$\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b(rep^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Representation theory of strongly locally finite quivers

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charles Paquette (New Brunswick)

Advances in Representation Theory of Algebras

Guanajuato, December 3 - 7, 2012

Introduction

 $\label{eq:alpha} Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q))$ \\ Existence of a Serce Functional Serce Func

Motivation

Representations of an infinite quiver Q appear in

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

$\label{eq:approx} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Motivation

Representations of an infinite quiver Q appear in

study of D^b(mod A), where A is finite dimensional algebra with rad²(A) = 0 [BL];

$\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Motivation

Representations of an infinite quiver Q appear in

- study of D^b(mod A), where A is finite dimensional algebra with rad²(A) = 0 [BL];
- classification of hereditary abelian categories with Serre functor [RVDB];

(D) (A) (A) (A) (A)

Introduction Preliminaries

 $\begin{array}{c} \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Sere Function} \end{array}$

Motivation

Representations of an infinite quiver Q appear in

- study of D^b(mod A), where A is finite dimensional algebra with rad²(A) = 0 [BL];
- classification of hereditary abelian categories with Serre functor [RVDB];
- study of cluster categories with infinite cluster structure [HJ];

(D) (A) (A) (A) (A)

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case <u>AR-theory in t</u>he bounded derived category D^b(rep⁺(Q))

Existence of a Serre Functor

Motivation

Representations of an infinite quiver Q appear in

- study of D^b(mod A), where A is finite dimensional algebra with rad²(A) = 0 [BL];
- classification of hereditary abelian categories with Serre functor [RVDB];
- study of cluster categories with infinite cluster structure [HJ];
- representation theory of co-algebras [S].

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.

イロト イポト イヨト イヨト

3

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.locally finite,

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^{b}({\rm rep}^{+}(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

イロト イポト イヨト イヨト

• In particular, Q has no oriented cycle.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

- In particular, Q has no oriented cycle.
- For $x \in Q_0$, as usual, we have

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

- In particular, Q has no oriented cycle.
- For $x \in Q_0$, as usual, we have
 - indecomposable projective representation P_x ,

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Setting

- k: any field.
- Q : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

イロト イポト イヨト イヨト

• In particular, Q has no oriented cycle.

For $x \in Q_0$, as usual, we have

- indecomposable projective representation P_{x} ,
- indecomposable injective representation I_{χ} .

Setting

- k: any field.
- \boldsymbol{Q} : conn. inf. strongly locally finite quiver, i.e.
 - locally finite,
 - $\forall x, y \in Q_0$, the number of $x \rightsquigarrow y$ is finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

• In particular, Q has no oriented cycle.

For $x \in Q_0$, as usual, we have

- indecomposable projective representation P_{x} ,
- indecomposable injective representation I_{x} .

Remark. The P_x , I_x locally finite dimensional.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Nakayama Functor

•
$$\operatorname{proj}(Q) = \operatorname{add}(P_x \mid x \in Q_0).$$

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

イロン 不同と 不同と 不同と

æ

Nakayama Functor

•
$$\operatorname{proj}(Q) = \operatorname{add}(P_x \mid x \in Q_0).$$

$$o inj(Q) = add(I_x \mid x \in Q_0).$$

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

イロン 不同と 不同と 不同と

æ

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Nakayama Functor

•
$$\operatorname{proj}(Q) = \operatorname{add}(P_x \mid x \in Q_0).$$

$$o inj(Q) = add(I_x \mid x \in Q_0).$$

Proposition

There exists a Nakayama equivalence $\nu : \operatorname{proj}(Q) \rightarrow \operatorname{inj}(Q) : P_x \mapsto I_x.$

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

(ロ) (同) (E) (E) (E)

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Finitely Presented Representations

Definition

A representation M of Q is called

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Finitely Presented Representations

Definition

A representation M of Q is called

• *finitely presented* if ∃ projective resolution

$$0 o P_1 o P_0 o M o 0,$$
 where $P_0, P_1 \in \operatorname{proj}(Q).$

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

Finitely Presented Representations

Definition

A representation M of Q is called

• *finitely presented* if ∃ projective resolution

$$0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$$

where $P_0, P_1 \in \operatorname{proj}(Q)$.

● *finitely co-presented* if ∃ injective co-resolution

$$0 \rightarrow M \rightarrow I_0 \rightarrow I_1 \rightarrow 0,$$

where $I_0, I_1 \in inj(Q)$.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Categories to Study

 $\operatorname{rep}^+(Q)$: finitely presented representations.

イロト イヨト イヨト イヨト

3

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Categories to Study

 $\operatorname{rep}^+(Q)$: finitely presented representations.

 $\operatorname{rep}^{-}(Q)$: finitely co-presented representations.

イロト イポト イラト イラト 一日

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Categories to Study

- $\operatorname{rep}^+(Q)$: finitely presented representations.
- $\operatorname{rep}^{-}(Q)$: finitely co-presented representations.
- $\operatorname{rep}^{b}(Q)$: finite dimensional representations.

Categories to Study

 $\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^{-}(Q)$: finitely co-presented representations.
- $\operatorname{rep}^{b}(Q)$: finite dimensional representations.

Proposition

• $\operatorname{rep}^+(Q)$, $\operatorname{rep}^-(Q)$ Hom-finite, hereditary, abelian.

Categories to Study

$\operatorname{rep}^+(Q)$: finitely presented representations.

- $\operatorname{rep}^{-}(Q)$: finitely co-presented representations.
- $\operatorname{rep}^{b}(Q)$: finite dimensional representations.

Proposition

rep⁺(Q), rep⁻(Q) Hom-finite, hereditary, abelian.
 rep⁺(Q) ∩ rep⁻(Q) = rep^b(Q).

(ロ) (同) (E) (E) (E)

Categories to Study

- $\operatorname{rep}^+(Q)$: finitely presented representations.
- $\operatorname{rep}^{-}(Q)$: finitely co-presented representations.
- $\operatorname{rep}^{b}(Q)$: finite dimensional representations.

Proposition

- $\operatorname{rep}^+(Q)$, $\operatorname{rep}^-(Q)$ Hom-finite, hereditary, abelian.
- $\operatorname{rep}^+(Q) \cap \operatorname{rep}^-(Q) = \operatorname{rep}^b(Q).$

Remark. $I_x \in \operatorname{rep}^+(Q) \Leftrightarrow I_x \in \operatorname{rep}^b(Q)$.

Dual of transpose

Definition

• If $M \in \operatorname{rep}^+(Q)$ with minimal projective resolution $0 \longrightarrow P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$. Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{D}(rep^{+}(Q))$ Existence of a Serre Functor

Dual of transpose

Definition

• If $M \in \operatorname{rep}^+(Q)$ with minimal projective resolution $0 \longrightarrow P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$, define $D\operatorname{Tr} M \subset \operatorname{rep}^-(Q)$ by chart exact sequence

define $\operatorname{DTr} M \in \operatorname{rep}^{-}(Q)$ by short exact sequence $0 \longrightarrow \operatorname{DTr} M \longrightarrow \nu(P_1) \xrightarrow{\nu(f)} \nu(P_0) \longrightarrow 0.$ Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{0}(rep^{+}(Q))$ Existence of a Serre Functor

Dual of transpose

Definition

If M ∈ rep⁺(Q) with minimal projective resolution 0 → P₁ → P₀ → M → 0, define DTrM ∈ rep⁻(Q) by short exact sequence 0 → DTrM → ν(P₁) → ν(P₀) → 0.
If M ∈ rep⁻(Q) with minimal injective co-resolution 0 → M → l₀ → l₁ → 0, $\label{eq:hardwork} \begin{array}{l} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category $\mathcal{D}^{\circ}(rep^+(Q))$} \\ \mbox{Existence of a Serre Functor} \end{array}$

Dual of transpose

Definition

• If $M \in \operatorname{rep}^+(Q)$ with minimal projective resolution $0 \longrightarrow P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0.$ define $DTr M \in rep^{-}(Q)$ by short exact sequence $0 \longrightarrow DTr M \longrightarrow \nu(P_1) \xrightarrow{\nu(f)} \nu(P_0) \longrightarrow 0$ 2 If $M \in \operatorname{rep}^{-}(Q)$ with minimal injective co-resolution $0 \longrightarrow M \longrightarrow l_0 \xrightarrow{g} l_1 \longrightarrow 0.$ define $\operatorname{TrD} M \in \operatorname{rep}^+(Q)$ by short exact sequence $0 \longrightarrow \nu^{-}(I_0) \xrightarrow{\nu^{-}(g)} \nu^{-}(I_1) \longrightarrow \operatorname{Tr} D M \longrightarrow 0.$

AR-sequences in $rep^+(Q)$

Theorem

Let Z ∈ rep⁺(Q) be indecomposable non-projective. Then rep⁺(Q) has AR-sequence 0 → τZ → Y → Z → 0

イロト イポト イラト イラト 一日

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

AR-sequences in $rep^+(Q)$

Theorem

Let Z ∈ rep⁺(Q) be indecomposable non-projective. Then rep⁺(Q) has AR-sequence 0 → τZ → Y → Z → 0
 ⇔ DTrZ ∈ rep^b(Q). In this case, τZ ≃ DTrZ.

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

AR-sequences in $\operatorname{rep}^+(Q)$

Theorem

- Let Z ∈ rep⁺(Q) be indecomposable non-projective. Then rep⁺(Q) has AR-sequence 0 → τZ → Y → Z → 0 ⇔ DTrZ ∈ rep^b(Q). In this case, τZ ≃ DTrZ.
- Let $X \in \operatorname{rep}^+(Q)$ be indecomposable non-injective. Then $\operatorname{rep}^+(Q)$ has AR-sequence $0 \longrightarrow X \longrightarrow Y \longrightarrow \tau^- X \longrightarrow 0$

(ロ) (同) (E) (E) (E)

AR-sequences in $\operatorname{rep}^+(Q)$

Theorem

- Let Z ∈ rep⁺(Q) be indecomposable non-projective. Then rep⁺(Q) has AR-sequence 0 → τZ → Y → Z → 0 ⇔ DTrZ ∈ rep^b(Q). In this case, τZ ≃ DTrZ.
- Let X ∈ rep⁺(Q) be indecomposable non-injective. Then rep⁺(Q) has AR-sequence 0 → X → Y → τ⁻X → 0 ⇔ X ∈ rep^b(Q). In this case, τ⁻X ≅ TrDX.

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

AR-sequences in $\operatorname{rep}^+(Q)$

Theorem

- Let Z ∈ rep⁺(Q) be indecomposable non-projective. Then rep⁺(Q) has AR-sequence 0 → τZ → Y → Z → 0 ⇔ DTrZ ∈ rep^b(Q). In this case, τZ ≃ DTrZ.
- Let X ∈ rep⁺(Q) be indecomposable non-injective. Then rep⁺(Q) has AR-sequence 0 → X → Y → τ⁻X → 0 ⇔ X ∈ rep^b(Q). In this case, τ⁻X ≃ TrDX.

Corollary

Every AR-sequence in $rep^+(Q)$ starts with a finite dimensional representation.

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

AR-quiver of $rep^+(Q)$

• First, AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is a valued translation quiver :

イロン イヨン イヨン イヨン

3

AR-quiver of $rep^+(Q)$

- First, AR-quiver $\Gamma_{rep^+(Q)}$ is a valued translation quiver:
 - vertices: the non-iso indecomposables in $\operatorname{rep}^+(Q)$;

AR-quiver of $rep^+(Q)$

- First, AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is a valued translation quiver :
 - vertices: the non-iso indecomposables in $\operatorname{rep}^+(Q)$;
 - arrows: $X \to Y$ with positive valuation (d_{XY}, d'_{XY}) ;

AR-quiver of $rep^+(Q)$

- First, AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is a valued translation quiver :
 - vertices: the non-iso indecomposables in $\operatorname{rep}^+(Q)$;
 - arrows: $X \to Y$ with positive valuation (d_{XY}, d'_{XY}) ;
 - translation: $\tau Z = X$ if \exists AR-sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

AR-quiver of $rep^+(Q)$

- First, AR-quiver Γ_{rep⁺(Q)} is a valued translation quiver:
 vertices: the non-iso indecomposables in rep⁺(Q);
 - arrows: $X \to Y$ with positive valuation (d_{xy}, d'_{yy}) ;
 - translation: $\tau Z = X$ if \exists AR-sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

イロト イポト イヨト イヨト

3 A valuation (d_{xy}, d'_{xy}) is symmetric if $d_{xy} = d'_{xy}$.

AR-quiver of $rep^+(Q)$

- First, AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is a valued translation quiver:
 - vertices: the non-iso indecomposables in $\operatorname{rep}^+(Q)$;
 - arrows: $X \to Y$ with positive valuation (d_{XY}, d'_{XY}) ;
 - translation: $\tau Z = X$ if \exists AR-sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

 A valuation (d_{XY}, d'_{XY}) is symmetric if d_{XY} = d'_{XY}.
 In this case, replace X (d_{XY}, d_{XY}) Y by d_{XY} unvalued arrows

from X to Y.

AR-quiver of $rep^+(Q)$

- First, AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is a valued translation quiver:
 - vertices: the non-iso indecomposables in $\operatorname{rep}^+(Q)$;
 - arrows: $X \to Y$ with positive valuation (d_{XY}, d'_{XY}) ;
 - translation: $\tau Z = X$ if \exists AR-sequence

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0.$$

3 A valuation (d_{xy}, d'_{xy}) is symmetric if $d_{xy} = d'_{xy}$.

In this case, replace $X \xrightarrow{(d_{XY}, d_{XY})} Y$ by d_{XY} unvalued arrows from X to Y.

소리가 소문가 소문가 소문가

Sinally, Γ_{rep⁺(Q)} is partially valued with all valuations non-symmetric.

AR-translation for $\Gamma_{\mathrm{rep}^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

・ロン ・回と ・ヨン ・ヨン

æ

AR-translation for $\Gamma_{rep^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then • $\tau X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-projective and $\operatorname{DTr} X$ fin dim.

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ The infinite Dynkin case \\ D^b(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-translation for $\Gamma_{\mathrm{rep}^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

- $\tau X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-projective and $\operatorname{DTr} X$ fin dim.
- $\tau^- X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-injective and finite dimensional.

(ロ) (同) (E) (E) (E)

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ The infinite Dynkin case \\ D^b(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-translation for $\Gamma_{\mathrm{rep}^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

- $\tau X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-projective and $\operatorname{DTr} X$ fin dim.
- $\tau^- X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-injective and finite dimensional.

 $X \in \Gamma_{\operatorname{rep}^+(Q)}$ called *pseudo-projective* if $\operatorname{DTr} X \notin \operatorname{rep}^b(Q)$.

イロト イポト イラト イラト 一日

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{b}(rep^{+}(Q))$ Existence of a Serre Functor

AR-translation for $\Gamma_{\mathrm{rep}^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

- $\tau X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-projective and $\operatorname{DTr} X$ fin dim.
- $\tau^- X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-injective and finite dimensional.

 $X \in \Gamma_{\operatorname{rep}^+(Q)}$ called *pseudo-projective* if $\operatorname{DTr} X \notin \operatorname{rep}^b(Q)$.

Remark

• τX not defined $\Leftrightarrow X$ is projective or pseudo-projective.

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ The infinite Dynkin case \\ D^b(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-translation for $\Gamma_{\mathrm{rep}^+(Q)}$

Proposition

If $X \in \Gamma_{\operatorname{rep}^+(Q)}$, then

- $\tau X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-projective and $\operatorname{DTr} X$ fin dim.
- $\tau^- X \in \Gamma_{\operatorname{rep}^+(Q)} \Leftrightarrow X$ non-injective and finite dimensional.

 $X \in \Gamma_{\operatorname{rep}^+(Q)}$ called *pseudo-projective* if $\operatorname{DTr} X \notin \operatorname{rep}^b(Q)$.

Remark

τX not defined ⇔ X is projective or pseudo-projective.
 τ⁻X not defined ⇔ X is injective or infinite dimensional.

Sections

 (Γ, τ) : connected translation quiver.

イロン 不同と 不同と 不同と

3

Sections

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^0(\mathrm{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Sections

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

• Δ contains no oriented cycle,

イロン イヨン イヨン イヨン

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^0(\mathrm{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Sections

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- Δ contains no oriented cycle,
- Δ meets each τ -orbit in Γ exactly once,

Sections

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- Δ contains no oriented cycle,
- Δ meets each τ -orbit in Γ exactly once,
- Δ is convex in Γ .

Sections

 (Γ, τ) : connected translation quiver.

Definition

A connected subquiver Δ of Γ is *section* if

- Δ contains no oriented cycle,
- Δ meets each τ -orbit in Γ exactly once,
- Δ is convex in Γ .

Proposition

If Δ is section of Γ , then there exists embedding $\Gamma \to \mathbb{Z}\Delta : \tau^n x \mapsto (-n, x).$

Left-most or right-most sections

Definition

A section Δ of Γ is called

イロト イヨト イヨト イヨト

3

Left-most or right-most sections

Definition

A section Δ of Γ is called

• *left-most* if any $y \in \Gamma_0$ is $\tau^{-n}x$, $n \ge 0$, $x \in \Delta_0$;

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{b}(rep^{+}(Q))$ Existence of a Serre Functor

Left-most or right-most sections

Definition

A section Δ of Γ is called

- *left-most* if any $y \in \Gamma_0$ is $\tau^{-n}x, n \ge 0, x \in \Delta_0$;
- right-most if any $y \in \Gamma_0$ is $\tau^n x$, $n \ge 0$, $x \in \Delta_0$.

Left-most or right-most sections

Definition

A section Δ of Γ is called

- *left-most* if any $y \in \Gamma_0$ is $\tau^{-n}x$, $n \ge 0$, $x \in \Delta_0$;
- right-most if any $y \in \Gamma_0$ is $\tau^n x$, $n \ge 0$, $x \in \Delta_0$.

Proposition

Let Δ be a section of Γ .

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

Left-most or right-most sections

Definition

A section Δ of Γ is called

- *left-most* if any $y \in \Gamma_0$ is $\tau^{-n}x$, $n \ge 0$, $x \in \Delta_0$;
- right-most if any $y \in \Gamma_0$ is $\tau^n x$, $n \ge 0$, $x \in \Delta_0$.

Proposition

Let Δ be a section of Γ .

• If Δ is left-most, then Γ embeds in $\mathbb{N}\Delta$.

Left-most or right-most sections

Definition

A section Δ of Γ is called

- *left-most* if any $y \in \Gamma_0$ is $\tau^{-n}x$, $n \ge 0$, $x \in \Delta_0$;
- right-most if any $y \in \Gamma_0$ is $\tau^n x$, $n \ge 0$, $x \in \Delta_0$.

Proposition

Let Δ be a section of Γ .

- If Δ is left-most, then Γ embeds in $\mathbb{N}\Delta$.
- If Δ is right-most, then Γ embeds in $\mathbb{N}^-\Delta$.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Components having infinite dimensional or pseudo-projective representations

Proposition

Let Γ be a component of $\Gamma_{\operatorname{rep}^+(Q)}$.

(D) (A) (A) (A) (A)

Components having infinite dimensional or pseudo-projective representations

Proposition

Let Γ be a component of $\Gamma_{\operatorname{rep}^+(Q)}$.

 If Γ has infinite dimensional representations, then they form a right-most section of Γ.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Components having infinite dimensional or pseudo-projective representations

Proposition

Let Γ be a component of $\Gamma_{\operatorname{rep}^+(Q)}$.

- If Γ has infinite dimensional representations, then they form a right-most section of Γ.
- If Γ has pseudo-projective representations, then they form a left-most section of Γ .

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

- 4 回 5 - 4 回 5 - 4 回 5

3

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

Proposition

For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of the following occurs.

イロン 不同と 不同と 不同と

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

Proposition

For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of the following occurs. • X is preprojective, that is, $X = \tau^{-n}P_x$, $x \in Q_0$, $n \ge 0$;

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

Proposition

For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of the following occurs.

• X is preprojective, that is, $X = \tau^{-n}P_x$, $x \in Q_0$, $n \ge 0$;

• X is preinjective, that is, $X = \tau^n I_x$, $x \in Q^+$, $n \ge 0$;

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

Proposition

For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of the following occurs. • X is preprojective, that is, $X = \tau^{-n}P_x$, $x \in Q_0$, $n \ge 0$;

- X is preinjective, that is, $X = \tau^n I_x$, $x \in Q^+$, $n \ge 0$;
- X is regular, that is, neither preproj nor preinj.

Trisection of Representations

Let Q^+ be full subquiver of Q generated by x such that $I_x \in \operatorname{rep}^b(Q)$.

Proposition

For $X \in \Gamma_{\operatorname{rep}^+(Q)}$, exactly one of the following occurs.

- X is preprojective, that is, $X = \tau^{-n}P_x$, $x \in Q_0$, $n \ge 0$;
- X is preinjective, that is, $X = \tau^n I_x$, $x \in Q^+$, $n \ge 0$;

• X is regular, that is, neither preproj nor preinj.

Remark

 $X \in \Gamma_{\operatorname{rep}^+(Q)}$ regular $\not\Rightarrow \tau^n X$ defined for all $n \in \mathbb{Z}$.

Trisection of Components

Proposition

Let Γ be a component of $\Gamma_{\operatorname{rep}^+(Q)}$.

イロト イヨト イヨト イヨト

3

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(rep^+(Q))$ Existence of a Serre Functor

Trisection of Components

Proposition

Let Γ be a component of $\Gamma_{\operatorname{rep}^+(Q)}$.

If one representation in Γ is preprojective (preinjective, regular), then all its representations are preprojective (preinjective, regular). In this case, Γ is called preprojective (preinjective, regular).

・ロン ・回 と ・ ヨ と ・ ヨ と

Infinite paths

An infinite path in Q is called

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

イロン イヨン イヨン イヨン

3

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Infinite paths

An infinite path in Q is called • left infinite if it is of form

$$\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ;$$

イロト イポト イヨト イヨト

3

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Infinite paths

An infinite path in Q is called • left infinite if it is of form

$$\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ;$$

• right infinite if it is of form

$$\circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots;$$

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^0(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

Infinite paths

An infinite path in Q is called • left infinite if it is of form

$$\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ;$$

• right infinite if it is of form

$$\circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots;$$

• double infinite if it is of form

.

$$\cdots \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots$$

A B K

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Remark

Let x be a vertex in Q.

 P_x is infinite dimensional if and only if x is starting point of a right infinite path.

イロト イポト イヨト イヨト

3

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \mbox{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^{0}(\operatorname{rep}^{+}(Q)) \\ Existence of a Serre Functor \end{array}$

Remark

Let x be a vertex in Q.

- P_x is infinite dimensional if and only if x is starting point of a right infinite path.
- *I_x* is infinite dimensional if and only if *x* is ending point of a left infinite path.

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

The Preprojective Component

Theorem

Let Q connected infinite strongly locally finite quiver. • $\Gamma_{rep^+(Q)}$ has unique preproj component \mathcal{P}_Q .

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

The Preprojective Component

Theorem

Let Q connected infinite strongly locally finite quiver.

- $\Gamma_{\operatorname{rep}^+(Q)}$ has unique preproj component \mathcal{P}_Q .
- P_Q has a left-most section formed by the P_x with x ∈ Q₀, which is isomorphic to Q^{op}.

・ロト ・同ト ・ヨト ・ヨト

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

The Preprojective Component

Theorem

Let Q connected infinite strongly locally finite quiver.

- $\Gamma_{\operatorname{rep}^+(Q)}$ has unique preproj component \mathcal{P}_Q .
- P_Q has a left-most section formed by the P_x with x ∈ Q₀, which is isomorphic to Q^{op}.

3 \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.

 $\label{eq:hardweight} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

The Preprojective Component

Theorem

Let Q connected infinite strongly locally finite quiver.

- $\Gamma_{\operatorname{rep}^+(Q)}$ has unique preproj component \mathcal{P}_Q .
- P_Q has a left-most section formed by the P_x with x ∈ Q₀, which is isomorphic to Q^{op}.
- **3** \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.
- Q has no right infinite path $\Rightarrow \mathcal{P}_Q \cong \mathbb{N}Q^{\mathrm{op}}$.

 $\label{eq:hardweight} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

The Preprojective Component

Theorem

Let Q connected infinite strongly locally finite quiver.

- $\Gamma_{\operatorname{rep}^+(Q)}$ has unique preproj component \mathcal{P}_Q .
- P_Q has a left-most section formed by the P_x with x ∈ Q₀, which is isomorphic to Q^{op}.
- **3** \mathcal{P}_Q embeds in $\mathbb{N}Q^{\mathrm{op}}$.
- Q has no right infinite path $\Rightarrow \mathcal{P}_Q \cong \mathbb{N}Q^{\mathrm{op}}$.
- Q has right infinite paths ⇒ P_Q has right-most section formed by its ∞-dim representations. In this case, the τ-orbits in P_Q are all finite.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b({\rm rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

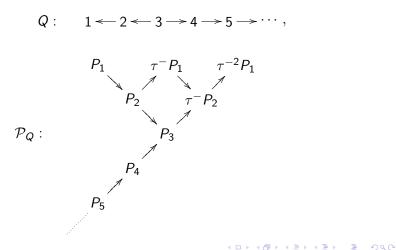
Example

$Q: \qquad 1 \longleftarrow 2 \longleftarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow \cdots,$

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Example



Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

Preinjective components

Proposition

If Ω is component of Q^+ , then it determines a preinjective component \mathcal{I}_{Ω} of $\Gamma_{\operatorname{rep}^+(Q)}$ with following properties.

イロン イヨン イヨン イヨン

 $\label{eq:constraint} Preliminaries\\ \mbox{Auslander-Reiten Theory}\\ The infinite Dynkin case\\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q))\\ Existence of a Serre Functor \\ \end{array}$

Preinjective components

Proposition

If Ω is component of Q^+ , then it determines a preinjective component \mathcal{I}_{Ω} of $\Gamma_{\operatorname{rep}^+(Q)}$ with following properties.

Introduction

*I*_Ω has a right-most section formed by the *I*_x, x ∈ Ω₀, which is isomorphic to Ω^{op}.

 $\label{eq:constraint} Preliminaries\\ \mbox{Auslander-Reiten Theory}\\ The infinite Dynkin case\\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q))\\ \operatorname{Existence}$ of a Serre Functor

Preinjective components

Proposition

If Ω is component of Q^+ , then it determines a preinjective component \mathcal{I}_{Ω} of $\Gamma_{\operatorname{rep}^+(Q)}$ with following properties.

Introduction

- *I*_Ω has a right-most section formed by the *I*_x, x ∈ Ω₀, which is isomorphic to Ω^{op}.
- \mathcal{I}_{Ω} embeds in $\mathbb{N}^{-}\Omega^{\mathrm{op}}$.

 $\label{eq:constraint} Preliminaries\\ \mbox{Auslander-Reiten Theory}\\ The infinite Dynkin case\\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q))\\ \operatorname{Existence}$ of a Serre Functor

Preinjective components

Proposition

If Ω is component of Q^+ , then it determines a preinjective component \mathcal{I}_{Ω} of $\Gamma_{\operatorname{rep}^+(Q)}$ with following properties.

Introduction

- \mathcal{I}_{Ω} has a right-most section formed by the $I_x, x \in \Omega_0$, which is isomorphic to Ω^{op} .
- **2** \mathcal{I}_{Ω} embeds in $\mathbb{N}^{-}\Omega^{\mathrm{op}}$.
- \mathcal{I}_{Ω} contains only fin dim representations.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

The Preinjective Components

Theorem

Let Q be connected infinite strongly locally finite quiver.

< E

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{b}(rep^{+}(Q))$ Existence of a Serre Functor

The Preinjective Components

Theorem

Let Q be connected infinite strongly locally finite quiver.

• \exists bijection $\Omega \mapsto \mathcal{I}_{\Omega}$ between the components of Q^+ and the preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$.

・ロト ・同ト ・ヨト ・ヨ

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ The infinite Dynkin case \\ D^b(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

The Preinjective Components

Theorem

Let Q be connected infinite strongly locally finite quiver.

- \exists bijection $\Omega \mapsto \mathcal{I}_{\Omega}$ between the components of Q^+ and the preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$.
- 2 *Q* has no left infinite path $\Rightarrow \Gamma_{rep^+(Q)}$ has unique preinjective component of shape $\mathbb{N}^-Q^{\mathrm{op}}$.

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^{b}(rep^{+}(Q))$ Existence of a Serre Functor

The Preinjective Components

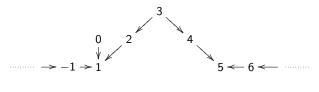
Theorem

Let Q be connected infinite strongly locally finite quiver.

- \exists bijection $\Omega \mapsto \mathcal{I}_{\Omega}$ between the components of Q^+ and the preinjective components of $\Gamma_{\operatorname{rep}^+(Q)}$.
- **2** *Q* has no left infinite path $\Rightarrow \Gamma_{\operatorname{rep}^+(Q)}$ has unique preinjective component of shape $\mathbb{N}^-Q^{\operatorname{op}}$.
- O has left infinite paths ⇒ every preinjective component has left-most section formed by its pseudo-projective representations, and hence, its τ-orbits are all finite.

Example

• Let Q be as follows:



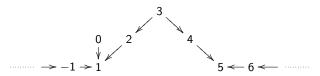
・ロト ・回ト ・ヨト ・ヨト

æ

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^0(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Example

• Let Q be as follows:



2 Q^+ has two components

$$0, \quad 2 \longleftarrow 3 \longrightarrow 4.$$

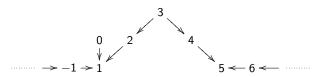
・ロト ・回ト ・ヨト ・ヨト

æ

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

Example

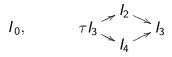
• Let Q be as follows:



2 Q^+ has two components

$$0, \quad 2 \longleftarrow 3 \longrightarrow 4.$$

• $\Gamma_{rep^+(Q)}$ has two preinjective components:



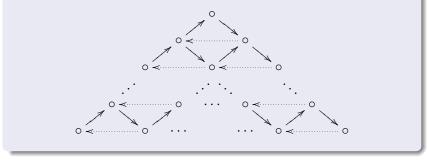
・ロト ・回ト ・ヨト ・ヨト

2

Wings

Definition

A wing is a trivially valued translation quiver as follows:



Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

イロン イヨン イヨン イヨン

æ

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Regular Components

Theorem

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Regular Components

Theorem

Let Q be connected infinite strongly locally finite quiver, let Γ be regular component of $\Gamma_{\operatorname{rep}^+(Q)}$.

If Γ has no ∞-dimensional or pseudo-projective representation, then Γ ≃ ZA_∞.

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

Regular Components

Theorem

- If Γ has no ∞-dimensional or pseudo-projective representation, then Γ ≅ ZA_∞.
- If Γ has ∞-dimensional but no pseudo-projective representations, then the ∞-dimensional representations form a left infinite path, and hence, Γ ≅ N⁻A_∞.

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(\operatorname{rep}^+(Q))$ Existence of a Serre Functor

Regular Components

Theorem

- If Γ has no ∞-dimensional or pseudo-projective representation, then Γ ≅ ZA_∞.
- If Γ has ∞-dimensional but no pseudo-projective representations, then the ∞-dimensional representations form a left infinite path, and hence, Γ ≅ N⁻A_∞.
- If Γ has pseudo-projective but no ∞-dimensional representations, then the pseudo-projective representations form a right infinite path, and hence, Γ ≅ NA_∞.

 $\label{eq:hardweight} \begin{array}{c} Introduction \\ Preliminaries \\ \textbf{Auslander-Reiten Theory} \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^0(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

Regular Components

Theorem

- If Γ has no ∞-dimensional or pseudo-projective representation, then Γ ≅ ZA_∞.
- If Γ has ∞-dimensional but no pseudo-projective representations, then the ∞-dimensional representations form a left infinite path, and hence, Γ ≅ N⁻A_∞.
- If Γ has pseudo-projective but no ∞-dimensional representations, then the pseudo-projective representations form a right infinite path, and hence, Γ ≅ NA_∞.
- If Γ has both pseudo-projective representations and ∞-dimensional representations, then Γ is wing.

Consequence

Corollary

The AR-quiver $\Gamma_{\operatorname{rep}^+(Q)}$ is symmetrically valued.

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

・ロト ・回ト ・ヨト ・ヨト

3

 $\label{eq:approximation} Introduction Preliminaries Auslander-Reiten Theory$ **The infinite Dynkin case** $AR-theory in the bounded derived category <math display="inline">D^{0}(\operatorname{rep}^{+}(Q))$ Existence of a Serre Functor

Infinite Dynkin diagrams

Definition

The infinite Dynkin diagrams are as follows :

< ロ > < 同 > < 回 > < 正 > < 正

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category D^b(rep^+(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

Infinite Dynkin diagrams

Definition

The infinite Dynkin diagrams are as follows :

$$\mathbb{A}_{\infty}^{\infty}$$
: \cdots — \circ — \circ — \circ — \circ — \cdots

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^{0}({\rm rep}^{+}(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Infinite Dynkin diagrams

Definition

The infinite Dynkin diagrams are as follows:

$$\mathbb{A}_{\infty}^{\infty}: \quad \cdots = \circ = \circ = \circ = \circ = \cdots$$

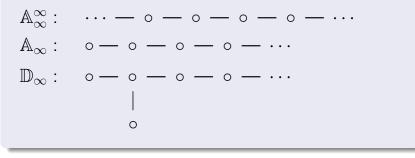
$$\mathbb{A}_{\infty}$$
: \circ — \circ — \circ — \circ — \cdots

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category D^b(rep^+(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

Infinite Dynkin diagrams

Definition

The infinite Dynkin diagrams are as follows :



・ロト ・回ト ・ヨト ・ヨト

2

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category $D^{0}(rep^{+}(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

The indecomposable representations

Theorem

Let Q be an infinite Dynkin quiver.

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^{0}(\mathrm{rep}^{+}(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

The indecomposable representations

Theorem

Let Q be an infinite Dynkin quiver.

If Q of type A_∞ or A_∞[∞], then the indecomposables in rep⁺(Q) are the (finite or infinite) string representations.

 $\label{eq:approx} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ \hline \mbox{The infinite Dynkin case} \\ AR-theory in the bounded derived category <math>D^0(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

The indecomposable representations

Theorem

Let Q be an infinite Dynkin quiver.

- If Q of type A_∞ or A_∞[∞], then the indecomposables in rep⁺(Q) are the (finite or infinite) string representations.
- If Q is of type D_∞, then the indecomposables in rep⁺(Q) are the indecomposables in rep(D_n) with n ≥ 4, infinite string representations, or of the infinite dimension vector:

$$1 - \underbrace{2 - 2 - \cdots - 2}_{l} - 1 - \cdots - 1 - \cdots,$$

AR-components in the infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver. Then $\Gamma_{rep^+(Q)}$ has at most 4 components, all of them are standard, at most one of them is preinjective, and at most 2 of them are regular.

 $\label{eq:ansatz} \begin{array}{l} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ \hline \mbox{The infinite Dynkin case} \\ AR-theory in the bounded derived category <math>D^{\circ}(\operatorname{rep}^+(Q)) \\ Existence of a Serre Functor \end{array}$

AR-components in the infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver. Then $\Gamma_{rep^+(Q)}$ has at most 4 components, all of them are standard, at most one of them is preinjective, and at most 2 of them are regular.

• Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.

Introduction Preliminaries Auslander-Reiten Theory **The infinite Dynkin case** AR-theory in the bounded derived category $\mathcal{D}^{\circ}(rep^+(Q))$ Existence of a Serre Functor

AR-components in the infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver. Then $\Gamma_{rep^+(Q)}$ has at most 4 components, all of them are standard, at most one of them is preinjective, and at most 2 of them are regular.

- Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.
- Q of type $\mathbb{D}_{\infty} \Rightarrow$ exactly one regular component.

Introduction Preliminaries Auslander-Reiten Theory **The infinite Dynkin case** AR-theory in the bounded derived category $\mathcal{D}^{\circ}(rep^+(Q))$ Existence of a Serre Functor

AR-components in the infinite Dynkin case

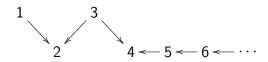
Theorem

Let Q be infinite Dynkin quiver. Then $\Gamma_{rep^+(Q)}$ has at most 4 components, all of them are standard, at most one of them is preinjective, and at most 2 of them are regular.

- Q of type $\mathbb{A}_{\infty} \Rightarrow$ no regular component.
- Q of type $\mathbb{D}_{\infty} \Rightarrow$ exactly one regular component.
- Q of type $\mathbb{A}_{\infty}^{\infty} \Rightarrow$ at most 2 regular components.

Example

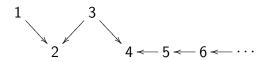
• Let Q be as follows:



 $\label{eq:ansatz} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category $D^b(rep^+(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

Example

• Let Q be as follows:



2 $\Gamma_{\mathrm{rep}^+(Q)}$ consists of two components :

 $\mathcal{P}_{\mathcal{O}} \cong \mathbb{N}\mathbb{A}_{\infty},$

イロン イヨン イヨン イヨン

æ

 $\label{eq:ansatz} \begin{array}{l} & \mbox{Introduction}\\ Preliminaries\\ Auslander-Reiten Theory\\ \hline {\bf The infinite Dynkin case}\\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q))\\ & \mbox{Existence of a Serre Functor} \end{array}$

Example

 $Q: \dots \leftarrow -1 \leftarrow 0 \leftarrow 1 \leftarrow 2 \longrightarrow 3 \leftarrow 4 \longrightarrow 5 \longrightarrow 6 \leftarrow 7 \leftarrow \dots$

 $\label{eq:analytical} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category } D^B(\operatorname{rep}^+(Q))\\ \mbox{Existence of a Serre Functor} \end{array}$

Example

 $Q: \dots \leftarrow -1 \leftarrow 0 \leftarrow 1 \leftarrow 2 \longrightarrow 3 \leftarrow 4 \longrightarrow 5 \longrightarrow 6 \leftarrow 7 \leftarrow \dots$

• $\Gamma_{\mathrm{rep}^+(Q)}$ consists of \mathcal{P}_Q , one preinjective component \mathcal{I}_{Q^+} ,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

 $\label{eq:ansatz} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category $D^{b}(rep^+(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

Example

- $Q: \dots \leftarrow -1 \leftarrow 0 \leftarrow 1 \leftarrow 2 \longrightarrow 3 \leftarrow 4 \longrightarrow 5 \longrightarrow 6 \leftarrow 7 \leftarrow \dots$
- Γ_{rep⁺(Q)} consists of P_Q, one preinjective component I_{Q⁺}, one regular wing

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

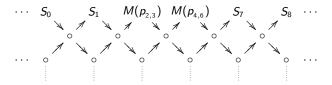
 $\label{eq:ansatz} \begin{array}{c} \mbox{Introduction}\\ \mbox{Preliminaries}\\ \mbox{Auslander-Reiten Theory}\\ \mbox{The infinite Dynkin case}\\ \mbox{AR-theory in the bounded derived category $D^{b}(rep^+(Q))$}\\ \mbox{Existence of a Serre Functor} \end{array}$

Example

$$Q: \dots \leftarrow -1 \leftarrow 0 \leftarrow 1 \leftarrow 2 \longrightarrow 3 \leftarrow 4 \longrightarrow 5 \longrightarrow 6 \leftarrow 7 \leftarrow \dots$$

Γ_{rep⁺(Q)} consists of P_Q, one preinjective component I_{Q⁺}, one regular wing

one regular component of shape $\mathbb{Z}\mathbb{A}_\infty$:



AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category $D^b(rep^+(Q))$ Existence of a Serre Functor

AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

Let $M \in \operatorname{rep}^+(Q)$ be indecomposable.

• *M* neither projective nor pseudo-projective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $\operatorname{DTr} M \longrightarrow N \longrightarrow T M[1]$. $\label{eq:approx_state} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category Db'(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

- *M* neither projective nor pseudo-projective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $\operatorname{DTr} M \longrightarrow N \longrightarrow T M[1]$.
- If $M = P_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x[-1] \longrightarrow (I_x/\operatorname{soc} I_x)[-1] \oplus \operatorname{rad} P_x \longrightarrow P_x \longrightarrow I_x.$

 $\label{eq:approx_state} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category Db'(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

- *M* neither projective nor pseudo-projective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $\operatorname{DTr} M \longrightarrow N \longrightarrow T M[1]$.
- If $M = P_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x[-1] \longrightarrow (I_x/\operatorname{soc} I_x)[-1] \oplus \operatorname{rad} P_x \longrightarrow P_x \longrightarrow I_x.$
- M finite dimensional and not injective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $M \longrightarrow N \longrightarrow \operatorname{TrD} M \longrightarrow M[1]$.

 $\label{eq:approx_state} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category Db'(rep^+(Q)) \\ Existence of a Serre Functor \\ \end{array}$

AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

- *M* neither projective nor pseudo-projective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $\operatorname{DTr} M \longrightarrow N \longrightarrow T M[1]$.
- If $M = P_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x[-1] \longrightarrow (I_x/\operatorname{soc} I_x)[-1] \oplus \operatorname{rad} P_x \longrightarrow P_x \longrightarrow I_x.$
- M finite dimensional and not injective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $M \longrightarrow N \longrightarrow \operatorname{TrD} M \longrightarrow M[1]$.
- If $M = I_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x \longrightarrow I_x / \operatorname{soc} I_x \oplus (\operatorname{rad} P_x)[-1] \longrightarrow P_x[1] \longrightarrow I_x[1].$

 $\label{eq:ansatz} Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category Db[*](rep⁺(Q)) Existence of a Serre Functor$

AR-triangles in $D^b(\operatorname{rep}^+(Q))$

Theorem

- *M* neither projective nor pseudo-projective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $\operatorname{DTr} M \longrightarrow N \longrightarrow T M[1]$.
- If $M = P_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x[-1] \longrightarrow (I_x/\operatorname{soc} I_x)[-1] \oplus \operatorname{rad} P_x \longrightarrow P_x \longrightarrow I_x.$
- M finite dimensional and not injective $\Rightarrow D^{b}(\operatorname{rep}^{+}(Q))$ has AR-triangle $M \longrightarrow N \longrightarrow \operatorname{TrD} M \longrightarrow M[1]$.
- If $M = I_x$ with $x \in Q^+$, then $D^b(\operatorname{rep}^+(Q))$ has AR-triangle $I_x \longrightarrow I_x / \operatorname{soc} I_x \oplus (\operatorname{rad} P_x)[-1] \longrightarrow P_x[1] \longrightarrow I_x[1].$
- The AR-triangles in D^b(rep⁺(Q)) are the shifts of those as stated above.

 $\label{eq:ansatz} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ \textbf{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q)) \\ Existence of a Sere Functor \\ \end{array}$

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

イロト イポト イヨト イヨト

3

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

Proposition

Gluing the preproj component of $\Gamma_{\operatorname{rep}^+(Q)}$ with the shift by -1 of the preinj components, we obtain the connecting component C_Q of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$.

イロト イポト イヨト イヨト

э

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

Proposition

Gluing the preproj component of $\Gamma_{\operatorname{rep}^+(Q)}$ with the shift by -1 of the preinj components, we obtain the connecting component C_Q of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$.

 C_Q has a section generated by the P_x, x ∈ Q₀, which is isomorphic to Q^{op}.

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

Proposition

Gluing the preproj component of $\Gamma_{\operatorname{rep}^+(Q)}$ with the shift by -1 of the preinj components, we obtain the connecting component C_Q of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$.

 C_Q has a section generated by the P_x, x ∈ Q₀, which is isomorphic to Q^{op}.

イロト イポト イヨト イヨト

Э

• \mathcal{C}_Q embeds in $\mathbb{Z}Q^{\mathrm{op}}$.

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

Proposition

Gluing the preproj component of $\Gamma_{\operatorname{rep}^+(Q)}$ with the shift by -1 of the preinj components, we obtain the connecting component \mathcal{C}_Q of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$.

 C_Q has a section generated by the P_x, x ∈ Q₀, which is isomorphic to Q^{op}.

- \mathcal{C}_Q embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- C_Q is standard.

The connecting component

Let $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ be AR-quiver of $D^b(\operatorname{rep}^+(Q))$.

Proposition

Gluing the preproj component of $\Gamma_{\operatorname{rep}^+(Q)}$ with the shift by -1 of the preinj components, we obtain the connecting component C_Q of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$.

 C_Q has a section generated by the P_x, x ∈ Q₀, which is isomorphic to Q^{op}.

() < </p>

- \mathcal{C}_Q embeds in $\mathbb{Z}Q^{\mathrm{op}}$.
- C_Q is standard.
- $\mathcal{C}_Q \cong \mathbb{Z}Q^{\operatorname{op}}$ in case Q has no infinite path.

 $\label{eq:ansatz} Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category DP(rep⁺(Q)) Existence of a Serre Functor$

The AR-components of $D^b(\operatorname{rep}^+(Q))$

Theorem

The components of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ are the shifts of the regular components of $\Gamma_{\operatorname{rep}^+(Q)}$ and those of the connecting component C_Q .

 $\label{eq:approx_production} Introduction Preliminaries Auslander-Reiten Theory The infinite Dynkin case AR-theory in the bounded derived category D⁶(rep⁺(Q)) Existence of a Serre Functor$

The AR-components of $D^b(\operatorname{rep}^+(Q))$

Theorem

The components of $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ are the shifts of the regular components of $\Gamma_{\operatorname{rep}^+(Q)}$ and those of the connecting component C_Q .

Corollary

If Q is a infinite Dynkin quiver, then $\Gamma_{D^b(\operatorname{rep}^+(Q))}$ has at most 3 components up to shift, all of them are standard.

Existence of AR-sequences

Definition

Let \mathcal{A} be Hom-finite abelian k-category. One says that

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

 $\label{eq:approx} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^b(\operatorname{rep}^+(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Existence of AR-sequences

Definition

Let \mathcal{A} be Hom-finite abelian k-category. One says that

• A has *right AR-sequences* if each indec. non-proj. object is ending term of an AR-sequence.

- 4 同 2 4 日 2 4 日 2

Existence of AR-sequences

Definition

Let \mathcal{A} be Hom-finite abelian k-category. One says that

- A has *right AR-sequences* if each indec. non-proj. object is ending term of an AR-sequence.
- A has *left AR-sequences* if each indec. non-inj. object is starting term of an AR-sequence.

Existence of AR-sequences

Definition

Let \mathcal{A} be Hom-finite abelian k-category. One says that

- A has *right AR-sequences* if each indec. non-proj. object is ending term of an AR-sequence.
- A has *left AR-sequences* if each indec. non-inj. object is starting term of an AR-sequence.
- A has AR-sequences if it has both left and right AR-sequences.

 $\label{eq:ansatz} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ \mathbf{Existence of a Serre Functor} \end{array}$

Existence of AR-sequences

Theorem

rep⁺(Q) has left AR-sequences ⇔ Q no right infinite path.

 $\label{eq:approx} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ \mathbf{Existence of a Serre Functor} \end{array}$

Existence of AR-sequences

Theorem

- rep⁺(Q) has left AR-sequences ⇔ Q no right infinite path.
- rep⁺(Q) has right AR-sequences ⇔ Q no left infinite path, or Q is a left infinite or double infinite path.

- A 🗇 N - A 🖻 N - A 🖻 N

 $\label{eq:approx} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^b(\operatorname{rep}^+(Q)) \\ \mathbf{Existence of a Serre Functor} \end{array}$

Existence of AR-sequences

Theorem

- rep⁺(Q) has left AR-sequences ⇔ Q no right infinite path.
- o rep⁺(Q) has right AR-sequences ⇔ Q no left infinite path, or Q is a left infinite or double infinite path.
- rep⁺(Q) has AR-sequences ⇔ Q no infinite path, or Q is a left infinite path.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^{b}(rep^{+}(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Serre Functor

Definition

Let B Hom-finite k-category. A Serre functor F of B is an auto-equivalence of B such that Hom_B(X, Y) ≅ DHom_B(Y, FX), which is natural for X, Y ∈ B.

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^{\mathcal{B}}(\operatorname{rep}^+(Q)) \\ \mathbf{Existence of a Serre Functor} \end{array}$

Serre Functor

Definition

- Let B Hom-finite k-category. A Serre functor F of B is an auto-equivalence of B such that Hom_B(X, Y) ≅ DHom_B(Y, FX), which is natural for X, Y ∈ B.
- Let A be Hom-finite abelian k-category. Say A has a Serre functor if D^b(A) has a Serre functor.

소리가 소문가 소문가 소문가

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Preliminaries} \\ \mbox{Auslander-Reiten Theory} \\ \mbox{The infinite Dynkin case} \\ \mbox{AR-theory in the bounded derived category } D^{b}(rep^{+}(Q)) \\ \mbox{Existence of a Serre Functor} \end{array}$

Serre Functor

Proposition (RVDB)

If \mathcal{A} is a Hom-finite abelian k-category, then it has a Serre functor $\Leftrightarrow D^b(\mathcal{A})$ has AR-triangles.

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

イロン イ部ン イヨン イヨン 三日

 $\label{eq:constraint} \begin{array}{c} Introduction \\ Preliminaries \\ Auslander-Reiten Theory \\ The infinite Dynkin case \\ AR-theory in the bounded derived category <math>D^{\mathcal{B}}(\operatorname{rep}^+(Q)) \\ \mathbf{Existence of a Serre Functor} \end{array}$

Serre Functor

Proposition (RVDB)

If \mathcal{A} is a Hom-finite abelian k-category, then it has a Serre functor $\Leftrightarrow D^b(\mathcal{A})$ has AR-triangles.

Theorem

 $\operatorname{rep}^+(Q)$ has a Serre functor $\Leftrightarrow Q$ no infinite path.

Raymundo Bautista (UNAM) Shiping Liu (Sherbrooke)* Charle Representation theory of strongly locally finite quivers

(ロ) (同) (E) (E) (E)