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Abstract. We study Auslander-Reiten components of an artin algebra with
bounded short cycles, namely, there exists a bound for the depths of maps ap-

pearing on short cycles of non-zero non-invertible maps between modules in the

given component. First, we give a number of combinatorial characterizations
of almost acyclic Auslander-Reiten components. Then, we shall show that an

Auslander-Reiten component with bounded short cycles is obtained, roughly

speaking, by gluing the connecting components of finitely many tilted quotient
algebras. In particular, the number of such components is finite and each of

them is almost acyclic with only finitely many DTr-orbits. As an application,

we show that an artin algebra is representation-finite if and only if its mod-
ule category has bounded short cycles. This includes a well known result of

Ringel’s, saying that a representation-directed algebra is representation-finite.

Introduction

Let A be an artin algebra, and let modA stand for the category of finitely gene-
rated left A-modules. We shall denote by rad(modA) and ΓA the Jacobson radical
and the Auslander-Reiten quiver of modA, respectively. The ultimate objective of
the representation theory is to study the full subcategory indA of modA generated
by the indecomposable modules. In [21], Ringel initiated the study of directing
modules, that is, indecomposable modules not lying on any cycle of non-zero non-
invertible maps in indA. He showed that directing modules are uniquely determined
(up to isomorphism) by their composition factors, and A is representation-finite if
indA has no cycle; see [21, (2.4)]. In general, the directing modules fall into finitely
many DTr-orbits of ΓA; see [18, 27]. Later, these results have been generalized to
indecomposable modules not lying on any short cycle (that is, cycles of at most two
maps) in indA. For instance, these modules are also uniquely determined (up to
isomorphism) by their composition factors; see [1, 20], and A is representation-finite
if indA has no short cycle; see [3]. Moreover, ΓA has at most finitely connected
components C such that add(C) has no short cycle, and each of such components
contains only finitely many DTr-orbits; see [13, (2.6),(2.8)].

On the other hand, the representation theory of A is determined to certain extend
by the Jacobson radical of modA. Indeed, a well known result of Auslander’s says
that A is representation-finite if and only if the infinite radical of modA vanishes; see
[24, (1.1)], or equivalently, every non-zero map in modA is of finite depth. For many
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best understood classes of representation-infinite algebras, such as tame concealed
algebras, the cycles in their module category contains only maps of finite depth; see
[21]. Motivated by this fact, Skowroński studied in [26] cycles of finite depth, which
are originally called finite cycles. Indeed, Auslander-Reiten components whose non-
directing modules lie only on cycles of finite depth are described in [17], and algebras
whose module category contains only cycles of finite depth are extensively studied
by many authors; see, for example, [16, 17, 23, 26]. More generally, the connected
components C of ΓA such that add(Γ ) contains only short cycles of finite depth are
studied in [13].

The main purpose of this paper is to investigate the connected components C of
ΓA such that add(C) has bounded short cycles, that is, there exists a bound for the
depths of the maps appearing on short cycles in add(C). To start with, we shall
study almost acyclic Auslander-Reiten components, which have played a special
role in the study of generalized double tilted algebras introduced by Reiten and
Skowroński; see [19]. Our main result says that if C is a connected component of
ΓA with bounded short cycles then, roughly speaking, C is obtained by gluing along
a finite core the connecting components of finitely many tilted quotient algebras
of A; see (3.4). In particular, given a connected component C of ΓA, if C is semi-
regular, then add(C) has bounded short cycles if and only if A/ann(C) is tilted with
C being its connecting component; see (3.5); and if C is generalized standard, then
add(C) has bounded short cycles if and only if A/ann(C) is generalized double tilted
algebra with C being its connecting component; see (3.7). In general, ΓA has at most
finitely many connected components with bounded short cycles, and each of them
is almost acyclic with only finitely many DTr-orbits; see (3.6). Finally, we shall
show that an artin algebra is representation-finite if and only if indA has bounded
short cycles; see (3.8). This includes the above-mentioned result of Ringel’s as a
special case.

1. Preliminaries

The objective of this section is to collect some terminology and fix some notation
which will be used throughout this paper.

1.1. Quivers. All quivers in this paper are locally finite. Let Q be a quiver. We
shall say that Q is trivial if it consists of a single vertex, acyclic if Q contains no
oriented cycle, and almost acyclic if Q contains at most finitely many vertices which
lie on some oriented cycles. Given two vertices a, b, the interval [a, b] is the set of
vertices lying on some path from a to b in Q. We shall say that Q is interval-finite
if all intervals in Q are finite; and strongly interval-finite if, given any vertices a, b,
the number of paths in Q from a to b is finite. If Q is strongly interval-finite, then
it is clearly interval-finite and acyclic. A full subquiver Σ of Q is called convex in
Q if it contains all the paths with end-points lying in Σ ; predecessor-closed if it
contains all the predecessors of its vertices in Q; and successor-closed if it contains
all the successors of its vertices in Q. Finally, an infinite path in Q is called left
infinite if it has no starting point; right infinite if it has no ending point; and double
infinite if it has neither starting point nor ending point.
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1.2. Translation Quivers. Let Γ be a translation quiver with translation τ ;
see, for definition, [21, Page 47]. A path a0 // a1 // · · · // an in Γ is called
sectional if there exists no 0 < i < n such that ai−1 = τai+1. An infinite path
is sectional if all its finite subpaths are sectional. A vertex a of Γ is called left
stable (respectively, right stable) if τna is defined for all n ≥ 0 (respectively, for
all n ≤ 0); stable if its left and right stable; and τ -periodic if τna = a for some
n > 0. Moreover, Γ is called left stable (respectively, right stable, stable, τ -periodic)
if every vertex of Γ is left stable (respectively, right stable, stable, τ -periodic).

The full subquivers lΓ , rΓ and sΓ of Γ generated by the left stable vertices,
by the right stable vertices, and by the stable vertices are called the left stable
part, the right stable part, and the stable part of Γ respectively. Moreover, the
connected components of the quiver lΓ (respectively, rΓ , sΓ ) are called the left
stable components (respectively, right stable components, stable components) of Γ ;
and a left or right stable component of Γ is simply called a semi-stable component.
Since Γ is locally finite, a semi-stable component of Γ is τ -periodic if it contains a
τ -periodic vertex.

Given an acyclic quiver ∆, one constructs in a canonical way a stable translation
quiver Z∆ with translation ρ; see, for example, [8, Section 2]. If ∆ is of type A∞,
then Z∆ does not depend on the orientation of ∆, and hence, Z∆ will be simply
written as ZA∞. A translation quiver is called a stable tube if it is isomorphic to
ZA∞/<ρn> for some integer n > 0; and quasi-serial if it is a stable tube or of shape
ZA∞. Starting with a quasi-serial translation quiver, one obtains new translations
by ray insertions or by co-ray insertions; see [12, Section 2].

Let Σ be a connected full subquiver of Γ . Recall that Σ is a section of Γ if it is
acyclic, convex, and contains exactly one vertex of each τ -orbit in Γ ; see [8, (2.1)].
In this case, there exists an embedding Γ → ZΣ , which sends a vertex τnx with
n ∈ Z and x ∈ Σ to the vertex (−n, x); see [8, (2.3)]. More generally, Σ is called a
cut of Γ ; see [15, (2.1)] provided, for any arrow a→ b in Γ , that the following two
conditions are verified.

(1) If a ∈ Σ , then either b or τb, but not both, lies in Σ ;

(2) If b ∈ Σ , then either a or τ−a, but not both, lies in Σ .

1.3. Module Category. Throughout this paper, A stands for an artin algebra
over a commutative artinian ring R. We shall denote by modA the category of
finitely generated left A-modules, and by rad(modA) the Jacobson radical of modA.
Recall that rad∞(modA) = ∩n≥0 radn(modA), where radn(modA) stands for the
n-th power of rad(modA), is called the infinite radical of modA. Given a map f in
modA, its depth dp(f) is∞ if f ∈ rad∞(X,Y ); and otherwise, dp(f) is the minimal
integer n ≥ 0 for which f ∈ radn(X,Y )\radn+1(X,Y ); see [15, (1.2)].

We shall denote by indA a full subcategory of modA generated by a complete
set of representatives of the isomorphism classes of the indecomposable modules in
modA. A path of length n in indA is sequence

σ : X0
f1 // X1

// · · · // Xn−1
fn // Xn

of n non-zero maps in rad(indA), whose depth is defined to be the supremum of
the dp(fi) with 1 ≤ i ≤ n and written as dp(σ). Such a path σ is called a cycle if
Xn = X0; and a short cycle if, in addition, n ≤ 2.
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1.4. Auslander-Reiten Quiver. The reader is referred to [2] for the Auslander-
Reiten theory of irreducible maps and almost split sequences in modA. For each
module X in indA, we set DX = End(X)/rad(End(X)). The Auslander-Reiten
quiver ΓA of A is a valued translation quiver defined as follows; see, for example,
[14, Section 2]. The vertices are the objects of indA. Given two vertices X,Y , there
exists an arrow X → Y in ΓA with valuation (dXY , d

′
XY ) if and only if there exists

an irreducible map f : X → Y in modA, where dXY and d′XY are the dimensions

of rad(X,Y )/rad2(X,Y ) over DY and over DX , respectively. The translation τ is
the Auslander-Reiten translation DTr so that τZ = X if and only if there exists

an almost split sequence 0 // X // Y // Z // 0 in modA. The connected
components of ΓA are called Auslander-Reiten components of ΓA, and a connected
component of ΓA is called semi-regular if it contains no projective module or no
injective module; see [9].

Let C be a connected component of ΓA with a full subquiver Σ . Given n ∈ Z,
we shall denote by τnΣ the full subquiver (possibly empty) of C generated by the
modules τnX with X ∈ Σ . The annihilator of Σ is ann(Σ ) = ∩X∈Σ ann(X),
where ann(X) stands for the annihilator of X in A. One says that Σ is faithful
if ann(Σ ) = 0; sincere if every simple A-module is a composition factor of some
module in Σ ; convex in indA if every path in indA with end-points lying in Σ
passes only modules in Σ ; and generalized standard if rad∞(X,Y ) = 0 for all
modules X,Y ∈ Σ ; compare [25]. Recall that Σ is a slice in modA if Σ is a cut
of C which is sincere and convex in indA; see [21], and in this case, C is called
a connecting component of ΓA. Finally, A is tilted if A = EndH(T ), where H is
a hereditary artin algebra and T is a tilting module in modH; see [5]. If A is
connected, then it is tilted if and only if ΓA has a connecting component; see [21].

2. Almost acyclic components

The objective of this section is to study some combinatorial properties of the
Auslander-Reiten quiver ΓA. This will allow us to obtain a number of combinatorial
characterizations of the almost acyclic components of ΓA. Let us start with an easy
observation.

2.1. Lemma. If X,Y are modules in ΓA, then the number of sectional paths in ΓA
from X to Y is finite.

Proof. Let X,Y be modules in ΓA. Since HomA(X,Y ) is of finite R-length, there
exists some integer r > 0 such that radr(X,Y ) = rad∞(X,Y ). Suppose that

X = X0
// X1

// · · · // Xs−1 // Xs = Y

is a sectional path in ΓA. Choosing irreducible maps fi : Xi−1 → Xi in modA,
i = 1, . . . , s, we obtain a map fs · · · f1 of depth s; see [7, (13.3)]. In particular,
s < r. Since ΓA is locally finite, by König’s Lemma, the number of paths from X
to Y of length at most r is finite. The proof of the lemma is completed.

Next, we shall study some properties of the semi-stable components of ΓA.

2.2. Lemma. Let Γ be a semi-stable component of ΓA. If Γ is acyclic, then it is
strongly interval-finite.
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Proof. We shall consider only the case where Γ is a non-trivial acyclic left stable
component. Observe that Γ contains a section ∆; see [12, (3.3)]. Let X,Y ∈ Γ be
such that Γ contains some paths from X to Y . Since Γ embeds in Z∆, we see that
X ∈ τs∆ and Y ∈ τ t∆ with s ≥ t. We shall proceed by induction on t− s. Assume
that s = t. Since ∆ is convex in Γ , so is τs∆. Thus, all the paths X  Y in Γ
belong to ∆, and in particular, they are all sectional. By Lemma 2.1, the number
of paths in Γ from X to Y is finite.

Suppose that s > t but Γ contains infinitely many paths ρn : X  Y, n ∈ N.
Since Γ is locally finite, we may assume that the lengths `(ρn) are pairwise different.
By Lemma 2.1, we may assume further that none of the ρn is sectional. Then, each
path ρn induces a path σn : X  τY in Γ of length `(ρn) − 2. In particular, the
σn with n ∈ N are pairwise different paths in Γ from X to τY . Since τY ∈ τ t+1∆,
we obtain a contradiction to the induction hypothesis. The proof of the lemma is
completed.

2.3. Lemma. Let Γ be a semi-stable component of ΓA, not being τ -periodic. If Γ
has oriented cycles, then it contains a module M with two infinite sectional paths

· · · // τ2tM1
// τ tMr

// · · · // τ tM1
// Mr

// · · · // M1 = M

and

M = N1
// · · · // Ns // τ tN1

// · · · // τ tNs // τ2tN1
// · · ·

where r, s, t are some positive integers.

Proof. We shall consider only the case where Γ is a left stable component, which
contains oriented cycles. Having no τ -periodic module, Γ contains a sectional path

τmX1
// Xn

// · · · // X1,

where m > n ≥ 1, and X1, . . . , Xn lie in pairwise different τ -orbits; see [9, (2.2)].
This yields two sectional paths in Γ as follows:

τmXn
// τmXn−1 // · · · // τmX1

// Xn

and

Xn
// τm−1X1

// · · · // τm−(n−1)Xn−1 // τm−nXn.

Writing Y1 = Z1 = Xn and setting Yi = τmXi−1 and Zi = τm−(i−1)Xi−1,

for i = 2, . . . , n, we obtain two sectional paths τmY1 // Yn // · · · // Y1 and

Z1
// · · · // Zn // τm−nZ1. Applying repeatedly τm and τm−n to them, we

get two infinite sectional paths

· · · // τ2mY1 // τmYn // · · · // τmY1 // Yn // · · · // Y1

and

Z1
// · · · // Zn // τm−nZ1

// · · · // τm−nZn // τ2(m−n)Z1
// · · ·

in Γ . Writing t = m(m− n) and renaming the modules in the above infinite paths
so that M1 = Y1 and N1 = Z1, we obtain two desired infinite sectional paths

· · · // τ2tM1
// τ tMr

// · · · // τ tM1
// Mr

// · · · // M1

and

N1
// · · · // Ns // τ tN1

// · · · // τ tNs // τ2tN1
// · · ·
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with M1 = N1. The proof of the lemma is completed.

We now state some properties of semi-stable but not τ -periodic modules.

2.4. Lemma. Let X be a module in ΓA which is not τ -periodic.

(1) If X is left stable, then there exists some s ≥ 0 such that the predecessors of
τsX in ΓA all are left stable.

(2) If X is right stable, then there exists some t ≥ 0 such that the successors of
τ−tX in ΓA all are right stable.

Proof. We shall consider only the case where X is left stable. Since X is not
τ -periodic, there exists some r ≥ 0 such that none of the τ iX with i ≥ r has an
immediate projective predecessor in ΓA. Then, the τ iX with i ≥ r belong to a
non-trivial left stable component Γ of ΓA. Since X is not τ -periodic, Γ contains
no τ -periodic module.

We claim that Γ contains a connected subquiver Σ such that the modules in Σ
form a complete set of τ -orbit representatives of Γ and have no projective prede-
cessor in ΓA. Indeed, if Γ contains no oriented cycle, then it contains a section Σ
with the claimed property; see [12, (3.3)]. Otherwise, Γ contains a path

τmX1
// Xn

// · · · // X1,

where m > n ≥ 1, and X1, . . . , Xn form a complete set of representatives of the
τ -orbit in Γ ; see [12, (3.6)]. For each 1 ≤ j ≤ n, since Xj is not τ -periodic,
there exists some sj ≥ 0 such that none of the τ iXj with i ≥ sj has a projective
immediate predecessor in ΓA. Setting t = max{s1, . . . , sn}, we see easily that

Σ : τ tXn
// · · · // τ tX1

has the claimed properties. This establishes our claim. In particular, τ rX = τ lY ,
for some l ∈ Z and Y ∈ Σ . Setting s = r − l, we see that the predecessors of τsX
in ΓA are all left stable. The proof of the lemma is completed.

The following statement and its dual exhibit some interesting properties of not
semi-stable modules in ΓA.

2.5. Lemma. Let M be a module in ΓA. If M has infinitely many not left sta-
ble predecessors in ΓA, then all of its successors belong to an infinite right stable
component of ΓA which is not left stable and contains oriented cycles.

Proof. Let Mi, i ∈ N, be pairwise distinct and not left stable predecessors of M in
Γ . Since ΓA contains only finitely many projective modules, we may assume that
there exists a projective module P in ΓA such that Mi = τ−niP for some integer
ni ≥ 0. Then, the ni with i ≥ 1 are pairwise distinct, and in particular, they are
unbounded. As a consequence, P is right stable. By Lemma 2.4(2), we obtain
an integer t > 0 such that the successors in ΓA of τ−tP belong to a right stable
component Γ , which is clearly not left stable. Since the ni are unbounded, there
exists no loss of generality in assuming that ni ≥ t for all i ≥ 1. In particular,
M is a successor of τ−tP . Therefore, the successors of M in ΓA are successors of
τ−tP , and hence, they all belong to Γ . Since each of the τ−niP with i ≥ 1 lies on
a path from τ−tP to M , by Lemma 2.2, Γ contains oriented cycles. The proof of
the lemma is completed.
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We are ready to give a number of characterizations of almost acyclic components
of ΓA. For this purpose, given a connected component C of ΓA, we define its core to
be the full subquiver generated by the modules lying on some path from a projective
module to an injective module. Clearly, the core of C is convex in C.

2.6. Theorem. Let A be an artin algebra with C a connected component of ΓA.
The following conditions are equivalent.

(1) The component C is almost acyclic.
(2) The component C is interval-finite.
(3) Every infinite semi-stable component of C is acyclic.
(4) The core of C is finite and contains all possible oriented cycles in C.
Proof. First of all, it is evident that Statement (4) implies Statement (1). Suppose
that C has an infinite semi-stable component Γ with oriented cycles. If Γ contains
some τ -periodic modules, then it is τ -periodic. Being infinite, Γ is a stable tube;
see, for example, [9, (3.4)]. In this case, it is easy to see that Γ is not interval-
finite and every module in Γ lies on an oriented cycle. Assume that Γ contains no
τ -periodic module. In view of the second infinite path stated in Lemma 2.3, we
obtain a module M ∈ Γ and a positive integer t such that Γ contains infinitely
many oriented cycles M  τ tnM  M, where n ∈ Z. In particular, Γ is not
interval-finite and has infinitely many modules lying on oriented cycles. This shows
that each of Statements (1) and (2) implies Statement (3).

It remains to show that Statement (3) implies Statements (2) and (4). Indeed,
suppose that Statement (3) holds. Assume on the contrary that there exist some
modules M,N in C such that the interval [M,N ] is infinite. That is, the full
subquiver D of C generated by the modules lying on paths M  N is infinite. By
König’s Lemma, D has an infinite path

(∗) · · · // Ni // · · · // N1
// N0 = N,

where the Ni with i ≥ 0 are pairwise distinct. In view of Statement (3), we deduce
from Lemma 2.5 that there exists an integer r such that Ni is left stable for every
i ≥ r. Let Γ be the left stable component of C containing the Ni with i ≥ r. By
Statement (3), Γ contains no oriented cycle, and by Lemma 2.2, it is interval-finite.
In particular, M 6∈ Γ . Then, for each i ≥ r, there exists a path ζi : M  Ni in D,
which is the composite of a path ξi : M  Xi, an arrow αi : Xi → Yi with Xi not
left stable, and a path ηi : Yi  Ni in Γ . By Lemma 2.5, the set {Xi | i ≥ r} is of
finite cardinality, and so is {Yi | i ≥ r}. Therefore, we may assume that Yi = Y for

some Y ∈ Γ and all i ≥ r. This yields infinitely many paths Y
ηi // Ni

ωi // Nr
in Γ , where ωi : Ni  Nr is the subpath of the infinite path (∗), a contradiction
to Lemma 2.2. This establishes Statement (2). As a consequence, the core of C,
written as Ω , is finite. Consider an oriented cycle

σ : Z0
// Z1

// · · · // Zn−1 // Zn = Z0

in C. Assume first that σ is contained in a semi-stable component Θ of C. By
Statement (3), Θ is finite, and hence, τ -periodic. It is well known that Θ 6= C; see
[2, (VII.2.1)]. Thus, C contains an edge U—V with U ∈ Θ and V 6∈ Θ . Since U
is τ -periodic and V is not, the τ -orbit of V contains a projective module P and
an injective module I. As a consequence, C has a path P  U  I. Let Z ∈ Θ .
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Being τ -periodic, Θ contains an oriented cycle U  Z  U , and hence, Z lies in
the core Ω . In particular, σ lies entirely in Ω .

Assume next that Zs is not left stable and Zt is not right stable for some integers
0 ≤ s, t ≤ n. Then, C contains a path P  Zs with P projective and a path Zt  I
with I injective. Since σ is an oriented cycle, C contains paths P  Zi  I for
all 1 ≤ i ≤ n. That is, σ lies in Ω . This proves Statement (4). The proof of the
theorem is completed.

Remark. The almost acyclic components have been characterized by the existence
of a multisection; see [19, (2.5)]. Note that the core of a multisection of an almost
acyclic component seems different from the core of the component defined here.

3. Components with bounded short cycles

The objective of this section is to study the connected components of ΓA with
bounded short cycles. This will yields a new characterization of representation-finite
algebras, which includes a well known result of Ringle’s saying that a representation-
directed algebra is representation-finite; see [21, (2.4)].

3.1. Definition. Let Γ be a full subquiver of ΓA. A cycle in add(Γ ) is a cycle in
indA passing only through modules in Γ . We shall say that Γ is a subquiver with
bounded short cycles if there exists a bound for the depths of all possibles short
cycles in add(Γ ), and otherwise, Γ is a subquiver with unbounded short cycles.

Given any finite subquiver Γ of ΓA, it is evident that add(Γ ) has bounded
short cycle. The following result says that an infinite semi-stable component with
bounded short cycles contains no oriented cycle.

3.2. Lemma. Let Γ be a semi-stable component of ΓA with bounded short cycles. If
Γ is infinite, then it is acyclic.

Proof. We shall consider only the case where Γ is an infinite left stable component
of ΓA. Suppose that Γ contains some τ -periodic modules. Being infinite, Γ is a
stable tube, say of rank r; see [4]. Fix a module X ∈ Γ . It is evident that there
exists an infinite sectional path

X = X0
// X1

// · · · // Xn
// · · ·

in Γ . Setting Yn = τnXn for all n ≥ 0, we obtain another infinite sectional path

· · · // Yn // · · · // Y1 // Y0 = X

in Γ . Observe that Yrn = τnrXrn = Xrn for all n ≥ 0. Choosing irreducible maps
fn : Xn−1 → Xn and gn : Yn → Yn−1 in modA for all n ≥ 1, we see that the maps
fnr · · · f1 : X0 → Xnr and gnr · · · g1 : Xnr → X0 form a short cycle of depth nr ;
see [7, (13.3)], a contradiction. Suppose now that Γ contains oriented cycles but
no τ -periodic module. By Proposition 2.3, Γ contains two infinite sectional paths

· · · // τ2tM1
// τ tMr

// · · · // τ tM1
// Mr

// · · · // M1

and

N1
// · · · // Ns // τ tN1

// · · · // τ tNs // τ2tN1
// · · ·

with r, s, t > 0 andM1 = N1. Given an integer n, using a similar argument as above,
we can find a map un : τ ntM1 → M1 of depth rn and a map vn : M1 → τ ntM1
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of depth sn. In particular, add(Γ ) has short cycles of arbitrarily large depth, a
contradiction. The proof of the lemma is completed.

We shall regard a full subquiver of ΓA as a translation quiver with the induced
translation. The following result and its dual generalize slightly the result stated
in [10, (2.1)].

3.3. Lemma. Let Γ be a connected full subquiver of ΓA, and let ∆ be a section of Γ
containing no right infinite path. If Γ contains all the predecessors of ∆ in ΓA, then
ann(∆) = ann(Ω), where Ω is the full subquiver of ΓA generated by the predecessors
of ∆ in ΓA.

Proof. Containing no right infinite path, by Krönig’s Lemma, ∆ contains only finite
many paths starting at any given module. For each module M ∈ ∆, we shall denote
by d(M) the maximal length of the paths in ∆ starting at M .

Suppose that Ω is contained in Γ . Write I = ann(∆). Fix a module Y ∈ Ω .
Then, Y ∈ τn∆ for some integer n ≥ 0. We shall show by an induction on n that
IY = 0. Indeed, this is trivial for n = 0. Suppose that n > 0 and the statement
holds for n− 1. Then, Y = τnX with X ∈ ∆, and there exists in modA an almost
split sequence

0 // Y // Y1 ⊕ · · · ⊕ Yr // τn−1X // 0,

where Y1, . . . , Yr ∈ Ω . We claim that IYi = 0 for i = 1, . . . , r. Indeed, for each
1 ≤ i ≤ r, there exists some Xi ∈ ∆ such that Yi = τn−1Xi or Yi = τnXi, where the
second case occurs if and only if ∆ contains an arrow X → Xi. We shall establish
the claim by an induction on d(X). If d(X) = 0, then X is a sink vertex in ∆.
Thus, Yi = τn−1Xi, and by the induction hypothesis on n− 1, we obtain IYi = 0,
for i = 1, . . . , r. Suppose now that d(X) > 0. Fix an integer i with 1 ≤ i ≤ r. If
Yi = τn−1Xi, then IYi = 0 by the induction hypothesis on n − 1. If Yi = τnXi,
then ∆ has an arrow X → Xi, and thus, d(Xi) < d(X). Therefore, IYi = 0 by
the induction hypothesis on d(X). This establishes our claim. As a consequence,
IY = 0. The proof of the lemma is completed.

We are ready to describe the shape of the connected components with bounded
short cycles of ΓA.

3.4. Theorem. Let A be an artin algebra with C a connected component of ΓA. If
add(C) has bounded short cycles, then C is almost acyclic and consists of

(1) a finite core containing all possible oriented cycles in C ;

(2) some infinite left stable components Γ1, . . . ,Γr with r ≥ 0, where each Γi has a
finite section ∆i such that Bi = A/ann(∆i) is tilted and the predecessors of ∆i

in C form a predecessor-closed subquiver of the connecting component of ΓBi ;

(3) some infinite right stable components Θ1, . . . ,Θs with s ≥ 0, where each Θi has
a finite section Σi such that Ci = A/ann(Σi) is tilted and the successors of Σi
in C form a successor-closed subquiver of the connecting component of ΓCi .

Proof. Suppose that add(C) has bounded short cycles. By Lemma 3.2, every infinite
semi-stable component of C is acyclic, and by Theorem 2.6, C is almost acyclic with
a finite core containing all possible oriented cycles in C. Note that C has only
finitely many semi-stable components; see [12, (3.1)]. Let Γ1, . . . ,Γr with r ≥ 0
be the infinite left stable components, and Θ1, . . . ,Θs with s ≥ 0 the infinite right
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stable components, of C. Let X be a module in C. If all the predecessors of X in
C are left stable, then X belongs to a non-trivial left stable component Γ of C. If
Γ is finite, then all the modules in Γ are τ -periodic, and then, it is well known
that X has a projective predecessor in C, a contradiction. Thus, Γ = Γi for some
1 ≤ i ≤ r. Dually, if all the successors of X in C are right stable, then X belongs to
one of the Θj with 1 ≤ j ≤ s. Therefore, if X does not belong to any of the Γi,Θj ,
then X admits a projective predecessor and an injective successor in C. That is, X
belongs to the core of C. This shows that C is the union of its core, Γ1, . . . ,Γr and
Θ1, . . . ,Θs.

Now, let Γ be an infinite left stable component of C. In particular, add(Γ ) has
bounded short cycles. By Lemma 3.2, Γ is acyclic, and hence, it contains a section
Σ with a unique sink and no projective predecessor in ΓA; see [12, (3.3)]. Now,
∆ = τΣ is a section of Γ with a unique sink and no projective immediate successor
in ΓA. Moreover, for any predecessor Y of ∆ in ΓA, both Y and τ−Y belong to Γ .
In particular, the full subquiver Ω of ΓA generated by the predecessors of ∆ in ΓA
is contained in Γ .

Since ∆ has no projective immediate successor in ΓA, we see that ∆ is a cut of
C. If ∆ is infinite, then add(Γ ) contains a short cycle passing through modules in
Γ ; see the proofs of [13, (2.2), (2.3), (2.4)]. Since Γ is acyclic and contains all the
predecessors of ∆ in ΓA, this short cycle is of infinite depth, a contradiction. Thus,
∆ is finite. We claim that rad∞(M,N) = 0 for all modules M,N ∈ ∆. Indeed,
suppose on the contrary that there exist modules M,N ∈ ∆ such that rad∞(M,N)
has a non-zero map f0 : M → N . Since Γ contains all the predecessors of ∆ in C,
we can find an infinite path

· · · // Ni // Ni−1 // · · · // N1
// N0 = N

in Γ such that rad∞(M,Ni) has a non-zero map fi, for every i ≥ 0; see [15, (1.1)].
Since ∆ is a finite section of Γ , there exists some minimal integer m ≥ 0 such that
Nm is a predecessor of M in Γ , say, there exists a path

ρ : Nm = Mt
// Mt−1 // · · · // M1

// M0 = M

in Γ . Suppose that ρ is not sectional, that is, Mj+1 = τMj−1 for some 0 < j < t.
Then, since ∆ is a section, m > 0. By our choice of ∆, the τ−Mi with t ≥ i ≥ j+ 1
belong to Γ . This yields a path

Nm−1 // τ−Mt
// · · · // τ−Mj+1

// Mj−2 // · · · // M0 = M,

a contradiction to the minimality of m. Therefore, ρ is sectional, and consequently,
HomA(Nm,M) 6= 0. Thus, we obtain a short cycle

M
fs // Nm

g // M

of infinite depth in add(Γ ), a contradiction. This establishes our claim.
Next, suppose that there exists a non-zero map g0 : M → τN0 with M,N0 ∈ ∆.

Observe that M is not a predecessor of τN0 in Γ . Since all the predecessors of N
in ΓA belong to Γ , we see that M is not a predecessor of τN0 in ΓA. In particular,
g0 ∈ rad∞(M, τN0). Considering the minimal left almost split monomorphism
for τN0, we obtain an irreducible map g1 : τN0 → M1 with M1 ∈ Γ such that
0 6= g1g0 ∈ rad∞(M,M1). By the above claim, M1 6∈ ∆, and thus, M1 = τN1 with
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N1 ∈ ∆. This yields an arrow N0 → N1 in ∆ with rad∞(M, τN1) 6= 0. Continuing
this process, we obtain an infinite path

N0
// N1

// · · · // Nj−1 // Nj // · · ·

in ∆, contrary to the finiteness of ∆. This shows that HomA(∆, τ∆) = 0. As a
consequence, B = A/ann(∆) is a tilted algebra with ∆ being a slice of ΓB ; see [15,
(2.8)]. By Lemma 3.3, the predecessors of ∆ in ΓA are B-modules. Therefore, Ω is
a subquiver of ΓB . Since Ω is left stable and predecessor-closed in ΓA, we see that
Ω is predecessor-closed in ΓB . This shows that each of the Γi satisfies the condition
stated in Statement (2). Dually, each of the Θi satisfies the condition stated in
Statement (3). The proof of the theorem is completed.

Remark. In view of Theorem 3.4, a connected component with bounded short
cycles of ΓA can be pictured as follows.

∆1

∆r

Core

Σ1

Σs

. . . . . .

. . . . . .

. . . . . .

. . . . . .

...

...
...

...

The following consequence of Theorem 3.4 includes the result stated in [13, (2.7)]
on semi-regular components with no short cycles.

3.5. Theorem. Let A be an artin algebra. If C is a semi-regular component of ΓA,
then add(C) has bounded short cycles if and only if B = A/ann(C) is tilted with C
being a connecting component of ΓB.

Proof. The sufficiency is evident, see, for example, [13, (2.7)]. Let C be a connected
component of ΓA with no projective module. In particular, C is infinite. Assume
that add(Γ ) has bounded short cycles. In view of Theorem 3.4, we see that C con-
tains a section ∆ such that B = A/ann(∆) is tilted with C a connecting component
of ΓB . Since ann(∆) = ann(C); see [13, (2.1)], we obtain B = A/ann(C). The proof
of the theorem is completed.

The following statement extends some results on Auslander-Reiten components
without short cycles, which are stated in [13, (2.6),(2.8)].

3.6. Theorem. Let A be an artin algebra. The Auslander-Reiten quiver ΓA has at
most finitely many connected components with bounded short cycles, and each of
them has only finitely many τ -orbits.

Proof. Let C be a connected component with bounded short cycles of ΓA. The
second part is an immediate consequence of Theorem 3.4. If C is semi-regular then,
by Theorem 3.5, C is a connecting component of a tilted algebra A/ann(C). In
particular, add(C) contains no short cycle; see [13, (2.7)]. Having at most finitely
many connected components which are not semi-regular and at most finitely many
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connected components with no short cycle; see [13, (2.8)], ΓA has at most finitely
many connected components with bounded short cycles. The proof of the theorem
is completed.

A connected artin algebra A is generalized double tilted if and only if ΓA contains
a faithful, almost acyclic and generalized standard component, which is called a
connecting component; see [19, Section 3].

3.7. Proposition. Let A be an artin algebra. A connected component C of ΓA
is generalized standard with bounded short cycles if and only if B = A/ann(C) is
generalized double tilted with C a connecting component of ΓB.

Proof. The necessity follows immediately from Theorem 3.6. Assume now that
B = A/ann(C) is generalized double tilted and C is a connecting component of ΓB .
Being almost acyclic, by Theorem 2.6, C contains a finite core Ω . Let b be the
maximal R-length of the modules in Ω , where R is the center of A. Consider a
short cycle σ consisting of two maps f : M → N and g : N → M in rad(C). Since
C is generalized standard, we deduce from Theorem 2.6 that both f and g are sums
of composites of irreducible maps in add(Ω). In view of the Harada-Sai Lemma;
see [6], and also [2, (VI.1.3)], we see that both f and g are of depth less than 2b.

That is, dp(σ) < 2b. The proof of the proposition is completed.

Example. Let A = kQ/I, where k is a field, Q is the quiver

5 // 4 //// 3 // 2 // 1,oo

and I is the ideal in the path algebra kQ generated by the paths of length two. It
is easy to see that ΓA contains a generalized standard component with bounded
short cycles as follows :

P4

!!!!
P1

  

S3

>> >>

· · ·

S1
// P2

// S2

>>

  

I2

  

>>

P3

>>

S1

It has been shown that the artin algebra A is representation-finite if modA
contains no short cycle; see [3]. In order to improve this result, we shall say that
modA has bounded short cycles if there exists a bound for the depths of all possible
short cycles in indA.

3.8. Theorem. An artin algebra A is of finite representation type if and only if
modA has bounded short cycles.

Proof. Suppose first that A is of finite representation type. Then radn(modA) = 0
for some integer n > 0; see [2, (V.7.7)]. That is, every non-zero map in indA is of
depth less than n. In particular, modA has bounded short cycles.

Suppose now that modA has bounded short cycles but is of infinite type. Then,
ΓA has an infinite connected component C; see [2, (VI.1.4)]. We may assume with
no loss of generality that C contains an infinite left-stable component Γ ; see [12,
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(3.1)]. By Theorem 3.4, Γ contains a section ∆ such that B = A/ann(∆) is a tilted
algebra, and the predecessors of ∆ in ΓA generate a predecessor-closed subquiver
of a connecting component of ΓB . In particular, B is representation-infinite. Then,
ΓB has a connected component C containing non-directing modules; see [22, (2.4)],
and also [3]. Observe that C cannot be a prepropjective component, a preinjective
component or a connecting component of ΓB ; see [22, (2.4), (4.2)]. Therefore, C
is either quasi-serial or is obtained from a quasi-serial translation quiver by ray
insertions or by co-ray insertions; see [11, (3.7)]. If C contains oriented cycles, by
Lemma 3.2, add(C ) has unbounded short cycles in indB. Otherwise, C is obtained
from a translation quiver of shape ZA∞ by ray insertions or by co-ray insertions.
In particular, C has infinitely many τB-orbits, and by Theorem 3.6, add(C ) has
unbounded short cycles. In all cases, modB has unbounded short cycles, and so
does modA, a contradiction. The proof of the theorem is completed.
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