The bounded derived category of an algebra with radical squared zero

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Université de Sherbrooke)

Advances in Representation Theory of Algebras

Montreal June 16 - 20, 2014

Let k algebraically closed field.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

Objective

Let k algebraically closed field. Let A fin. dim. k-algebra with $rad^2(A) = 0$.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

Objective

Let k algebraically closed field. Let A fin. dim. k-algebra with $rad^2(A) = 0$.

Objective

To study $D^b(\text{mod}A)$, that is, to describe

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

Objective

Let k algebraically closed field. Let A fin. dim. k-algebra with $rad^2(A) = 0$.

Objective

- To study $D^b(\text{mod}A)$, that is, to describe
 - the indecomposable complexes;

Objective

Let k algebraically closed field. Let A fin. dim. k-algebra with $rad^2(A) = 0$.

Objective

To study $D^b(\text{mod}A)$, that is, to describe

- the indecomposable complexes;
- the AR-components with arbitray gdim(A).

イロン イ部ン イヨン イヨン 三日

We are going to make use of

• Galois covering for linear categories;

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

We are going to make use of

- Galois covering for linear categories;
- Koszul duality;

We are going to make use of

- Galois covering for linear categories;
- Koszul duality;
- Representation theory of infinite quivers.

Stabilizer

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor of linear categories.

Stabilizer

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor of linear categories. Let G be group acting on \mathcal{A} .

Stabilizer

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor of linear categories. Let G be group acting on \mathcal{A} . A G-stabilizer δ for F consists of functorial isomorphisms $\delta_g : F \circ g \to F, g \in G$, such that

Stabilizer

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be a functor of linear categories. Let G be group acting on \mathcal{A} . A G-stabilizer δ for F consists of functorial isomorphisms $\delta_g : F \circ g \to F$, $g \in G$, such that

commutes, for $g, h \in G$ and $X \in A$.

Precovering

Definition (Asashiba)

A functor $F : \mathcal{A} \to \mathcal{B}$ is called *G*-precovering if \exists *G*-stabilizer δ such that

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

・ロン ・回と ・ヨン・

ъ

Precovering

Definition (Asashiba)

A functor $F : \mathcal{A} \to \mathcal{B}$ is called *G*-precovering if \exists *G*-stabilizer δ such that

$$\begin{array}{rcl} \oplus_{g \in G} \mathcal{A}(X, g \cdot Y) & \stackrel{\sim}{\to} & \mathcal{B}(F(X), F(Y)) \\ & (u_g)_{g \in G} & \mapsto & \sum_{g \in G} \delta_{g, Y} \circ F(u_g) \end{array}$$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

・ロン ・回と ・ヨン・

Э

Precovering

Definition (Asashiba)

A functor $F : \mathcal{A} \to \mathcal{B}$ is called *G*-precovering if \exists *G*-stabilizer δ such that

$$\bigoplus_{g \in G} \mathcal{A}(X, g \cdot Y) \xrightarrow{\sim} \mathcal{B}(F(X), F(Y))$$
$$(u_g)_{g \in G} \mapsto \sum_{g \in G} \delta_{g,Y} \circ F(u_g)$$

$$\bigoplus_{g \in G} \mathcal{A}(g \cdot X, Y) \xrightarrow{\sim} \mathcal{B}(F(X), F(Y))$$
$$(v_g)_{g \in G} \mapsto \sum_{g \in G} F(v_g) \circ \delta_{g, X}^{-1}$$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

・ロン ・回と ・ヨン・

ъ

Galois Covering

Suppose G-action on \mathcal{A} is

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

イロト イヨト イヨト イヨト

æ

Galois Covering

Suppose G-action on \mathcal{A} is

• free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X)$;

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

(ロ) (同) (E) (E) (E)

Galois Covering

Suppose G-action on \mathcal{A} is

- free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X);$
- locally bounded $(X, Y \in ind \mathcal{A} \Rightarrow \mathcal{A}(X, g \cdot Y) = 0$, for almost all $g \in G$).

Galois Covering

Suppose G-action on \mathcal{A} is

- free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X);$
- locally bounded $(X, Y \in ind A \Rightarrow A(X, g \cdot Y) = 0$, for almost all $g \in G$).

Definition

A G-precovering $F : \mathcal{A} \to \mathcal{B}$ is Galois G-covering if

イロト イポト イヨト イヨト

Galois Covering

Suppose G-action on \mathcal{A} is

- free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X);$
- locally bounded $(X, Y \in ind A \Rightarrow A(X, g \cdot Y) = 0$, for almost all $g \in G$).

Definition

- A *G*-precovering $F : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* if
- $X \in \operatorname{ind} \mathcal{A} \Rightarrow F(X) \in \operatorname{ind} \mathcal{B};$

イロト イポト イヨト イヨト

Galois Covering

Suppose G-action on \mathcal{A} is

- free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X);$
- locally bounded $(X, Y \in ind A \Rightarrow A(X, g \cdot Y) = 0$, for almost all $g \in G$).

Definition

- A G-precovering $F : \mathcal{A} \to \mathcal{B}$ is Galois G-covering if
- $X \in \operatorname{ind} A \Rightarrow F(X) \in \operatorname{ind} B$;
- $M \in \operatorname{ind} \mathcal{B} \Rightarrow M \cong F(X), X \in \operatorname{ind} \mathcal{A};$

イロト イポト イヨト イヨト

Galois Covering

Suppose G-action on \mathcal{A} is

- free $(X \in \operatorname{ind} \mathcal{A}, e \neq g \in G \Rightarrow g \cdot X \not\cong X);$
- locally bounded $(X, Y \in ind A \Rightarrow A(X, g \cdot Y) = 0$, for almost all $g \in G$).

Definition

- A G-precovering $F : \mathcal{A} \to \mathcal{B}$ is Galois G-covering if
- $X \in \operatorname{ind} \mathcal{A} \Rightarrow F(X) \in \operatorname{ind} \mathcal{B};$
- $M \in \operatorname{ind} \mathcal{B} \Rightarrow M \cong F(X), X \in \operatorname{ind} \mathcal{A};$
- $X, Y \in \operatorname{ind} \mathcal{A}$ with $F(X) \cong F(Y) \Rightarrow Y = g \cdot X, g \in G$.

イロト イポト イヨト イヨト

AR-quiver under Galois covering

• Let \mathcal{A}, \mathcal{B} be Hom-finite, Krull-Schmidt, additive.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

(4 同) (4 回) (4 回)

AR-quiver under Galois covering

- Let \mathcal{A}, \mathcal{B} be Hom-finite, Krull-Schmidt, additive.
- The G-action on \mathcal{A} induces G-action on $\Gamma_{\mathcal{A}}$.

(1) マン・ション・

AR-quiver under Galois covering

Let A, B be Hom-finite, Krull-Schmidt, additive.
The G-action on A induces G-action on Γ_A.

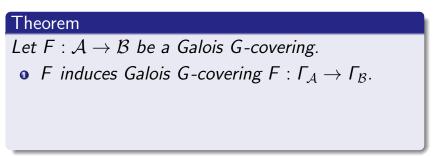
Theorem

Let $F : A \to B$ be a Galois G-covering.

マロト イヨト イヨト

AR-quiver under Galois covering

- Let \mathcal{A}, \mathcal{B} be Hom-finite, Krull-Schmidt, additive.
- The G-action on \mathcal{A} induces G-action on $\Gamma_{\mathcal{A}}$.



(4月) (4日) (4日)

AR-quiver under Galois covering

- Let \mathcal{A}, \mathcal{B} be Hom-finite, Krull-Schmidt, additive.
- The G-action on \mathcal{A} induces G-action on $\Gamma_{\mathcal{A}}$.

Theorem

- Let $F : A \to B$ be a Galois G-covering.
 - F induces Galois G-covering $F : \Gamma_{\mathcal{A}} \to \Gamma_{\mathcal{B}}$.
 - The cpts of $\Gamma_{\mathcal{B}}$ are the $F(\Gamma)$, with Γ cpts of $\Gamma_{\mathcal{A}}$.

AR-quiver under Galois covering

- Let \mathcal{A}, \mathcal{B} be Hom-finite, Krull-Schmidt, additive.
- The G-action on \mathcal{A} induces G-action on $\Gamma_{\mathcal{A}}$.

TheoremLet $F : \mathcal{A} \to \mathcal{B}$ be a Galois G-covering.• F induces Galois G-covering $F : \Gamma_{\mathcal{A}} \to \Gamma_{\mathcal{B}}$.• T he cpts of $\Gamma_{\mathcal{B}}$ are the $F(\Gamma)$, with Γ cpts of $\Gamma_{\mathcal{A}}$.• $\Gamma \cong F(\Gamma)$ if $G_{\Gamma} = \{g \in G \mid g(\Gamma) = \Gamma\}$ trivial.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Gradable quivers

Let $\Gamma = (\Gamma_0, \Gamma_1)$ be quiver.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

・ロト ・回ト ・ヨト ・ヨト

Gradable quivers

Let $\Gamma = (\Gamma_0, \Gamma_1)$ be quiver. Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$,

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Gradable quivers

Let $\Gamma = (\Gamma_0, \Gamma_1)$ be quiver. Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$, the *degree* of w is $\partial(w) = e_1 + \cdots + e_r$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Gradable quivers

Let
$$\Gamma = (\Gamma_0, \Gamma_1)$$
 be quiver.
Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$,
the *degree* of w is $\partial(w) = e_1 + \cdots + \cdots + e_r$.

Definition

• Γ is *gradable* if all closed walks are of degree 0.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

イロト イポト イヨト イヨト

æ

Gradable quivers

Let
$$\Gamma = (\Gamma_0, \Gamma_1)$$
 be quiver.
Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$,
the *degree* of w is $\partial(w) = e_1 + \cdots + \cdots + e_r$.

Definition

- Γ is *gradable* if all closed walks are of degree 0.
- Define grading period $r(\Gamma)$ of Γ by

イロト イポト イヨト イヨト

æ

Gradable quivers

Let
$$\Gamma = (\Gamma_0, \Gamma_1)$$
 be quiver.
Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$,
the *degree* of w is $\partial(w) = e_1 + \cdots + \cdots + e_r$.

Definition

- Γ is *gradable* if all closed walks are of degree 0.
- Define grading period $r(\Gamma)$ of Γ by
 - $r(\Gamma) = 0$ if Γ is gradable; otherwise,

イロト イポト イヨト イヨト

Gradable quivers

Let
$$\Gamma = (\Gamma_0, \Gamma_1)$$
 be quiver.
Given a walk $w = \alpha_1^{e_1} \cdots \alpha_r^{e_r}$, $\alpha_i \in \Gamma_1$, $e_1 = \pm 1$,
the *degree* of w is $\partial(w) = e_1 + \cdots + \cdots + e_r$.

Definition

- Γ is *gradable* if all closed walks are of degree 0.
- Define grading period $r(\Gamma)$ of Γ by
 - $r(\Gamma) = 0$ if Γ is gradable; otherwise,
 - $r(\Gamma) = \min\{\partial(w) > 0 \mid w \text{ closed walks}\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

Setting

• Let Q be connected finite quiver.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

イロト イヨト イヨト イヨト

æ

Setting

- Let Q be connected finite quiver.
- Define $Q^{\mathbb{Z}}$ as follows:

Setting

- Let Q be connected finite quiver.
- **2** Define $Q^{\mathbb{Z}}$ as follows:
 - $(a, i); a \in Q_0, i \in \mathbb{Z}.$

▲祠 ▶ ★ 注 ▶ ★ 注 ▶

Setting

- Let Q be connected finite quiver.
- **2** Define $Q^{\mathbb{Z}}$ as follows:
 - (a, i); $a \in Q_0, i \in \mathbb{Z}$.
 - (α,i) : $(a,i) \rightarrow (b,i+1)$; $i \in \mathbb{Z}, \alpha : a \rightarrow b \in Q_1$.

Setting

• Let Q be connected finite quiver.

- Define $Q^{\mathbb{Z}}$ as follows:
 - $(a, i); a \in Q_0, i \in \mathbb{Z}.$
 - (α,i) : $(a,i) \rightarrow (b,i+1)$; $i \in \mathbb{Z}, \alpha : a \rightarrow b \in Q_1$.

Proposition

•
$$Q^{\mathbb{Z}}$$
 is gradable with automorphism
 $\rho: Q^{\mathbb{Z}} \to Q^{\mathbb{Z}}: (x, i) \mapsto (x, i+1).$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

Setting

• Let Q be connected finite quiver.

- Define $Q^{\mathbb{Z}}$ as follows:
 - $(a, i); a \in Q_0, i \in \mathbb{Z}.$
 - (α,i) : $(a,i) \rightarrow (b,i+1)$; $i \in \mathbb{Z}, \alpha : a \rightarrow b \in Q_1$.

Proposition

• $Q^{\mathbb{Z}}$ is gradable with automorphism

$$ho: \mathcal{Q}^{\mathbb{Z}}
ightarrow \mathcal{Q}^{\mathbb{Z}}: (x,i) \mapsto (x,i+1).$$

The components of Q^ℤ are pairwise isomorphic, indexed by elements of Z_{r(Q)}.

Gradable Galois covering of quivers

• $ilde{Q}$: cpt of $Q^{\mathbb{Z}}$ having some (v, 0), $v \in Q_0$.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

Gradable Galois covering of quivers

- 4 回 2 - 4 回 2 - 4 回 2

Gradable Galois covering of quivers

Theorem

There is G-Galois covering of quivers:

$$\pi: \tilde{Q} \rightarrow Q: (a, i) \mapsto a; (\alpha, i) \mapsto \alpha,$$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

æ

Gradable Galois covering of quivers

Theorem

There is G-Galois covering of quivers: $\pi: \tilde{Q} \to Q: (a, i) \mapsto a; (\alpha, i) \mapsto \alpha,$ which is an isomorphism $\Leftrightarrow r(Q) = 0.$

(ロ) (同) (E) (E) (E)

Galois coverings of linear categories

• Let
$$A = kQ/(kQ^+)^2$$
, $kQ^+ = \langle Q_1 \rangle$.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Galois coverings of linear categories

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

イロト イヨト イヨト イヨト

Galois coverings of linear categories

- Let $A = kQ/(kQ^+)^2$, $kQ^+ = < Q_1 >$.
- Put $\tilde{A} = k \tilde{Q} / (k \tilde{Q}^+)^2$, with induced G-action.
- $\tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{A} \to A$.

(本間) (本語) (本語) (語)

Galois coverings of linear categories

- Let $A = kQ/(kQ^+)^2$, $kQ^+ = < Q_1 >$.
- Put $\tilde{A} = k\tilde{Q}/(k\tilde{Q}^+)^2$, with induced G-action.
- $\tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{A} \to A$.
- π induces *G*-precovering $\pi_{\lambda} : \operatorname{mod} \tilde{A} \to \operatorname{mod} A$.

マボン イラン イラン・ラ

Galois coverings of linear categories

• Let
$$A = kQ/(kQ^+)^2$$
, $kQ^+ = < Q_1 >$.

• Put
$$\tilde{A} = k\tilde{Q}/(k\tilde{Q}^+)^2$$
, with induced *G*-action.

- $\tilde{Q} \to Q$ induces Galois *G*-covering $\pi : \tilde{A} \to A$.
- π induces *G*-precovering $\pi_{\lambda} : \operatorname{mod} \tilde{A} \to \operatorname{mod} A$.

Theorem

wł

 π_{λ} induces commutative diagram

$$egin{aligned} &\mathcal{K}^{-,b}(\mathrm{proj} \widetilde{A}) \stackrel{\sim}{\longrightarrow} D^b(\mathrm{mod} \widetilde{A}) \ &\pi^K_\lambda & & & & & & \\ &\pi^K_\lambda & & & & & & & \\ &\mathcal{K}^{-,b}(\mathrm{proj} A) \stackrel{\sim}{\longrightarrow} D^b(\mathrm{mod} A), \end{aligned}$$

where $\pi^K_\lambda, \pi^D_\lambda$ are Galois G-covering.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

Koszul dual

• $k\tilde{Q}^{\rm op}$ is Koszul with Koszul dual \tilde{A} .

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

・ロン ・四マ ・ヨマ ・ヨマ

Koszul dual

• $k\tilde{Q}^{\mathrm{op}}$ is Koszul with Koszul dual \tilde{A} .

• $\tilde{Q}^n = \{(a, n) \in \tilde{Q} \mid a \in Q_0\}$ is finite, $\forall n \in \mathbb{Z}$.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Koszul dual

- $k\tilde{Q}^{\rm op}$ is Koszul with Koszul dual \tilde{A} .
- $\tilde{Q}^n = \{(a, n) \in \tilde{Q} \mid a \in Q_0\}$ is finite, $\forall n \in \mathbb{Z}$.
- Let $P_{(a,n)} \in \operatorname{ind}(\operatorname{proj} \tilde{A})$, at $(a, n) \in \tilde{Q}^n$.

Koszul dual

• $k\tilde{Q}^{\rm op}$ is Koszul with Koszul dual \tilde{A} .

$$\mathfrak{\tilde{Q}}^n = \{(a,n) \in \tilde{Q} \mid a \in Q_0\} \text{ is finite, } \forall n \in \mathbb{Z}.$$

- Let $P_{(a,n)} \in \operatorname{ind}(\operatorname{proj} \tilde{A})$, at $(a, n) \in \tilde{Q}^n$.
- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.

Koszul dual

• $k\tilde{Q}^{\rm op}$ is Koszul with Koszul dual \tilde{A} .

$$\mathbf{\tilde{Q}}^n = \{(a,n) \in \tilde{Q} \mid a \in Q_0\} \text{ is finite, } \forall n \in \mathbb{Z}.$$

- Let $P_{(a,n)} \in \operatorname{ind}(\operatorname{proj} \tilde{A})$, at $(a, n) \in \tilde{Q}^n$.
- $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$: finitely co-presented representations.
- $G = <\sigma>$ acts on $\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}).$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

Koszul functor

$M\in \operatorname{rep}^-(ilde Q^{\operatorname{op}})$, define $\mathcal K(M)\in \operatorname{RC}^{-,b}(\operatorname{proj} ilde A)$:

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Koszul functor

$M \in \operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})$, define $\mathcal{K}(M) \in \operatorname{RC}^{-,b}(\operatorname{proj} \tilde{A})$: • $\mathcal{K}(M)^{n} = \bigoplus_{x \in \tilde{Q}^{-n}} P_{x} \otimes M(x)$;

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Koszul functor

$$M\in \mathrm{rep}^-(ilde Q^{\mathrm{op}})$$
, define $\mathcal K(M)\in \mathrm{RC}^{-,b}(\mathrm{proj} ilde A)$:

•
$$\mathcal{K}(M)^n = \bigoplus_{x \in \tilde{Q}^{-n}} P_x \otimes M(x);$$

•
$$d^n_{\mathcal{K}(M)} = (d^n(x, y))_{(x, y) \in \tilde{Q}^{-n} \times \tilde{Q}^{-(n+1)}}$$
, where

$$d^n(x,y) = \sum_{\gamma: y \to x \in \tilde{Q}} P[\gamma] \otimes M(\gamma^{\circ}).$$

・ロト ・回ト ・ヨト ・ヨト

æ

Koszul functor

$$M\in \mathrm{rep}^-(ilde Q^{\mathrm{op}})$$
, define $\mathcal K(M)\in \mathrm{RC}^{-,b}(\mathrm{proj} ilde A)$:

•
$$\mathcal{K}(M)^n = \bigoplus_{x \in \tilde{Q}^{-n}} P_x \otimes M(x);$$

•
$$d^n_{\mathcal{K}(M)} = (d^n(x, y))_{(x, y) \in \tilde{Q}^{-n} \times \tilde{Q}^{-(n+1)}}$$
, where
 $d^n(x, y) = \sum_{\substack{P \in \mathcal{A} \\ P \in \mathcal{A}}} P(x) \otimes M(x^{Q})$

$$d^n(x,y) = \sum_{\gamma: y o x \in ilde{Q}} P[\gamma] \otimes M(\gamma^{\mathrm{o}})$$

Theorem

• This yields a fully faithful exact functor $\mathcal{K}: \operatorname{rep}^-(ilde Q^{\operatorname{op}}) o RC^{-,b}(\operatorname{proj} ilde A).$

Koszul functor

$$M\in \mathrm{rep}^-(ilde{Q}^\mathrm{op})$$
, define $\mathcal{K}(M)\in \mathrm{RC}^{-,b}(\mathrm{proj} ilde{A})$:

•
$$\mathcal{K}(M)^n = \bigoplus_{x \in \tilde{Q}^{-n}} P_x \otimes M(x);$$

•
$$d^n_{\mathcal{K}(M)} = (d^n(x, y))_{(x,y)\in \tilde{Q}^{-n}\times \tilde{Q}^{-(n+1)}}$$
, where
 $d^n(x, y) = \sum_{\gamma: y \to x \in \tilde{Q}} P[\gamma] \otimes M(\gamma^{\circ}).$

Theorem

This yields a fully faithful exact functor

K : rep⁻(Q̃^{op}) → RC^{-,b}(projÃ).

If X ∈ ind(RC^{-,b}(projÃ)), then X ≅ K(M)[i],
for some unique i ∈ Z, M ∈ rep⁻(Q̃^{op}).

Indecomposable complexes in $D^b(\text{mod}A)$

Let \mathcal{F} be the following composite:

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

・ 同 ト ・ ヨ ト ・ ヨ ト

Indecomposable complexes in $D^b(modA)$

Let \mathcal{F} be the following composite:

$$\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}) \xrightarrow{\mathcal{K}} \mathcal{K}^{-,b}(\operatorname{proj}\tilde{A})$$

 $\downarrow_{\pi_{\lambda}^{K}}$
 $\mathcal{K}^{-,b}(\operatorname{proj} A) \xrightarrow{\sim} D^{b}(\operatorname{mod} A).$

Theorem

• The non-iso indecomposables in $D^b(\text{mod}A)$ are $\{\mathcal{F}(M)[i] \mid M \in \text{ind}(\text{rep}^-(\tilde{Q}^{\text{op}})), i \in \mathbb{Z}_{r(Q)}\}.$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

イロト イヨト イヨト イヨト

э

Indecomposable complexes in $D^b(modA)$

Let ${\mathcal F}$ be the following composite:

$$\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}) \xrightarrow{\mathcal{K}} \mathcal{K}^{-,b}(\operatorname{proj}\tilde{A})$$

 $\downarrow_{\pi_{\lambda}^{K}}$
 $\mathcal{K}^{-,b}(\operatorname{proj} A) \xrightarrow{\sim} D^{b}(\operatorname{mod} A).$

Theorem

• The non-iso indecomposables in $D^b(\text{mod}A)$ are $\{\mathcal{F}(M)[i] \mid M \in \text{ind}(\text{rep}^-(\tilde{Q}^{\text{op}})), i \in \mathbb{Z}_{r(Q)}\}.$

• Hom $(\mathcal{F}(M)[i], \mathcal{F}(N)[j]) \neq 0 \Rightarrow j = i, i + 1.$

イロト イポト イヨト イヨト

э

Koszul Equivalence

Theorem

The exact functor $\mathcal{K} : \operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}}) \to RC^{-,b}(\operatorname{proj} \tilde{A})$ induces a triangle equivalence

$$\mathscr{K}: D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})) \to D^b(\operatorname{mod} \tilde{A}).$$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

・ロン ・回 と ・ ヨ と ・ ヨ と

Last functor

Let \mathscr{F} be the following composite: $D^{b}(\operatorname{rep}^{-}(\tilde{Q}^{\operatorname{op}})) \xrightarrow{\mathscr{K}} D^{b}(\operatorname{mod} \tilde{A}) \xrightarrow{\pi_{\lambda}^{D}} D^{b}(\operatorname{mod} A).$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Last functor

Let ${\mathscr F}$ be the following composite:

$$D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})) \xrightarrow{\mathscr{K}} D^b(\operatorname{mod} \tilde{A}) \xrightarrow{\pi_{\lambda}^D} D^b(\operatorname{mod} A).$$

Proposition

The functor \mathcal{F} is exact, faithful, and dense.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

(4月) イヨト イヨト

Last functor

Let ${\mathscr F}$ be the following composite:

$$D^b(\operatorname{rep}^-(\tilde{Q}^{\operatorname{op}})) \xrightarrow{\mathscr{K}} D^b(\operatorname{mod} \tilde{A}) \xrightarrow{\pi_{\lambda}^D} D^b(\operatorname{mod} A).$$

Proposition

The functor \mathscr{F} is exact, faithful, and dense.

• If r(Q) > 0, then \mathscr{F} is not a Galois G-covering.

(ロ) (同) (E) (E) (E)

Last functor

Let ${\mathscr F}$ be the following composite:

$$D^b(\operatorname{rep}^-(ilde Q^{\operatorname{op}})) \xrightarrow{\mathscr{K}} D^b(\operatorname{mod} ilde A) \xrightarrow{\pi_\lambda^D} D^b(\operatorname{mod} A).$$

Proposition

The functor \mathscr{F} is exact, faithful, and dense.

If r(Q) > 0, then F is not a Galois G-covering.
If r(Q) = 0, then F is a triangle-equivalence.

(ロ) (同) (E) (E) (E)

AR-components of $D^b(\text{mod}A)$

Ω : the regular AR-cpts of $\operatorname{rep}^-(ilde Q^{\operatorname{op}})$ and the connecting AR-cpt of $D^b(\operatorname{rep}^-(ilde Q^{\operatorname{op}})).$

・ 同 ト ・ ヨ ト ・ ヨ ト

AR-components of $D^b(\text{mod}A)$

 Ω : the regular AR-cpts of $\operatorname{rep}^-(ilde Q^{\operatorname{op}})$ and the connecting AR-cpt of $D^b(\operatorname{rep}^-(ilde Q^{\operatorname{op}})).$

Theorem

The AR-components of $D^b(\text{mod}A)$ are $\{\mathscr{F}(\Gamma)[i] \mid \Gamma \in \Omega, i \in \mathbb{Z}_{r(Q)}\}.$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

イロト イポト イヨト イヨト

AR-components of $D^b(\text{mod}A)$

 Ω : the regular AR-cpts of $\operatorname{rep}^-(ilde Q^{\operatorname{op}})$ and the connecting AR-cpt of $D^b(\operatorname{rep}^-(ilde Q^{\operatorname{op}})).$

Theorem

The AR-components of $D^{b}(\text{mod}A)$ are $\{\mathscr{F}(\Gamma)[i] \mid \Gamma \in \Omega, i \in \mathbb{Z}_{r(Q)}\}.$ • $\mathscr{F}(\Gamma) \cong \Gamma;$

イロト イポト イラト イラト 一日

AR-components of $D^b(\text{mod}A)$

$$\Omega$$
 : the regular AR-cpts of $ext{rep}^-(ilde{Q}^{ ext{op}})$ and the connecting AR-cpt of $D^b(ext{rep}^-(ilde{Q}^{ ext{op}})).$

Theorem

The AR-components of $D^{b}(\text{mod}A)$ are $\{\mathscr{F}(\Gamma)[i] \mid \Gamma \in \Omega, i \in \mathbb{Z}_{r(Q)}\}.$ • $\mathscr{F}(\Gamma) \cong \Gamma;$ • $\mathscr{F}(\sigma \cdot \Gamma) \cong \mathscr{F}(\Gamma)[r(Q)].$

Shapes of AR-components of $D^b(\text{mod}A)$

Theorem

If C is AR-component of $D^b (mod A)$, then

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

(三)

Shapes of AR-components of $D^b(modA)$

Theorem

If C is AR-component of $D^b (mod A)$, then

• C embeds in $\mathbb{Z}\tilde{Q}^{\mathrm{op}}$ or $\mathcal{C}\cong\mathbb{Z}\mathbb{A}_{\infty}$;

1.2.1

< (m)P >

Shapes of AR-components of $D^b(\text{mod}A)$

Theorem

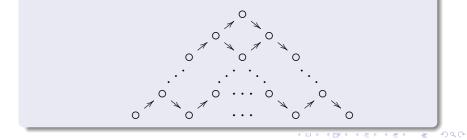
- If C is AR-component of $D^b (mod A)$, then
 - C embeds in $\mathbb{Z}\tilde{Q}^{\mathrm{op}}$ or $\mathcal{C}\cong\mathbb{Z}\mathbb{A}_{\infty}$;
 - C is stable tube (only if Q Euclidean tree);

-

Shapes of AR-components of $D^b(\text{mod}A)$

Theorem

- If C is AR-component of $D^b \pmod{A}$, then
 - C embeds in $\mathbb{Z}\tilde{Q}^{\mathrm{op}}$ or $\mathcal{C}\cong\mathbb{Z}\mathbb{A}_{\infty}$;
 - C is stable tube (only if Q Euclidean tree);
 - **o** (only if Q oriented cycle) $\mathcal{C} \cong \mathbb{NA}_{\infty}$ or a wing



Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical squar

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

ヘロン 人間と 人間と 人間と

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^{b}(\mathrm{mod}\,A)} \cong \mathbb{Z}\tilde{Q}^{\mathrm{op}}$$
.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

イロン 不同と 不同と 不同と

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

- Q Dynkin $\Rightarrow \Gamma_{D^{b}(\mathrm{mod}\,A)} \cong \mathbb{Z}\tilde{Q}^{\mathrm{op}}.$
- Q non-oriented cycle $\Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ has

イロン イヨン イヨン

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)} \cong \mathbb{Z}\tilde{Q}^{\mathrm{op}}.$$

• Q non-oriented cycle $\Rightarrow \Gamma_{D^b(\text{mod }A)}$ has

1) r(Q) components $\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$.

(日)

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)} \cong \mathbb{Z}\tilde{Q}^{\mathrm{op}}.$$

• Q non-oriented cycle
$$\Rightarrow$$
 $\Gamma_{D^b(\mathrm{mod}\, A)}$ has

1)
$$r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$.

2) 2
$$r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}$.

イロン 不同と 不同と 不同と

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^b(\mathrm{mod}\, A)} \cong \mathbb{Z} \tilde{Q}^{\mathrm{op}}.$$

• Q non-oriented cycle
$$\Rightarrow$$
 $\Gamma_{D^b(\mathrm{mod}\,A)}$ has

1)
$$r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$.

2) 2
$$r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}$.

•
$$Q$$
 oriented cycle of r arrows \Rightarrow $\Gamma_{D^b(\mathrm{mod}\,A)}$ has

イロン 不同と 不同と 不同と

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{A}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^b(\mathrm{mod}\, A)} \cong \mathbb{Z} \tilde{Q}^{\mathrm{op}}.$$

- Q non-oriented cycle $\Rightarrow \Gamma_{D^b(\mathrm{mod}\,A)}$ has
 - 1) r(Q) components $\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$.
 - 2) 2 r(Q) components $\cong \mathbb{Z}\mathbb{A}_{\infty}$.
- Q oriented cycle of r arrows $\Rightarrow \Gamma_{D^b(\text{mod}A)}$ has 1) r sectional double infinite path components;

(日)

Finite components case

Theorem

The number of AR-components of $D^b \pmod{A}$ is finite $\Leftrightarrow Q$ Dynkin or $\overline{Q} = \widetilde{\mathbb{A}}_n$ with r(Q) > 0.

• Q Dynkin
$$\Rightarrow \Gamma_{D^b(\mathrm{mod}\, A)} \cong \mathbb{Z} \tilde{Q}^{\mathrm{op}}.$$

• Q non-oriented cycle
$$\Rightarrow$$
 $\Gamma_{D^b(\mathrm{mod}\, A)}$ has

1)
$$r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}^{\infty}$.

2)
$$2 r(Q)$$
 components $\cong \mathbb{Z}\mathbb{A}_{\infty}$.

ヘロン 人間と 人間と 人間と

э

Example

Consider

 $Q: a \bigcirc b, r(Q) = 2.$

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Example

Consider

$$Q: a \bigcirc b, r(Q) = 2.$$

• Let $A = kQ/(kQ^+)^2$, with simples S, T.

Raymundo Bautista (UNAM in Morelia) Shiping Liu* (Universi The bounded derived category of an algebra with radical square

・ロン ・回と ・ヨン ・ヨン

3

Example

Consider

$$Q: a \bigcirc b, r(Q) = 2.$$

- Let $A = kQ/(kQ^+)^2$, with simples S, T.
- $ilde{Q}^{\mathrm{op}}$ is a double infinite path.

(ロ) (同) (E) (E) (E)

Example

Consider

$$Q: a \bigcirc b, r(Q) = 2.$$

- Let $A = kQ/(kQ^+)^2$, with simples S, T.
- $\tilde{Q}^{\rm op}$ is a double infinite path.
- $\Gamma_{D^b(\text{mod}\,A)}$ consists of $\mathcal{L}[i], \mathcal{R}[i], i = 0, 1$, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Example

Consider

$$Q: a \bigcirc b, r(Q) = 2.$$

- Let $A = kQ/(kQ^+)^2$, with simples S, T.
- $\tilde{Q}^{\rm op}$ is a double infinite path.
- $\Gamma_{D^b(\text{mod }A)}$ consists of $\mathcal{L}[i], \mathcal{R}[i], i = 0, 1$, where 1) $\mathcal{R} \cong \mathbb{Z}\mathbb{A}_{\infty}$, of perfect complexes;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Example

Consider

$$Q: a \bigcirc b, r(Q) = 2.$$

- Let $A = kQ/(kQ^+)^2$, with simples S, T.
- $\tilde{Q}^{\rm op}$ is a double infinite path.
- Γ_{D^b(mod A)} consists of L[i], R[i], i = 0, 1, where
 1) R ≅ ZA_∞, of perfect complexes;
 2) L is a sectional double infinite path
 ...→ s[-2] → τ[-1] → s[0] → τ[1] → s[2] → ...