Covering theory for linear categories with application to derived categories

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrooke)

Advances in Representation Theory of Algebras

Torún

September 9 - 13, 2013

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Motivation

• Covering theory for quivers and for translation quivers were introduced by Green and Riedtmann, resp.

イロン 不同と 不同と 不同と

Motivation

- Covering theory for quivers and for translation quivers were introduced by Green and Riedtmann, resp.
- Galois covering theory for locally bounded k-categories was introduced by Bongartz-Gabriel.

Motivation

- Covering theory for quivers and for translation quivers were introduced by Green and Riedtmann, resp.
- Galois covering theory for locally bounded k-categories was introduced by Bongartz-Gabriel.

Objective

• To extend Bongartz-Gabriel's Galois covering to general linear categories.

Motivation

- Covering theory for quivers and for translation quivers were introduced by Green and Riedtmann, resp.
- Galois covering theory for locally bounded k-categories was introduced by Bongartz-Gabriel.

Objective

- To extend Bongartz-Gabriel's Galois covering to general linear categories.
- To study when a Galois covering π : Λ → Λ between locally bounded categories induces Galois covering : π^D_λ : D^b(mod Λ) → D^b(mod Λ).

Motivation

- Covering theory for quivers and for translation quivers were introduced by Green and Riedtmann, resp.
- Galois covering theory for locally bounded k-categories was introduced by Bongartz-Gabriel.

Objective

- To extend Bongartz-Gabriel's Galois covering to general linear categories.
- To study when a Galois covering π : Λ̃ → Λ between locally bounded categories induces Galois covering : π^D_λ : D^b(mod Λ̃) → D^b(mod Λ).
- Sasshiba has worked along this direction to the level of categories of perfect complexes.

Covering by Bongartz-Gabriel

Definition (BoG)

A functor $F : A \to B$ between k-categories is called a *covering* provided, for any $M \in A$ and $N \in B$, that F induces two isomorphisms

Covering by Bongartz-Gabriel

Definition (BoG)

A functor $F : A \to B$ between k-categories is called a *covering* provided, for any $M \in A$ and $N \in B$, that F induces two isomorphisms

$$\bigoplus_{F(X)=N} \mathcal{A}(M,X) \longrightarrow \mathcal{B}(F(M),N)$$

Covering by Bongartz-Gabriel

Definition (BoG)

A functor $F : A \to B$ between k-categories is called a *covering* provided, for any $M \in A$ and $N \in B$, that F induces two isomorphisms

$$\bigoplus_{F(X)=N} \mathcal{A}(M,X) \longrightarrow \mathcal{B}(F(M),N)$$

and

$$\bigoplus_{F(X)=N} \mathcal{A}(X,M) \longrightarrow \mathcal{B}(N,F(M)).$$

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Covering by Bongartz-Gabriel

Definition (BoG)

A functor $F : A \to B$ between k-categories is called a *covering* provided, for any $M \in A$ and $N \in B$, that F induces two isomorphisms

$$\bigoplus_{F(X)=N} \mathcal{A}(M,X) \longrightarrow \mathcal{B}(F(M),N)$$

and

$$\bigoplus_{F(X)=N} \mathcal{A}(X,M) \longrightarrow \mathcal{B}(N,F(M)).$$

Remark

This notion works well only if \mathcal{A} is skeletal (that is, non-zero objects are indecomposable and distinct objects are not isomorphic).

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ヨン ・ヨン

э

Galois Covering by Gabriel

Let \mathcal{A}, \mathcal{B} be locally finite dimensional *k*-categories.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Galois Covering by Gabriel

Let \mathcal{A}, \mathcal{B} be locally finite dimensional *k*-categories. *G* group acting on \mathcal{A} with free and locally bounded action.

Galois Covering by Gabriel

Let \mathcal{A}, \mathcal{B} be locally finite dimensional *k*-categories. *G* group acting on \mathcal{A} with free and locally bounded action.

Definition (Gabriel)

A covering $F : A \rightarrow B$ is *Galois covering* provided

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回と ・ヨン・

Galois Covering by Gabriel

Let \mathcal{A}, \mathcal{B} be locally finite dimensional *k*-categories. *G* group acting on \mathcal{A} with free and locally bounded action.

Definition (Gabriel)

A covering $F : A \rightarrow B$ is *Galois covering* provided

• F is surjective on the objects;

・ロン ・回と ・ヨン ・ヨン

Galois Covering by Gabriel

Let \mathcal{A}, \mathcal{B} be locally finite dimensional *k*-categories.

 ${\it G}$ group acting on ${\it A}$ with free and locally bounded action.

Definition (Gabriel)

A covering $F : A \rightarrow B$ is *Galois covering* provided

- F is surjective on the objects;
- for any $X, Y \in \mathcal{A}_0$, $F(X) = F(X) \Leftrightarrow Y = g \cdot X$ for some $g \in G$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Group action on a category

Let \mathcal{A}, \mathcal{B} be \mathbb{Z} -linear categories, and G a group acting on \mathcal{A} .

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Group action on a category

Let \mathcal{A}, \mathcal{B} be \mathbb{Z} -linear categories, and G a group acting on \mathcal{A} .

Definition

- The G-action on \mathcal{A} is called
- *free* provided $g \cdot X \not\cong X$, for $X \in ind \mathcal{A}, e \neq g \in G$.

Group action on a category

Let \mathcal{A}, \mathcal{B} be \mathbb{Z} -linear categories, and G a group acting on \mathcal{A} .

Definition

The G-action on \mathcal{A} is called

- *free* provided $g \cdot X \ncong X$, for $X \in ind A$, $e \neq g \in G$.
- *locally bounded* provided, for any $X, Y \in \text{ind}\mathcal{A}$, that $\mathcal{A}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$.

イロト イポト イラト イラト 一日

Group action on a category

Let \mathcal{A}, \mathcal{B} be \mathbb{Z} -linear categories, and G a group acting on \mathcal{A} .

Definition

The G-action on \mathcal{A} is called

- *free* provided $g \cdot X \ncong X$, for $X \in ind A$, $e \neq g \in G$.
- *locally bounded* provided, for any $X, Y \in \text{ind}\mathcal{A}$, that $\mathcal{A}(X, g \cdot Y) = 0$, for all but finitely many $g \in G$.

Lemma

Let G be torsion-free. If the G-action on A is locally bounded, then it is free.

Precovering

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be \mathbb{Z} -linear functor.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Precovering

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be \mathbb{Z} -linear functor.

• A G-stabilizer for F consists of functorial isomorphisms $\delta_g: F \circ g \to F$, with $g \in G$, such that,

 $\delta_{h,X} \circ \delta_{g,h\cdot X} = \delta_{gh,X}, \text{ for } g,h \in G, X \in \mathcal{A}_0.$

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Precovering

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be \mathbb{Z} -linear functor.

• A *G*-stabilizer for *F* consists of functorial isomorphisms $\delta_g : F \circ g \to F$, with $g \in G$, such that, $\delta_g : \delta_g \to \delta_g \to F$, for $g \in G \to G$, $f \in G$

 $\delta_{h,X} \circ \delta_{g,h\cdot X} = \delta_{gh,X}, \ \ \text{for} \ g,h\in G,X\in \mathcal{A}_0.$

2 *F* is called *G*-*precovering* if it has *G*-stabilizer δ , and it induces, for $X, Y \in A$, two isomorphisms

Precovering

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be \mathbb{Z} -linear functor.

• A *G*-stabilizer for *F* consists of functorial isomorphisms $\delta_g : F \circ g \to F$, with $g \in G$, such that,

 $\delta_{h,X} \circ \delta_{g, h \cdot X} = \delta_{gh,X}, \text{ for } g, h \in G, X \in \mathcal{A}_0.$

2 *F* is called *G*-*precovering* if it has *G*-stabilizer δ , and it induces, for $X, Y \in A$, two isomorphisms

 $\begin{array}{rcl} \oplus_{g \in G} \mathcal{A}(X, g \cdot Y) & \to & \mathcal{B}(F(X), F(Y)) \\ & (u_g)_{g \in G} & \mapsto & \sum_{g \in G} \delta_{g,Y} \circ F(u_g) \end{array}$

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Precovering

Definition (Asashiba)

Let $F : \mathcal{A} \to \mathcal{B}$ be \mathbb{Z} -linear functor.

- A G-stabilizer for F consists of functorial isomorphisms $\delta_{g}: F \circ g \to F$, with $g \in G$, such that, $\delta_{h,X} \circ \delta_{g,h,X} = \delta_{gh,X}, \text{ for } g, h \in G, X \in \mathcal{A}_0.$
- **2** F is called G-precovering if it has G-stabilizer δ , and it induces, for $X, Y \in \mathcal{A}$, two isomorphisms

$$\begin{array}{rcl} \oplus_{g \in G} \mathcal{A}(X, g \cdot Y) & \to & \mathcal{B}(F(X), F(Y)) \\ & (u_g)_{g \in G} & \mapsto & \sum_{g \in G} \delta_{g,Y} \circ F(u_g) \\ \oplus_{g \in G} \mathcal{A}(g \cdot X, Y) & \to & \mathcal{B}(F(X), F(Y)) \\ & (v_g)_{g \in G} & \mapsto & \sum_{g \in G} F(v_g) \circ \delta_{g,X}^{-1}. \end{array}$$

and

$$\begin{array}{rcl} \oplus_{g \in G} \mathcal{A}(g \cdot X, Y) & \to & \mathcal{B}(F(X), F(Y)) \\ (v_g)_{g \in G} & \mapsto & \sum_{g \in G} F(v_g) \circ \delta_{g, X}^{-1} \end{array}$$

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Modified Galois Covering

Definition

Suppose G-action on A is free and locally bounded.

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Modified Galois Covering

Definition

Suppose *G*-action on \mathcal{A} is free and locally bounded. A *G*-precovering $F : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Modified Galois Covering

Definition

Suppose *G*-action on \mathcal{A} is free and locally bounded. A *G*-precovering $F : \mathcal{A} \to \mathcal{B}$ is *Galois G-covering* provided

• $M \in \operatorname{ind} \mathcal{B} \Leftrightarrow M \cong F(X)$ for some $X \in \operatorname{ind} \mathcal{A}$.

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Modified Galois Covering

Definition

Suppose G-action on \mathcal{A} is free and locally bounded.

A *G*-precovering $F : A \rightarrow B$ is *Galois G-covering* provided

- $M \in \operatorname{ind} \mathcal{B} \Leftrightarrow M \cong F(X)$ for some $X \in \operatorname{ind} \mathcal{A}$.
- for $X, Y \in \text{ind } \mathcal{A}$, $F(X) \cong F(Y) \Leftrightarrow Y = g \cdot X$ for some $g \in G$.

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Modified Galois Covering

Definition

Suppose G-action on \mathcal{A} is free and locally bounded.

A *G*-precovering $F : A \rightarrow B$ is *Galois G-covering* provided

- $M \in \operatorname{ind} \mathcal{B} \Leftrightarrow M \cong F(X)$ for some $X \in \operatorname{ind} \mathcal{A}$.
- for $X, Y \in \text{ind } \mathcal{A}$, $F(X) \cong F(Y) \Leftrightarrow Y = g \cdot X$ for some $g \in G$.

Remark

If \mathcal{A}, \mathcal{B} are skeletal, then Galois covering $F : \mathcal{A} \to \mathcal{B}$ in Gabriel's sense is Galois *G*-covering with trivial *G*-stabilizer.

イロン イ部ン イヨン イヨン 三日

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Hom-finite case

Theorem

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt k-categories.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

3

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Hom-finite case

Theorem

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt k-categories. If $F : \mathcal{A} \to \mathcal{B}$ is G-precovering then, for any $X, Y \in ind\mathcal{A}$,

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回と ・ヨン・

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Hom-finite case

Theorem

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt k-categories. If $F : \mathcal{A} \to \mathcal{B}$ is G-precovering then, for any $X, Y \in \operatorname{ind} \mathcal{A}$, • $F(X) \in \operatorname{ind} \mathcal{B}$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

3

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Hom-finite case

Theorem

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt k-categories.

If $F : \mathcal{A} \to \mathcal{B}$ is G-precovering then, for any $X, Y \in \operatorname{ind} \mathcal{A}$,

• $F(X) \in \operatorname{ind} \mathcal{B}$.

•
$$F(X) \cong F(Y) \Leftrightarrow X = g \cdot Y$$
 for some $g \in G$.

・ロン ・回 と ・ 回 と ・ 回 と

3

AR-theory under Galois covering Application to module categories and their derived categories Radical squared-zero case

Hom-finite case

Theorem

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt k-categories.

If $F : \mathcal{A} \to \mathcal{B}$ is G-precovering then, for any $X, Y \in \operatorname{ind} \mathcal{A}$,

• $F(X) \in \operatorname{ind} \mathcal{B}$.

•
$$F(X) \cong F(Y) \Leftrightarrow X = g \cdot Y$$
 for some $g \in G$.

That is, G-precovering is Galois G-covering \Leftrightarrow it is dense.

소리가 소문가 소문가 소문가

Irreducible morphisms under covering

Let $F : \mathcal{A} \to \mathcal{B}$ be a Galois covering between Krull-Schmidt categories.

Irreducible morphisms under covering

Let $F : \mathcal{A} \to \mathcal{B}$ be a Galois covering between Krull-Schmidt categories.

Proposition

If $u: X \to Y$ is morphism in \mathcal{A} with X or Y indec, then

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロン イヨン イヨン イヨン

Irreducible morphisms under covering

Let $F : \mathcal{A} \to \mathcal{B}$ be a Galois covering between Krull-Schmidt categories.

Proposition

If $u : X \to Y$ is morphism in \mathcal{A} with X or Y indec, then • u is irreducible $\Leftrightarrow F(u)$ is irreducible.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Irreducible morphisms under covering

Let $F : \mathcal{A} \to \mathcal{B}$ be a Galois covering between Krull-Schmidt categories.

Proposition

If $u: X \to Y$ is morphism in \mathcal{A} with X or Y indec, then

- *u* is irreducible \Leftrightarrow *F*(*u*) is irreducible.
- *u* is source morphism $\Leftrightarrow F(u)$ is source morphism.

Irreducible morphisms under covering

Let $F : \mathcal{A} \to \mathcal{B}$ be a Galois covering between Krull-Schmidt categories.

Proposition

If $u: X \to Y$ is morphism in \mathcal{A} with X or Y indec, then

- *u* is irreducible \Leftrightarrow *F*(*u*) is irreducible.
- u is source morphism $\Leftrightarrow F(u)$ is source morphism.
- u is sink morphism $\Leftrightarrow F(u)$ is sink morphism.

소리가 소문가 소문가 소문가

AR-sequences in additive category

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{A} is *AR-sequence* provided

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

AR-sequences in additive category

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{A} is *AR-sequence* provided $Y \neq 0$;

・ロト ・回ト ・ヨト ・ヨト

AR-sequences in additive category

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{A} is *AR-sequence* provided

230 $Y \neq 0;$

u is source morphism, and pseudo-kernel of v,

・ロト ・回ト ・ヨト ・ヨト

AR-sequences in additive category

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{A} is *AR-sequence* provided

230 $Y \neq 0;$

u is source morphism, and pseudo-kernel of v,

v is sink morphism, and pseudo-cokernel of u.

AR-sequences in additive category

Definition

A sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ in \mathcal{A} is *AR-sequence* provided

230 $Y \neq 0;$

u is source morphism, and pseudo-kernel of v,

v is sink morphism, and pseudo-cokernel of u.

Proposition

If \mathcal{A} is triangulated, then a sequence $X \xrightarrow{u} Y \xrightarrow{v} Z$ with $Y \neq 0$ is AR-sequence \Leftrightarrow it embeds in AR-triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

AR-sequences under covering

Theorem

29 1) $X \xrightarrow{u} Y \xrightarrow{v} Z$ is an AR-sequence in $\mathcal{A} \iff$ $F(X) \xrightarrow{F_u} F(Y) \xrightarrow{F_v} F(Z)$ is an AR-sequence in \mathcal{B} .

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

AR-sequences under covering

Theorem

- 1) $X \xrightarrow{u} Y \xrightarrow{v} Z$ is an AR-sequence in $\mathcal{A} \iff$
 - $F(X) \xrightarrow{F_{u}} F(Y) \xrightarrow{F_{v}} F(Z)$ is an AR-sequence in \mathcal{B} .
- 2) X is starting (or ending) term of AR-sequence in $\mathcal{A} \Leftrightarrow F(X)$ is starting (or ending) term of an AR-sequence in \mathcal{B} .

AR-sequences under covering

Theorem

- 1) $X \xrightarrow{u} Y \xrightarrow{v} Z$ is an AR-sequence in $\mathcal{A} \iff$
 - $F(X) \xrightarrow{F_{u}} F(Y) \xrightarrow{F_{v}} F(Z)$ is an AR-sequence in \mathcal{B} .
- 2) X is starting (or ending) term of AR-sequence in $\mathcal{A} \Leftrightarrow F(X)$ is starting (or ending) term of an AR-sequence in \mathcal{B} .

Corollary

 $\mathcal A$ has AR-sequences $\Leftrightarrow \mathcal B$ has AR-sequences.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

・ロト ・回ト ・ヨト ・ヨト

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

Let G be a group acting freely on Γ .

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

Let G be a group acting freely on Γ .

Definition (Bongartz, Gabriel, Green)

A morphism $\varphi: \Gamma \rightarrow Q$ is *Galois G-covering* provided

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

Let G be a group acting freely on Γ .

Definition (Bongartz, Gabriel, Green)

A morphism $\varphi: \Gamma \rightarrow Q$ is *Galois G-covering* provided

• $\varphi: \Gamma_0 \to Q_0$ is surjective;

・ロン ・回と ・ヨン・

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

Let G be a group acting freely on Γ .

Definition (Bongartz, Gabriel, Green)

A morphism $\varphi: \Gamma \rightarrow Q$ is *Galois G-covering* provided

- $\varphi: \Gamma_0 \to Q_0$ is surjective;
- if $x, y \in \Gamma_0$, then $\varphi(x) = \varphi(y) \Leftrightarrow y = g \cdot x$ for some $g \in G$;

イロト イポト イラト イラト 一日

Galois covering of (unvalued) quivers

Let Γ, Q be quivers.

Let G be a group acting freely on Γ .

Definition (Bongartz, Gabriel, Green)

A morphism $\varphi: \Gamma \rightarrow Q$ is *Galois G-covering* provided

- $\varphi: \Gamma_0 \rightarrow Q_0$ is surjective;
- if $x, y \in \Gamma_0$, then $\varphi(x) = \varphi(y) \Leftrightarrow y = g \cdot x$ for some $g \in G$;
- ϕ induces, for each $x \in \Gamma_0$, two bijections

$$x^+ o (\varphi(x))^+; \qquad x^- o (\varphi(x))^-.$$

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, \nu, \rho)$ be valued translation quivers.

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers. Let G be a group acting freely on (Δ, u, τ) .

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers.

Let G be a group acting freely on (Δ, u, τ) .

Definition

A morphism $\varphi: \Delta \rightarrow \Omega$ is *Galois G-covering* provided

• $\varphi_0: \varDelta_0 o \Omega_0$ is surjective.

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers.

Let G be a group acting freely on (Δ, u, τ) .

Definition

A morphism $\varphi: \Delta \rightarrow \Omega$ is *Galois G-covering* provided

- $\varphi_0: \varDelta_0 o \Omega_0$ is surjective.
- if $x \in \Delta_0$, then $\tau(x)$ is defined $\Leftrightarrow
 ho(arphi(x))$ is defined.

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers.

Let G be a group acting freely on (Δ, u, τ) .

Definition

A morphism $\varphi: \Delta \rightarrow \Omega$ is *Galois G-covering* provided

- $\varphi_0: {\it \Delta}_0
 ightarrow {\it \Omega}_0$ is surjective.
- if $x \in \Delta_0$, then $\tau(x)$ is defined $\Leftrightarrow \rho(\varphi(x))$ is defined.
- if $x, y \in \Delta_0$, then $\varphi(x) = \varphi(y) \Leftrightarrow y = g \cdot x$, for some $g \in G$.

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers.

Let G be a group acting freely on (Δ, u, τ) .

Definition

A morphism $\varphi: \Delta \rightarrow \Omega$ is *Galois G-covering* provided

- $\varphi_0: {\it \Delta}_0
 ightarrow {\it \Omega}_0$ is surjective.
- if $x \in \Delta_0$, then $\tau(x)$ is defined $\Leftrightarrow
 ho(arphi(x))$ is defined.
- if $x,y\in {\it \Delta}_0$, then $arphi(x)=arphi(y)\Leftrightarrow y=g\cdot x,$ for some $g\in {\it G}.$
- if $x \in \Delta_0$ and $a \in (\varphi(x))^+$, then $v_{\varphi(x),a} = \sum_{y \in x^+ \cap \varphi^-(a)} u_{x,y}$.

Galois covering of valued translation quivers

Let $(\Delta, u, \tau), (\Omega, v, \rho)$ be valued translation quivers.

Let G be a group acting freely on (Δ, u, τ) .

Definition

A morphism $\varphi: \Delta \rightarrow \Omega$ is *Galois G-covering* provided

- $arphi_0: arDelta_0 o arOmega_0$ is surjective.
- if $x \in \Delta_0$, then $\tau(x)$ is defined $\Leftrightarrow
 ho(arphi(x))$ is defined.
- if $x,y\in {\it \Delta}_0$, then $arphi(x)=arphi(y)\Leftrightarrow y=g\cdot x,$ for some $g\in {\it G}.$
- if $x \in \Delta_0$ and $a \in (\varphi(x))^+$, then $v_{\varphi(x),a} = \sum_{y \in x^+ \cap \varphi^-(a)} u_{x,y}$.

• if
$$x \in \Delta_0$$
 and $b \in (\varphi(x))^-$, then $v'_{b,\varphi(x)} = \sum_{z \in x^- \cap \varphi^-(b)} u'_{z,x}$.

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Theorem

A Galois G-covering $F : A \to B$ induces a Galois G-covering of valued translation quivers $F : \Gamma_A \to \Gamma_B$.

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Theorem

A Galois G-covering $F : A \to B$ induces a Galois G-covering of valued translation quivers $F : \Gamma_A \to \Gamma_B$. Moreover, if Γ is component of Γ_A , then

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Theorem

A Galois G-covering $F : A \to B$ induces a Galois G-covering of valued translation quivers $F : \Gamma_A \to \Gamma_B$. Moreover, if Γ is component of Γ_A , then • $F(\Gamma)$ is component of Γ_B ;

・ロン ・回と ・ヨン・

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Theorem

A Galois G-covering $F : A \to B$ induces a Galois G-covering of valued translation quivers $F : \Gamma_A \to \Gamma_B$. Moreover, if Γ is component of Γ_A , then

- $F(\Gamma)$ is component of $\Gamma_{\mathcal{B}}$;
- the restriction $F_{\Gamma} : \Gamma \to F(\Gamma)$ is Galois G_{Γ} -covering, where $G_{\Gamma} = \{g \in G \mid g(\Gamma) = \Gamma\};$

AR-quivers under covering

Let \mathcal{A}, \mathcal{B} be Hom-finite Krull-Schmidt *R*-categories, where *R* is commutative artinian.

Theorem

A Galois G-covering $F : A \to B$ induces a Galois G-covering of valued translation quivers $F : \Gamma_A \to \Gamma_B$. Moreover, if Γ is component of Γ_A , then

- $F(\Gamma)$ is component of $\Gamma_{\mathcal{B}}$;
- the restriction $F_{\Gamma} : \Gamma \to F(\Gamma)$ is Galois G_{Γ} -covering, where $G_{\Gamma} = \{g \in G \mid g(\Gamma) = \Gamma\};$
- $\Gamma \cong F(\Gamma)$ in case G_{Γ} is trivial.

イロン イ部ン イヨン イヨン 三日

Example

• Let \mathcal{H} be Hom-finite hereditary abelian k-category.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Example

- Let \mathcal{H} be Hom-finite hereditary abelian k-category.
- **2** Assume $D^{b}(\mathcal{H})$ has AR-triangles, set $G = \langle \tau^{-1}[1] \rangle$.

・ロン ・回と ・ヨン・

Example

- Let \mathcal{H} be Hom-finite hereditary abelian k-category.
- **2** Assume $D^b(\mathcal{H})$ has AR-triangles, set $G = \langle \tau^{-1}[1] \rangle$.
- Consider the orbit category $\mathscr{C}_{\mathcal{H}} = D^b(\mathcal{H})/F$, that is, the cluster category of \mathcal{H} .

Example

- Let \mathcal{H} be Hom-finite hereditary abelian k-category.
- **2** Assume $D^{b}(\mathcal{H})$ has AR-triangles, set $G = \langle \tau^{-1}[1] \rangle$.
- Consider the orbit category $\mathscr{C}_{\mathcal{H}} = D^b(\mathcal{H})/F$, that is, the cluster category of \mathcal{H} .
- The canonical projection π : D^b(H) → C_H is a Galois G-covering.

Example

- Let \mathcal{H} be Hom-finite hereditary abelian k-category.
- **2** Assume $D^{b}(\mathcal{H})$ has AR-triangles, set $G = \langle \tau^{-1}[1] \rangle$.
- Consider the orbit category $\mathscr{C}_{\mathcal{H}} = D^b(\mathcal{H})/F$, that is, the cluster category of \mathcal{H} .
- The canonical projection π : D^b(H) → C_H is a Galois G-covering.
- The components of Γ_{𝔅_H} are π(Γ), where Γ components of Γ_{D^b(H)} containing objects in H.

Example

- Let \mathcal{H} be Hom-finite hereditary abelian k-category.
- **2** Assume $D^{b}(\mathcal{H})$ has AR-triangles, set $G = \langle \tau^{-1}[1] \rangle$.
- Consider the orbit category $\mathscr{C}_{\mathcal{H}} = D^b(\mathcal{H})/F$, that is, the cluster category of \mathcal{H} .
- The canonical projection π : D^b(H) → C_H is a Galois G-covering.
- The components of Γ_{𝔅_H} are π(Γ), where Γ components of Γ_{D^b(H)} containing objects in H.
- If Γ is such a component of Γ_{D^b(H)}, then π(Γ) ≅ Γ ⇔ Γ contains no projective object or no injective object of H.

Setting

Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロト ・回ト ・ヨト ・ヨト

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$

・ロン ・回と ・ヨン ・ヨン

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- ${\rm ③ \ The \ } G\text{-action \ on \ } \widetilde{\Lambda} \text{ induces a \ } G\text{-action \ on \ } \mathrm{Mod}\,\widetilde{\Lambda}:$

イロト イポト イヨト イヨト

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- ${\rm ③ \ The \ } G\text{-action \ on \ } \widetilde{\Lambda} \text{ induces a \ } G\text{-action \ on \ } \mathrm{Mod}\,\widetilde{\Lambda}:$
 - $(g \cdot M) = M \circ g^{-1}$, for any module M.

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- - $(g \cdot M) = M \circ g^{-1}$, for any module M.
 - $(g \cdot u) = u \circ g^{-1}$, for any morphism u.

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- - $(g \cdot M) = M \circ g^{-1}$, for any module M.
 - $(g \cdot u) = u \circ g^{-1}$, for any morphism u.

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- ${\rm ③ \ The \ } G\text{-action \ on \ } \widetilde{\Lambda} \text{ induces a \ } G\text{-action \ on \ } \mathrm{Mod}\, \widetilde{\Lambda}:$
 - $(g \cdot M) = M \circ g^{-1}$, for any module M.
 - $(g \cdot u) = u \circ g^{-1}$, for any morphism u.

• $\operatorname{mod} \widetilde{\Lambda}$: finite dimensional left $\widetilde{\Lambda}$ -modules.

Lemma

• The G-action on $\operatorname{mod}\widetilde{\Lambda}$ is locally bounded.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Setting

- Let π : Λ → Λ be a Galois G-covering of locally bounded k-categories with a trivial G-stabilizer.
- $one Mod \widetilde{\Lambda} : all right \widetilde{\Lambda} modules M : \widetilde{\Lambda} \to Modk.$
- - $(g \cdot M) = M \circ g^{-1}$, for any module M.
 - $(g \cdot u) = u \circ g^{-1}$, for any morphism u.

Lemma

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Results on module categories by Bongartz-Gabriel

 $\pi : \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda} : \operatorname{Mod}\widetilde{\Lambda} \to \operatorname{Mod}\Lambda; \ \pi_{\mu} : \operatorname{Mod}\Lambda \to \operatorname{Mod}\widetilde{\Lambda}.$

소리가 소문가 소문가 소문가

Results on module categories by Bongartz-Gabriel

 $\pi : \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda} : \operatorname{Mod}\widetilde{\Lambda} \to \operatorname{Mod}\Lambda; \ \pi_{\mu} : \operatorname{Mod}\Lambda \to \operatorname{Mod}\widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

• $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Results on module categories by Bongartz-Gabriel

 $\pi: \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda}: \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda; \ \pi_{\mu}: \operatorname{Mod} \Lambda \to \operatorname{Mod} \widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

- $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.
- The restriction $\pi_{\lambda} : \operatorname{mod} \widetilde{\Lambda} \to \operatorname{mod} \Lambda$ is *G*-precovering.

< ロ > < 同 > < 三 > < 三 >

Results on module categories by Bongartz-Gabriel

 $\pi: \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda}: \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda; \ \pi_{\mu}: \operatorname{Mod} \Lambda \to \operatorname{Mod} \widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

- $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.
- The restriction $\pi_{\lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ is *G*-precovering.
- If G is torsion-free, then

< ロ > < 同 > < 三 > < 三 >

Results on module categories by Bongartz-Gabriel

 $\pi: \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda}: \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda; \ \pi_{\mu}: \operatorname{Mod} \Lambda \to \operatorname{Mod} \widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

- $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.
- The restriction $\pi_{\lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ is *G*-precovering.
- If G is torsion-free, then
 - \bullet the G-action on ${\rm mod}\widetilde{\Lambda}$ is free and locally bounded.

< ロ > < 同 > < 三 > < 三 >

Results on module categories by Bongartz-Gabriel

 $\pi: \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda}: \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda; \ \pi_{\mu}: \operatorname{Mod} \Lambda \to \operatorname{Mod} \widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

- $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.
- The restriction $\pi_{\lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ is *G*-precovering.
- If G is torsion-free, then
 - \bullet the G-action on ${\rm mod}\widetilde{\Lambda}$ is free and locally bounded.
 - $\pi_{\lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ is Galois *G*-covering \Leftrightarrow it is dense.

Results on module categories by Bongartz-Gabriel

 $\pi: \widetilde{\Lambda} \to \Lambda$ induces push-down functor and pull-up functor: $\pi_{\lambda}: \operatorname{Mod}\widetilde{\Lambda} \to \operatorname{Mod}\Lambda; \ \pi_{\mu}: \operatorname{Mod}\Lambda \to \operatorname{Mod}\widetilde{\Lambda}.$

Theorem (Bongartz, Gabriel)

- $(\pi_{\lambda}, \pi_{\mu})$ is adjoint pair with $\pi_{\mu} \circ \pi_{\lambda} \cong \bigoplus_{g \in G} g$.
- The restriction $\pi_{\lambda} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ is *G*-precovering.
- If G is torsion-free, then
 - the G-action on $\mathrm{mod}\widetilde{\Lambda}$ is free and locally bounded.
 - $\pi_{\lambda} : \operatorname{mod} \widetilde{\Lambda} \to \operatorname{mod} \Lambda$ is Galois *G*-covering \Leftrightarrow it is dense.
- If Λ is locally representation finite, then π_{λ} induces Galois covering between AR-quivers $\pi_{\lambda} : \Gamma_{\text{mod}\tilde{\Lambda}} \to \Gamma_{\text{mod}\Lambda}$.

Facts on derived categories

• The G-action on $\operatorname{Mod} \widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod} \widetilde{\Lambda})$:

イロト イポト イヨト イヨト

Facts on derived categories

• The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:

•
$$(g \cdot M^{\bullet})^n = g \cdot M^n$$
,

• $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.

Facts on derived categories

• The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:

•
$$(g \cdot M^{\bullet})^n = g \cdot M^n$$
,

- $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.
- $D(Mod \widetilde{\Lambda})$ has arbitrary direct sums.

イロト イポト イヨト イヨト

Facts on derived categories

• The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:

•
$$(g \cdot M^{\bullet})^n = g \cdot M^n$$
,

- $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.
- $D(Mod \widetilde{\Lambda})$ has arbitrary direct sums.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is Hom-finite Krull-Schmidt.

Facts on derived categories

• The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:

•
$$(g \cdot M^{\bullet})^n = g \cdot M^n$$
,

• $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.

- **2** $D(\operatorname{Mod} \widetilde{\Lambda})$ has arbitrary direct sums.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is Hom-finite Krull-Schmidt.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is full triangulated subcategory of $D(\operatorname{Mod}\widetilde{\Lambda})$.

▲□→ ▲ □→ ▲ □→

Facts on derived categories

- The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:
 - $(g \cdot M^{\bullet})^n = g \cdot M^n$,
 - $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.
- **2** $D(\operatorname{Mod} \widetilde{\Lambda})$ has arbitrary direct sums.
- $D^b(\mathrm{mod}\widetilde{\Lambda})$ is Hom-finite Krull-Schmidt.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is full triangulated subcategory of $D(\operatorname{Mod}\widetilde{\Lambda})$.
- The G-action on $D^b(\operatorname{mod} \widetilde{\Lambda})$ is locally bounded.

(4月) (4日) (4日)

Facts on derived categories

• The G-action on $\operatorname{Mod}\widetilde{\Lambda}$ induces G-action on $D(\operatorname{Mod}\widetilde{\Lambda})$:

•
$$(g \cdot M^{\bullet})^n = g \cdot M^n$$
,

• $d_{g \cdot M^{\bullet}}^{n} = g \cdot d_{M}^{n}$, for any complex $M^{\bullet} \in D(\operatorname{Mod} \widetilde{\Lambda})$.

- **2** $D(\operatorname{Mod} \widetilde{\Lambda})$ has arbitrary direct sums.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is Hom-finite Krull-Schmidt.
- $D^{b}(\operatorname{mod}\widetilde{\Lambda})$ is full triangulated subcategory of $D(\operatorname{Mod}\widetilde{\Lambda})$.
- The G-action on $D^b(\mod \widetilde{\Lambda})$ is locally bounded.

Lemma

If
$$M^{\bullet}$$
, $N^{\bullet} \in D^{b}(\text{mod}\widetilde{\Lambda})$, then
 $\bigoplus_{g \in G} \text{Hom}_{D^{b}(\text{mod}\widetilde{\Lambda})}(M^{\bullet}, g \cdot N^{\bullet}) \cong \text{Hom}_{D(\text{Mod}\widetilde{\Lambda})}(M^{\bullet}, \bigoplus_{g \in G} g \cdot N^{\bullet})$

Derived push-down and pull-up

• $\pi_{\lambda} : \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda$ induces commutative diagram:

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

ヘロン 人間 とくほど くほとう

Derived push-down and pull-up

• $\pi_{\lambda} : \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda$ induces commutative diagram:

$$\begin{array}{ccc} C(\operatorname{Mod}\widetilde{\Lambda}) \longrightarrow \mathcal{K}(\operatorname{Mod}\widetilde{\Lambda}) \stackrel{L}{\longrightarrow} D(\operatorname{Mod}\widetilde{\Lambda}) \\ & & & & \downarrow \pi_{\lambda}^{\mathcal{L}} & & \downarrow \pi_{\lambda}^{\mathcal{D}} \\ C(\operatorname{Mod}\Lambda) \stackrel{P}{\longrightarrow} \mathcal{K}(\operatorname{Mod}\Lambda) \longrightarrow D(\operatorname{Mod}\Lambda). \end{array}$$

ヘロン 人間 とくほど くほとう

Derived push-down and pull-up

• $\pi_{\lambda} : \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda$ induces commutative diagram:

2 π_{μ} : Mod $\Lambda \rightarrow \operatorname{Mod} \widetilde{\Lambda}$ induces commutative diagram:

소리가 소문가 소문가 소문가

Derived push-down and pull-up

• $\pi_{\lambda} : \operatorname{Mod} \widetilde{\Lambda} \to \operatorname{Mod} \Lambda$ induces commutative diagram:

$$\begin{array}{ccc} C(\operatorname{Mod}\widetilde{\Lambda}) \longrightarrow K(\operatorname{Mod}\widetilde{\Lambda}) \stackrel{L}{\longrightarrow} D(\operatorname{Mod}\widetilde{\Lambda}) \\ & & & & \downarrow \pi_{\lambda}^{c} & & \downarrow \pi_{\lambda}^{D} \\ C(\operatorname{Mod}\Lambda) \stackrel{P}{\longrightarrow} K(\operatorname{Mod}\Lambda) \longrightarrow D(\operatorname{Mod}\Lambda). \end{array}$$

2 π_{μ} : Mod $\Lambda \to \operatorname{Mod} \widetilde{\Lambda}$ induces commutative diagram:

$$C(\operatorname{Mod} \Lambda) \longrightarrow K(\operatorname{Mod} \Lambda) \longrightarrow D(\operatorname{Mod} \Lambda)$$

$$\downarrow^{\pi^{C}_{\mu}} \qquad \qquad \downarrow^{\pi^{K}_{\mu}} \qquad \qquad \downarrow^{\pi^{D}_{\mu}}$$

$$C(\operatorname{Mod} \widetilde{\Lambda}) \xrightarrow{P} K(\operatorname{Mod} \widetilde{\Lambda}) \xrightarrow{L} D(\operatorname{Mod} \widetilde{\Lambda}).$$

소리가 소문가 소문가 소문가

Properties of derived push-down

Theorem

• $(\pi_{\lambda}^{D}, \pi_{\mu}^{D})$ is adjoint pair (Milicic) with $\pi_{\mu}^{D} \circ \pi_{\lambda}^{D} \cong \bigoplus_{g \in G} g$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

(日) (同) (E) (E) (E)

Properties of derived push-down

Theorem

(π^D_λ, π^D_μ) is adjoint pair (Milicic) with π^D_μ ∘ π^D_λ ≅ ⊕_{g∈G} g. π^D_λ : D^b(mod Λ̃) → D^b(mod Λ) is G-precovering.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロト イポト イヨト イヨト 一日

Properties of derived push-down

Theorem

- $(\pi_{\lambda}^{D}, \pi_{\mu}^{D})$ is adjoint pair (Milicic) with $\pi_{\mu}^{D} \circ \pi_{\lambda}^{D} \cong \bigoplus_{g \in G} g$.
- $\ \, \mathbf{2} \ \, \pi_{\lambda}^{D}: D^{b}(\mathrm{mod}\widetilde{\Lambda}) \to D^{b}(\mathrm{mod}\Lambda) \ \, \text{is G-precovering}.$
- If G is torsion-free, then

・ロン ・回と ・ヨン ・ヨン

Properties of derived push-down

Theorem

- $(\pi_{\lambda}^{D}, \pi_{\mu}^{D})$ is adjoint pair (Milicic) with $\pi_{\mu}^{D} \circ \pi_{\lambda}^{D} \cong \bigoplus_{g \in G} g$.
- $\ \, \mathfrak{a}_{\lambda}^{D}: D^{b}(\mathrm{mod}\widetilde{\Lambda}) \to D^{b}(\mathrm{mod}\Lambda) \ \, \text{is G-precovering}.$
- **o** If G is torsion-free, then
 - G-action on $D^b(\mathrm{mod}\widetilde{\Lambda})$ is free and locally bounded.

・ロン ・回と ・ヨン ・ヨン

Properties of derived push-down

Theorem

- $(\pi_{\lambda}^{D}, \pi_{\mu}^{D})$ is adjoint pair (Milicic) with $\pi_{\mu}^{D} \circ \pi_{\lambda}^{D} \cong \bigoplus_{g \in G} g$.
- $\ \, \mathfrak{a}_{\lambda}^{D}: D^{b}(\mathrm{mod}\widetilde{\Lambda}) \to D^{b}(\mathrm{mod}\Lambda) \text{ is } G\text{-precovering.}$
- If G is torsion-free, then
 - G-action on $D^b(\mathrm{mod}\widetilde{\Lambda})$ is free and locally bounded.
 - $\pi_{\lambda}^{D}: D^{b}(\text{mod}\widetilde{\Lambda}) \to D^{b}(\text{mod}\Lambda)$ is Galois G-covering \Leftrightarrow it is dense.

(日) (同) (E) (E) (E)

Setting

• Let $Q = (Q_0, Q_1)$ be connected locally finite quiver.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbroot Covering theory for linear categories with application to derived

・ロン ・回 とくほど ・ ほとう

Setting

Let Q = (Q₀, Q₁) be connected locally finite quiver. A = kQ/(kQ₁)² is a locally bounded k-category.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・四マ ・ヨマ ・ヨマ

Setting

- Let $Q = (Q_0, Q_1)$ be connected locally finite quiver.
- 2 $A = kQ/(kQ_1)^2$ is a locally bounded k-category.
- Want to study $D^{b} \pmod{A}$.

Gradable quivers

Definition

1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

소리가 소문가 소문가 소문가

Gradable quivers

Definition

- 1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- 2) Q is gradable if all closed walks are of degree 0.

イロト イポト イヨト イヨト

Gradable quivers

Definition

- 1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- 2) Q is *gradable* if all closed walks are of degree 0.
- 3) The grading period of Q is an integer $r_Q \ge 0$ defined by

(ロ) (同) (E) (E) (E)

Gradable quivers

Definition

- 1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- 2) Q is *gradable* if all closed walks are of degree 0.
- 3) The grading period of Q is an integer $r_Q \ge 0$ defined by
 - $r_{Q} = 0$ if Q is gradable; otherwise,

Gradable quivers

Definition

- 1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- 2) Q is *gradable* if all closed walks are of degree 0.
- 3) The grading period of Q is an integer $r_Q \ge 0$ defined by
 - $r_{Q} = 0$ if Q is gradable; otherwise,
 - $r_{o} = \min\{\partial(w) \mid w \text{ closed walks of positive degree }\}.$

Gradable quivers

Definition

- 1) If $w = \alpha_r^{d_r} \cdots \alpha_1^{d_1}$ is a walk in Q, where $d_i = \pm 1$ and $\alpha_i \in Q_1$, then its *degree* is $\partial(w) = d_1 + \cdots + d_r$.
- 2) Q is *gradable* if all closed walks are of degree 0.
- 3) The grading period of Q is an integer $r_Q \ge 0$ defined by
 - $r_{o} = 0$ if Q is gradable; otherwise,
 - $r_{q} = \min\{\partial(w) \mid w \text{ closed walks of positive degree }\}.$

Example

Any tree is gradable.

Grading for gradable quivers

Let Q be gradable.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロト イヨト イヨト イヨト

Grading for gradable quivers

- Let Q be gradable.
- **2** Given $x, y \in Q_0$, the walks from x to y have the same degree, written as d(x, y).

イロト イポト イヨト イヨト

Grading for gradable quivers

- Let Q be gradable.
- Given x, y ∈ Q₀, the walks from x to y have the same degree, written as d(x, y).
- Fix $a \in Q_0$.

Grading for gradable quivers

- Let Q be gradable.
- ② Given $x, y ∈ Q_0$, the walks from x to y have the same degree, written as d(x, y).
- Fix $a \in Q_0$.
- For $n \in \mathbb{Z}$, write $Q^{(n)} = \{x \in Q_0 \mid d(a, x) = n\}$.

(ロ) (同) (E) (E) (E)

Grading for gradable quivers

- Let Q be gradable.
- Over a set of the set of the
- Fix $a \in Q_0$.
- For $n \in \mathbb{Z}$, write $Q^{(n)} = \{x \in Q_0 \mid d(a, x) = n\}$.
- So The arrows in Q are of the form x → y, where x ∈ Q⁽ⁿ⁾ and y ∈ Q⁽ⁿ⁺¹⁾ for some n.

Koszul duality

Observation

The path category kQ is Koszul, whose Koszul dual is A.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 とくほど ・ ほとう

Koszul duality

Observation

The path category kQ is Koszul, whose Koszul dual is A.

Theorem

If Q is gradable, then there exists a triangle-equivalence:

$$\mathcal{E}: D^b(\operatorname{rep}^-(Q^{\operatorname{op}})) \to D^b(\operatorname{mod} A),$$

 $\operatorname{rep}^{-}(Q^{\operatorname{op}})$: finitely co-presented representations of Q^{op} .

・ロン ・回と ・ヨン ・ヨン

Gradable Galois covering of quivers

Theorem

There exists a unique Galois G-covering of quivers:

$$\pi:\widetilde{Q}\to Q,$$

where

イロト イヨト イヨト イヨト

Gradable Galois covering of quivers

Theorem

There exists a unique Galois G-covering of quivers:

$$\pi:\widetilde{Q}\to Q,$$

where

• \widetilde{Q} is connected and gradable,

イロン イヨン イヨン イヨン

Gradable Galois covering of quivers

Theorem

There exists a unique Galois G-covering of quivers:

$$\pi:\widetilde{Q}\to Q,$$

where

- \widetilde{Q} is connected and gradable,
- *G* is generated by $\rho \in \operatorname{Aut}(\widetilde{Q})$ such that $\rho \cdot \widetilde{Q}^{(n)} = \widetilde{Q}^{(n+r_Q)}$, for any $n \in \mathbb{Z}$.

イロト イポト イヨト イヨト

Gradable Galois covering of quivers

Theorem

There exists a unique Galois G-covering of quivers:

$$\pi:\widetilde{Q}\to Q,$$

where

- \widetilde{Q} is connected and gradable,
- G is generated by $\rho \in \operatorname{Aut}(\widetilde{Q})$ such that $\rho \cdot \widetilde{Q}^{(n)} = \widetilde{Q}^{(n+r_Q)}$, for any $n \in \mathbb{Z}$.
- In particular, G is torsion-free, acting freely on \widetilde{Q} .

・ロン ・回と ・ヨン ・ヨン

Gradable Galois covering of categories

Set
$$\widetilde{A} = k\widetilde{Q}/(k\widetilde{Q}_1)^2$$
.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Gradable Galois covering of categories

Set
$$\widetilde{A} = k \widetilde{Q} / (k \widetilde{Q}_1)^2$$
.

G-action on \widetilde{Q} induces free, locally bounded G-action on \widetilde{A} .

イロト イポト イヨト イヨト

Gradable Galois covering of categories

Set
$$\widetilde{A} = k \widetilde{Q} / (k \widetilde{Q}_1)^2$$
.

G-action on \widetilde{Q} induces free, locally bounded G-action on \widetilde{A} .

Proposition

The quiver-covering $\pi: \widetilde{Q} \to Q$ induces Galois G-covering of locally bounded k-categories with trivial G-stabilizer

$$\pi:\widetilde{A}\to A.$$

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロト イポト イヨト イヨト

Key Property

$\operatorname{proj} \widetilde{A}$: full subcategory of $\operatorname{mod} \widetilde{A}$ of projective modules.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Key Property

proj \widetilde{A} : full subcategory of $\operatorname{mod} \widetilde{A}$ of projective modules. $RC^{-,b}(\operatorname{proj} \widetilde{A})$: bounded-above complexes (P^{\bullet}, d_P) over proj \widetilde{A} of bounded homologies such that $\operatorname{Im}(d_P^n) \subset \operatorname{rad}(P^{n+1})$, for all $n \in \mathbb{Z}$.

Key Property

proj \widetilde{A} : full subcategory of $\operatorname{mod} \widetilde{A}$ of projective modules. $RC^{-,b}(\operatorname{proj} \widetilde{A})$: bounded-above complexes (P^{\bullet}, d_P) over proj \widetilde{A} of bounded homologies such that

$$\operatorname{Im}(d_P^n) \subseteq \operatorname{rad}(P^{n+1}), \text{ for all } n \in \mathbb{Z}.$$

Lemma

The induced push-down functor

 π

$$T^{\mathcal{C}}_{\lambda}: R\mathcal{C}^{-,b}(\mathrm{proj}\widetilde{\mathcal{A}}) o R\mathcal{C}^{-,b}(\mathrm{proj}\mathcal{A})$$

is dense.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Result

Theorem

The Galois G-covering $\pi : \widetilde{A} \to A$ induces Galois G-covering $\pi_{\lambda}^{D} : D^{b}(\operatorname{mod} \widetilde{A}) \to D^{b}(\operatorname{mod} A).$

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Result

Theorem

The Galois G-covering $\pi: \widetilde{A} \to A$ induces Galois G-covering $\pi_{\lambda}^{D}: D^{b}(\operatorname{mod} \widetilde{A}) \to D^{b}(\operatorname{mod} A).$ • If Γ is component of $\Gamma_{D^{b}(\operatorname{mod} \widetilde{A})}$, then $\rho \cdot \Gamma = \Gamma[r_{q}]$,

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

(ロ) (同) (E) (E) (E)

Main Result

Theorem

The Galois G-covering $\pi : \widetilde{A} \to A$ induces Galois G-covering $\pi_{\lambda}^{D} : D^{b}(\operatorname{mod} \widetilde{A}) \to D^{b}(\operatorname{mod} A).$ • If Γ is component of $\Gamma_{D^{b}(\operatorname{mod} \widetilde{A})}$, then $\rho \cdot \Gamma = \Gamma[r_{q}]$, hence, $\pi_{\lambda}^{D}(\Gamma) \cong \Gamma$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

Main Result

Theorem

The Galois G-covering $\pi: \widetilde{A} \to A$ induces Galois G-covering

$$\pi^D_{\lambda}: D^b(\operatorname{mod} \widetilde{A}) \to D^b(\operatorname{mod} A).$$

 If Γ is component of Γ_{D^b(modÃ)}, then ρ · Γ = Γ[r_q], hence, π^D_λ(Γ) ≅ Γ.

• *Proof.* For $X^{\bullet} \in D^{b} \pmod{A}$, $\exists P^{\bullet} \in RC^{-,b} (\operatorname{proj} A)$ such that $X^{\bullet} \cong P^{\bullet}$ in $D \pmod{A}$.

(ロ) (同) (E) (E) (E)

Main consequence

Theorem

There exists a Galois covering

$$\mathcal{F}: D^b(\operatorname{rep}^-(\widetilde{Q})) \to D^b(\operatorname{mod} A)$$

in such a way that

イロン イヨン イヨン イヨン

Main consequence

Theorem

There exists a Galois covering

$$\mathcal{F}: D^b(\operatorname{rep}^-(\widetilde{Q}\,)) o D^b(\operatorname{mod} A)$$

in such a way that

) if
$$r_{o} = 0$$
, then ${\cal F}$ is equivalence;

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Main consequence

Theorem

There exists a Galois covering

$$\mathcal{F}: D^b(\operatorname{rep}^-(\widetilde{Q})) \to D^b(\operatorname{mod} A)$$

in such a way that

) if
$$r_{o} = 0$$
, then \mathcal{F} is equivalence;

otherwise, Γ_{D^b(mod A)} consists of r_q copies of the fundamental domain of Γ_{D^b(rep⁻(Q))}.

・ロン ・回 と ・ ヨ と ・ ヨ と

Shapes of AR-components

Theorem

The AR-quiver $\Gamma_{D^b(\mathrm{mod}\,A)}$ consists of

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロン ・回 と ・ ヨ と ・ ヨ と

Shapes of AR-components

Theorem

The AR-quiver $\Gamma_{D^b(\mathrm{mod}\,A)}$ consists of \sim

 \bullet one component embedded in $\mathbb{Z}\widetilde{Q}$, and

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロン イヨン イヨン イヨン

Shapes of AR-components

Theorem

The AR-quiver $\Gamma_{D^b(\text{mod }A)}$ consists of

- ullet one component embedded in $\mathbb{Z}\widetilde{Q}$, and
- some possible finite wings, and

イロト イポト イヨト イヨト

Shapes of AR-components

Theorem

The AR-quiver $\Gamma_{D^b(\operatorname{mod} A)}$ consists of

- ullet one component embedded in $\mathbb{Z}\widetilde{Q}$, and
- some possible finite wings, and

• some possible components of shapes $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^{-}$, $\mathbb{N}^{-}\mathbb{A}_{\infty}^{+}$,

イロン イヨン イヨン イヨン

Shapes of AR-components

Theorem

The AR-quiver $\Gamma_{D^b(\operatorname{mod} A)}$ consists of

- ullet one component embedded in $\mathbb{Z}\widetilde{Q}$, and
- some possible finite wings, and
- some possible components of shapes $\mathbb{Z}\mathbb{A}_{\infty}$, $\mathbb{N}\mathbb{A}_{\infty}^{-}$, $\mathbb{N}^{-}\mathbb{A}_{\infty}^{+}$,
- and some possible stable tubes (this occurs only if Q is Euclidean).

・ロン ・回と ・ヨン・

Example

• Let Q be loop α with $r_q = 1$.

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

イロン 不同と 不同と 不同と

э

Example

Raymundo Bautista (UNAM, Morelia) Shiping Liu* (Sherbrook Covering theory for linear categories with application to derived

・ロト ・日本 ・モト ・モト

æ

Example

- Let Q be loop α with $r_{\alpha} = 1$.
- **2** $A = k[\alpha]/ < \alpha^2 >$ with exactly one simple *S*.
- \widetilde{Q} is a double infinite path.

・ロン ・回と ・ヨン ・ヨン

Example

- Let Q be loop α with $r_{q} = 1$.
- **2** $A = k[\alpha]/ < \alpha^2 >$ with exactly one simple *S*.
- \widetilde{Q} is a double infinite path.
- $\Gamma_{\operatorname{rep}^{-}(\widetilde{Q})}$ is a fundamental domain for $\Gamma_{D^{b}(\operatorname{rep}^{-}(\widetilde{Q}))}$.

(日) (同) (E) (E) (E)

Example

• Let Q be loop α with $r_q = 1$.

2
$$A = k[\alpha] / < \alpha^2 >$$
 with exactly one simple S.

- \widetilde{Q} is a double infinite path.
- $\Gamma_{\operatorname{rep}^{-}(\widetilde{Q})}$ is a fundamental domain for $\Gamma_{D^{b}(\operatorname{rep}^{-}(\widetilde{Q}))}$.

• Thus,
$$\Gamma_{D^b(\operatorname{mod} A)}$$
 consists of

Example

• Let Q be loop α with $r_{q} = 1$.

2
$$A = k[\alpha] / < \alpha^2 >$$
 with exactly one simple S.

- \widetilde{Q} is a double infinite path.
- $\Gamma_{\operatorname{rep}^{-}(\widetilde{Q})}$ is a fundamental domain for $\Gamma_{D^{b}(\operatorname{rep}^{-}(\widetilde{Q}))}$.

• Thus,
$$\Gamma_{D^b(\operatorname{mod} A)}$$
 consists of

• a component of shape \mathbb{ZA}_∞ of perfect complexes with $\tau = [-1];$

Example

• Let Q be loop α with $r_{q} = 1$.

2
$$A = k[\alpha] / < \alpha^2 >$$
 with exactly one simple S.

- \widetilde{Q} is a double infinite path.
- $\Gamma_{\operatorname{rep}^{-}(\widetilde{Q})}$ is a fundamental domain for $\Gamma_{D^{b}(\operatorname{rep}^{-}(\widetilde{Q}))}$.
- Thus, $\Gamma_{D^b(\mathrm{mod}\,A)}$ consists of
 - a component of shape \mathbb{ZA}_{∞} of perfect complexes with $\tau = [-1];$
 - a sectional double infinite path

$$\cdots \longrightarrow S[-1] \longrightarrow S[0] \longrightarrow S[1] \longrightarrow \cdots \longrightarrow S[n] \longrightarrow \cdots$$

(日) (同) (E) (E) (E)

Example

- Let Q be loop α with $r_{q} = 1$.
- $A = k[\alpha] / < \alpha^2 >$ with exactly one simple *S*.
- \widetilde{Q} is a double infinite path.
- $\Gamma_{\operatorname{rep}^{-}(\widetilde{Q})}$ is a fundamental domain for $\Gamma_{D^{b}(\operatorname{rep}^{-}(\widetilde{Q}))}$.
- Thus, $\Gamma_{D^b(\operatorname{mod} A)}$ consists of
 - a component of shape \mathbb{ZA}_{∞} of perfect complexes with $\tau = [-1];$
 - a sectional double infinite path
 - $\cdots \longrightarrow S[-1] \longrightarrow S[0] \longrightarrow S[1] \longrightarrow \cdots \longrightarrow S[n] \longrightarrow \cdots$

|▲□ ▶ ▲ 三 ▶ ▲ 三 ● ● ● ●

K^b(projA) is symmetric or 0-CY, that is,
 DHom(X[•], Y[•]) ≅ Hom(Y[•], X[•]).