Triangulated categories with an infinite cluster structure

Shiping Liu (Université de Sherbrooke)

Homological Methods, Representation Theory and Cluster Algebras

Mar del Plata March 14 - 18, 2016

- 4 同 6 4 日 6 4 日 6

Objective

 To show that the canonical orbit category of D^b(repQ), where Q with no infinite path of type A_∞ or A_∞[∞], is 2-CY cluster category.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Objective

- To show that the canonical orbit category of D^b(repQ), where Q with no infinite path of type A_∞ or A_∞[∞], is 2-CY cluster category.
- A new construction of orbit category yields D^b(modΛ), where Λ finite dimensional algebra, which behaves like 2-CY cluster category of type A_∞[∞].

・ロト ・回ト ・ヨト ・ヨト

Objective

- To show that the canonical orbit category of D^b(repQ), where Q with no infinite path of type A_∞ or A_∞[∞], is 2-CY cluster category.
- A new construction of orbit category yields D^b(modΛ), where Λ finite dimensional algebra, which behaves like 2-CY cluster category of type A_∞[∞].
- This gives some hope to construct non 2-CY cluster categories of infinite rank.

Setting

• k : algebraically closed field.

イロト イヨト イヨト イヨト

Setting

- k : algebraically closed field.
- All categories are Hom-finite Krull-Schmidt additive k-categories.

- (目) - (日) - (日)

Setting

- k : algebraically closed field.
- All categories are Hom-finite Krull-Schmidt additive k-categories.
- \mathcal{A} : a triangulated category.

Setting

- k : algebraically closed field.
- All categories are Hom-finite Krull-Schmidt additive k-categories.
- \mathcal{A} : a triangulated category.
- All subcategories of \mathcal{A} are strictly additive.

Notation

Let \mathcal{T} be a subcategory of \mathcal{A} .

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

イロト イヨト イヨト イヨト

3

Notation

Let \mathcal{T} be a subcategory of \mathcal{A} .

• $Q_{\mathcal{T}}$ denotes the quiver of \mathcal{T} ;

イロン イヨン イヨン イヨン

Notation

Let \mathcal{T} be a subcategory of \mathcal{A} .

- $Q_{\mathcal{T}}$ denotes the quiver of \mathcal{T} ;
- For $M \in \operatorname{ind} \mathcal{T}$, define

 $\mathcal{T}_M := \mathrm{add}\{N \in \mathrm{ind}\mathcal{T} \mid N \not\cong M\}.$

イロト イポト イヨト イヨト

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$, 2-CY cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ or \mathbb{A}_{∞} Another kind of orbit category

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

• $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_{\scriptscriptstyle M}, M^*) \in \mathfrak{C};$

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

•
$$\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_M(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$$

• \mathcal{A} has two exact triangles :

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

- $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_{\scriptscriptstyle M}, M^*) \in \mathfrak{C};$
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

- $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$
- \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

$$M^* \overset{u}{\longrightarrow} L \overset{v}{\longrightarrow} M \longrightarrow M^*[1],$$

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

• $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$

• \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

$$M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_M -approximations;

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

•
$$\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$$

• \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

$$M^* \xrightarrow{u} L \xrightarrow{v} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_{M} -approximations; g, v minimal right \mathcal{T}_{M} -approximations;

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

• $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$

• \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

$$M^* \overset{u}{\longrightarrow} L \overset{v}{\longrightarrow} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_M -approximations;

g, v minimal right \mathcal{T}_M -approximations;

• Q_T has no cycle of length one or two;

Cluster structure

Definition (Buan, Iyama, Reiten, Scott)

A collection $(\emptyset \neq) \mathfrak{C}$ of subcategories of \mathcal{A} is called a *cluster structure* if, for $\mathcal{T} \in \mathfrak{C}$ and $M \in \operatorname{ind} \mathcal{T}$,

• $\exists ! M^* (\not\cong M) \in \operatorname{ind} \mathcal{A} \text{ s.t. } \mu_{\scriptscriptstyle M}(\mathcal{T}) = \operatorname{add}(\mathcal{T}_M, M^*) \in \mathfrak{C};$

• \mathcal{A} has two exact triangles :

$$M \xrightarrow{f} N \xrightarrow{g} M^* \longrightarrow M[1],$$

$$M^* \overset{u}{\longrightarrow} L \overset{v}{\longrightarrow} M \longrightarrow M^*[1],$$

where f, u minimal left \mathcal{T}_M -approximations;

g, v minimal right \mathcal{T}_M -approximations;

- Q_T has no cycle of length one or two;
- $Q_{\mu_M(\mathcal{T})}$ is obtained from $Q_{\mathcal{T}}$ by a mutation at M.

Cluster-tilting subcategories

Definition

A subcategory \mathcal{T} of \mathcal{A} is called *cluster-tilting* provided it is functorially finite in \mathcal{A} ; and for $X \in \mathcal{A}$,

- 4 同 6 4 日 6 4 日 6

Cluster-tilting subcategories

Definition

A subcategory T of A is called *cluster-tilting* provided it is functorially finite in A; and for X ∈ A,
Hom_A(T, X[1]) = 0 ⇔ X ∈ T;

Cluster-tilting subcategories

Definition

- A subcategory \mathcal{T} of \mathcal{A} is called *cluster-tilting* provided it is functorially finite in \mathcal{A} ; and for $X \in \mathcal{A}$,
- Hom $_{\mathcal{A}}(\mathcal{T}, X[1]) = 0 \Leftrightarrow X \in \mathcal{T};$
- Hom_{\mathcal{A}} $(X, \mathcal{T}[1]) = 0 \Leftrightarrow X \in \mathcal{T}.$

- 4 同 ト 4 臣 ト 4 臣 ト

Preliminaries 2-CY cluster categories of type $\mathbb{A}_{\infty}^{\infty}$ or \mathbb{A}_{∞} Another kind of orbit category

Cluster-tilting subcategories

Definition

- A subcategory \mathcal{T} of \mathcal{A} is called *cluster-tilting* provided it is functorially finite in \mathcal{A} ; and for $X \in \mathcal{A}$,
- Hom $_{\mathcal{A}}(\mathcal{T}, X[1]) = 0 \Leftrightarrow X \in \mathcal{T};$
- Hom $_{\mathcal{A}}(X, \mathcal{T}[1]) = 0 \Leftrightarrow X \in \mathcal{T}.$

Theorem (Koenig, Zhu)

If \mathcal{T} is cluster tilting subcategory of \mathcal{A} , then

$$\mathrm{mod}\mathcal{T}\cong\mathcal{A}/\mathcal{T}[1]$$

э

Cluster categories

Definition

\mathcal{A} is called *cluster category* if its cluster tilting subcategories form cluster structure.

イロト イヨト イヨト イヨト

Cluster categories

Definition

 \mathcal{A} is called *cluster category* if its cluster tilting subcategories form cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it is cluster category \Leftrightarrow

Cluster categories

Definition

 \mathcal{A} is called *cluster category* if its cluster tilting subcategories form cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

If \mathcal{A} is 2-CY, then it is cluster category \Leftrightarrow

it has some cluster tilting subcategories;

Cluster categories

Definition

 \mathcal{A} is called *cluster category* if its cluster tilting subcategories form cluster structure.

Theorem (Buan, Iyama, Reiten, Scott)

- If \mathcal{A} is 2-CY, then it is cluster category \Leftrightarrow
- it has some cluster tilting subcategories;
- the quiver of each cluster tilting subcategory has no cycle of length one or two.

Canonical orbit categories

• \mathcal{H} : hereditary, abelian, having AR-sequences.

伺い イヨト イヨト

Canonical orbit categories

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- $D^{b}(\mathcal{H})$ has AR-triangles with τ_{D} auto-equiv.

(1) マン・ション・

Canonical orbit categories

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- $D^{b}(\mathcal{H})$ has AR-triangles with τ_{D} auto-equiv.
- Set $F = \tau_{D}^{-1} \circ [1]$ and construct orbit category $\mathscr{C}(\mathcal{H}) = D^{b}(\mathcal{H})/F$

Canonical orbit categories

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- $D^{b}(\mathcal{H})$ has AR-triangles with τ_{D} auto-equiv.
- Set $F = \tau_D^{-1} \circ [1]$ and construct orbit category $\mathscr{C}(\mathcal{H}) = D^b(\mathcal{H})/F$

• The objects are those $D^b(\mathcal{H})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Canonical orbit categories

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- $D^{b}(\mathcal{H})$ has AR-triangles with τ_{D} auto-equiv.
- Set $F = \tau_{_D}^{-1} \circ [1]$ and construct orbit category $\mathscr{C}(\mathcal{H}) = D^b(\mathcal{H})/F$
 - The objects are those $D^b(\mathcal{H})$.
 - $\operatorname{Hom}_{\mathscr{C}(\mathcal{H})}(X,Y) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D^{b}(\mathcal{H})}(X,F^{i}Y).$

- 4 周 と 4 き と 4 き と … き

Canonical orbit categories

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- $D^{b}(\mathcal{H})$ has AR-triangles with τ_{D} auto-equiv.
- Set $F = \tau_{_D}^{-1} \circ [1]$ and construct orbit category $\mathscr{C}(\mathcal{H}) = D^b(\mathcal{H})/F$
 - The objects are those $D^b(\mathcal{H})$.
 - $\operatorname{Hom}_{\mathscr{C}(\mathcal{H})}(X,Y) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D^{b}(\mathcal{H})}(X,F^{i}Y).$

Theorem(Keller)

 $\mathscr{C}(\mathcal{H})$ is 2-CY triangulated with exact projection $p: D^b(\mathcal{H}) \to \mathscr{C}(Q).$

Triangulated categories with an infinite cluster structure

Some known 2-CY cluster categories

Theorem (Buan, Marsh, Reineke, Reiten, Todorov)

If \varDelta is finite acyclic quiver, then

|| (同) || (三) (=)

Some known 2-CY cluster categories

Theorem (Buan, Marsh, Reineke, Reiten, Todorov)

If \varDelta is finite acyclic quiver, then

• $\mathscr{C}(\operatorname{rep}(\Delta))$ is 2-CY cluster category, and

Some known 2-CY cluster categories

Theorem (Buan, Marsh, Reineke, Reiten, Todorov)

If \varDelta is finite acyclic quiver, then

- $\mathscr{C}(\operatorname{rep}(\Delta))$ is 2-CY cluster category, and
- cluster tilting subcategories are of finite type.

▲圖▶ ▲屋▶ ▲屋▶

Some known 2-CY cluster categories

Theorem (Buan, Marsh, Reineke, Reiten, Todorov)

If \varDelta is finite acyclic quiver, then

- $\mathscr{C}(\operatorname{rep}(\Delta))$ is 2-CY cluster category, and
- cluster tilting subcategories are of finite type.

Remark

Holm and Jørgensen constructed a cluster category of type \mathbb{A}_∞ from dg-modules over a polynomial ring.

イロト イヨト イヨト イヨト

Representations of infinite quivers

Q: connected, locally finite, interval finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

Representations of infinite quivers

Q: connected, locally finite, interval finite. rep⁺(Q): finitely presented representations.

(1) マン・ション・

Representations of infinite quivers

 \boldsymbol{Q} : connected, locally finite, interval finite.

 $\operatorname{rep}^+(Q)$: finitely presented representations.

Theorem (Bautista, Liu, Paquette)

• $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.

Representations of infinite quivers

 \boldsymbol{Q} : connected, locally finite, interval finite.

 $\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.
- AR-quiver $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ consists of the shifts of

Representations of infinite quivers

 \boldsymbol{Q} : connected, locally finite, interval finite.

 $\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.
- AR-quiver $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ consists of the shifts of
 - a connecting component $\mathcal{C}_Q \subseteq \mathbb{Z}Q^{\mathrm{op}}$;

Representations of infinite quivers

 \boldsymbol{Q} : connected, locally finite, interval finite.

 $\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.
- AR-quiver $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ consists of the shifts of
 - a connecting component $\mathcal{C}_Q \subseteq \mathbb{Z}Q^{\mathrm{op}}$;
 - possible regular components of $\Gamma_{\operatorname{rep}^+(Q)}$.

Representations of infinite quivers

 \boldsymbol{Q} : connected, locally finite, interval finite.

 $\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^+(Q)$ is Hom-finite, hereditary, abelian.
- AR-quiver $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ consists of the shifts of
 - a connecting component $\mathcal{C}_Q \subseteq \mathbb{Z} Q^{\mathrm{op}}$;
 - possible regular components of $\Gamma_{\mathrm{rep}^+(Q)}$.
- If Q no infinite paths, then rep⁺(Q) = rep(Q) has AR-sequences.

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

・ 同 ト ・ ヨ ト ・ ヨ ト

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

Theorem (Liu, Paquette)

• If $\mathscr{C}(Q) = \mathscr{C}(\operatorname{rep}(Q))$, then $\Gamma_{\mathscr{C}(Q)}$ consists of

・ 同 ト ・ ヨ ト ・ ヨ ト

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

Theorem (Liu, Paquette)

- If $\mathscr{C}(Q) = \mathscr{C}(\operatorname{rep}(Q))$, then $\Gamma_{\mathscr{C}(Q)}$ consists of
 - connecting component $\mathcal{C}_Q (\cong \mathbb{Z}Q^{\mathrm{op}})$ of $\Gamma_{D^b(\mathrm{rep}(Q))}$;

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

Theorem (Liu, Paquette)

• If $\mathscr{C}(Q) = \mathscr{C}(\operatorname{rep}(Q))$, then $\Gamma_{\mathscr{C}(Q)}$ consists of

- connecting component $\mathcal{C}_Q (\cong \mathbb{Z}Q^{\mathrm{op}})$ of $\Gamma_{D^b(\mathrm{rep}(Q))}$;
- and possible regular components $(\cong \mathbb{Z}\mathbb{A}_{\infty})$ of $\Gamma_{\operatorname{rep}(Q)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

Theorem (Liu, Paquette)

• If $\mathscr{C}(Q) = \mathscr{C}(\operatorname{rep}(Q))$, then $\Gamma_{\mathscr{C}(Q)}$ consists of

- connecting component $\mathcal{C}_Q (\cong \mathbb{Z}Q^{\mathrm{op}})$ of $\Gamma_{D^b(\mathrm{rep}(Q))}$;
- and possible regular components $(\cong \mathbb{Z}\mathbb{A}_{\infty})$ of $\Gamma_{\operatorname{rep}(Q)}$.
- $\operatorname{add}\{P_x \mid x \in Q_0\}$ in $\mathscr{C}(Q)$ is cluster tilting.

・ロト ・回ト ・ヨト ・ヨト

Canonical orbit category associated with infinite quivers

Let Q have no infinite path.

Theorem (Liu, Paquette)

• If $\mathscr{C}(Q) = \mathscr{C}(\operatorname{rep}(Q))$, then $\Gamma_{\mathscr{C}(Q)}$ consists of

- connecting component $\mathcal{C}_Q (\cong \mathbb{Z}Q^{\mathrm{op}})$ of $\Gamma_{D^b(\mathrm{rep}(Q))}$;
- and possible regular components $(\cong \mathbb{Z}\mathbb{A}_{\infty})$ of $\Gamma_{\operatorname{rep}(Q)}$.
- $\operatorname{add}\{P_x \mid x \in Q_0\}$ in $\mathscr{C}(Q)$ is cluster tilting.

Conjecture

The category $\mathscr{C}(Q)$ is 2-CY cluster category.

イロト イポト イヨト イヨト

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

イロン イヨン イヨン イヨン

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

• every $X \in ind \mathscr{C}(Q)$ is rigid brick;

イロト イポト イヨト イヨト

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- \circ $\Gamma_{\mathscr{C}(Q)}$ has a connecting component ($\cong \mathbb{Z}Q^{\mathrm{op}}$)

イロト イポト イヨト イヨト

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- $\Gamma_{\mathscr{C}(Q)}$ has a connecting component ($\cong \mathbb{Z}Q^{\mathrm{op}}$) and r regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- *Γ*_{𝔅(Q)} has a connecting component (≅ ℤQ^{op}) and *r* regular components (≅ ℤA_∞), where *r* = 0, if *Q* of type A_∞;

(4 回) (4 回) (4 回)

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- $\Gamma_{\mathscr{C}(Q)}$ has a connecting component ($\cong \mathbb{Z}Q^{\mathrm{op}}$) and *r* regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where
 - r=0, if Q of type \mathbb{A}_{∞} ;
 - r=1, if Q of type $\mathbb{D}_{\infty};$

(4 回) (4 回) (4 回)

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- $\Gamma_{\mathscr{C}(Q)}$ has a connecting component ($\cong \mathbb{Z}Q^{\mathrm{op}}$) and r regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where
 - r=0, if Q of type \mathbb{A}_{∞} ;
 - r=1, if Q of type $\mathbb{D}_\infty;$
 - r=2, if Q of type $\mathbb{A}_{\infty}^{\infty}$; and in this case,

イロト イポト イヨト イヨト

The infinite Dynkin case

Theorem (Liu, Paquette)

If Q is infinite Dynkin with no infinite path, then

- every $X \in ind \mathscr{C}(Q)$ is rigid brick;
- $\Gamma_{\mathscr{C}(Q)}$ has a connecting component ($\cong \mathbb{Z}Q^{\mathrm{op}}$) and r regular components ($\cong \mathbb{Z}\mathbb{A}_{\infty}$), where
 - r=0, if Q of type \mathbb{A}_{∞} ;
 - r=1, if Q of type $\mathbb{D}_\infty;$
 - r = 2, if Q of type A[∞]_∞; and in this case, the two regular components are orthogonal.

(D) (A) (A) (A) (A)

2-CY cluster category of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$

Theorem (Liu, Paquette)

If Q is of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ with no infinite path, then $\mathscr{C}(Q)$ is 2-CY cluster category.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

・ロン ・回と ・ヨン・

2-CY cluster category of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$

Theorem (Liu, Paquette)

If Q is of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ with no infinite path, then $\mathscr{C}(Q)$ is 2-CY cluster category.

Proof. Let \mathcal{T} cluster tilting subcategory of $\mathscr{C}(Q)$.

・ロン ・回と ・ヨン・

2-CY cluster category of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$

Theorem (Liu, Paquette)

If Q is of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ with no infinite path, then $\mathscr{C}(Q)$ is 2-CY cluster category.

Proof. Let \mathcal{T} cluster tilting subcategory of $\mathscr{C}(Q)$. If $X, Y \in \operatorname{ind} \mathcal{T}$ are non-isomorphic,

イロト イポト イヨト イヨト

2-CY cluster category of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$

Theorem (Liu, Paquette)

If Q is of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ with no infinite path, then $\mathscr{C}(Q)$ is 2-CY cluster category.

Proof. Let \mathcal{T} cluster tilting subcategory of $\mathscr{C}(Q)$. If $X, Y \in \operatorname{ind} \mathcal{T}$ are non-isomorphic, then $\operatorname{Hom}(X, Y) = 0$ or $\operatorname{Hom}(Y, X) = 0$.

・ロン ・回 と ・ ヨ と ・ ヨ と

2-CY cluster category of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$

Theorem (Liu, Paquette)

If Q is of type \mathbb{A}_{∞} or $\mathbb{A}_{\infty}^{\infty}$ with no infinite path, then $\mathscr{C}(Q)$ is 2-CY cluster category.

Proof. Let \mathcal{T} cluster tilting subcategory of $\mathscr{C}(Q)$. If $X, Y \in \operatorname{ind} \mathcal{T}$ are non-isomorphic, then $\operatorname{Hom}(X, Y) = 0$ or $\operatorname{Hom}(Y, X) = 0$. $Q_{\mathcal{T}}$ contains no cycle of length two.

イロト イポト イヨト イヨト

New objective

• $Q = (Q_0, Q_1)$: connected, locally finite.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

イロン イヨン イヨン イヨン

3

New objective

• $Q = (Q_0, Q_1)$: connected, locally finite.

• Let $\Lambda = kQ/(kQ_1)^2$.

イロン イヨン イヨン イヨン

3

New objective

- $Q = (Q_0, Q_1)$: connected, locally finite.
- Let $\Lambda = kQ/(kQ_1)^2$.
- P[x]: indec. proj. left Λ -mod, $x \in Q_0$.

(ロ) (同) (E) (E) (E)

New objective

- $Q = (Q_0, Q_1)$: connected, locally finite.
- Let $\Lambda = kQ/(kQ_1)^2$.
- P[x]: indec. proj. left Λ -mod, $x \in Q_0$.
- $\operatorname{proj} \Lambda = \operatorname{add} \{ P[x] \mid x \in Q_0 \}.$

イロト イポト イラト イラト 一日

New objective

- $Q = (Q_0, Q_1)$: connected, locally finite.
- Let $\Lambda = kQ/(kQ_1)^2$.
- P[x]: indec. proj. left Λ -mod, $x \in Q_0$.
- $\operatorname{proj} \Lambda = \operatorname{add} \{ P[x] \mid x \in Q_0 \}.$
- modA : finite dimensional left A-modules.

(ロ) (同) (E) (E) (E)

New objective

- $Q = (Q_0, Q_1)$: connected, locally finite.
- Let $\Lambda = kQ/(kQ_1)^2$.
- P[x]: indec. proj. left Λ -mod, $x \in Q_0$.
- $\operatorname{proj} \Lambda = \operatorname{add} \{ P[x] \mid x \in Q_0 \}.$
- modA : finite dimensional left A-modules.

Objective

Study the bounded derived category $D^b(\text{mod}A)$.

(ロ) (同) (E) (E) (E)

Grading period of a quiver

Definition

• Given walk $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$, with $d_i = \pm 1$, $\alpha_i \in Q_1$, its *degree* is

$$\partial(w) = d_1 + \cdots + d_r.$$

イロト イポト イヨト イヨト

Grading period of a quiver

Definition

- Given walk $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$, with $d_i = \pm 1$, $\alpha_i \in Q_1$, its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- Q is *gradable* if the closed walks are of degree 0.

Grading period of a quiver

Definition

- Given walk $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$, with $d_i = \pm 1$, $\alpha_i \in Q_1$, its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- Q is *gradable* if the closed walks are of degree 0.
- The grading period r_{Q} of Q is defined by

Grading period of a quiver

Definition

- Given walk $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$, with $d_i = \pm 1$, $\alpha_i \in Q_1$, its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- Q is gradable if the closed walks are of degree 0.
- The grading period r_{Q} of Q is defined by
 - $r_{Q} = 0$ if Q is gradable; otherwise,

Grading period of a quiver

Definition

- Given walk $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$, with $d_i = \pm 1$, $\alpha_i \in Q_1$, its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- Q is gradable if the closed walks are of degree 0.
- The grading period r_{Q} of Q is defined by
 - $r_{o} = 0$ if Q is gradable; otherwise,
 - $r_q = \min\{\partial(w) \mid w \text{ closed walks of positive degree }\}.$

イロト イポト イラト イラト 一日

Grading for a gradable quiver

Let Q be gradable. Then

- 4 回 2 - 4 □ 2 - 4 □

Grading for a gradable quiver

Let Q be gradable. Then

$$Q_0 = igcup_{n\in\mathbb{Z}} Q^{(n)}$$

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

- 4 回 2 - 4 □ 2 - 4 □

Grading for a gradable quiver

Let Q be gradable. Then

$$Q_0 = \bigcup_{n \in \mathbb{Z}} Q^{(n)}$$

such that arrows are of form

$$x
ightarrow y, ext{ where } (x,y) \in Q^{(n)} imes Q^{(n+1)}.$$

向下 イヨト イヨト

Koszul duality

• Let $\Lambda = kQ/(kQ_1)^2$ with Q gradable.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

・ロト ・回ト ・ヨト ・ヨト

Koszul duality

- Let $\Lambda = kQ/(kQ_1)^2$ with Q gradable.
- $\operatorname{rep}^{-}(Q^{\operatorname{op}})$: fin. co-presented representations.

Koszul duality

- Let $\Lambda = kQ/(kQ_1)^2$ with Q gradable.
- $\operatorname{rep}^{-}(Q^{\operatorname{op}})$: fin. co-presented representations.
- For $M \in \operatorname{rep}^{-}(Q^{\operatorname{op}})$, let $\mathcal{F}(M)^{\cdot} \in C^{-,b}(\operatorname{proj} \Lambda)$

イロト イポト イラト イラト 一日

Koszul duality

- Let $\Lambda = kQ/(kQ_1)^2$ with Q gradable.
- $\operatorname{rep}^{-}(Q^{\operatorname{op}})$: fin. co-presented representations.
- For $M \in \operatorname{rep}^{-}(Q^{\operatorname{op}})$, let $\mathcal{F}(M)^{\cdot} \in C^{-,b}(\operatorname{proj} \Lambda)$ $\mathcal{F}(M)^{n} = \bigoplus_{x \in Q^{-n}} P[x] \otimes M(x).$

Koszul duality

- Let $\Lambda = kQ/(kQ_1)^2$ with Q gradable.
- $\operatorname{rep}^{-}(Q^{\operatorname{op}})$: fin. co-presented representations.
- For $M \in \operatorname{rep}^{-}(Q^{\operatorname{op}})$, let $\mathcal{F}(M)^{\cdot} \in C^{-,b}(\operatorname{proj} \Lambda)$ $\mathcal{F}(M)^{n} = \bigoplus_{x \in Q^{-n}} P[x] \otimes M(x).$
- This yields an exact functor

$$\mathcal{F}: \mathrm{rep}^-(\mathcal{Q}^\mathrm{op}) o \mathcal{C}^{-,b}(\mathrm{proj} arLambda).$$

Koszul duality

• Given $M^{\cdot} \in C^{b}(\operatorname{rep}^{-}(Q^{\operatorname{op}}))$.

<ロ> (日) (日) (日) (日) (日)

Koszul duality

- Given $M^{\cdot} \in C^{b}(\operatorname{rep}^{-}(Q^{\operatorname{op}})).$
- Applying \mathcal{F} to M^n yields double complex $\mathcal{F}(M^{\cdot})^{\cdot}$

イロト イポト イヨト イヨト

Koszul duality

- Given $M^{\cdot} \in C^{b}(\operatorname{rep}^{-}(Q^{\operatorname{op}})).$
- Applying \mathcal{F} to M^n yields double complex $\mathcal{F}(M^{\cdot})^{\cdot}$
- Let $\hat{\mathcal{F}}(M^{\cdot})$ be total complex of $\mathcal{F}(M^{\cdot})^{\cdot}$

イロト イポト イラト イラト 一日

Koszul duality

- Given $M^{\cdot} \in C^{b}(\operatorname{rep}^{-}(Q^{\operatorname{op}})).$
- Applying \$\mathcal{F}\$ to \$M^n\$ yields double complex \$\mathcal{F}(M^{\cdot})\$.
 Let \$\hat{\mathcal{F}}(M^{\cdot})\$ be total complex of \$\mathcal{F}(M^{\cdot})\$.
- This yields exact functor $\hat{\mathcal{F}}: C^b(\operatorname{rep}^-(Q^{\operatorname{op}})) \to C^{-,b}(\operatorname{proj}\Lambda).$

- 4 周 ト 4 日 ト 4 日 ト - 日

Koszul duality

- Given $M^{\cdot} \in C^{b}(\operatorname{rep}^{-}(Q^{\operatorname{op}})).$
- Applying \$\mathcal{F}\$ to \$M^n\$ yields double complex \$\mathcal{F}(M^\cdot)\$.
 Let \$\hat{\mathcal{F}}(M^\cdot)\$ be total complex of \$\mathcal{F}(M^\cdot)\$.
- This yields exact functor $\hat{\mathcal{F}}: C^b(\operatorname{rep}^-(Q^{\operatorname{op}})) \to C^{-,b}(\operatorname{proj} \Lambda).$

Theorem (Bautista, Liu)

If Q is gradable, then $\hat{\mathcal{F}}$ induces equivalence :

 $\mathscr{F}: D^b(\operatorname{rep}^-(Q^{\operatorname{op}})) \to D^b(\operatorname{mod} kQ/(kQ_1)^2).$

Group action on a category

 \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.

- 4 回 2 - 4 □ 2 - 4 □

Group action on a category

- \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.
- G : group acting on \mathcal{A} .

Group action on a category

 \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.

G : group acting on A.

Definition

The G-action on \mathcal{A} is called

イロト イヨト イヨト イヨト

Group action on a category

 \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.

G : group acting on A.

Definition

The G-action on ${\mathcal A}$ is called

• *free* if $g \cdot X \ncong X$, for $e \neq g \in G$ and $X \in ind\mathcal{A}$;

イロト イポト イヨト イヨト

Group action on a category

- \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.
- G : group acting on \mathcal{A} .

Definition

- The G-action on \mathcal{A} is called
- *free* if $g \cdot X \ncong X$, for $e \neq g \in G$ and $X \in \operatorname{ind} A$;
- *locally bounded* if, for $X, Y \in A$, \exists at most finitely many $g \in G$ such that $\operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y) \neq 0$;

イロト イヨト イヨト イヨト

Group action on a category

- \mathcal{A} : Hom-finite Krull-Schmidt additive *k*-category.
- G : group acting on \mathcal{A} .

Definition

- The G-action on \mathcal{A} is called
- *free* if $g \cdot X \ncong X$, for $e \neq g \in G$ and $X \in \operatorname{ind} A$;
- locally bounded if, for X, Y ∈ A, ∃ at most finitely many g ∈ G such that Hom_A(X, g · Y) ≠ 0;
- *admissible* if it is free and locally bounded.

イロト イポト イヨト イヨト

Galois Covering

G: group acting admissibly on A.

G: group acting admissibly on A.

Definition

A functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

イロト イポト イヨト イヨト

G: group acting admissibly on A.

Definition

- A functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided
 - π is dense;

イロト イポト イヨト イヨト

G: group acting admissibly on \mathcal{A} .

Definition

A functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

- π is dense;
- if $X, Y \in \operatorname{ind} \mathcal{A}$, then $\pi(X), \pi(Y) \in \operatorname{ind} \mathcal{B}$,

G: group acting admissibly on \mathcal{A} .

Definition

A functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

- π is dense;
- if $X, Y \in \text{ind } \mathcal{A}$, then $\pi(X), \pi(Y) \in \text{ind } \mathcal{B}$, $\pi(X) \cong \pi(Y) \Leftrightarrow X \cong g \cdot Y$, with $g \in G$;

イロト イポト イヨト イヨト

G: group acting admissibly on \mathcal{A} .

Definition

A functor $\pi : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

- π is dense;
- if $X, Y \in \text{ind } \mathcal{A}$, then $\pi(X), \pi(Y) \in \text{ind } \mathcal{B}$, $\pi(X) \cong \pi(Y) \Leftrightarrow X \cong g \cdot Y$, with $g \in G$;
- if $X, Y \in \mathcal{A}$, then $\operatorname{Hom}_{\mathcal{B}}(\pi(X), \pi(Y)) \cong \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y)$

G-orbit category

Let G be a group acting admissibly on A.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

- 4 同 6 4 日 6 4 日 6

G-orbit category

Let G be a group acting admissibly on A. Define G-orbit category A/G as follows:

- 4 回 5 - 4 回 5 - 4 回 5

G-orbit category

Let G be a group acting admissibly on A. Define G-orbit category A/G as follows:

• The objects are those of \mathcal{A} ;

・ 同 ト ・ ヨ ト ・ ヨ ト

G-orbit category

Let G be a group acting admissibly on A. Define G-orbit category A/G as follows:

- The objects are those of \mathcal{A} ;
- $\operatorname{Hom}_{\mathcal{A}/G}(X, Y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y).$

(ロ) (同) (E) (E) (E)

G-orbit category

- Let G be a group acting admissibly on A. Define G-orbit category A/G as follows:
 - The objects are those of \mathcal{A} ;

•
$$\operatorname{Hom}_{\mathcal{A}/G}(X, Y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{A}}(X, g \cdot Y).$$

Proposition

 $\exists \text{ Galois } G\text{-covering } \pi: \mathcal{A} \to \mathcal{B} \Leftrightarrow \mathcal{B} \cong \mathcal{A}/G.$

・ロン ・回と ・ヨン・

Example

• \mathcal{H} : hereditary, abelian, having AR-sequences.

Example

- \mathcal{H} : hereditary, abelian, having AR-sequences.
- The projection functor

$$p: D^b(\mathcal{H}) \to \mathscr{C}(H)$$

is a Galois G-covering, where $G = \langle F \rangle$.

Minimal gradable covering of quivers

• Let Q be of grading period $r_{Q} \geq 0$.

Minimal gradable covering of quivers

- Let Q be of grading period $r_{Q} \geq 0$.
- Construct gradable quiver $Q^{\mathbb{Z}}$ as follows:

Minimal gradable covering of quivers

- Let Q be of grading period $r_Q \ge 0$.
- Solution Construct gradable quiver Q^ℤ as follows:
 vertices: (x, n) ∈ Q₀ × ℤ;

Minimal gradable covering of quivers

- Let Q be of grading period $r_Q \ge 0$.
- Construct gradable quiver $Q^{\mathbb{Z}}$ as follows:
 - vertices: $(x, n) \in Q_0 \times \mathbb{Z}$; • arrows: $(\alpha, n) : (x, n) \rightarrow (y, n + 1)$, where $\alpha : x \rightarrow y \in Q_1$.

Minimal gradable covering of quivers

• Choose a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.

- 4 同 6 4 日 6 4 日 6

Minimal gradable covering of quivers

- Choose a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
- \hat{Q} is equipped with a translation

$$ho: \tilde{Q}
ightarrow \tilde{Q}: (x, n) \mapsto (x, n + r_{Q}).$$

(1) マン・ション・

Minimal gradable covering of quivers

- Choose a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
- \tilde{Q} is equipped with a translation

$$\rho: \tilde{Q} \to \tilde{Q}: (x, n) \mapsto (x, n + r_{Q}).$$

• Set $G = \langle \rho \rangle$, subgroup of $\operatorname{Aut}(\tilde{Q})$.

Minimal gradable covering of quivers

- Choose a connected component \tilde{Q} of $Q^{\mathbb{Z}}$.
- \tilde{Q} is equipped with a translation

$$ho: \tilde{Q}
ightarrow \tilde{Q}: (x, n) \mapsto (x, n + r_{Q}).$$

- Set $G = \langle \rho \rangle$, subgroup of $\operatorname{Aut}(\tilde{Q})$.
- We obtain a Galois *G*-covering of quivers:

$$\pi: \tilde{Q} \to Q: (x, n) \mapsto x.$$

Derived push-down functor

• Set
$$\tilde{\Lambda} = k\tilde{Q}/(k\tilde{Q}_1)^2$$
; $\Lambda = kQ/(kQ_1)^2$.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

イロン イヨン イヨン イヨン

Derived push-down functor

イロン イヨン イヨン イヨン

Derived push-down functor

• Set
$$\tilde{\Lambda} = k\tilde{Q}/(k\tilde{Q}_1)^2$$
; $\Lambda = kQ/(kQ_1)^2$.

- G-action on $\tilde{Q} \Rightarrow$ G-action on \tilde{A} .
- Quiver-covering $\pi : \tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{\Lambda} \to \Lambda$.

Derived push-down functor

• Set
$$\tilde{\Lambda} = k\tilde{Q}/(k\tilde{Q}_1)^2$$
; $\Lambda = kQ/(kQ_1)^2$.

- G-action on $\tilde{Q} \Rightarrow$ G-action on \tilde{A} .
- Quiver-covering $\pi : \tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{\Lambda} \to \Lambda$.
- G-action on $\tilde{\Lambda} \Rightarrow$ G-action on $\mathrm{mod}\tilde{\Lambda}$

Derived push-down functor

• Set
$$\tilde{\Lambda} = k\tilde{Q}/(k\tilde{Q}_1)^2$$
; $\Lambda = kQ/(kQ_1)^2$.

- G-action on $\tilde{Q} \Rightarrow$ G-action on \tilde{A} .
- Quiver-covering $\pi : \tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{\Lambda} \to \Lambda$.
- G-action on $\tilde{\Lambda} \Rightarrow$ G-action on $\mathrm{mod}\tilde{\Lambda}$

$$\Rightarrow$$
 G-action on $D^{b}(\mathrm{mod}\tilde{A})$.

Derived push-down functor

• Set
$$\tilde{\Lambda} = k\tilde{Q}/(k\tilde{Q}_1)^2$$
; $\Lambda = kQ/(kQ_1)^2$.

- G-action on $\tilde{Q} \Rightarrow$ G-action on \tilde{A} .
- Quiver-covering $\pi : \tilde{Q} \to Q$ induces Galois G-covering $\pi : \tilde{\Lambda} \to \Lambda$.
- G-action on $ilde{\Lambda} \Rightarrow$ G-action on $\mathrm{mod} ilde{\Lambda}$

$$\Rightarrow$$
 G-action on $D^{b}(\mathrm{mod}\tilde{A})$.

Theorem (Bautista, Liu)

The covering $\pi : \tilde{\Lambda} \to \Lambda$ induces Galois *G*-covering $\pi_{\lambda}^{D} : D^{b}(\text{mod}\tilde{\Lambda}) \to D^{b}(\text{mod}\Lambda).$

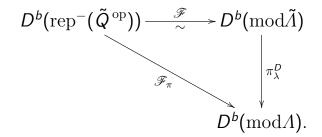
Triangulated categories with an infinite cluster structure

Derived Koszul push-down functor

Composing the derived push-down functor with the Koszul equivalence yields

Derived Koszul push-down functor

Composing the derived push-down functor with the Koszul equivalence yields



Induced G-actions on representations

• G-action on $ilde{Q}$ \Rightarrow G-action on $ilde{Q}^{\,\mathrm{op}}$

(ロ) (同) (E) (E) (E)

Induced G-actions on representations

• *G*-action on
$$ilde{Q} \Rightarrow G$$
-action on $ilde{Q}^{\mathrm{op}}$
 $\Rightarrow G$ -action on $\mathrm{rep}^{-}(ilde{Q}^{\mathrm{op}})$

・ロン ・聞と ・ほと ・ほと

Induced G-actions on representations

• G-action on
$$\tilde{Q} \Rightarrow$$
 G-action on \tilde{Q}^{op}
 \Rightarrow G-action on $\operatorname{rep}^{-}(\tilde{Q}^{\text{op}})$
 \Rightarrow G-action on $D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\text{op}}))$

・ロン ・聞と ・ほと ・ほと

Induced G-actions on representations

・ロン ・聞と ・ほと ・ほと

Induced G-actions on representations

<ロ> (日) (日) (日) (日) (日)

Induced G-actions on representations

Theorem (Bautista, Liu)

The functor $\mathscr{F}_{\pi}: D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})) \to D^b(\operatorname{mod} \Lambda)$ is Galois \mathfrak{G} -covering, and hence

Induced G-actions on representations

Theorem (Bautista, Liu)

The functor $\mathscr{F}_{\pi} : D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \to D^{b}(\operatorname{mod} \Lambda)$ is Galois &-covering, and hence $D^{b}(\operatorname{mod} \Lambda) \cong D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}))/\rho^{-1} \circ [r_{Q}].$

Description of $D^b(\text{mod}\Lambda)$

Theorem (Bautista, Liu)

• $X \in D^b(\text{mod}\Lambda)$ has unique decomposition

$$X^{\cdot} \cong \oplus_{i \in \mathbb{Z}/r_Q\mathbb{Z}} \mathscr{F}_{\pi}(M_i)[i], \ M_i \in \operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$$

Description of $D^b(\mod \Lambda)$

Theorem (Bautista, Liu)

• $X \in D^b(\operatorname{mod} A)$ has unique decomposition

$$X^{\cdot} \cong \bigoplus_{i \in \mathbb{Z}/r_Q \mathbb{Z}} \mathscr{F}_{\pi}(M_i)[i], \ M_i \in \operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$$

• The AR-components of $D^b \pmod{\Lambda}$ are

$$\mathscr{F}_{\pi}(\Gamma)[i], \ i \in \mathbb{Z}/r_{Q}\mathbb{Z},$$

Description of $D^b(\text{mod}\Lambda)$

Theorem (Bautista, Liu)

• $X^{\cdot} \in D^{b}(\mathrm{mod}\Lambda)$ has unique decomposition

$$X^{\cdot} \cong \oplus_{i \in \mathbb{Z}/r_Q\mathbb{Z}} \mathscr{F}_{\pi}(M_i)[i], \ M_i \in \operatorname{rep}^{-}(\widetilde{Q}^{\operatorname{op}})$$

• The AR-components of $D^b \pmod{\Lambda}$ are

$$\mathscr{F}_{\pi}(\Gamma)[i], \ i \in \mathbb{Z}/r_{Q}\mathbb{Z},$$

 Γ is the connecting component of $\Gamma_{D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}}))}$ or a regular component of $\Gamma_{\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})}$.

(D) (A) (A) (A) (A)

• Let Q be acyclic of type $\tilde{\mathbb{A}}_n$.

Shiping Liu (Université de Sherbrooke) Triangulated categories with an infinite cluster structure

イロト イヨト イヨト イヨト

3

• Let Q be acyclic of type $\tilde{\mathbb{A}}_n$.

• Then $\tilde{Q}^{\rm op}$ of type $\mathbb{A}_{\infty}^{\infty}$ with no infinite path.

・ロン ・回と ・ヨン ・ヨン

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem

If
$$r_{_{\!Q}}=1$$
, then $arGamma_{D^b(\mathrm{mod}\mathcal{A})}$ consists of

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

If
$$r_q = 1$$
, then $\Gamma_{D^b(\text{mod}A)}$ consists of
• a connecting component of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

If
$$r_{_{\!Q}}=1$$
, then $\Gamma_{D^b(\mathrm{mod} \Lambda)}$ consists of

- a connecting component of shape $\mathbb{Z}\mathbb{A}_{\infty}^{\infty}$;
- two orthogonal regular component of shape $\mathbb{Z}\mathbb{A}_{\infty}$.

▲ □ ► ▲ □ ►

- ∢ ⊒ →

3