Another characterization of tilted algebras

Shiping Liu Université de Sherbrooke

Advances in Representation Theory of Algebras

CIMAT, Guanajuato June 22 - 26, 2015

- (目) - (日) - (日)

Setting

A: artin algebra.

イロン 不同と 不同と 不同と

Setting

A: artin algebra.

$\operatorname{mod} A$: category of finitely generated right A-modules,

| 4 回 2 4 U = 2 4 U =

Setting

A: artin algebra.

modA: category of finitely generated right A-modules, indA: full subcategory of modA of the indecomposables.

・ 同 ト ・ ヨ ト ・ ヨ ト

Setting

A: artin algebra.

 $\operatorname{mod} A$: category of finitely generated right A-modules, $\operatorname{ind} A$: full subcategory of $\operatorname{mod} A$ of the indecomposables. Γ_A : AR-quiver whose vertices form a complete set of non-isomorphic objects of $\operatorname{ind} A$.

- (目) - (日) - (日)

Setting

A: artin algebra.

 $\operatorname{mod} A$: category of finitely generated right A-modules, $\operatorname{ind} A$: full subcategory of $\operatorname{mod} A$ of the indecomposables. Γ_A : AR-quiver whose vertices form a complete set of non-isomorphic objects of $\operatorname{ind} A$.

 τ : the AR-translation.

向下 イヨト イヨト

Object of study

Definition (Brenner-Butler, 1980's)

A module $T \in \operatorname{mod} A$ is called *tilting* if

- - 4 回 ト - 4 回 ト

Object of study

Definition (Brenner-Butler, 1980's)

A module $T \in \text{mod}A$ is called *tilting* if • $\text{pdim}(T) \leq 1$;

イロト イヨト イヨト イヨト

Object of study

Definition (Brenner-Butler, 1980's)

- A module $T \in \operatorname{mod} A$ is called *tilting* if
- $\operatorname{pdim}(T) \leq 1;$
- $\operatorname{Ext}^{1}_{A}(T, T) = 0;$

イロト イヨト イヨト イヨト

Object of study

Definition (Brenner-Butler, 1980's)

- A module $T \in \operatorname{mod} A$ is called *tilting* if
- $\operatorname{pdim}(T) \leq 1;$
- $\operatorname{Ext}^{1}_{A}(T, T) = 0;$
- \exists exact sequence $0 \longrightarrow A \longrightarrow T_0 \longrightarrow T_1 \longrightarrow 0$, with T_0, T_1 direct sums of direct summands of T.

・ロト ・回ト ・ヨト ・ヨト

Object of study

Definition (Brenner-Butler, 1980's)

- A module $T \in \operatorname{mod} A$ is called *tilting* if
- $\operatorname{pdim}(T) \leq 1;$
- $\operatorname{Ext}^{1}_{A}(T, T) = 0;$
- \exists exact sequence $0 \longrightarrow A \longrightarrow T_0 \longrightarrow T_1 \longrightarrow 0$, with T_0, T_1 direct sums of direct summands of T.

Definition (Happel-Ringel, 1980's)

An artin A is said to be *tilted* if

$$A = \operatorname{End}_H(T),$$

where H is hereditary and $T \in \text{mod}H$ is tilting.

Motivation

We are interested in characterizing tilted algebras, since it

- 4 回 2 - 4 □ 2 - 4 □

Motivation

We are interested in characterizing tilted algebras, since it

 provide efficient ways to recognize this well understood class of algebras,

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

We are interested in characterizing tilted algebras, since it

- provide efficient ways to recognize this well understood class of algebras,
- and allow us to obtain quotient tilted algebras from a given artin algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト

History: characterizations in terms of module category

個 と く ヨ と く ヨ と …

History: characterizations in terms of module category

 Tilted algebras were first characterized by the existence of a slice module (Ringel, 1986);

向下 イヨト イヨト

History: characterizations in terms of module category

- Tilted algebras were first characterized by the existence of a slice module (Ringel, 1986);
- Later, a slice module was replaced by a sincere module such that all paths in indA betwwen its summands are strictly sectional (Bakke 1988);

向下 イヨト イヨト

History: characterizations in terms of module category

- Tilted algebras were first characterized by the existence of a slice module (Ringel, 1986);
- Later, a slice module was replaced by a sincere module such that all paths in indA betwwen its summands are strictly sectional (Bakke 1988);
- More recently, it is reduced to a sincere module not lying on any short chains (Jaworska, Malicki, Skowroński, 2013);

・ 同 ト ・ ヨ ト ・ ヨ ト

History: characterizations in terms of module category

- Tilted algebras were first characterized by the existence of a slice module (Ringel, 1986);
- Later, a slice module was replaced by a sincere module such that all paths in indA betwwen its summands are strictly sectional (Bakke 1988);
- More recently, it is reduced to a sincere module not lying on any short chains (Jaworska, Malicki, Skowroński, 2013);
- All these characterizations require some knowledge of the entire module category.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

History: characterizations in terms of AR-quiver

・ 回 と ・ ヨ と ・ ヨ と

History: characterizations in terms of AR-quiver

 Replacing convexity with respect to non-zero maps by convexity with respect to irreducible maps, tilted algebras are characterized by existence of faithful *τ*-rigid section (Liu, Skowroński, 1993);

向下 イヨト イヨト

History: characterizations in terms of AR-quiver

- Replacing convexity with respect to non-zero maps by convexity with respect to irreducible maps, tilted algebras are characterized by existence of faithful *τ*-rigid section (Liu, Skowroński, 1993);
- A section is slightly weakened by the notion of left section (Assem, 2009).

伺 とう きょう とう とう

History: characterizations in terms of AR-quiver

- Replacing convexity with respect to non-zero maps by convexity with respect to irreducible maps, tilted algebras are characterized by existence of faithful *τ*-rigid section (Liu, Skowroński, 1993);
- A section is slightly weakened by the notion of left section (Assem, 2009).
- These characterizations require some knowledge of an entire Auslander-Reiten component.

・ 同 ト ・ ヨ ト ・ ヨ ト

Objective of this talk

 Give a new characterization of tilted algebras, which can be verified locally and does not require any convexity property.

Objective of this talk

- Give a new characterization of tilted algebras, which can be verified locally and does not require any convexity property.
- As an application, we shall show a connection to cluster tilted algebra.

- (目) - (日) - (日)

Paths

Definition

A *path* in indA is a sequence

$$X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n$$

of non-zero non-invertible maps in indA.

イロン イヨン イヨン イヨン

Paths

Definition

A *path* in indA is a sequence

$$X_0 \xrightarrow{f_1} X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \xrightarrow{f_n} X_n$$

of non-zero non-invertible maps in indA.

The path is called *non-zero* if $f_1 \cdots f_n \neq 0$.

イロン イヨン イヨン イヨン

Subquivers

Definition

A full subquiver Σ of Γ_A is called

(1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;

Subquivers

Definition

- (1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;
- (2) weakly convex in indA if every non-zero path in indA with end-points in Σ contains only modules of Σ.

Subquivers

Definition

- (1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;
- (2) weakly convex in indA if every non-zero path in indA with end-points in Σ contains only modules of Σ.
- (3) convex in Γ_A if every path in Γ_A with end-points in Σ contains only modules of Σ.

Subquivers

Definition

- (1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;
- (2) weakly convex in indA if every non-zero path in indA with end-points in Σ contains only modules of Σ .
- (3) convex in Γ_A if every path in Γ_A with end-points in Σ contains only modules of Σ.
- (4) τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.

Subquivers

Definition

- (1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;
- (2) weakly convex in indA if every non-zero path in indA with end-points in Σ contains only modules of Σ .
- (3) convex in Γ_A if every path in Γ_A with end-points in Σ contains only modules of Σ.
- (4) τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
- (5) τ^{-} -rigid if $\operatorname{Hom}_{A}(\tau^{-}X, Y) = 0$ for all $X, Y \in \Delta$.

Subquivers

Definition

- (1) convex in ind A if every path in ind A with end-points in Σ contains only modules of Σ ;
- (2) weakly convex in indA if every non-zero path in indA with end-points in Σ contains only modules of Σ .
- (3) convex in Γ_A if every path in Γ_A with end-points in Σ contains only modules of Σ.
- (4) τ -rigid if $\operatorname{Hom}_A(X, \tau Y) = 0$ for all $X, Y \in \Delta$.
- (5) τ^{-} -rigid if $\operatorname{Hom}_{A}(\tau^{-}X, Y) = 0$ for all $X, Y \in \Delta$.
- (6) sincere if every simple A-module is a composition factor of some module in Δ .

Slices and sections

Let Δ be a full subquiver of Γ_A .

<ロ> (日) (日) (日) (日) (日)

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

• Δ is called *slice* if it is sincere with the properties:

(本部) (本語) (本語)

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

- Δ is called *slice* if it is sincere with the properties:
 - Δ is convex in $\operatorname{ind} A$;

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

• Δ is called *slice* if it is sincere with the properties:

- Δ is convex in $\operatorname{ind} A$;
- If $X \in \Delta$, then $\tau X \notin \Delta$;

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

- Δ is called *slice* if it is sincere with the properties:
 - Δ is convex in $\operatorname{ind} A$;
 - If $X \in \Delta$, then $\tau X \notin \Delta$;
 - If $X \to Y \in \Gamma_A$ with $Y \in \Delta$, then X or τ^-X in Δ .

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

• Δ is called *slice* if it is sincere with the properties:

- Δ is convex in $\operatorname{ind} A$;
- If $X \in \Delta$, then $\tau X \notin \Delta$;
- If $X \to Y \in \Gamma_A$ with $Y \in \Delta$, then X or τ^-X in Δ .
- Δ is called *section* if it is connected with the properties:

・ 同 ト ・ ヨ ト ・ ヨ ト

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

- Δ is called *slice* if it is sincere with the properties:
 - Δ is convex in $\operatorname{ind} A$;
 - If $X \in \Delta$, then $\tau X \notin \Delta$;
 - If $X \to Y \in \Gamma_A$ with $Y \in \Delta$, then X or τ^-X in Δ .
- Δ is called *section* if it is connected with the properties:
 - Δ is acyclic and convex in Γ_A .

- 4 同 ト - 4 三 ト

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

- Δ is called *slice* if it is sincere with the properties:
 - Δ is convex in $\operatorname{ind} A$;
 - If $X \in \Delta$, then $\tau X \notin \Delta$;
 - If $X \to Y \in \Gamma_A$ with $Y \in \Delta$, then X or τ^-X in Δ .
- Δ is called *section* if it is connected with the properties:
 - Δ is acyclic and convex in Γ_A .
 - Δ meets exactly once each of the τ-orbits of the AR-component containing Δ.

|| (同) || (三) (=)

Slices and sections

Let Δ be a full subquiver of Γ_A .

Definition

- Δ is called *slice* if it is sincere with the properties:
 - Δ is convex in $\operatorname{ind} A$;
 - If $X \in \Delta$, then $\tau X \notin \Delta$;
 - If $X \to Y \in \Gamma_A$ with $Y \in \Delta$, then X or τ^-X in Δ .
- Δ is called *section* if it is connected with the properties:
 - Δ is acyclic and convex in Γ_A .
 - Δ meets exactly once each of the τ-orbits of the AR-component containing Δ.

Remark

 Δ is slice $\Rightarrow \Delta$ is finite, all its components are sections.

Ringel's Result

M: non-zero module in modA.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Ringel's Result

M: non-zero module in modA.

 $\Delta(M)$: full subquiver of Γ_A generated by the summands of M.

・ 母 と ・ ヨ と ・ ヨ と

æ

Ringel's Result

M: non-zero module in modA.

 $\Delta(M)$: full subquiver of Γ_A generated by the summands of M.

One says that M is

• slice module if $\Delta(M)$ is a slice of Γ_A ;

- 4 同 6 4 日 6 4 日 6

Ringel's Result

M: non-zero module in modA.

 $\Delta(M)$: full subquiver of Γ_A generated by the summands of M.

One says that M is

- slice module if $\Delta(M)$ is a slice of Γ_A ;
- weakly convex in modA if $\Delta(M)$ is weakly convex in indA.

- 4 同 6 4 日 6 4 日 6

Ringel's Result

M: non-zero module in modA.

 $\Delta(M)$: full subquiver of Γ_A generated by the summands of M.

One says that M is

- slice module if $\Delta(M)$ is a slice of Γ_A ;
- weakly convex in modA if $\Delta(M)$ is weakly convex in indA.

Proposition (Ringel)

M is slice module \Leftrightarrow *M* is tilting with $\operatorname{End}_A(M)$ hereditary.

Ringel's Result

M: non-zero module in modA.

 $\Delta(M)$: full subquiver of Γ_A generated by the summands of M.

One says that M is

- slice module if $\Delta(M)$ is a slice of Γ_A ;
- weakly convex in modA if $\Delta(M)$ is weakly convex in indA.

Proposition (Ringel)

M is slice module $\Leftrightarrow M$ is tilting with $\operatorname{End}_A(M)$ hereditary.

Theorem (Ringel)

An artin algebra A is tilted $\Leftrightarrow \operatorname{mod} A$ has a slice module.

Shiping Liu Université de Sherbrooke

Another characterization of tilted algebras

Key Observation

Lemma

If $M \in \text{mod}A$ is titling, then

Shiping Liu Université de Sherbrooke Another characterization of tilted algebras

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Key Observation

Lemma

If $M \in \text{mod}A$ is titling, then

M is a slice module \Leftrightarrow *M* is weakly convex in mod*A*.

イロト イヨト イヨト イヨト

æ

A sufficient condition for tilting

Proposition (Reiten, Skowronski, Smalø)

Let $M \in \operatorname{mod} A$ be faithful, τ -rigid, and τ^- -rigid such that

A sufficient condition for tilting

Proposition (Reiten, Skowronski, Smalø)

Let $M \in \text{mod}A$ be faithful, τ -rigid, and τ^- -rigid such that every map $f : M \to X$, with M, X having no common summand, factors through $\tau^- M$.

A sufficient condition for tilting

Proposition (Reiten, Skowronski, Smalø)

Let $M \in \text{mod}A$ be faithful, τ -rigid, and τ^- -rigid such that every map $f : M \to X$, with M, X having no common summand, factors through $\tau^- M$. Then M is a tilting module

Then M is a tilting module.

- 4 回 2 - 4 回 2 - 4 回 2

Cuts

Definition

A full subquiver Δ of Γ_A is called a *cut* if the following conditions are verified for each arrow $X \to Y$ in Γ_A .

Cuts

Definition

A full subquiver Δ of Γ_A is called a *cut* if the following conditions are verified for each arrow $X \to Y$ in Γ_A . • If $X \in \Delta$, then Y or τY , but not both, belongs to Δ .

||◆同 || ◆ 臣 || ◆ 臣 ||

Cuts

Definition

A full subquiver Δ of Γ_A is called a *cut* if the following conditions are verified for each arrow $X \to Y$ in Γ_A . • If $X \in \Delta$, then Y or τY , but not both, belongs to Δ .

• If $Y \in \Delta$, then X or τ^-X , but not both, belongs to Δ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Cuts

Definition

A full subquiver Δ of Γ_A is called a *cut* if the following conditions are verified for each arrow X → Y in Γ_A.
If X ∈ Δ, then Y or τY, but not both, belongs to Δ.
If Y ∈ Δ, then X or τ⁻X, but not both, belongs to Δ.

Remark

A section in Γ_A is a cut, and the converse is not true.

・ロト ・日本 ・モート ・モート

Example

Let A given by the quiver with radical squared zero

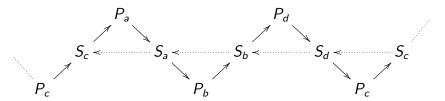
(1日) (日) (日)

æ

Example

Let A given by the quiver with radical squared zero

Its AR-quiver Γ_A is as follows:

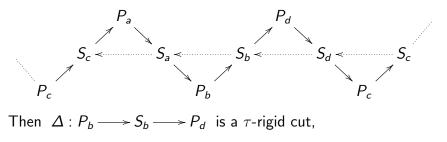


伺 ト イヨト イヨト

Example

Let A given by the quiver with radical squared zero

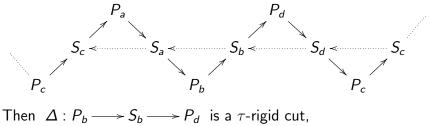
Its AR-quiver Γ_A is as follows:



Example

Let A given by the quiver with radical squared zero

Its AR-quiver Γ_A is as follows:



 Δ does not meet the τ -orbits of P_a and P_c .

Slices and cuts

Lemma

A slice of Γ_A is precisely a sincere cut which is convex in indA.

・ロト ・回ト ・ヨト ・ヨト

æ

Slices and cuts

Lemma

A slice of Γ_A is precisely a sincere cut which is convex in indA.

Proposition

Let C be a sincere component of Γ_A . Then A is a tilted algebra having C as a connecting component in case

Slices and cuts

Lemma

A slice of Γ_A is precisely a sincere cut which is convex in indA.

Proposition

Let C be a sincere component of Γ_A . Then A is a tilted algebra having C as a connecting component in case • C is preprojective without injective modules, or

Slices and cuts

Lemma

A slice of Γ_A is precisely a sincere cut which is convex in indA.

Proposition

Let C be a sincere component of Γ_A . Then A is a tilted algebra having C as a connecting component in case • C is preprojective without injective modules, or

 \circ C is preinjective without projective modules.

Properties of a cut

Let Δ be a cut of Γ_A .

・ロン ・回と ・ヨン・

æ

Properties of a cut

Let Δ be a cut of Γ_A .

Lemma

The following conditions are equivalent.

- 4 回 2 - 4 □ 2 - 4 □

æ

Properties of a cut

Let Δ be a cut of Γ_A .

Lemma

The following conditions are equivalent.

• Δ is τ -rigid.

(人間) (人) (人) (人) (人)

Properties of a cut

Let Δ be a cut of Γ_A .

Lemma

The following conditions are equivalent.

- Δ is τ -rigid.
- **9** Δ is τ^- -rigid.

Properties of a cut

Let Δ be a cut of Γ_A .

Lemma

The following conditions are equivalent.

- Δ is τ -rigid.
- **9** Δ is τ^- -rigid.
- Δ is finite and weakly convex in indA.

Properties of a cut

Let Δ be a cut of Γ_A .

Lemma

The following conditions are equivalent.

- Δ is τ -rigid.
- **2** Δ is τ^- -rigid.
- Δ is finite and weakly convex in ind A.

Lemma

If Δ is τ -rigid, then every map $f : M \to X$, with $M \in \Delta$, $X \in \Gamma_A \setminus \Delta$, factors through some module in $\tau^- \Delta$.

・ロト ・日本 ・モート ・モート

Main Theorem

Theorem

An artin algebra A is tilted $\Leftrightarrow \Gamma_A$ has a faithful τ -rigid cut Δ ; and in this case, Δ is a slice.

<ロ> (日) (日) (日) (日) (日)

Main Theorem

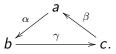
Theorem

An artin algebra A is tilted $\Leftrightarrow \Gamma_A$ has a faithful τ -rigid cut Δ ; and in this case, Δ is a slice.

REMARK. The faithfulness of Δ cannot be replaced by the sincereness.

Example

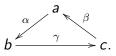
• Let A given by the following quiver with radical squared zero:



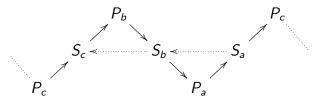
(4回) (4回) (4回)

Example

• Let *A* given by the following quiver with radical squared zero:



2 Its AR-quiver Γ_A is as follows:

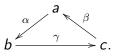


< E.

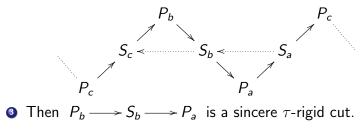
-

Example

• Let *A* given by the following quiver with radical squared zero:



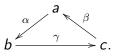
2 Its AR-quiver Γ_A is as follows:



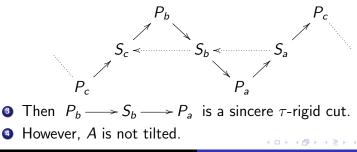
- A 同 ト - A 三 ト - A 三 ト

Example

• Let *A* given by the following quiver with radical squared zero:



2 Its AR-quiver Γ_A is as follows:



Consequence

Theorem

Let Δ be a τ -rigid cut of Γ_A and set $B = A/\operatorname{ann}(\Delta)$.

・ロ・ ・ 日・ ・ 日・ ・ 日・

Consequence

Theorem

Let Δ be a τ -rigid cut of Γ_A and set $B = A/\operatorname{ann}(\Delta)$.

• For $X \in \Delta$, we have $\tau_B X = \tau X$ and $\tau_B^- X = \tau^- X$.

イロト イヨト イヨト イヨト

Consequence

Theorem

Let Δ be a τ -rigid cut of Γ_A and set $B = A/\operatorname{ann}(\Delta)$.

- For $X \in \Delta$, we have $\tau_B X = \tau X$ and $\tau_B^- X = \tau^- X$.
- **2** B is tilted with Δ being a slice of Γ_B .

イロン イヨン イヨン イヨン

Example

Let A be given by the following quiver with radical squared zero

・ロト ・回ト ・ヨト ・ヨト

Example

Let A be given by the following quiver with radical squared zero

 Γ_A has a τ -rigid cut $\Delta: P_b \longrightarrow S_b \longrightarrow P_d$.

・ロン ・回 と ・ 回 と ・ 回 と

Example

Let A be given by the following quiver with radical squared zero

 Γ_A has a τ -rigid cut $\Delta : P_b \longrightarrow S_b \longrightarrow P_d$. We have $\operatorname{ann}(\Delta) = Ae_cA$ and $B = A/\operatorname{ann}(\Delta)$ is given by

$$d \xrightarrow{\delta} b \xrightarrow{\beta} a, \qquad \beta \delta = 0,$$

ヘロン 人間 とくほど くほとう

Example

Let A be given by the following quiver with radical squared zero

 Γ_A has a τ -rigid cut $\Delta : P_b \longrightarrow S_b \longrightarrow P_d$. We have $\operatorname{ann}(\Delta) = Ae_c A$ and $B = A/\operatorname{ann}(\Delta)$ is given by

$$d \xrightarrow{\delta} b \xrightarrow{\beta} a, \qquad \beta \delta = 0,$$

which is tilted of type \mathbb{A}_3 .

ヘロン 人間 とくほど くほとう

H: hereditary artin algebra.

・ロン ・回と ・ヨン・

 $D^{b}(H)$: bounded derived category of modH.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

$D^{b}(H)$: bounded derived category of modH.

$$\mathscr{C}_{H} = D^{b}(\mathrm{mod}H)/F$$
, where $F = \tau_{_{D}}^{-1}[1]$.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

- H: hereditary artin algebra.
- $D^{b}(H)$: bounded derived category of mod H.
- $\mathscr{C}_{H} = D^{b} (\mathrm{mod} H) / F$, where $F = \tau_{_{D}}^{-1} [1]$.
- Let $T \in \mathscr{C}_H$ be cluster-tilting, that is,

・ 同 ト ・ ヨ ト ・ ヨ ト

 $D^{b}(H)$: bounded derived category of modH.

$$\mathscr{C}_{\mathcal{H}} = \mathsf{D}^{\mathsf{b}}(\mathrm{mod}\mathcal{H})/\mathsf{F}$$
, where $\mathsf{F} = au_{\scriptscriptstyle D}^{-1}[1].$

Let $T \in \mathscr{C}_H$ be cluster-tilting, that is,

•
$$\operatorname{Hom}_{\mathscr{C}_{H}}(T, T[1]) = 0;$$

- 4 同 6 4 日 6 4 日 6

 $D^{b}(H)$: bounded derived category of modH.

$$\mathscr{C}_{\mathcal{H}} = \mathsf{D}^{\mathsf{b}}(\mathrm{mod}\mathcal{H})/\mathsf{F}$$
, where $\mathsf{F} = au_{\scriptscriptstyle D}^{-1}[1].$

Let $T \in \mathscr{C}_H$ be cluster-tilting, that is,

- $\operatorname{Hom}_{\mathscr{C}_{H}}(T, T[1]) = 0;$
- number of non-iso indec summands of *T* equals number of non-iso simple *H*-modules.

- 4 同 6 4 日 6 4 日 6

 $D^{b}(H)$: bounded derived category of modH.

$$\mathscr{C}_{\mathcal{H}} = \mathsf{D}^{\mathsf{b}}(\mathrm{mod}\mathcal{H})/\mathsf{F}$$
, where $\mathsf{F} = au_{\scriptscriptstyle D}^{-1}[1].$

Let $T \in \mathscr{C}_H$ be cluster-tilting, that is,

- $\operatorname{Hom}_{\mathscr{C}_H}(T, T[1]) = 0;$
- number of non-iso indec summands of *T* equals number of non-iso simple *H*-modules.
- $C = \operatorname{End}_{\mathscr{C}_H}(T)$ is called *cluster-tilted*.

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

・ 母 と ・ ヨ と ・ ヨ と

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$.

・ロト ・回ト ・ヨト ・ヨト

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} C \approx \mathscr{C}_H / \operatorname{add}(\tau T)$ by Buan-Marsh-Reiten,

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} \mathcal{C} \approx \mathscr{C}_H / \operatorname{add}(\tau T)$ by Buan-Marsh-Reiten, $\Gamma_{\mathcal{C}}$ is obtained from $\Gamma_{\mathscr{C}_H}$ by deleting summands of τT .

イロト イポト イヨト イヨト

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} C \approx \mathscr{C}_H / \operatorname{add}(\tau T)$ by Buan-Marsh-Reiten, Γ_C is obtained from $\Gamma_{\mathscr{C}_H}$ by deleting summands of τT . Let Σ section of $\Gamma_{D^b(\operatorname{mod} H)}$ of the injective *H*-modules.

・ロン ・回と ・ヨン ・ヨン

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} C \approx \mathscr{C}_H/\operatorname{add}(\tau T)$ by Buan-Marsh-Reiten, Γ_C is obtained from $\Gamma_{\mathscr{C}_H}$ by deleting summands of τT . Let Σ section of $\Gamma_{D^b(\operatorname{mod} H)}$ of the injective *H*-modules. Since $\operatorname{Hom}_{D^b(H)}(I, F^i(\tau J)) = 0$, for $I, J \in \Sigma, i \in \mathbb{Z}$.

・ロト ・回ト ・ヨト ・ヨト

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} C \approx \mathscr{C}_H / \operatorname{add}(\tau T)$ by Buan-Marsh-Reiten, Γ_C is obtained from $\Gamma_{\mathscr{C}_H}$ by deleting summands of τT . Let Σ section of $\Gamma_{D^b(\operatorname{mod} H)}$ of the injective *H*-modules. Since $\operatorname{Hom}_{D^b(H)}(I, F^i(\tau J)) = 0$, for $I, J \in \Sigma, i \in \mathbb{Z}$. $\Delta = \pi(\Sigma)$ is a τ -rigid cut in Γ_C .

・ロト ・回ト ・ヨト ・ヨト

New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle, Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C.

Proof. \exists Galois covering $\pi : \Gamma_{D^b(H)} \to \Gamma_{\mathscr{C}_H}$. Since $\operatorname{mod} C \approx \mathscr{C}_H / \operatorname{add}(\tau T)$ by Buan-Marsh-Reiten, Γ_C is obtained from $\Gamma_{\mathscr{C}_H}$ by deleting summands of τT . Let Σ section of $\Gamma_{D^b(\operatorname{mod} H)}$ of the injective *H*-modules. Since $\operatorname{Hom}_{D^b(H)}(I, F^i(\tau J)) = 0$, for $I, J \in \Sigma, i \in \mathbb{Z}$. $\Delta = \pi(\Sigma)$ is a τ -rigid cut in Γ_C . Thus, $B = C / \operatorname{ann}(\Delta)$ is tilted with Δ being slice of Γ_B .

・ 同 ト ・ ヨ ト ・ ヨ ト