
The strong no loop conjecture for special biserial algebras

Shiping Liu and Jean-Philippe Morin

Dedicated to Claus M. Ringel on the occasion of his sixtieth birthday

Introduction

Let A be a finite dimensional algebra over a field given by a quiver with relations.
Let S be a simple A-module with a non-split self-extension, that is, the quiver has
a loop at the corresponding vertex. The strong no loop conjecture claims that S
is of infinite projective dimension; see [1, 6]. This conjecture remains open except
for monomial algebras; see, for example, [2, 6, 8, 11]. Under certain hypothesis
on the loop, Green, Solberg and Zacharia have shown that Exti

A(S, S) does not
vanish for every i ≥ 1; see [5, (4.2)]. In this paper, we shall first present a short
proof of this result, because not only is the original proof rather complex, but
also our idea possibly works for other cases. Next we observe that this result
reduces the conjecture to the case where some power of the loop is a component
of a polynomial relation. This reduction works particularly well when A is special
biserial, due to a combinatorial description of the syzygies of string modules; see
(2.2). Our main result says that Exti

A(S, S) does not vanish for every i ≥ 1 if
the convex support of S is special biserial. We shall also prove that if S has an
almost split self-extension, then the block of A supporting S is a local Nakayama
algebra, in particular, Exti

A(S, S) does not vanish for every i ≥ 1. In the course of
its proof, we easily get a characterization of Nakayama algebras, strengthening the
one stated in [1, (IV.2.10)]. Contrary to what will be seen in this paper, Happel’s
example stated in [5, Section 4] shows the existence of a simple module S with a
loop but Exti(S, S) = 0 for infinitely many i. Our motivation for studying special
biserial algebras comes from the following two aspects. First of all, since their
representations are completely understood, they form naturally a testing class for
various well-known conjectures in the representation theory of algebras. Secondly,
these algebras play an important role in the modular representation theory of finite
groups; see [7], tracing back to the classification of the indecomposable Harish-
Chandra modules of the Lorentz group by Gelfand and Ponomarev; see [4].

1. Loops with no power a component of polynomial relations

To begin with, we fix some notation and terminology. Throughout this paper, k
stands for a field and Q for a finite quiver. Let kQ be the path algebra of Q over k,
and Q+ the ideal generated by the arrows. Note that we shall compose the paths
of Q from the left to the right. If I is an ideal such that (Q+)m ⊆ I ⊆ (Q+)2 for
some m ≥ 2, then the pair (Q, I) is called a bound quiver. We shall always assume
that I is such an ideal. Let p1, . . . , pr be pairwise distinct paths of Q from a vertex
a to a vertex b, and let λ1, . . . , λr ∈ k be nonzero scalars. We call

ρ = λ1p1 + · · ·+ λrpr
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a relation on Q if ρ ∈ I while
∑

i∈Ω λipi /∈ I for all Ω ⊂ {1, . . . , r}. In this case,
p1, . . . , pr are called the components of ρ and a the start-point. Moreover, ρ is called
monomial, binomial, or polynomial if r = 1, r = 2, or r ≥ 2, respectively.

The quotient A = kQ/I is called the algebra of the bound quiver (Q, I). If
x ∈ kQ, we shall denote by x̄ the class x + I ∈ A. An A-module means a right
module of finite k-dimension except otherwise stated explicitly. The radical, the
top, and the n-th syzygy of an A-module M will be denoted by radM , top M and
Ωn(M), respectively. We call x ∈ M a top element if x /∈ rad M . For a vertex a of
Q, we shall denote by S(a) and P (a) the simple A-module and the indecomposable
projective A-module associated to a, respectively.

The elements of a direct sum of A-modules are written as column matrices. Let
e1, . . . , er be idempotents of A. Then an A-linear map φ : e1A⊕ · · · ⊕ erA → M is
left multiplication by a matrix (x1, . . . , xr) with xi ∈ Mei. In this case, we say that
φ is represented by (x1, . . . , xr). In particular, if f1, . . . , fs are also idempotents of
A, then an A-linear map from e1A ⊕ · · · ⊕ erA to f1A ⊕ · · · ⊕ fsA is represented
by a (s × r)-matrix whose (i, j)-entry is an element of fiAej . For convenience of
reference, we state the following well-known result.

1.1. Lemma. Let A be the algebra of a finite bound quiver with e1, ..., es some
primitive idempotents. Let M be a non-zero A-module with xi ∈ Mei for 1 ≤ i ≤ s.
If the classes of x1, ..., xs in top M are linearly independent over k, then there exist
primitive idempotents es+1, ..., er ∈ A and xs+1 ∈ Mes+1, . . . , xr ∈ Mer such that

(x1, . . . , xs, xs+1, . . . , xr) : e1A⊕ · · · ⊕ esA⊕ es+1A⊕ · · · ⊕ erA −→ M

is a projective cover of M .

We now give the promised alternative proof of Proposition 4.2 in [5].

1.2. Proposition (Green-Solberg-Zacharia). Let A be the algebra of a
bound quiver (Q, I), containing a loop α at a vertex a. If for some n ≥ 2, αn lies
in I but not in IQ+ + Q+I, then for all i ≥ 1, Exti

A(S(a), S(a)) does not vanish.
Proof. Suppose that αn ∈ I but αn /∈ IQ+ + Q+I. In particular, αn−1 6∈ I.

Let αi : a → ci, i = 1, . . . , t, be the arrows starting at a with α1 = α. Then S(a)
admits a minimal projective resolution

· · · −→ Pm
φm−→ Pm−1 −→ · · · −→ P1

φ1−→ P0−→S(a) −→ 0,

where P0 = P (a), P1 = P (c1) ⊕ · · · ⊕ P (ct), and φ1 is represented by (ᾱ1 . . . , ᾱt).
Assume, for m ≥ 1, that Pm

∼= P (b1) ⊕ P (b2) ⊕ · · · ⊕ P (bs) with s ≥ 1 and
Pm−1

∼= P (a1)⊕ P (a2)⊕ · · · ⊕ P (ar) with r ≥ 1, where the ai, bj are vertices with
a1 = b1 = a, while φm is isomorphic to the map represented by a matrix of the
following form : 



x̄11 x̄12 · · · x̄1s

0 x̄22 · · · x̄2s

...
...

. . .
...

0 x̄r2 · · · x̄rs


 ,

where xij is a linear combination of non-trivial paths from ai to bj with x11 being
α or αn−1. We shall show that φm+1 is isomorphic to the map represented by a
matrix of this form. By Lemma 1.1, it suffices to prove that kerφm contains a top
element of the form (ȳ11, 0, . . . , 0)T with y11 = α or αn−1. Indeed, if x11 = αn−1,
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then (ᾱ, 0, . . . , 0)T clearly lies in kerφm but not in its radical since kerφm ⊆ rad Pm.
If x11 = α, then Z =

(
ᾱn−1, 0, . . . , 0

)T ∈ kerφm. Assume on the contrary that Z
lies in the radical of kerφm. Then Z = Y ū with Y ∈ kerφm and u ∈ Q+. Since Y ∈
radPm, we may write Y = (ȳ1, ȳ2, . . . , ȳs)

T with yi ∈ Q+. Now v = αn−1−y1u, y2u,
. . . , ysu ∈ I since Z = Y ū, and w = αy1 +x12y2 + · · ·+x1sys ∈ I, since Y ∈ kerφm.
Therefore, αn = αv + αy1u = αv + wu− (x12y2u + · · ·+ x1sysu) ∈ Q+I + IQ+, a
contradiction. Thus Z is indeed a top element of kerφm. By induction, we have
shown that P (a) is a direct summand of Pm for all m ≥ 1. This completes the
proof of the proposition.

We now deduce some useful consequences from the above result.

1.3. Corollary. Let A be the algebra of a bound quiver (Q, I), containing a
loop α at a vertex a. If no power of α is a component of a polynomial relation, then
for all i ≥ 1, Exti

A(S(a), S(a)) does not vanish.
Proof. Let n ≥ 2 be minimal such that αn ∈ I, and assume that αn−1 is not a

component of any polynomial relation. Note that for a relation ρ on Q and x, y ∈
kQ, xρy is either zero or a sum of relations on Q. Therefore, if αn ∈ Q+I + IQ+,
then

αn = (β1ρ1 + · · ·+ βrρr) + (ρr+1βr+1 + · · ·+ ρsβs),

where the ρi are relations on Q and the βi are arrows. Hence, αn−1 is a component
of at least one of the ρi, say ρ1. By the minimality of n, ρ1 is a polynomial relation,
a contradiction. The proof is now completed by applying Proposition 1.2.

The above result implies immediately the following.

1.4. Corollary. Let A be the algebra of a bound quiver (Q, I), containing a
loop α at a vertex a. If α2 ∈ I, then Exti

A(S(a), S(a)) does not vanish for every
i ≥ 1.

We shall now study simple modules with an almost split self-extension, that is,
invariant under the Auslander-Reiten translation τ = DTr; see [1, (IV.1)]. For this
purpose, we need the following result, which is interesting in its own right.

1.5. Proposition. Let A be the algebra of a bound quiver (Q, I), and let a, b
be vertices of Q. Then τS(a) ∼= S(b) if and only if Q contains an arrow α : a → b
which is the only arrow starting at a and the only one ending at b.

Proof. If Q satisfies the stated property, then we have a non-split exact sequence :

0 −→ S(b) −→ M(α) −→ S(a) −→ 0.

Since α is the only arrow starting at a or ending at b, one verifies easily that the
sequence is almost split. Conversely assume that S(b) ∼= τS(a). Let αi : a → bi,
i = 1, . . . , r, be the arrows starting at a; and βj : aj → b, j = 1, . . . , s, be those
ending at b. Then S(a) has a minimal projective presentation

δ : P (b1)⊕ · · · ⊕ P (br) −→ P (a) −→ S(a) −→ 0.

Applying the duality HomA(−, AA) to δ, we get a minimal projective presentation

δ∗ : Q(a)−→Q(b1)⊕ · · · ⊕Q(br) −→ TrS(a) −→ 0

of the transpose of S(a), where T (c) and Q(c) denote, respectively, the simple and
the indecomposable projective left A-module associated to a vertex c. On the other
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hand, T (b) has a minimal projective presentation

η : Q(a1)⊕ · · · ⊕Q(as) −→ Q(b) −→ T (b) −→ 0.

Noting TrS(a) ∼= D S(b) ∼= T (b), we have η ∼= δ∗. In particular, r = 1 with b1 = b
and s = 1 with a = a1. The proof of the proposition is completed.

We call a module homogeneous if it admits an almost split self-extension.

1.6. Corollary. Let A be the algebra of a connected bound quiver (Q, I). Then
A admits a homogeneous simple module if and only if Q consists of one loop. In
this case, for any indecomposable non-projective A-module M , Exti

A(M, M) does
not vanish for every i ≥ 1.

Proof. By Proposition 1.5, Q has a vertex a such that τS(a) ∼= S(a) if and only
if Q contains a loop α : a → a which is the only arrow starting at or ending at a.
This is equivalent to Q consisting of one loop since Q is connected. The rest of the
statement is well-known. This completes the proof of the corollary.

An artin algebra is called a Nakayama algebra if its indecomposable modules are
all uniserial. The algebra of a connected bound quiver is a Nakayama algebra if and
only if the quiver is a single path (maybe trivial) or an oriented cycle. The following
is another characterization of this class of algebras; compare [1, (IV.2.10)].

1.7. Theorem. Let A be the algebra of a connected bound quiver (Q, I). Then
A is a Nakayama algebra if and only if there exists a τ -orbit O consisting of simple
A-modules. In this case, O contains all simple A-modules.

Proof. If Q is a path a1 → · · · → an with n ≥ 1 and the ai pairwise distinct, by
Proposition 1.5, τS(ai) = S(ai+1) for 1 ≤ i < n. Since S(an) is projective and S(a1)
is injective, the S(ai) form a τ -orbit. If Q is an oriented cycle a1 → · · · → an → a1

with n ≥ 1 and the ai pairwise distinct, then τS(ai) = S(ai+1) for 1 ≤ i < n, and
τS(an) = S(a1). Hence the S(ai) form a τ -orbit.

Conversely, let O = {S(a1), . . . , S(an)} be a τ -orbit with the ai pairwise distinct
vertices of Q. Consider first the case n = 1. If S(a1) is projective, then Q consists
of the vertex a1. Otherwise, τS(a1) = S(a1), and hence Q consists of one loop by
Corollary 1.6. Assume now that n > 1 and that τS(ai) = S(ai+1) for 1 ≤ i < n.
For each 1 ≤ i < n, by Proposition 1.5, Q contains an arrow αi : ai → ai+1, the
only one starting at ai and the only one ending at ai+1. If S(an) is projective,
then S(a1) is injective. Hence Q contains no arrow starting at an and the only one
ending at a1. Thus Q consists of the path a1 → · · · → an−1 → an. Otherwise,
τS(an) = S(a1). Then Q contains an arrow αn : an → a1, the only one starting
at an or ending at a1. Thus Q consists of the oriented cycle a1 → · · · → an → a1.
The proof of the theorem completed.

2. Special biserial algebras

The objective of this section is to establish the conjecture for special biserial
algebras. Recall that a finite-dimensional k-algebra is called special biserial if it is
isomorphic to the algebra of a bound quiver (Q, I) satisfying (1) each vertex is the
start-point of at most two arrows and the end-point of at most two arrows; and (2)
for each arrow β, there exists at most one arrow α such that αβ /∈ I and at most
one arrow γ such that βγ /∈ I. We call such a bound quiver special biserial.
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Let (Q, I) be a special biserial bound quiver. Then a relation on Q is either
monomial or binomial; see [9]. Moreover, if a vertex is the start-point of a binomial
relation, then such a relation is unique up to a scalar. Thus we may assume,
without changing its algebra, that every binomial relation of (Q, I) is a multiple of
a binomial relation of the form p− q. In this case, we call (p, q) a binomial pair.

For a vertex a, the trivial path at a is denoted by εa, and for a path p, its start-
point and end-point are denoted by s(p) and e(p), respectively. For an arrow α, we
introduce a new arrow α−1, the inverse of α with s(α−1) = e(α) and e(α−1) = s(α).
A reduced walk w in Q is either a trivial path or w = c1c2 · · · cn with n ≥ 1, where
ci is either an arrow or the inverse of an arrow such that s(ci+1) = e(ci) and
ci+1 6= c−1

i for all 1 ≤ i < n. In the latter case, a path p = α1 · · ·αr with αi arrows
is contained in w if there exists i with 1 ≤ i ≤ n such that either ci+j = αj+1 for
all 0 ≤ j < r or ci+j = α−1

r−j for all 0 ≤ j < r. A reduced walk w is a string if no
path contained in w is a component of a relation on Q. A string p is called serial
if it is a path and s(p) is not the start-point of any binomial relation. Finally, we
say that a string w starts or ends in a deep if there is no arrow γ such that γ−1w
or wγ is a string, respectively.

Let A = kQ/I. To each string w, one associates a string module M(w), compare
[3, 10], as follows: if w = εa for a vertex a, then M(w) = S(a) with {a} a k-basis.
If w = c1c2 · · · cn with ci an arrow or the inverse of an arrow, then M(w) has as
a k-basis the ordered family {a0, a1, . . . , an}, where a0 = s(c1) and ai = e(ci) for
1 ≤ i ≤ n. Its multiplication is such that for an arrow α, one has aiᾱ = ai+1 if
ci+1 = α with 0 ≤ i < n, and aiᾱ = ai−1 if ci = α−1 with 1 ≤ i ≤ n, and aiᾱ = 0
otherwise. Here ai with 0 ≤ i ≤ n is a top element if and only if ci is the inverse of
an arrow whenever i ≥ 1, and ci+1 is an arrow whenever i < n.

Furthermore, for a vertex a of Q, we shall fix a k-basis of P (a) with a multi-
plication. If εa is serial, then there exist paths p, q starting at a such that p−1q
is a string starting and ending in a deep. In this case, P (a) = M(p−1q). Oth-
erwise, there exists a binomial relation α1α2 · · ·αr − β1β2 · · ·βs, where αi, βj are
arrows with s(α1) = s(β1) = a. Then P (a) has as a k-basis the ordered family
{a1, . . . , ar, b1, . . . , bs}, where ai = s(αi) and bj = e(βj). Its multiplication is such
that for each arrow α, one has bjᾱ = bj+1 if α = βj+1 with 1 ≤ j < s and bjᾱ = 0
otherwise; moreover,

aiᾱ =





b1, i = 1 and α = β1,
ai+1, 1 ≤ i < r and α = αi,
bs, i = r and α = αr,
0, otherwise.

Here a1 is the only top element. In all cases, we call the fixed k-basis of M(w) or
P (a) its canonical basis. Clearly, the classes of the top elements of the canonical
basis form a basis for the top in each case.

In order to describe the syzygies of string modules, we need the notion of syzygy
strings of a string, defined in the following.

2.1. Definition. Let (Q, I) be a special biserial bound quiver. Let w be a
string, and write

w = p−1
1 q1 · · · p−1

r qr,
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where r ≥ 1, the pi, qi are paths with p1, qr the only ones that may be trivial.
(1) In the case that p1 is non-serial, we let α1 be an arrow and u1, v1 some paths

such that (p1α1u1, q1v1) is a binomial pair. Assume now that p1 is serial. We
first define v1 to be a path such that q1v1 is a string ending in a deep. Moreover,
if p−1

1 q1 does not start in a deep, then let α1 be an arrow and u1 a path such
that u−1

1 α−1
1 p−1

1 q1 is a string starting in a deep, and we define neither α1 nor u1

otherwise.
(2) Now let i be an integer with 1 < i < r. If pi is non-serial, then let ui, vi be

the paths such that (piui, qivi) is a binomial pair. Otherwise, let ui, vi be paths
such that piui and qivi are strings ending in a deep.

(3) In the case that pr is non-serial, let αr be an arrow and ur, vr some paths
such that (prur, qrαrvr) is a binomial pair. Assume now that pr is serial. First let
ur be a path such that prur is a string ending in a deep. Moreover, if p−1

r qr does
not end in a deep, then let αr be an arrow and vr some path such that p−1

r qrαrvr

is a string ending in a deep; and we define neither αr nor vr otherwise.
For all 1 ≤ i < r, let wi = v−1

i ui+1, which is clearly a string. Moreover, let
w0 = u1 if u1 is defined, and wr = v−1

r if vr is defined. Denote by W the set
of defined strings wi with 0 ≤ i ≤ r. We say that ws, wt with 0 ≤ s < t ≤ r
are connected if pi is non-serial for all s < i ≤ t. This relation of connectedness
generates an equivalence relation on W . It is easy to see that if {wi, wi+1, . . . , wj}
with 0 ≤ i ≤ j ≤ r is an equivalence class of W , then wiwi+1 · · ·wj is a string,
called a syzygy string of w. Note that the number of the syzygy strings of w is
equal to the number of the equivalence classes of W .

The following is the promised combinatorial description of the first syzygy of a
string module.

2.2. Proposition. Let A = kQ/I with (Q, I) special biserial. Let w be a string
and Ω(w) the set of the syzygy strings of w. If M(w) is the string module associated
to w, then Ω(M(w)) = ⊕ω∈Ω(w)M(ω).

Proof. We keep all the notation introduced in Definition 2.1. Let ai = s(pi),
i = 1, . . . , r, be the top elements of the canonical basis of M(w). Then a projective
cover of M(w) is given by the map φ : P (a1) ⊕ · · · ⊕ P (ar) → M(w) such that
the top element of the canonical basis of P (ai) maps to that of M(p−1

i qi) for all
1 ≤ i ≤ r. It is easy to see that M(w) is projective if and only if Ω(w) is empty.
Assume that Ω(w) is non-empty. Since the result is obvious for the case where
r = 1, we may assume further that r > 1.

In order to describe the kernel of φ, we need more notations. If u1 is defined
and it is non-trivial whenever p1 is non-serial, then let b1 be the element of the
canonical basis of P (a1) corresponding to s(u1) and let d0 be the top element of
the canonical basis of M(w0). Otherwise, we define neither b1 nor d0. In any case,
let c1 be the element of the canonical basis of P (a1) corresponding to e(q1), and let
d1 be the top element of M(w1). For each 1 < i < r, let bi and ci be the elements
of the canonical basis of P (ai) corresponding to e(pi) and e(qi), respectively, and
let di be the top element of the canonical basis of M(wi). Finally, if vr is defined
and it is non-trivial whenever qr is non-serial, then let cr be the element of the
canonical basis of P (ar) corresponding to e(αr), and let dr be the top element of
the canonical basis of M(wr). Otherwise, we define neither cr nor dr. In any case,
let br be the element of the canonical basis of P (ar) corresponding to e(pr).
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Write d̂i = (0, . . . , 0, di, 0, . . . , 0)T ∈ ⊕ω∈Ω(w)M(ω) if di is defined. Then the
classes of the defined d̂i with 0 ≤ i ≤ r form a k-basis of the top of ⊕ω∈Ω(w)M(ω).
Let ψ : ⊕ω∈Ω(w)M(ω) → P (a1)⊕ · · · ⊕ P (ar) be the map such that

ψ(d̂i) =





(b1, 0, . . . , 0)T , i = 0 and d0 is defined,

(0, . . . , 0,−ci, bi+1, 0, . . . , 0)T , 1 ≤ i < r,
(0, . . . , 0, cr)T , i = r and dr is defined.

One easily verifies that ψ is a monomorphism such that ψφ = 0. By calculating
the dimensions of the modules, we deduce finally that ψ is the kernel of φ. This
completes the proof of the proposition.

By Corollary 1.3, we need consider only special biserial bound quivers with a
loop such that at least one of its powers is a component of a binomial relation. For
convenience, we make the following two definitions.

2.3. Definition. Let (Q, I) be a special biserial bound quiver, containing a
loop α at a vertex a and a binomial pair (αn+1, α1 · · ·αm) with n ≥ 1 and m ≥ 2.
We shall consider strings of the following forms:

(1) The trivial string εa.
(2) The string

qr+1q
−1
r · · · q2q

−1
1 αp−1

1 p2 · · · p−1
r pr+1,

where r ≥ 1 is odd, the pi, qi are paths that are non-trivial for 1 ≤ i ≤ r such that
(piqi, pi+1qi+1) is a binomial pair for each odd i with 1 ≤ i < r, and there exists a
binomial pair (prqr, pr+1βr+1qr+1) with βr+1 an arrow.

(3) The string

q−1
s qs−1 · · · q2q

−1
1 αp−1

1 p2 · · · ps−1p
−1
s · · · p−1

r pr+1,

where s, r are odd with 1 ≤ s ≤ r, the pi, qj are paths that are non-trivial for
1 ≤ i ≤ r and 1 ≤ j < s such that (piqi, pi+1qi+1) is a binomial pair for each odd i
with 1 ≤ i < s, and psqs is a serial string ending in a deep.

2.4. Definition. Let (Q, I) be as in Definition 2.3. We shall consider strings
of the following forms:

(1) The string
pr+1p

−1
r · · · p−1

2 p1α
−nq1q

−1
2 · · · q−1

r qr+1,

where r ≥ 0 is even, the pi, qi are paths that are non-trivial for 1 ≤ i ≤ r such
that (qipi, qi+1pi+1) is a binomial pair for each even 0 ≤ i < r and there exists a
binomial pair (qrpr, qr+1βr+1pr+1) with βr+1 an arrow, q0 = αn and p0 = α.

(2) The string

p−1
s ps−1 · · · p−1

2 p1α
−nq1q

−1
2 · · · qs−1q

−1
s · · · q−1

r qr+1,

where s, r are even with 2 ≤ s ≤ r, the pi, qj are paths that are non-trivial for
1 ≤ i < s and 1 ≤ j ≤ r, such that (qipi, qi+1pi+1) is a binomial pair for each even
i with 2 ≤ i < s, and qsps is a serial string ending in a deep.

We shall now apply Proposition 2.2 to describe the first syzygy of string modules
associated to previously defined strings.

2.5. Lemma. Let A = kQ/I with (Q, I) being as in Definition 2.3. If M is a
string module associated to a string as stated in Definition 2.3, then Ω(M) has as
a direct summand a string module associated to a string as stated in Definition 2.4.
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Proof. Let M = M(w) with w a string. First, if w = εa, then M = S(a). Thus
Ω(M) is the string module associated to the string (α2 · · ·αm)α−n, which is of the
form stated in Definition 2.4(1) with r = 0 and q1 trivial. Second, we consider the
case

w = qr+1q
−1
r · · · q2q

−1
1 αp−1

1 p2 · · · p−1
r pr+1,

where r ≥ 1 is odd, and the pi, qi are non-trivial paths such that (piqi, pi+1qi+1)
is a binomial pair for each odd i with 1 ≤ i < r, and there exists a binomial pair
(prqr, pr+1βr+1qr+1) with βr+1 an arrow. Note that q1 = α1 · · ·αt with 1 ≤ t < m.

Suppose first that qr+1 is trivial and that there exists no even i with 2 ≤ i < r
such that qi is serial. If r = 1, then let u1 be the path (maybe trivial) such
that αt+1 · · ·αm = αt+1u1. Note that we have binomial pairs (q1αt+1u1, ααn) and
(p1q1, p2β2). By Proposition 2.2, Ω(M) is the string module associated to the
string u1α

−nq1, which is of the form stated in Definition 2.4(1). If r ≥ 3, let
u1 = αt+1 · · ·αm, and for each even i with 2 ≤ i ≤ r− 3, let ui, ui+1 be non-trivial
paths such that (qiui, qi+1ui+1) is a binomial pair, and finally, let ur, ur−1 be paths
with ur−1 non-trivial and δr an arrow such that (qr−1ur−1, qrδrur) is a binomial
pair. Since none of the paths contained in w is a serial string, Ω(M) is the string
module associated to the string uru

−1
r−1 · · ·u3u

−1
2 u1α

−nq1q
−1
2 q3 · · · q−1

r−1qr, which is
of the form stated in Definition 2.4(1) for r − 1.

Suppose now that qr+1 is non-trivial and that there exists no even i with 2 ≤
i ≤ r + 1 such that qi is serial. Let u1 = αt+1 · · ·αm and let, for each even i with
2 ≤ i ≤ r − 1, ui, ui+1 be non-trivial paths such that (qiui, qi+1ui+1) is a binomial
pair, and finally, let ur+2, ur+1 be non-trivial paths and δr+2 an arrow such that
(qr+1ur+1, δr+2ur+2) is a binomial pair. For the same reason, Ω(M) is the string
module associated to the string ur+2u

−1
r+1 · · ·u−1

2 u1α
−nq1q

−1
2 · · · qrq

−1
r+1, which is of

the form stated in Definition 2.4(1) for r + 1 with qr+2 trivial.
Suppose that neither of the above two situations occurs. Then there exists some

minimal even integer s with 2 ≤ s ≤ r + 1 such that qs is non-trivial and serial.
Let u1 = αt+1 · · ·αm and let, for each even i with 2 ≤ i < s, ui, ui+1 be non-trivial
paths such that (qiui, qi+1ui+1) is a binomial pair, and finally, let us be a path
(maybe trivial) such that qsus is a string ending in a deep. Since the pi, qj with
1 ≤ i ≤ r and 1 ≤ j < s are non-serial, Ω(M) has as a direct summand the string
module associated to the string u−1

s us−1 · · ·u−1
2 u1α

−nq1q
−1
2 · · · qs−1q

−1
s · · · qrq

−1
r+1,

which is of the form stated in Definition 2.4.(2) for s and r − 1 if s ≤ r − 1 and
pr+1 is trivial; and for s and r + 1 otherwise.

We conclude the proof with the final case:

w = q−1
s qs−1 · · · q2q

−1
1 αp−1

1 p2 · · · ps−1p
−1
s · · · p−1

r pr+1,

where s, r are odd with 1 ≤ s ≤ r, and the pi, qj are non-trivial paths for 1 ≤ i ≤ r
and 1 ≤ j < s such that (piqi, pi+1qi+1) is a binomial pair for each odd i with
1 ≤ i < s, and psqs is a serial string ending in a deep. Suppose first that qi is non-
serial for each odd i with 1 ≤ i ≤ s. Let us, us−1 be paths with us−1 non-trivial
and δs an arrow such that (qsδsus, qs−1us−1) is a binomial pair, where q0 = α and
u0 = α−n in case s = 1; and let u1 = αt+1 · · ·αm if s > 1. Finally for each odd
i with 3 ≤ i < s, let ui, ui−1 be non-trivial paths such that (qi−1ui−1, qiui) is a
binomial pair. Since ps is serial while the pi, qj with 1 ≤ i < s and 1 ≤ j ≤ s
are non-serial, Ω(M) has as a direct summand the string module associated to the
string usu

−1
s−1 · · ·u1α

−nq1q
−1
2 · · · q−1

s−1qs, which is of the form stated in Definition
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2.4(1) for s − 1. Otherwise s ≥ 3 and there exists a minimal even integer d with
2 ≤ d ≤ s−1 such that qd is serial. Let ud be a path (maybe trivial) such that qdud

is a string ending in a deep. Being non-trivial, q1 = α1 · · ·αt for some 1 ≤ t < m.
Let u1 = αt+1 · · ·αm, and for each even i with 2 ≤ i < d, let ui, ui+1 be non-trivial
paths such that (qiui, qi+1ui+1) is a binomial pair. Since qd and ps are serial while
the others between them are non-serial, Ω(M) has as a direct summand the string
module associated to the string u−1

d ud−1 · · ·u−1
2 u1α

−nq1q
−1
2 · · · q−1

s−1qs, which is of
the form stated in Definition 2.4(2) for d and s− 1. This completes the proof.

2.6. Lemma. Let A = kQ/I with (Q, I) being as in Definition 2.3. If M is a
string module associated to a string as stated in Definition 2.4, then Ω(M) has as
a direct summand a string module associated to a string as stated in Definition 2.3.

Proof. Let M = M(w) with w a string. Let us begin with the case

w = pr+1p
−1
r · · · p−1

2 p1α
−nq1q

−1
2 · · · q−1

r qr+1,

where r ≥ 0 is even, the pi, qi are non-trivial for 1 ≤ i ≤ r such that for each even
i with 0 ≤ i < r, (qipi, qi+1pi+1) is a binomial pair with q0 = αn and p0 = α, and
there exists a binomial pair (qrpr, qr+1βr+1pr+1) with βr+1 some arrow.

Suppose first that pr+1 is trivial and that there exists no odd i with 1 ≤ i <
r such that pi is serial. If r = 0, then q1 = α1 · · ·αm−1 by hypothesis. Thus
Ω(M) = M(εa). If r ≥ 2, then p1 = αt · · ·αm with 1 < t ≤ m. For each odd i
with 1 ≤ i ≤ r − 3, let ui, ui+1 be non-trivial paths such that (piui, pi+1ui+1) is
a binomial pair, and let δr be an arrow and ur, ur−1 some paths with ur−1 non-
trivial such that (qr−1ur−1, qrδrur) is a binomial pair. Since none of the paths
contained in w is a serial string, Ω(M) is the string module associated to the string
uru

−1
r−1 · · ·u2u

−1
1 αp−1

1 p2 · · · p−1
r−1pr, which is of the form stated in Definition 2.3.(1)

for r − 1.
Suppose secondly that pr+1 is non-trivial and that there exists no odd i with

1 ≤ i ≤ r+1 such that pi is serial. For each odd i with 1 ≤ i ≤ r−1, let ui, ui+1 be
non-trivial paths such that (qiui, qi+1ui+1) is a binomial pair. Moreover, let δr+2

be an arrow and ur+2, ur+1 some non-trivial paths such that (qr+1ur+1, δr+2ur+2)
is a binomial pair. For the same reason, Ω(M) is the string module associated
to the string ur+2u

−1
r+1 · · ·u2u

−1
1 αp−1

1 p2 · · · prp
−1
r+1, which is of the form stated in

Definition 2.3(1) for r + 1 with pr+2 trivial.
Suppose now that neither of the above two situations occurs. Then there exists

a minimal odd integer s with 1 ≤ s ≤ r + 1 such that ps is non-trivial and serial.
Let us be a path (maybe trivial) such that psus is a string ending in a deep,
and for each odd i with 1 ≤ i < s, let ui, ui+1 be non-trivial paths such that
(qiui, qi+1ui+1) is a binomial pair. Since the pi, qj with 1 ≤ i < s and 1 ≤ j ≤ r are
all non-serial, Ω(M) has as a direct summand the string module associated to the
string u−1

s us−1 · · ·u2u
−1
1 αp−1

1 p2 · · · ps−1p
−1
s · · · prp

−1
r+1, which is of the form stated

in Definition 2.3(2) for s and r − 1 if pr+1 is trivial with s ≤ r − 1; and otherwise,
for s and r + 1 with pr+2 trivial. We shall conclude the proof with the case:

w = p−1
s ps−1 · · · p−1

2 p1α
−nq1q

−1
2 · · · qs−1q

−1
s · · · q−1

r qr+1,

where s, r are even with 2 ≤ s ≤ r, and the pi, qj are non-trivial paths for 1 ≤ i < s
and 1 ≤ j ≤ r such that for each even i with 0 ≤ i < s, (qipi, qi+1pi+1) is a binomial
pair with q0 = αn, p0 = α, whereas qsps is a serial string ending in a deep.
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Suppose first that pi is non-serial for every odd i with 1 ≤ i < s. Let δs be an
arrow and us, us−1 some paths with us−1 non-trivial such that (psδsus, ps−1us−1)
is a binomial pair; and for each even i with 2 ≤ i < s, let ui and ui−1 be non-trivial
paths such that (qi−1ui−1, qiui) is a binomial pair. Since qs is serial while the pi,
qj with 1 ≤ i ≤ s and 1 ≤ j < s are all non-serial, Ω(M) has as a direct summand
the string module associated to the string usu

−1
s−1 · · ·u−1

1 αp−1
1 p2 · · · p−1

s−1ps, which
is of the form stated in Definition 2.3(1) for s− 1.

Otherwise, there exists a minimal odd integer d with 1 ≤ d ≤ s − 1 such that
pd is serial. Let ud be a path (maybe trivial) such that qdud is a string ending in
a deep, and for each odd i with 1 ≤ i < d, let ui, ui+1 be non-trivial paths such
that (qiui, qi+1ui+1) is a binomial pair. Since pd and qs are serial while the others
between them are all non-serial, Ω(M) has as a direct summand the string module
associated to the string u−1

d ud−1 · · ·u2u
−1
1 αp−1

1 p2 · · · p−1
s−1ps, which is of the form

stated in Definition 2.3(2) for d and s− 1. This completes the proof of the lemma.

Let A be the algebra of a bound quiver (Q, I). The convex support of an A-
module M is the algebra of the bound quiver (QM , IM ), where QM is the convex
hull in Q of the vertices a with HomA(P (a),M) 6= 0, and IM = I ∩ (kQM ).

2.7. Theorem. Let A be the algebra of a bound quiver (Q, I), and let S be
a simple A-module with a non-split self-extension. If the convex support of S is
special biserial, then for all i ≥ 1, Exti

A(S, S) does not vanish.
Proof. Let B be the convex support of S in A. It is well-known that Exti

A(S, S) =
Exti

B(S, S) for all i ≥ 1. Hence we may assume, without loss of generality, that
(Q, I) is special biserial. Let α be a loop at the vertex a such that S = S(a). If no
power of α is a component of a binomial relation on Q, then the theorem follows
from Corollary 1.3. Assume now that there exists a binomial pair (αn+1, α1 · · ·αm)
with n ≥ 1 and m ≥ 2. Note that Ω0(S) = M(εa). Assume, for i ≥ 0, that
Ω i(S) has as a direct summand a string module associated to a string stated in
Definitions 2.3 or 2.4, and in particular, S(a) is a summand of the top of Ω i(S). By
Lemmas 2.5 and 2.6, the same holds true for Ω i+1(S). This completes the proof of
the theorem.

We conclude with an even stronger version of the strong no loop conjecture.

2.8. Conjecture. If S is a simple module over an artin algebra A with
Ext1A(S, S) not vanishing, then Exti

A(S, S) does not vanish for infinitely many i.
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Address: Département de mathématiques et d’informatique, Université de
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