a] et T = S[b].
- Then $r_q = 2$ and $\tilde{Q}^{\rm op}$ is a double infinite path.
- $\Gamma_{D^b(\text{mod }A)}$ has 4 components $\mathcal{R}[i], \mathcal{L}[i], i = 0, 1$; where
 - (1) $\mathcal{R}\cong\mathbb{Z}\mathbb{A}_{\infty},$ of perfect complexes;
 - (2) \mathcal{L} is a sectional double infinite path

 $\cdots \longrightarrow S[-2] \longrightarrow T[-1] \longrightarrow S[0] \longrightarrow T[1] \longrightarrow S[2] \longrightarrow \cdots$