Tilted Special Biserial Algberas

François Huard and Shiping Liu

Introduction

Tilted algebras, that is endomorphism algebras of tilting modules over a hereditary algebra, have been one of the main objects of study in representation theory of algebras since their introduction by Happel and Ringel [9]. As a generalization, Happel, Reiten and Smalø studied endomorphism algebras of tilting objects of a hereditary abelian category which they call quasi-tilted algebras [8]. We are concerned with the problem of characterizing these algebras in terms of bound quivers. In our previous paper [12], we have found some simple combinatorial criteria to determine if a string algebra is quasi-tilted or tilted or neither. In this paper, we shall consider the same problem for special biserial algebras which are not string algebras. Note that such an algebra is tilted if and only if it is quasi-tilted since there are some indecomposable projective-injective modules [3]. Our strategy is to study the combinatorial interpretation of some behavious of the homological dimensions of the indecomposable modules. This enables us to find first a combinatorial characterization of the special biserial algebras of global dimension at most two, and then some simple necessary and sufficient conditions for a special biserial algebra to be tilted. As one of the applications, this allows one to construct a large class of new examples of tilted algebras.

1. Preliminaries

Throughout this paper, denote by A a basic finite dimension algebra over an algebraically closed field k. It is then well-known that $A \cong k Q / I$ with (Q, I) a finite bound quiver [6]. In this paper we shall identify the category $\bmod A$ of the finite-dimensional (over k) right A-modules with the category of the finite-dimensional representations of (Q, I) over k. We shall consider
only the special biserial algebras. This class of algebras have attracted much of attention of current research $[\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{1 3}, \mathbf{1 7}, 18]$.
1.1. Definition [2, 7]. An algebra A is called special biserial if $A \cong$ $k Q / I$ with (Q, I) a bound quiver satisfying the following:
(1) Each vertex of Q is start-point or end-point of at most two arrows.
(2) For an arrow α, there is at most one arrow β such that $\alpha \beta \notin I$ and at most one arrow γ such that $\gamma \alpha \notin I$.

Moreover A is called a string algebra $i f$, in addition, I is generated by a set of paths of Q.

Let (Q, I) be a bound quiver. A path p of Q is called a zero path if $p \in I$. A zero path is called a zero-relation of (Q, I) if none of its proper subpaths is a zero path. Moreover a pair (p, q) of non-zero paths p, q from a vertex a to a vertex b is called a binomial relation of (Q, I) if $\lambda p+\mu q \in I$ for some non-zero coefficients λ, μ. We call a the start-point, b the end-point and p, q the maximal subpaths of (p, q).

In our later use, by saying that $A \cong k Q / I$ is a special biserial algebra we mean that the bound quiver (Q, I) satisfies the conditions as stated in the above definition. In this case, any minimal set of generators of I consists of zero-relations and binomial relations. However in our terminology, some zero-relations may not belong to any minimal set of generators of I.

We now fix more notation and terminology which will be used throughout this paper. Let Q be a finite quiver. For an arrow α of Q, denote by $s(\alpha)$ its start-point, by $e(\alpha)$ its end-point and by α^{-1} its formal inverse with startpoint $s\left(\alpha^{-1}\right)=e(\alpha)$ and end-point $e\left(\alpha^{-1}\right)=s(\alpha)$, and write $\left(\alpha^{-1}\right)^{-1}=\alpha$. A walk of positive length n is a sequence $w=c_{1} \cdots c_{n}$ with c_{i} an arrow or the inverse of an arrow such that $s\left(c_{i+1}\right)=e\left(c_{i}\right)$ for $1 \leq i<n$. We call c_{1} the initial edge of w and c_{n} the terminal edge. Moreover, we define $s(w)=s\left(c_{1}\right)$ and $e(w)=e\left(c_{n}\right)$. Finally we define $w^{-1}=c_{n}^{-1} \cdots c_{1}^{-1}$. A trivial walk at a vertex a is the trivial path ε_{a} with $e\left(\varepsilon_{a}\right)=s\left(\varepsilon_{a}\right)$, its inverse is itself. A walk w is called reduced if either w is trivial or $w=c_{1} \cdots c_{n}$ such that $c_{i+1} \neq c_{i}^{-1}$ for all $1 \leq i<n$. For convenience, we shall allow ourself to add some appropriate trivial paths in the expression of a walk. For example if $\alpha: a \rightarrow b$ is an arrow, we may write $\alpha=\varepsilon_{a} \alpha=\alpha \varepsilon_{b}^{-1}$. However $\alpha \alpha^{-1}$ and ε_{a} are two distinct walks.

A non-trivial reduced walk $w=c_{1} \cdots c_{n}$ is called a reduced cycle if $s(w)=$ $e(w)$ and $c_{n} \neq c_{1}^{-1}$, and a simple cycle if in addition $s\left(c_{1}\right), \ldots, s\left(c_{n}\right)$ are pairwise distinct. Another reduced cycle w_{1} is said to be equivalent to w if $w_{1}=c_{i} \cdots c_{n} c_{1} \cdots c_{i-1}$ or $w_{1}^{-1} c_{i} \cdots c_{n} c_{1} \cdots c_{i-1}$ for some $1 \leq i \leq n$.

Let $w=c_{1} \cdots c_{n}$ be a non-trivial reduced walk in Q. We say that a nontrivial path p of Q is contained in w if there are some $1 \leq i \leq j \leq n$ such that $p=c_{i} \cdots c_{j}$ or $p^{-1}=c_{i} \cdots c_{j}$. Note that a path of Q may appear many times in a reduced walk. Let q be another path contained in w such that q or q^{-1} is equal to $c_{r} \cdots c_{s}$ for some $1 \leq r \leq s \leq n$. We say that p, q point to the same direction in w if $p=c_{i} \cdots c_{j}, q=c_{r} \cdots c_{s}$ or $p^{-1}=c_{i} \cdots c_{j}, q^{-1}=c_{r} \cdots c_{s}$; otherwise p, q point to opposite directions in w.
1.2. Definition. Let $A=k Q / I$ be a special biserial algebra. A reduced walk w in Q is called a string if each path contained in w is neither a zerorelation nor a maximal subpath of a binomial relation of (Q, I).

Example. Consider the special biserial algebra given by the quiver

bound by the relations $\beta \alpha-\delta \gamma, \delta \mu$ and $\rho \gamma$. Then $\rho \mu \psi^{-1} \phi^{-1} \rho \delta^{-1} \beta$ is a string while $\beta^{-1} \delta \mu \psi^{-1}$ and $\beta \alpha \gamma^{-1} \mu$ are not strings.

Let $A=k Q / I$ be a special biserial algebra. Let w be a string in (Q, I). Throughout this paper we shall denote by $M(w)$ the string module determined by w. Recall that if w is the trivial path at a vertex a, then $M(w)$ is the simple module at a. Otherwise $w=c_{1} c_{2} \cdots c_{n}$, where $n \geq 1$ and c_{i} or c_{i}^{-1} is an arrow. For $1 \leq i \leq n+1$, let $U_{i}=k$; and for $1 \leq i \leq n$, denote by $U_{c_{i}}$ the identity map sending $x \in U_{i}$ to $x \in U_{i+1}$ if c_{i} is an arrow and otherwise the identity map sending $x \in U_{i+1}$ to $x \in U_{i}$. For a vertex a, if a appears in w, then $M(w)_{a}$ is the direct sum of the spaces U_{i} with i such that $s\left(c_{i}\right)=a$ or $i=n+1$ and $e\left(c_{n}\right)=a$; otherwise $M(w)_{a}=0$. For an arrow α, if α appears in w, then $M(w)_{\alpha}$ is the direct sum of the maps $U_{c_{i}}$ such that $c_{i}=\alpha$ or $c_{i}^{-1}=\alpha$; otherwise $M(w)_{\alpha}$ is the zero map.

One says that a string w in (Q, I) starts or ends in a deep if there is no arrow γ such that $\gamma^{-1} w$ or $w \gamma$ is a string, respectively; and it starts or ends
on a peak if there is no arrow δ such that δw or $w \delta^{-1}$ is a string, respectively. For a vertex a of Q, we denote throughout this paper by $S(a), P(a)$ and $I(a)$ the simple module, the indecomposable projective module and the indecomposable injective module at a, respectively. Then $S(a)=M\left(\varepsilon_{a}\right)$ with ε_{a} the trivial path at a. If a is not the start-point of a binomial relation, then $P(a)=M\left(u^{-1} v\right)$, where u, v are paths of non-negative length starting with a such that $u^{-1} v$ is a string starting and ending in a deep. Dually, if a is not the end-point of a binomial relation, then $I(a)=M\left(p q^{-1}\right)$, where p, q are paths of non-negative length ending with a such that $p q^{-1}$ is a string starting and ending on a peak. Finally if a is the start-point of a binomial relation whose end-point is b, then $P(a)$ is isomorphic to $I(b)$, and hence it is projective-injective.
1.3. Definition. Let $A=k Q / I$ be a special biserial algebra. A nontrivial reduced cycle of Q is called a band if each of its powers is a string and it is not a power of a string of less length.

Let $A=k Q / I$ be a special biserial algebra. Let $w=c_{1} c_{2} \cdots c_{n}$ be a band in (Q, I), where $n \geq 1$ and c_{i} or c_{i}^{-1} is an arrow such that $s\left(c_{1}\right)=e\left(c_{n}\right)$. Let ϕ be an indecomposable automorphism of a k-vector space V. One defines a band module $N=N(w, \phi)$ determined by w and ϕ as follows:

For $1 \leq i \leq n$, define $V_{i}=V$. For $1 \leq i<n$, let $f_{c_{i}}$ be the identity map from V_{i} to V_{i+1} if c_{i} is an arrow; and otherwise the identity map from V_{i+1} to V_{i}, and let $f_{c_{n}}$ be the map sending $x \in V_{n}$ to $\phi(x) \in V_{1}$ if c_{n} is an arrow; and otherwise the map sending $x \in V_{1}$ to $\phi^{-1}(x) \in V_{n}$. For each vertex a of Q, if a appears in w, then N_{a} is the direct sum of the spaces V_{i} such that $s\left(c_{i}\right)=a$, and otherwise N_{a} is the zero-space. For each arrow α, if α appears in w, then N_{α} is the direct sum of the maps $f_{c_{i}}$ such that $c_{i}=\alpha$ or $c_{i}=\alpha^{-1}$; and otherwise N_{α} is the zero-map.

The indecomposable modules and the almost split sequences over a special biserial algebra are completely described by Wald and Waschbüsch [18]. We quote what is needed for our purpose as follows.
1.4. Theorem [18]. Let $A=k Q / I$ be a special biserial algebra. Then
(1) An indecomposable module in $\bmod A$ is a string module, a band module or a projective-injective module corresponding to a binomial relation.
(2) Each band module over A is invariant under the Auslander-Reiten translation.

It follows from a result of Skowroński [16] that a special biserial algebra is of directed representation type if and only if there is no special family of local modules. However his combinatorial interpretation of the existence of a special family of local modules does not seem completely correct. We shall give a combinatorial reformulation of this result. In order to do so, we need the following concept.
1.5. Definition. Let $A=k Q / I$ be a special biserial algebra. Let $w=$ $c_{1} \cdots c_{n}$ be a reduced cycle of Q, where c_{i} or c_{i}^{-1} is an arrow α_{i} for $1 \leq i \leq n$. Let $p_{1}, \ldots, p_{s}(s \geq 0)$ the paths contained in w which are either zero-relations or maximal subpaths of binomial relations of (Q, I). We say that w (and any reduced walk equivalent to w) is clockwise in (Q, I) if $\alpha_{1}, \alpha_{n}, p_{1}, \ldots, p_{s}$ all point to the same direction in w.
1.6. Theorem. Let $A=k Q / I$ be a special biserial algebra. Then A is of directed representation type if and only if (Q, I) admits no clockwise cycle.

Proof. Let \bar{I} be the ideal of $k Q$ generated by the zero-relations and the maximal subpaths of the binomial relations of (Q, I). Then $\bar{A}=k Q / \bar{I}$ is a string algebra. It is easy to see that a reduced walk of Q is a string or a band in (Q, I) if and only if it is a string or a band in (Q, \bar{I}), respectively. Therefore an indecomposable module M in $\bmod A$ is a string or a band module over A if and only if it is a string or a band module over \bar{A}, respectively. This implies that A finite representation type if and only if so is \bar{A}. It now follows from a result of de la Peña $[\mathbf{1 4}]$ that \bar{A} is of directed representation type if and only if there is no clockwise cycle in (Q, \bar{I}). Clearly a reduced cyle of Q is clockwise in (Q, \bar{I}) if and only if it is clockwise in (Q, I). Therefore it suffices to show that A is of directed representation type if and only if so is \bar{A}. First that \bar{A} is not of directed representation type implies trivially that A is not either. Assume now that A is not of directed representation type. If A is of infinite representation type, then so is \bar{A}. Thus \bar{A} is not of directed representation type [15]. Suppose that A is of finite representation type. Then there is no band module in $\bmod A$ and there is a cycle

$$
(*) \quad M_{0} \xrightarrow{f_{1}} M_{1} \rightarrow \cdots \rightarrow M_{r-1} \xrightarrow{f_{r}} M_{r}=M_{0}
$$

in $\bmod A$, where the M_{i} are indecomposable modules and the f_{i} are irreducible maps. Then $r>1$ and $M_{i-1} \not \neq M_{i}$ for all $1 \leq i \leq r$. Note that each
M_{i} with $0 \leq i \leq r$ is either a string module or a projective-injective module corresponding to a binomial relation of (Q, I). Let s with $0 \leq s \leq r$ be such that M_{s} is not a string module. We may assume that $0<s<r$. Thus M_{s-1} is the radical of M_{s} and M_{s+1} is the socle-factor of M_{s}. By computing the dimensions, we conclude that there are irreducibles maps $g_{s-1}: M_{s-1} \rightarrow N_{s}$ and $g_{s}: N_{s} \rightarrow M_{s+1}$ with N_{s} indecomposable and $N_{s} \not \neq M_{s}$. Note then that N_{s} is not projective-injective, and hence N_{s} is a string module. Replacing f_{i} by g_{i} for $s-1 \leq i \leq s$, we obtain a cycle in $\bmod A$ containing fewer number of non-string modules. Therefore we may assume that $(*)$ contains only string modules. This implies that $(*)$ is a cycle in $\bmod \bar{A}$. The proof is completed.

2. Projective and injective dimensions

In this section, we shall study the combinatorial interpretation of some behavior of the projective and injective dimensions of the indecomposable modules over a special biserial algebra. To begin with, we state some elementary properties of special biserial algebras, which will be used extensively in our later proofs.
2.1. Lemma. Let $A=k Q / I$ be a special biserial algebra. Then
(1) Any proper subpath of a non-zero path of (Q, I) is a string.
(2) Let u, v and p be non-trivial paths with $e(u)=e(v)=s(p)$. If $v p$ is a non-zero path, then up contains a zero-relation which is not contained in u.
(3) If p is a non-zero path such that $s(p)$ is the start-point of a binomial relation of (Q, I), then p is contained in this binomial relation.
(4) Let (p, q) be a binomial relation of (Q, I). If u is a non-trivial path with $e(u)=s(p)$, then up and $u q$ are both zero paths. If v is a non-trivial path with $s(v)=e(p)$, then $p v$ and $q v$ are both zero paths.

We skip the proof of the above lemma since it is simply a routine verification of the definition of a special biserial algebra.

We shall now find some sufficient conditions for a string module to be of projective dimension greater than one. Note that each reduced walk w in a quiver can be uniquely written as $w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}$, where $n \geq 1$, the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n, 1 \leq j<n$.
2.2. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}
$$

be a string in (Q, I), where $n \geq 1$, the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n, 1 \leq j<n$. Assume that some $s\left(p_{r}\right)(1 \leq r \leq n)$ is the start-point of a binomial relation $\left(p_{r} u_{r}, q_{r} v_{r}\right)$, where u_{r}, v_{r} are non-trivial paths and u_{r} is of length greater than one if $r=1$ and v_{r} is of length greater than one if $r=n$. Then the projective dimension of the string module $M(w)$ is greater than one.

Proof. Let $a_{i}=s\left(p_{i}\right), b_{i}=e\left(p_{i}\right)$ for $1 \leq i \leq n$ and let $b_{n+1}=e\left(q_{n}\right)$. Clearly the projective cover of $M(w)$ is $\oplus_{i=1}^{n} P\left(a_{i}\right)$. Let K be the kernel of the canonical epimorphism from $\oplus_{i=1}^{n} P\left(a_{i}\right)$ to $M(w)$. It suffices to show that K is not projective.

Let $s \leq r \leq t$ be such that a_{i} is the start-point of a binomial relation for all $s \leq i \leq t$ and such that $t-s$ is maximal with respect to this property. For each $s \leq i \leq t$, let u_{i} and v_{i} be paths such that $\left(p_{i} u_{i}, q_{i} v_{i}\right)$ is a binomial relation. Note that the u_{i} and the v_{i} are non-trivial since w is a string. If $s>1$, then let v_{s-1} be the path such that $q_{s-1} v_{s-1}$ is a string ending in a deep and otherwise let v_{0} be the trivial path at b_{1}. Similarly if $t<n$, let u_{t+1} be the path such that $p_{t+1} u_{t+1}$ is a string ending in a deep and otherwise let u_{n+1} be the trivial path at b_{n+1}.

Suppose first that $r=1$. Then u_{1} is of length greater than one by hypothesis. Let $u_{1}=\alpha u$ with α an arrow and u a non-trivial path. If $n=1$, then v_{1} is also of length greater than one by hypothesis, and hence $v_{1}=\beta v$ with β an arrow v a non-trivial path. Now $u v^{-1}$ is a string such that $K=M\left(u v^{-1}\right)$, which is not projective since u, v are non-trivial. If $n>1$, then

$$
w_{1}=u v_{1}^{-1} u_{2} \cdots u_{t} v_{t}^{-1} u_{t+1}
$$

is a string such that $M\left(w_{1}\right)$ is a direct summand of K. Note that $M\left(w_{1}\right)$ is not projective since u, v_{1} are non-trivial. Hence K is not either. A symmetric argument shows that K is not projective if $r=n$.

Suppose now that $1<r<n$. Then it is easy to see that

$$
w_{2}=v_{s-1}^{-1} u_{s} v_{s}^{-1} \cdots u_{r} v_{r}^{-1} \cdots u_{t} v_{t}^{-1} u_{t+1}
$$

is a string such that $M\left(w_{2}\right)$ is a direct summand of K. Note that $M\left(w_{2}\right)$ is not projective since u_{r}, v_{r} are non-trivial, and hence K is not either. This completes the proof.
2.3. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}
$$

be a string in (Q, I), where $n \geq 1$, the p_{i} and the q_{j} are paths which are nontrivial for $1<i \leq n, 1 \leq j<n$. Assume that there is a path q with initial arrow α such that $w \alpha$ is a string and $q_{r} q$ admits exactly one zero-relation, and the zero-relation contains q. Then the projective dimension of $M(w)$ is greater than one.

Proof. First note that q is of length greater than one. Write $q=\alpha u \beta$ with β an arrow and u a path. Then $q_{n} \alpha u$ and $u \beta$ are non-zero by hypothesis. Let $a_{i}=s\left(q_{i}\right)$ for $1 \leq i \leq n$. Then $\oplus_{i=1}^{n} P\left(a_{i}\right)$ is the projective cover of $M(w)$. Let K be the kernel of the canonical epimorphism from $\oplus_{i=1}^{n} P\left(a_{i}\right)$ to $M(w)$. If a_{n} is not the start-point of a binomial relation, then it is easy to see that the string module $M(u)$ is a direct summand of K, which is not projective since $u \beta$ is non-zero. Thus the projective dimension of $M(w)$ is greater than one.

Assume now that a_{n} is the start-point of a binomial relation. It is necessarily of the form $\left(p_{n} u_{n}, q_{n} \alpha u v_{n}\right)$, where u_{n} is a non-trivial path and v_{n} is a path such that $u v_{n}$ is non-trivial, since $q_{n} \alpha u$ is non-zero and $q_{n} \alpha$ is a string by hypothesis. If $n>1$ or $n=1$ with u_{1} of length greater than one, then $M(w)$ is of projective dimension greater than one by Lemma 2.2. Suppose that $n=1$ and u_{1} is an arrow. Then $K=M\left(u v_{1}\right)$. If u is trivial, then $K=M\left(v_{1}\right)$, which is not projective since $v_{1}^{-1} \beta$ is a string. If u is non-trivial, then v_{1} is trivial since $u \beta, u v_{1}$ are non-zero. Thus $K=M(u)$, which is not projective since $u \beta$ is non-zero. Therefore the projective dimension of $M(w)$ is greater than one. The proof is completed.
2.4. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}
$$

be a string in (Q, I), where $n>1$, the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n, 1 \leq j<n$. If there is a non-zero path p such that for some $1<r \leq n$, both $q_{r-1} p$ and $p_{r} p$ are zero paths, then the projective dimension of $M(w)$ is greater than one.

Proof. For each $1 \leq i \leq n$, let $a_{i}=s\left(p_{i}\right)$. Then $\oplus_{i=1}^{n} P\left(a_{i}\right)$ is the projective cover of $M(w)$. Let K be the kernel of the canonical epimorphism from $\oplus_{i=1}^{n} P\left(a_{i}\right)$ to $M(w)$. Let p be a non-zero path such that $q_{r-1} p$ and $p_{r} p$
are zero paths for some $1<r \leq n$. We may assume that p is of minimal length with respect to this property. Write $p=u \alpha$, where α is an arrow and u is a path. Then either $q_{r-1} u$ or $p_{r} u$ is non-zero by the minimality of p.

Suppose that a_{r-1} is the start-point of a binomial relation. It is necessarily of the form $\left(p_{r-1} u_{r-1}, q_{r-1} v_{r-1}\right)$ with u_{r-1}, v_{r-1} some non-trivial paths. If $r>2$ or $r=2$ with u_{r-1} of length greater than one, then $M(w)$ is of projective dimension greater than one by Lemma 2.2. Assume now that $r=2$ and u_{1} is an arrow. Since p is a non-zero path and $q_{1} p$ is a zero path, it is easy to see that $v_{1}^{-1} p$ is a reduced walk. Moreover a_{2} is not the startpoint of a binomial relation since $p_{2} v_{1}$ and $p_{2} p$ are both zero-paths. If $p_{2} u$ is a zero path, then $q_{1} u$ is non-zero with u non-trivial, which is impossible. Therefore $p_{2} u$ is non-zero, and hence $p_{2} u$ is a string ending in a deep. It is now easy to see that $M\left(v_{1}^{-1} u\right)$ is a direct summand of K. Note that $M\left(v_{1}^{-1} u\right)$ is not projective since $u \alpha=p$ is non-zero. Therefore $M(w)$ is of projective dimension greater than one. Using a symmetric argument, one can show that $M(w)$ is of projective dimension greater than one if a_{s} is the start-point of a binomial relation.

Suppose now that neither a_{s-1} nor a_{s} is the start-point of a binomial relation. We may assume that $p_{s} u$ is non-zero. Let v be the path such that $q_{s-1} v$ is a string ending in a deep. Then $M\left(v^{-1} u\right)$ is a direct summand of K. Note that $M\left(v^{-1} u\right)$ is not projective since $u \alpha$ is non-zero. Therefore $M(w)$ is of projective dimension greater than one. The proof is completed.

We shall now find some necessary conditions for a string module to be of projective dimension greater than one.
2.5. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}
$$

be a string in (Q, I), where $n \geq 1$, the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n$ and $1 \leq j<n$. If the projective dimension of $M(w)$ is greater than one, then one of the following cases occurs:
(PD1) There is a path p with initial arrow α such that $\alpha^{-1} w$ is a reduced walk without zero-relations and $p_{1} p$ admits a zero-relation containing p.
(PD2) There is a path q with initial arrow β such that $w \beta$ is a reduced walk without zero-relations and $q_{n} q$ admits a zero-relation containing q.
(PD3) There is a non-zero path u such that for some $1<s \leq n$, both $q_{s-1} u$ and $p_{s} u$ are zero paths.
(PD4) Some $s\left(p_{r}\right)$ with $1 \leq r \leq n$ is the start-point of a binomial relation.
Proof. Assume that none of the stated cases occurs. We shall show that the projective dimension of $M(w)$ is less than two. Let $a_{i}=s\left(p_{i}\right), b_{i}=e\left(p_{i}\right)$ for $1 \leq i \leq n$, and let $b_{n+1}=e\left(q_{n}\right)$. Then the projective cover of $M(w)$ is $\oplus_{i=1}^{n} P\left(a_{i}\right)$. Let K be the kernel of the canonical epimorphism from $\oplus_{i=1}^{n} P\left(a_{i}\right)$ to $M(w)$. It suffices to show that K is projective.

We fix some more notations. Since (PD4) does not occur, a_{i} is not the start-point of a binomial relation for all $1 \leq i \leq n$. Denote by u_{i}, v_{i} the paths such that $u_{i}^{-1} p_{i}^{-1} q_{i} v_{i}$ is a string starting and ending in a deep. Then $P\left(a_{i}\right)=M\left(u_{i}^{-1} p_{i}^{-1} q_{i} v_{i}\right)$ for all $1 \leq i \leq r$. For each $1<i \leq r, b_{i}$ is not the start-point of a binomial relation since (PD3) does not occur. Thus $v_{i-1}^{-1} u_{i}$ is a string, which starts and ends in a deep since (PD3) does not occur. Therefore $M\left(v_{i-1}^{-1} u_{i}\right)=P\left(b_{i}\right)$ for all $1<i \leq n$.

Define $K_{1}=0$ if u_{1} is trivial. Otherwise write $u_{1}=\alpha_{1} u_{0}$ with α_{1} an arrow and u_{0} a path, and define $K_{1}=M\left(u_{0}\right)$. Note that $p_{1} \alpha_{1}$ is non-zero. Since (PD1) does not occur, $s\left(u_{0}\right)$ is not the start-point of a binomial relation and u_{0} is a string starting and ending in a deep. Thus $K_{1}=P\left(s\left(u_{0}\right)\right)$ is projective. Similarly define $K_{n+1}=0$ if v_{n} is trivial. Otherwise write $v_{n}=\alpha_{n+1} v_{n+1}$ with α_{n+1} an arrow and v_{n+1} a path. Define $K_{n+1}=M\left(v_{n+1}\right)$, which is in fact $P\left(s\left(v_{n+1}\right)\right)$ since (PD2) does not occur. Now by computing the dimension of modules, we see that

$$
0 \rightarrow K_{1} \oplus_{i=2}^{n} M\left(v_{i-1}^{-1} u_{i}\right) \oplus K_{n+1} \rightarrow \oplus_{i=1}^{n} P\left(a_{i}\right) \rightarrow M(w) \rightarrow 0
$$

is a short exact sequence in $\bmod A$. Thus $K=K_{1} \oplus_{i=2}^{r} M\left(v_{i-1}^{-1} u_{i}\right) \oplus K_{r+1}$ is projective. The proof is completed.

For the convenience of the reader, we state explicitly the dual result concerning the injective dimension of string modules.
2.6. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=q_{1}^{-1} p_{1}^{-1} \cdots q_{n} p_{n}^{-1}
$$

be a string, where $n \geq 1$, the q_{i} and the p_{j} are paths which are non-trivial for $1<i \leq n$ and $1 \leq j<n$. If the injective dimension of $M(w)$ is greater than one, then one of the following cases occurs:
(ID1) There is a path q with terminal arrow α such that αw is a reduced walk without zero-relations and $q q_{1}$ admits a zero-relation containing q.
(ID2) There is a path p with terminal arrow β such that $w \beta^{-1}$ is a reduced walk without zero-relations and $p p_{n}$ admits a zero-relation containing p.
(ID3) There is a non-zero path u such that for some $1<s \leq n$, both $u p_{s-1}$ and $u q_{s}$ are zero paths.
(ID4) Some $e\left(q_{r}\right)$ with $1 \leq r \leq n$ is the end-point of a binomial relation.
We conclude this section by considering the projective dimension of the band modules.
2.7. Lemma. Let $A=k Q / I$ be a special biserial algebra. Let

$$
w=p_{1} q_{1}^{-1} \cdots p_{n} q_{n}^{-1}
$$

be a band, where $n \geq 1$, the p_{i} and the q_{i} are non-trivial paths such that $s\left(p_{1}\right)=s\left(q_{n}\right)$. Let N be a band module of support w. If N has projective dimension greater than one, then one of the following cases occurs:
(1) Some $s\left(p_{r}\right)$ with $1 \leq r \leq n$ is the start-point of a binomial relation.
(2) There is a non-zero path u such that both $q_{r} u$ and $p_{r} u$ are zero paths for some $1 \leq r \leq n$.

Proof. Assume that the projective dimension of N is greater than one. Then $\operatorname{Hom}\left(D\left({ }_{A} A\right), N\right) \neq 0$ since N is invariant under the Auslander-Reiten translation $[\mathbf{1 5},(2.4)]$. Let a be a vertex such that there is a non-zero map g from $I(a)$ to N. Suppose first that a is the end-point of a binomial relation (p, q). Then $I(a)=P(b)$ is projective, where $b=s(p)$. Thus b appears in w, say in some q_{r} with $1 \leq r \leq n$. If $b=s\left(q_{r}\right)$, then the first case occurs. Otherwise $q_{r}=u_{r} v_{r}$, where u_{r} is a non-trivial path and v_{r} is a path such that $e\left(u_{r}\right)=s\left(v_{r}\right)=b$. Then we may assume that v_{r} is a proper subpath of p. Write $p=v_{r} v$ with v a non-trivial path such that $s(v)=e\left(v_{r}\right)=e\left(p_{r}\right)$. Then $p_{r} v$ is a zero path since p_{r}, v are both non-trivial. Moreover $q_{r} v=u_{r} p$ is a zero path since u_{r} is non-trivial, that is the second case occurs.

Suppose now that a is not the end-point of a binomial relation, then $I(a)=M\left(p q^{-1}\right)$, where p, q are paths such that $p q^{-1}$ is a string starting and ending on a peak. Note that g factors through the socle-factor of $I(a)$. Using the same argument in the proof of $[12,(2.4)]$, one can show that there is a proper subpath v of p (or q) which is also a proper subpath of some p_{s} (or q_{s}) with $1 \leq s \leq n$ so that $p=v u_{1}$ and $p_{s}=u_{2} v$, where u_{1}, u_{2} are some non-trivial paths. Then $p_{s} u_{1}=u_{2} p$ is a zero path since u_{2} is non-trivial. Moreover $q_{s} u_{1}$ is also a zero path. In fact if v is non-trivial, then $q_{s} u_{1}$ is a
zero path since $v u_{1}=p$ is non-zero; and otherwise $q_{s} u_{1}=q_{s} p$ is a zero path since p is a string starting on a peak. This completes the proof.

3. Global dimension

In this section, we shall apply the results of the previous section to study the combinatorial interpretation of some behavior of the global dimension of a special biserial algebra.

We shall first find the necessary conditions for a special biserial algebra to be of global dimension at most two.
3.1. Lemma. Let $A=k Q / I$ be a special biserial algebra of global dimension at most two. Let $(\alpha p \beta, \gamma q \delta)$ be a binomial relation of (Q, I), where $\alpha, \beta, \gamma, \delta$ are some arrows and p, q are some paths. If u is a non-zero path with $e(u)=s(p)$, then either $u \alpha p$ or $u \gamma q$ is non-zero. Dually if v is a non-zero path with $s(v)=e(p)$, then either $p \beta v$ or $q \delta v$ is non-zero.

Proof. Note that $p \beta \delta^{-1} q^{-1}$ is a string such that $M\left(p \beta \delta^{-1} q^{-1}\right)$ is the radical of the indecomposable projective module at $s(\alpha)$. If there is a nonzero path v such that $p \beta v$ and $q \delta v$ are both zero paths. Then by Lemma 2.4 , the projective dimension of $M\left(p \beta \delta^{-1} q^{-1}\right)$ is greater than one. Hence the projective dimension of the simple module at $s(p)$ is greater than two, which is a contradiction. Dually one can show that there is no non-zero path u such that $u \alpha p$ and $u \gamma q$ are both zero paths. The proof is completed.
3.2. Lemma. Let $A=k Q / I$ be a special biserial algebra of global dimension at most two. Then the start-point of a binomial relation of (Q, I) does not lie in another different binomial relation.

Proof. Assume on the contrary that there are two distinct binomial relations $\left(p_{1}, q_{1}\right)$ and $\left(p_{2}, q_{2}\right)$ such that $a_{2}=s\left(p_{2}\right) \in q_{1}$. Let $a_{1}=s\left(p_{1}\right)$. Then $a_{2} \neq a_{1}$. Write $p_{1}=\alpha_{1} u_{1}, q_{1}=\beta_{1} v v_{1}$, where α_{1}, β_{1} are arrows and u_{1}, v, v_{1} are paths with $e(v)=s\left(v_{1}\right)=a_{2}$. Then $\operatorname{rad} P\left(a_{1}\right)=M\left(u_{1} v_{1}^{-1} v^{-1}\right)$. We shall show that $M\left(u_{1} v_{1}^{-1} v^{-1}\right)$ is of projective dimension greater than one, which will lead to a desired contradiction.

We claim that v_{1} is a proper subpath of p_{2} or q_{2}. In fact, suppose that v_{1} is non-trivial. The we may assume that the initial arrow α_{2} of p_{2} is contained in v_{1}. Now v_{1} and p_{2} are two non-zero paths having the same
initial arrow α_{2}. Thus one of v_{1}, p_{2} is contained in the other. Note that v_{1} is a string while p_{2} is not. Thus v_{1} is a proper subpath of p_{2}. Write $p_{2}=v_{1} u$ with u a non-trivial path. Then $u_{1} u$ is a zero path. If v is nontrivial, then $\left(v v_{1}\right) u=v p_{2}$ is a zero path. It follows now from Lemma 2.4 that the projective dimension of $M\left(u_{1} v_{1}^{-1} v^{-1}\right)$ is greater than one. If v is trivial, then $M\left(u_{1} v_{1}^{-1} v^{-1}\right)=M\left(u_{1} v_{1}^{-1}\right)$. By Lemma 2.2, the projective dimension of $M\left(u_{1} v_{1}^{-1}\right)$ is greater than one. This completes the proof.
3.3. Lemma. Let $A=k Q / I$ be a special biserial algebra of global dimension at most two. Then there is no path in Q of the form $p_{1} p_{2} p_{3}$, where p_{1}, p_{2}, p_{3} are non-trivial paths such that p_{2} is a string and $p_{1} p_{2}, p_{2} p_{3}$ are the only zero-relations contained in the path.

Proof. Assume that the lemma was false. Then there is a path $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$, where $\alpha_{i}: a_{i-1} \rightarrow a_{i}$ is an arrow, containing exactly two zero-relations $\alpha_{1} \cdots \alpha_{s}, \alpha_{r} \cdots \alpha_{n}$ with $1<r \leq s<n$ and a string $\alpha_{r} \cdots \alpha_{s}$.

Suppose first that a_{0} is the start-point of a binomial relation (p, q). Let q_{1} be the path such that $\alpha_{1} \cdots \alpha_{s}=\alpha_{1} q_{1} \alpha_{s}$. Then $p=\gamma u, q=\alpha_{1} q_{1} v$, where γ is an arrow and u, v are some paths. Now $M\left(u v^{-1} q_{1}^{-1}\right)=\operatorname{rad} P\left(a_{0}\right)$. We shall show that the projective dimension $M\left(u v^{-1} q_{1}^{-1}\right)$ is greater than one, which will lead to a desired contradiction. In fact, if v is non-trivial, then q_{1} is trivial since $q_{1} \alpha_{s}$ and $q_{1} v$ are both non-zero. Hence $s=r=2$, and $M\left(u v^{-1} q_{1}^{-1}\right)=M\left(u v^{-1}\right)$. Note that $\alpha_{2} \cdots \alpha_{t}$ is a zero-relation and $u v^{-1} \alpha_{2}$ is a string. By Lemma 2.3, the projective dimension of $M\left(u v^{-1}\right)$ is greater than one. If v is trivial, then q_{1} is non-trivial and $M\left(u v^{-1} q_{1}^{-1}\right)=M\left(u q_{1}^{-1}\right)$. Note that $u \alpha_{s}$ is a zero path since $q_{1} \alpha_{s}$ is non-zero. Therefore $u \alpha_{s} \cdots \alpha_{n}$ and $q_{1} \alpha_{s} \cdots \alpha_{n}=\alpha_{2} \cdots \alpha_{n}$ are both zero paths. By Lemma 2.4, the projective dimension of $M\left(u q^{-1}\right)$ is greater than one.

Suppose now that a_{0} is not the start-point of a binomial relation. Let q_{2} be the path such that $\alpha_{1} \cdots \alpha_{r-1}=q_{2} \alpha_{r-1}$. Then q_{2} is a string, and $P\left(a_{0}\right)$ is the projective cover of $M\left(q_{2}\right)$. Let q_{3} be the path such that $\alpha_{r} \cdots \alpha_{s}=q_{3} \alpha_{s}$. Then $M\left(q_{3}\right)$ is a direct summand of the first syzygy of $M\left(q_{2}\right)$. Now $\alpha_{s} \cdots \alpha_{n}$ is a path such that $q_{3} \alpha_{s} \cdots \alpha_{n}=\alpha_{r} \cdots \alpha_{n}$ is a zero-relation and $q_{3} \alpha_{s}=\alpha_{r} \cdots \alpha_{s}$ is a string by hypothesis. By Lemma 2.3, the projective dimension of $M\left(q_{3}\right)$ is greater than one, and hence that of $M\left(q_{2}\right)$ is greater than two, which is again a contradiction. This completes the proof.

We are now able to get a combinatorial characterization of the special biserial algebras of global dimension at most two.
3.4. Theorem. Let $A=k Q / I$ be a special biserial algebra. Then the global dimension of A is at most two if and only if (Q, I) satisfies the following properties:
(GD1) The start-point of a binomial relation does not lie in another different binomial relation.
(GD2) There is no path of the form $p_{1} p_{2} p_{3}$, where p_{1}, p_{2}, p_{3} are nontrivial paths such that p_{2} is a string and $p_{1} p_{2}, p_{2} p_{3}$ are the only zero-relations contained in the path.
(GD3) Let $(\alpha p \beta, \gamma q \delta)$ be a binomial relation, where $\alpha, \beta, \gamma, \delta$ are some arrows and p, q are some paths. If u is a non-zero path with $e(u)=s(\alpha)$, then either $u \alpha p$ or $u \gamma q$ is non-zero. Dually if v is a non-zero path with $s(v)=e(\beta)$, then either $p \beta v$ or $q \delta v$ is non-zero.

Proof. We need only to prove the sufficiency. Assume that (Q, I) satisfies (GD1), (GD2) and (GD3). Let a be a vertex of Q, and let $K=\operatorname{rad} P(a)$. We shall show that the projective dimension of K is at most one. This will complete the proof.

Assume first that a is the start-point of a binomial relation $\left(\alpha q_{1}, \beta q_{2}\right)$, where α, β are some arrows and q_{1}, q_{2} are some non-trivial paths. Then $K=M\left(q_{1} q_{2}^{-1}\right)$. We shall verify that the string $q_{1} q_{2}^{-1}$ satisfies none of (PD1), (PD2), (PD3) and (PD4) as stated in Lemma 2.5. In fact it follows easily from (GD2) that (PD1) or (PD2) does not occur. Moreover (PD3) does not occur by (GD3). Finally (PD4) does not occur by (GD1). Therefore the projective dimension of K is at most one in this case.

Assume now that a is not the start-point of a binomial relation. Suppose that K is of projective dimension greater than one. Then there is a nontrivial path $u_{1}=\alpha_{1} \cdots \alpha_{r}=\alpha_{1} u_{2}$, where $\alpha_{i}: a_{i-1} \rightarrow a_{i}$ is an arrow and u_{2} is a path, such that $a=a_{0}$ and $M\left(u_{2}\right)$ is a direct summand of K. Hence $M\left(u_{2}\right)$ is of projective dimension greater than one. By Lemma 2.5, one of the cases (PD1), (PD2) and (PD4) occurs. Now (PD1) does not occur by (GD2). If (PD4) occurs, that is a_{1} is the start-point of a binomial relation $\left(\beta_{1} v_{1}, u_{2} v_{2}\right)$, where β_{1} is an arrow and v_{1}, v_{2} are non-trivial paths since u_{2} is a string. Note that $\alpha_{1} \beta_{1}$ is a zero-relation, and $\alpha_{1} \cdots \alpha_{r} \beta_{2}$ with β_{2} the initial arrow of v_{2} is a zero path. By (GD3), v_{2} is an arrow. This implies that $M\left(v_{1}\right)$ is the first syzygy of $M\left(u_{2}\right)$, and hence not projective. So there is an arrow ρ such that either $\rho^{-1} v_{1}$ is a reduced walk or $v_{1} \rho$ is a non-zero path. In the first case, $\beta_{1} \rho$ is a zero-relation, which is contrary to (GD2) shown by the path $\alpha_{1} \beta_{1} \rho$. In the second case $v_{2} \rho$ is a zero-relation. Note that $u_{1} v_{2}$ is also a zero-relation.

This leads also to a contradiction to (GD2) since v_{2} is an arrow.
Otherwise a_{1} is not the start-point of a binomial relation, and there is a path $\alpha_{r+1} u_{3}$, where α_{r+1} is an arrow and u_{3} is a non-trivial path, such that $u_{2} \alpha_{r+1}$ is non-zero and $u_{2} \alpha_{r+1} u_{3}$ contains a zero-relation $\alpha_{s} \cdots \alpha_{r+1} u_{3}$ with $1<s \leq r+1$. Note that $\alpha_{1} \cdots \alpha_{s-1} \alpha_{s} \cdots \alpha_{r+1}$ is also a zero-relation. By (GD2), the non-zero path $\alpha_{s} \cdots \alpha_{r+1}$ is not string. Thus $\alpha_{s} \cdots \alpha_{r+1}$ is a maximal subpath of a binomial relation. Hence $s>2$ since a_{1} is not the start-point of a binomial relation. Therefore $\alpha_{2} \cdots \alpha_{s} \cdots \alpha_{r+1}=u_{2} \alpha_{r+1}$ is a zero path, which is a contradiction. The proof is completed.

4. Main result

In this final section, we shall obtain our promised combinatorial criteria for deciding if a special biserial algebra which is not a string algebra is tilted or not. Note that such a special biserial algebra admits a indecomposable projective-injective module. Hence it is tilted if and only if it is quasi-tilted [3]. Recall that an algebra A is quasi-tilted if its global dimension is at most two and each indecomposable module is either of projective dimension at most one or of injective dimension at most one [8].

In order to formulate our main result, we need the following concept.
4.1. Definition. Let $A=k Q / I$ be a special biserial algebra. A reduced walk w in Q is called a sequential pair of zero-relations if
(1) $w=p_{1} p_{2} p_{3}$, where the p_{i} are non-trivial paths such that $p_{1} p_{2}$ and $p_{2} p_{3}$ are the only zero-relations contained in w; or
(2) $w=p w_{1} q$, where w_{1} is a string and p, q are paths which are the only zero-relations contained in w.

Example. Consider the special biserial algebra given by the quiver

bound by the relations $\beta \alpha-\delta \gamma, \delta \mu$ and $\rho \gamma$. Then $\delta \mu \psi^{-1} \phi^{-1} \rho \gamma$ is a sequential pair of zero-relations, while $\rho \gamma \alpha^{-1} \beta^{-1} \delta \mu$ is not.

Remark. Let $A=k Q / I$ be a special biserial algebra. It is easy to verify that each path with more than one zero-relations contains a sequential pair of zero-relation, and so does a reduced walk of the form $p w q$, where w is a string and p, q are some zero paths.
4.2. Lemma. Let $A=k Q / I$ be a special biserial algebra of global dimension two. If there is a string module of projective and injective dimensions both equal to two, then (Q, I) admits a sequential pair of zero-relations.

Proof. Note first that (Q, I) satisfies (GD1), (GD2) and (GD3) as stated in Theorem 3.4. Let now w be a string such that $M(w)$ has projective and injective dimensions both equal to two. We shall find a sequential pair of zero-relations in (Q, I).

We first consider the case where $w=\varepsilon$ is a trivial path at a vertex a. Then $w=\varepsilon^{-1} \varepsilon=\varepsilon \varepsilon^{-1}$. By Lemma 2.5, either (PD1) or (PD4) occurs, and by Lemma 2.6, either (ID1) or (ID4) occurs. Assume that (PD1) occurs, that is there is a zero-relation p with initial arrow such that $s(\alpha)=a$. If (ID1) occurs, then there is a zero-relation q with $e(q)=a$. Thus $q p$ is a sequential pair of zero-relations. If (ID4) occurs, then there is a binomial relation $(u \beta, v \gamma)$, where u, v are some paths and β, γ are some arrows such that $e(\alpha)=a$. Then either $\beta \alpha$ or $\gamma \alpha$ is a zero-relation, which is a contradiction to (GD2). Dually (PD4) and (ID1) can not both occur. Finally (PD4) and (ID4) can not both occur by (GD1).

Suppose now that w is non-trivial. Write $w=p_{1}^{-1} q_{1} \cdots q_{r-1} p_{n}^{-1} q_{n}$, where $n \geq 1$, the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n$ and $1 \leq j<n$. We shall consider only the case where p_{1} is non-trivial and q_{n} is trivial, since the other cases can be treated similarly. In this situation, we have $w=q_{0} p_{1}^{-1} q_{1} \cdots q_{n-1} p_{n}^{-1}$ with q_{0} the trivial path at $e\left(p_{1}\right)$. By Lemma 2.5 , one of the cases (PDi) with $1 \leq i \leq 4$ occurs, and by Lemma 2.6 , one of the cases (IDi) with $1 \leq i \leq 4$ occurs. We shall complete the proof by considering separately the following cases.
(1) Case (PD1) occurs, that is there is a path p_{0} with initial arrow α_{1} such that $p_{1} p_{0}$ is a zero path while $p_{1} \alpha_{1}$ is non-zero. If (ID1) occurs, then there is a zero-relation with terminal arrow β_{0} such that $e\left(\beta_{0}\right)=e\left(p_{1}\right)=s\left(\alpha_{1}\right)$. Now $\beta_{0} \alpha_{1}$ is a zero-relation since p_{1} is non-trivial and $p_{1} \alpha_{1}$ is non-zero. Thus $\beta_{0} p$ gives rise to a contradiction to (GD2). If $e\left(p_{1}\right)$ is the end-point of a binomial relation, then it is of the form $\left(u_{0}, v_{0} p_{1}\right)$ with u_{0}, v_{0} some non-trivial paths. Note that $v_{0} p_{1} \alpha_{1}$ is a zero path. Thus $v_{0} p_{1} p_{0}$ contains two distinct zero-
relation since $p_{1} \alpha_{1}$ is non-zero, and hence a sequential pair of zero-relations. In all other cases, observing that p_{i} is non-trivial for all $1 \leq i \leq n$, it is easy to verify that there is a path u_{r} such that $u_{r} p_{r}$ is a zero path for some $1 \leq r \leq n$. Thus $\left(u_{r} p_{r}\right) q_{r-1}^{-1} \cdots q_{1}^{-1}\left(p_{1} p_{0}\right)$ contains a sequential pair of zero-relations.
(2) Case (PD2) occurs, that is there is a zero-relation q_{n+1} with initial arrow α_{n+1} such that $p_{n}^{-1} \alpha_{n+1}$ is a reduced walk. If (ID2) occurs or $e\left(p_{n}\right)$ is the end-point of a binomial relations, then there is an arrow β_{n+1} such that $\beta_{n+1} p_{n}$ is a non-zero path. Thus $\beta_{n+1} \alpha_{n+1}$ is a zero-relation. Then $\beta_{n+1} q_{n+1}$ gives rise to a contradiction to (GD2). In all other cases, observing that the q_{i} with $0<i<n$ are non-trivial, it is easy to verify that there is a path v_{s} such that $v_{s} q_{s}$ is a zero path and $v_{s} q_{s} p_{s+1}^{-1}$ is a reduced walk for some $0 \leq s<n$. Thus $\left(v_{s} q_{s}\right) p_{s+1}^{-1} \cdots p_{n}^{-1}\left(q_{n+1}\right)$ contains a sequential pair of zero-relations.
(3) Case (PD3) occurs, that is for some $1<s \leq n$, there is a non-zero path u_{s} such that $p_{s} u_{s}$ and $q_{s-1} u_{s}$ are both zero paths. Note that $e\left(p_{s}\right)$ is not the end-point of a binomial relation by (GD3), moreover, the q_{i} with $0<i<s$ and the p_{i} with $s \leq i \leq n$ are non-trivial. It is easy to verify that each of (IDi) with $1 \leq i \leq 4$ implies that either for some $0 \leq r<s$, there is a path v_{r} such that $v_{r} q_{r}$ is a zero path and $v_{r} q_{r} p_{r+1}^{-1}$ is a reduced walk; or for some $s \leq t \leq n$, there is a path v_{t} such that $v_{t} p_{t}$ is a zero path. In the first case $\left(v_{r} q_{r}\right) p_{r+1}^{-1} \cdots p_{s-1}^{-1}\left(q_{s-1} u_{s}\right)$ contains a sequential pair of zerorelations. In the second case, $\left(v_{t} p_{t}\right) q_{t-1}^{-1} \cdots q_{s}^{-1}\left(p_{s} u_{s}\right)$ contains a sequential pair of zero-relations.
(4) The vertex $s\left(p_{1}\right)$ is the start-point of a binomial relation $\left(p_{1} u_{1}, q_{1} v_{1}\right)$, where u_{1}, v_{1} are some non-trivial paths. If (ID1) occurs, then there is a zero path v_{0} with terminal arrow β_{0} such that $\beta_{0} p_{1}^{-1}$ is a reduced walk. Then $\beta_{0} \gamma_{1}$ is a zero-relation, where γ_{1} is the initial arrow of u_{1}. Now $y_{0} \gamma_{1}$ gives rise to a contradiction (GD2). If (ID2) occurs, then there is path y_{n} with terminal arrow β_{n} such that $y_{n} p_{n}$ is a zero path while $\beta_{n} p_{n}$ is non-zero. If $n=1$, then $\beta_{1} p_{1} u_{1}$ is a zero path. Therefore $y_{1} p_{1} u_{1}$ contains two distinct zero-relations since $\beta_{1} p_{1}$ is a non-zero path, and hence a sequential pair of zero-relations. If $n>1$, then $p_{2} v_{1}$ is a zero-path. Thus $\left(y_{n} p_{n}\right) q_{n-1}^{-1} \cdots q_{3}^{-1}\left(p_{2} v_{1}\right)$ contains a sequential pair of zero-relations. Note now that $e\left(p_{1}\right)$ and $e\left(q_{1}\right)$ are not end-points of binomial relations by (GD1) and there is no non-zero path y such that $e(y)=s\left(p_{1}\right)$ and $y p_{1}$ and $y q_{1}$ are both zero paths. If (ID3) or (ID4) occurs, then it is easy to see that $n>1$ and for some $2 \leq r \leq n$, there is a path v_{r} such that $v_{r} p_{r}$ is a zero path. Therefore $\left(v_{r} p_{r}\right) q_{r-1}^{-1} \cdots q_{3}^{-1}\left(p_{2} v_{1}\right)$ contains a sequential pair of zero-relations.
(5) Assume that $n>1$ and $s\left(p_{n}\right)$ is the start-point of a binomial relation $\left(p_{n} u_{n}, v_{n}\right)$, where u_{n}, v_{n} are some non-trivial paths. If (ID2) occurs, then there is a non-trivial path y_{n} with terminal arrow β_{n} such that $y_{n} p_{n}$ is a zero path while $\beta_{n} p_{n}$ is non-zero. Note that $\beta_{n} p_{n} u_{n}$ is a zero path. Thus $y_{n} p_{n} u_{n}$ contains two distinct zero-relations since $\beta_{n} p_{n}$ is non-zero, and hence a sequential paire of zero-relations. Note that $e\left(p_{n}\right)$ is not the end-point of a binomial relation. Thus in all other cases, for some $0 \leq s<n$, there is a non-zero path y_{s} such that $y_{s} q_{s}$ is a zero-path and $y_{s} q_{s} p_{s+1}^{-1}$ is reduced walk. Note that $q_{n-1} u_{n}$ is a zero path. Thus $\left(y_{s} q_{s}\right) p_{s+1}^{-1} \cdots p_{n-1}^{-1}\left(q_{n-1} u_{n}\right)$ contains a sequential pair of zero-relations.
(6) Assume that $n>1$ and some $s\left(p_{s}\right)$ with $1<s<n$ is the start-point of a binomial relation $\left(p_{s} u_{s}, q_{s} v_{s}\right)$, where u_{s}, v_{s} are some non-trivial paths. Note that $e\left(q_{s-1}\right)$ and $e\left(q_{s}\right)$ are not end-points of binomial relations by (GD1). It is then easy to check that each of the (IDi) with $1 \leq i \leq 4$ implies that either for some $0 \leq r<s$ there is a non-trivial path y_{r} such that $y_{r} q_{r}$ is a zero path and $y_{r} q_{r} p_{r+1}^{-1}$ is a reduced walk; or for some $s<t \leq n$, there is a non-trivial path y_{t} such that $y_{t} p_{t}$ is a zero path. Note that $q_{s-1} u_{s}, p_{s+1} v_{s}$ are both zero paths. Thus in the first case, $\left(y_{r} q_{r}\right) p_{r+1}^{-1} \cdots p_{s-1}^{-1}\left(q_{s-1} u_{s}\right)$ contains a sequential pair of zero-relation. Similarly in the second case, $\left(y_{t} p_{t}\right) q_{t-1}^{-1} \cdots q_{s+1}^{-1}\left(p_{s+1} v_{s}\right)$ contains a sequential pair of zero-relation. The proof is now completed.
4.3. Lemma. Let $A=k Q / I$ be a special biserial algebra of global dimension two. If there is a band module of projective and injective dimensions both equal to two, then (Q, I) admits a sequential pair of zero-relations.

Proof. First (Q, I) satisfies (GD1), (GD2) and (GD3) as stated in Theorem 3.4. Let $w=p_{1} q_{1}^{-1} \cdots p_{n} q_{n}^{-1}$ be a band, where $n \geq 1$, the p_{i} and the q_{i} are non-trivial paths such that $s\left(p_{1}\right)=s\left(q_{n}\right)$. Let N be a band module of support w such that N is of projective and injective dimensions both equal to two. Define $p_{0}=p_{n}, p_{n+1}=1$ and $q_{0}=q_{n}, q_{n+1}=1$. By Lemma 2.7, either some $s\left(p_{r}\right)$ with $1 \leq r \leq n$ is the start-point of a binomial relation $\left(q_{r-1} q, p_{r} p\right)$ or there is a path u_{s} such that $p_{s} u_{s}$ and $q_{s} u_{s}$ are both zero paths for some $1 \leq s \leq n$. By the dual of Lemma 2.7, either some $e\left(q_{m}\right)$ with $1 \leq m \leq n$ is the end-point of a binomial relation $\left(u p_{m}, v q_{m}\right)$ or there is a path v_{t} such that $v_{t} p_{t}$ and $v_{t} q_{t-1}$ are both zero paths for some $1 \leq t \leq n$.

Suppose first that the binomial relation $\left(q_{r-1} q, p_{r} p\right)$ with $1 \leq r \leq n$ exists. Then $p_{r-1} q, q_{r} p$ are both zero paths. If the binomial relation $\left(u p_{m}, v q_{m}\right)$ with $1 \leq m \leq n$ exists, then $m \neq r-1$ and $m \neq r$ by (GD1). Note that $v p_{m+1}$ and $u q_{m-1}$ are both zero paths. Thus $\left(v p_{m+1}\right) q_{m+1}^{-1} \cdots q_{r-2}^{-1}\left(p_{r-1} q\right)$
contains a sequential pair of zero-relations provided that $m<r-1$ and $\left(u q_{m-1}\right) p_{m-1}^{-1} \cdots p_{r+1}^{-1}\left(q_{r} p\right)$ contains a sequential pair of zero-relations provided that $m>r$. If the path v_{t} exists such that $v_{t} p_{t}$ and $v_{t} q_{t-1}$ are both zero paths for some $1 \leq t \leq n$, then $t \neq r$ by (GD3). Thus $\left(v_{t} p_{t}\right) q_{t+1}^{-1} \cdots q_{r-1}^{-1}\left(p_{r-1} q\right)$ contains a sequential pair of zero-relations provided that $t<r$ and $\left(v_{t} q_{t-1}\right) p_{t-1}^{-1} \cdots p_{r+1}^{-1}\left(q_{r} p\right)$ contains a sequential pair of zero-relations provided that $t>r$.

Suppose now that the path u_{s} exists such that $p_{s} u_{s}$ and $q_{s} u_{s}$ are both zero paths for some $1 \leq s \leq n$. If the binomial relation $\left(u p_{m}, v q_{m}\right)$ with $1 \leq m \leq n$ exists, then $m \neq s$ by (GD3). Note that $v p_{m+1}$ and $u q_{m-1}$ are both zero paths. Thus $\left(v p_{m+1}\right) q_{m+1}^{-1} \cdots q_{s-1}^{-1}\left(p_{s} u_{s}\right)$ contains a sequential pair of zero-relations provided that $m<s$ and $\left(u q_{m-1}\right) p_{m-1}^{-1} \cdots p_{s+1}^{-1}\left(q_{s} u_{s}\right)$ contains a sequential pair of zero-relations provided that $m>s$. If the path v_{t} exists such that $v_{t} p_{t}$ and $v_{t} q_{t-1}$ are both zero paths for some $1 \leq t \leq n$, then $\left(v_{t} p_{t}\right) q_{t}^{-1} \cdots q_{s-1}^{-1}\left(p_{s} u_{s}\right)$ contains a sequential pair of zero-relations if $t \leq s$; and otherwise $\left(v_{t} q_{t-1}\right) p_{t-2}^{-1} \cdots p_{s+1}^{-1}\left(q_{s} u_{s}\right)$ contains a sequential pair of zerorelations. This completes the proof.

We are now able to obtain our main result as follows.
4.4. Theorem. Let $A=k Q / I$ be a special biserial algebra which is not a string algebra. Then A is tilted if and only if (Q, I) satisfies the following:
(1) There is no sequential pair of zero-relations.
(2) The start-point of a binomial relation does not lie in another different binomial relation.
(3) Let $(\alpha p \beta, \gamma q \delta)$ be a binomial relation, where $\alpha, \beta, \gamma, \delta$ are some arrows and p, q are some paths. If u is a non-zero path with $e(u)=s(\alpha)$, then either uap or $u \gamma q$ is non-zero. Dually if v is a non-zero path with $s(v)=e(\beta)$, then either $p \beta v$ or $q \delta v$ is non-zero.

Proof. Since A is not a string algebra, there is at least one indecomposable projective-injective module. Thus it follows from a result of Coelho and Skowronski [3] that A is tilted if and only if A is quasi-tilted. We shall show that A is quasi-tilted if and only if (Q, I) satisfies the conditions as stated in the theorem.

Assume first that (Q, I) satisfies (1), (2) and (3). By theorem 3.4, the global dimension of A is at most two. Let M be an indecomposable module in $\bmod A$ which is not projective-injective. Then M is either a string module or a band module by Theorem 1.4. It follows now from Lemmas 4.2 and 4.3
that M is either of projective dimension at most one or of injective dimension at most one. Therefore A is quasi-tilted.

Conversely assume that A is quasi-tilted. In particular the global dimension of A is at most two. By Theorem 3.4, (Q, I) satisfies (2) and (3). Assume on the contrary that (Q, I) admits a sequential pair of zero-relation \tilde{w}. If $\tilde{w}=p_{1} p_{2} p_{3}$, where p_{1}, p_{2}, p_{3} are non-trivial paths and $p_{1} p_{2}$ and $p_{2} p_{3}$ are the only zero-relations contained \tilde{w}. By Theorem 3.4, p_{2} is not a string. Then there is a binomial relation $\left(\alpha_{1} u \alpha_{2}, p_{2}\right)$, where α_{1}, α_{2} are arrows and u_{1} is a path. Let β_{1} be the terminal arrow of p_{1} and β_{3} the initial arrow of p_{3}. Then $\beta_{1} \alpha_{1}, \alpha_{2} \beta_{3}$ are zero-relations. Therefore $\beta_{1} \alpha_{1} u \alpha_{2} \beta_{3}$ is a seuqential pair of zero-relations with u_{1} a string.

Thus we may assume that \tilde{w} is of the form $\tilde{w}=p w q$, where w is a string and p, q are paths which are the only zero-relations contained in \tilde{w}. We may further assume that \tilde{w} is such that w is of minimal length. Let α be the terminal arrow of p and β the initial arrows of q. We claim that αw and $w \beta$ are strings. In fact, we write $w=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n}$, where the p_{i} and the q_{j} are paths which are non-trivial for $1<i \leq n$ and $1 \leq j \leq n$. Note that $w \beta=p_{1}^{-1} q_{1} \cdots p_{n}^{-1} q_{n} \beta$ is a reduced walk without zero-relations. Suppose that $w \beta$ is not a string. Then $q_{n} \beta$ is a maximal subpath of a binomial relation, which is necessarily of the form $\left(p_{n} \gamma u_{n}, q_{n} \beta\right)$, where γ is an arrow and u_{n} is a path. If $n=1$, then $\alpha \gamma$ is a zero-relation. The path $p_{1} \gamma$ gives rise to a contradiction to Lemma 3.3. Thus $n>1$, hence p_{n} and q_{n-1} are non-trivial. Write $q_{n-1}=v_{n-1} \delta$, where v_{n-1} is a path and δ is an arrow. Then $\delta \gamma$ is a zero-relation. Let $w_{1}=p_{1}^{-1} q_{1} \cdots p_{n-1}^{-1} v_{n-1}$. Then w_{1} is a proper substring of w such that $p_{1} w_{1} \delta \gamma$ is a sequential pair of zero-relation. This contradicts the minimality of the length of w. Thus $w \beta$ is a string, and so is αw by duality. It follows now from Lemma 2.3 and its dual that the string module $M(w)$ is of projective and injective dimensions both greater than one, which is a desired contradiction. The proof is completed.

Combining our main result in [12] with the above theorem, we obtain a complete characterization of tilted special biserial algebras in terms of bound quivers.

Example. Consider the algebra defined by the bound quiver

where the relations are $\rho \psi, \alpha \phi, \rho \eta, \gamma \beta \mu$ and all possible paths $\alpha \beta$ as well as all possible differences $\rho \phi-\alpha \eta$. This is a special biserial algebra satisfying the conditions (1), (2) and (3) as stated in the above theorem. Thus it is a tilted algebra.

We conclude the paper with some remarks. The module category of a tilted special biserial algebra is well-understood. In fact one easily read off its Auslander-Reiten quiver from its bound quiver. To be more precise, let $A=k Q / I$ be a special biserial algebra which is not hereditary of type \tilde{A}_{n} and let Γ_{A} the Auslander-Reiten quiver of A. Then a component of Γ is either of shape $\mathbf{N} \tilde{A}_{n}$ or $(-\mathbf{N}) \tilde{A}_{n}$, or a standard tube or the connecting component. Assume that (Q, I) admits $r(\geq 0)$ full bound subquivers of type \tilde{A}_{n} (of which r_{1} is not of type \tilde{A}_{2}) having an arrow entering them; and $s(\geq 0)$ full bound subquivers of type \tilde{A}_{n} (of which s_{1} is not of type \tilde{A}_{2}) having an arrow leaving them. Then Γ_{A} contains exactly $r+s$ standard orthogonal tubular families, r components of shape $\mathbf{N} \tilde{A}_{n}, s$ components of shape $(-\mathbf{N}) \tilde{A}_{n}$ and $2\left(r_{1}+s_{1}\right)$ non-homogeneous tubes.

Acknowledgements. Both authors gratefully acknowledge financial support from NSERC of Canada and FCAR of Québec.

References

[1] F. M. Bleher, Special biserial algebras and their automorphisms, preprint.
[2] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra, 15 (1987), 145-179.
[3] F. Coehlo and A. Skowroński, On Auslander-Reiten components for quasi-tilted algebras, Fund. Math., 149 (1996), 67-82.
[4] W. W. Crawley-Boevey, Maps between representations of zero-relation algebras, J. Algebra, 126 (1989), 259-263.
[5] K. R. Fuller, Biserial Rings, Lecture Notes in Mathematics, 734 (Springer, Berlin, 1979), 64-90.
[6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Mathematics, 831 (Springer, Berlin, 1980), 1 71.
[7] E. L. Green, D. Happel and D. Zacharia, Projective resolutions over algebras with zero relations, Illinois J. Math., 29 (1985), 180-190.
[8] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Memoirs Amer. Math. Soc., 575 (1996).
[9] D. Happel and C. M. Ringel, Tilted Algebras, Trans. Amer. Math. Soc., 274 (1982), 399-443.
[10] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manucripta Math., 42 (1983), 221 243.
[11] F. Huard, Tilted gentle algebras, Comm. Algebra, (1) 26 (1998) 63-72.
[12] F. Huard and Shiping Liu, Tilted string algebras, preprint.
[13] H. Krause, Maps between tree and band modules, J. Algebra, 126 (1991), 186-194.
[14] J. A. de la Peña, Representation-finite algebras whose Auslander-Reiten quiver is planar, J. London Math. Soc., (2) 32 (1985), 62 - 74.
[15] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, 1099 (Springer, Berlin, 1984).
[16] A. Skowroński, On nonexistence of oriented cycles in Auslander-Reiten quivers, Acta Universitatis Carolinae - Mathematica et Physica, 25 (1984), 45 - 52.
[17] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew Math., 345 (1983) 172-181.
[18] B. Wald and J. Waschbüsch, Tame biserial algberas, J. Algebra, 95 (1985), 480 - 500.

François Huard
Department of Mathematics
Bishop's University
Lennoxville, Quebec
Canada J1M 1Z7
Shiping Liu
Département de Mathématiques et d'Informatique
Université de Sherbrooke
Sherbrooke, Québec
Canada J1K 2R1

