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Setting

A: artin algebra.

modA : category of finitely generated right A-modules,

indA : full subcategory of modA of the indecomposables.

ΓA: AR-quiver whose vertices form a complete set of
non-isomorphic objects of indA.

τ : the AR-translation.
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Object of study

Definition (Brenner-Butler, 1980’s)

A module T ∈ modA is called tilting if

pdim(T ) ≤ 1;

Ext1A(T ,T ) = 0;

∃ exact sequence 0 // A // T0
// T1

// 0, with
T0,T1 direct sums of direct summands of T .

Definition (Happel-Ringel, 1980’s)

An artin A is said to be tilted if

A = EndH(T ),

where H is hereditary and T ∈ modH is tilting.
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Motivation

We are interested in characterizing tilted algebras, since it

provide efficient ways to recognize this well understood
class of algebras,
and allow us to obtain quotient tilted algebras from a
given artin algebra.
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History: characterizations in terms of module category

1 Tilted algebras were first characterized by the existence of
a slice module (Ringel, 1986);

2 Later, a slice module was replaced by a sincere module
such that all paths in indA betwwen its summands are
strictly sectional (Bakke 1988);

3 More recently, it is reduced to a sincere module not lying
on any short chains (Jaworska, Malicki, Skowroński,
2013);

4 All these characterizations require some knowledge of the
entire module category.
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2013);

4 All these characterizations require some knowledge of the
entire module category.
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History: characterizations in terms of AR-quiver

1 Replacing convexity with respect to non-zero maps by
convexity with respect to irreducible maps, tilted algebras
are characterized by existence of faithful τ -rigid section
(Liu, Skowroński, 1993);

2 A section is slightly weakened by the notion of left section
(Assem, 2009).

3 These characterizations require some knowledge of an
entire Auslander-Reiten component.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

History: characterizations in terms of AR-quiver

1 Replacing convexity with respect to non-zero maps by
convexity with respect to irreducible maps, tilted algebras
are characterized by existence of faithful τ -rigid section
(Liu, Skowroński, 1993);
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Objective of this talk

1 Give a new characterization of tilted algebras, which can
be verified locally and does not require any convexity
property.

2 As an application, we shall show a connection to cluster
tilted algebra.

Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

Objective of this talk

1 Give a new characterization of tilted algebras, which can
be verified locally and does not require any convexity
property.

2 As an application, we shall show a connection to cluster
tilted algebra.
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Paths

Definition

A path in indA is a sequence

X0
f1 // X1

// · · · // Xn−1
fn // Xn,

of non-zero non-invertible maps in indA.

The path is called non-zero if f1 · · · fn 6= 0.
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Subquivers

Definition

A full subquiver Σ of ΓA is called

(1) convex in indA if every path in indA with end-points in
Σ contains only modules of Σ ;

(2) weakly convex in indA if every non-zero path in indA
with end-points in Σ contains only modules of Σ .

(3) convex in ΓA if every path in ΓA with end-points in Σ
contains only modules of Σ .

(4) τ -rigid if HomA(X , τY ) = 0 for all X ,Y ∈ ∆.

(5) τ−-rigid if HomA(τ−X ,Y ) = 0 for all X ,Y ∈ ∆.

(6) sincere if every simple A-module is a composition factor
of some module in ∆.
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Slices and sections

Let ∆ be a full subquiver of ΓA.

Definition

1 ∆ is called slice if it is sincere with the properties:

∆ is convex in indA;
If X ∈ ∆, then τX /∈ ∆;
If X → Y ∈ ΓA with Y ∈ ∆, then X or τ−X in ∆.

2 ∆ is called section if it is connected with the properties:

∆ is acyclic and convex in ΓA.
∆ meets exactly once each of the τ -orbits of the
AR-component containing ∆.

Remark

∆ is slice ⇒ ∆ is finite, all its components are sections.
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Ringel’s Result

M : non-zero module in modA.

∆(M) : full subquiver of ΓA generated by the summands of
M .

One says that M is

slice module if ∆(M) is a slice of ΓA;
weakly convex in modA if ∆(M) is weakly convex in
indA.

Proposition (Ringel)

M is slice module ⇔ M is tilting with EndA(M) hereditary.

Theorem (Ringel)

An artin algebra A is tilted ⇔ modA has a slice module.
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Key Observation

Lemma

If M ∈ modA is titling, then

M is a slice module ⇔ M is weakly convex in modA.
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A sufficient condition for tilting

Proposition (Reiten, Skowronski, Smalø)

Let M ∈ modA be faithful, τ -rigid, and τ−-rigid such that

every map f : M → X , with M ,X having no common
summand, factors through τ−M .

Then M is a tilting module.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

Cuts

Definition

A full subquiver ∆ of ΓA is called a cut if the following
conditions are verified for each arrow X → Y in ΓA.

1 If X ∈ ∆, then Y or τY , but not both, belongs to ∆.
2 If Y ∈ ∆, then X or τ−X , but not both, belongs to ∆.

Remark

A section in ΓA is a cut, and the converse is not true.
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Example

Let A given by the quiver with radical squared zero

a

��

boo

c // d .

OO

Its AR-quiver ΓA is as follows:

Pa

  

Pd

  
Sc

>>

Sa

  

oo Sb
oo

>>

Sd

  

oo Sc
oo

Pc

>>

Pb

>>

Pc

>>

Then ∆ : Pb
// Sb

// Pd is a τ -rigid cut,
∆ does not meet the τ -orbits of Pa and Pc .
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Slices and cuts

Lemma

A slice of ΓA is precisely a sincere cut which is convex in indA.

Proposition

Let C be a sincere component of ΓA. Then A is a tilted
algebra having C as a connecting component in case

1 C is preprojective without injective modules, or
2 C is preinjective without projective modules.
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Properties of a cut

Let ∆ be a cut of ΓA.

Lemma

The following conditions are equivalent.

1 ∆ is τ -rigid.
2 ∆ is τ−-rigid.
3 ∆ is finite and weakly convex in indA.

Lemma

If ∆ is τ -rigid, then every map f : M → X , with M ∈ ∆,
X ∈ ΓA\∆, factors through some module in τ−∆.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

Main Theorem

Theorem

An artin algebra A is tilted ⇔ ΓA has a faithful τ -rigid cut ∆;
and in this case, ∆ is a slice.

Remark. The faithfulness of ∆ cannot be replaced by the
sincereness.
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Example

1 Let A given by the following quiver with radical squared
zero:

a
α

{{
b

γ // c .

β
cc

2 Its AR-quiver ΓA is as follows:

Pb

  

Pc

Sc

>>

Sb

  

oo Sa
oo

>>

Pc

>>

Pa

>>

3 Then Pb
// Sb

// Pa is a sincere τ -rigid cut.
4 However, A is not tilted.

Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

Example

1 Let A given by the following quiver with radical squared
zero:

a
α

{{
b

γ // c .

β
cc

2 Its AR-quiver ΓA is as follows:

Pb

  

Pc

Sc

>>

Sb

  

oo Sa
oo

>>

Pc

>>

Pa

>>

3 Then Pb
// Sb

// Pa is a sincere τ -rigid cut.
4 However, A is not tilted.
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Consequence

Theorem

Let ∆ be a τ -rigid cut of ΓA and set B = A/ann(∆).

1 For X ∈ ∆, we have τBX = τX and τ−B X = τ−X .
2 B is tilted with ∆ being a slice of ΓB .
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Example

Let A be given by the following quiver with radical squared zero

a
α
��

b
βoo

c γ
// d

δ

OO

ΓA has a τ -rigid cut ∆ : Pb
// Sb // Pd .

We have ann(∆) = AecA and B = A/ann(∆) is given by

d
δ // b

β // a, βδ = 0,

which is tilted of type A3.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

Example

Let A be given by the following quiver with radical squared zero

a
α
��

b
βoo

c γ
// d

δ

OO

ΓA has a τ -rigid cut ∆ : Pb
// Sb // Pd .

We have ann(∆) = AecA and B = A/ann(∆) is given by

d
δ // b

β // a, βδ = 0,

which is tilted of type A3.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

H : hereditary artin algebra.

Db(H): bounded derived category of modH .

CH = Db(modH)/F , where F = τ−1
D

[1].

Let T ∈ CH be cluster-tilting, that is,

HomCH
(T ,T [1]) = 0;

number of non-iso indec summands of T equals number
of non-iso simple H-modules.

C = EndCH
(T ) is called cluster-tilted.
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Shiping Liu Université de Sherbrooke Another characterization of tilted algebras



Introduction
Preliminaries
Main Result

Application to cluster tilted algebra

H : hereditary artin algebra.

Db(H): bounded derived category of modH .

CH = Db(modH)/F , where F = τ−1
D

[1].

Let T ∈ CH be cluster-tilting, that is,

HomCH
(T ,T [1]) = 0;

number of non-iso indec summands of T equals number
of non-iso simple H-modules.

C = EndCH
(T ) is called cluster-tilted.
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New proof of a result of Assem, Brüstle, Schiffler

Theorem (Assem, Brüstle,Schiffler)

If C is cluster tilted, then C/I is tilted for some ideal I in C .

Proof. ∃ Galois covering π : ΓDb(H) → ΓCH
.

Since modC ≈ CH/add(τT ) by Buan-Marsh-Reiten,

ΓC is obtained from ΓCH
by deleting summands of τT .

Let Σ section of ΓDb(modH) of the injective H-modules.

Since HomDb(H)(I ,F
i (τJ)) = 0, for I , J ∈ Σ , i ∈ Z.

∆ = π(Σ ) is a τ -rigid cut in ΓC .

Thus, B = C/ann(∆) is tilted with ∆ being slice of ΓB .
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Proof. ∃ Galois covering π : ΓDb(H) → ΓCH
.

Since modC ≈ CH/add(τT ) by Buan-Marsh-Reiten,

ΓC is obtained from ΓCH
by deleting summands of τT .

Let Σ section of ΓDb(modH) of the injective H-modules.

Since HomDb(H)(I ,F
i (τJ)) = 0, for I , J ∈ Σ , i ∈ Z.

∆ = π(Σ ) is a τ -rigid cut in ΓC .

Thus, B = C/ann(∆) is tilted with ∆ being slice of ΓB .
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