MODULE CATEGORIES OF SMALL RADICAL NILPOTENCY

SHIPING LIU AND YOUQI YIN

Abstract

This paper aims to initiate a study of the representation theory of representation-finite artin algebras in terms of the nilpotency of the radical of their module category. Firstly, we shall calculate this nilpotency explicitly for hereditary algebras of type \mathbb{A}_{n} and for Nakayama algebras. Surprisingly, this nilpotency for an artin algebra coincides with its Loewy length if and only if the algebra is a hereditary Nakayama algebra. Secondly, given a positive integer m up to four, we shall find all artin algebras for which this nilpotency is equal to m and provide a complete description of their module category.

Introduction

Let A be a connected artin algebra of finite representation type. The central objective of the representation theory is to study the category $\bmod A$ of finitely generated left A-modules, that is to classify its indecomposable modules and describe the maps between them. For instance, the representation theory of Nakayama algebras is well understood; see, for example, [2, Section V.2]. An important result says that $\operatorname{rad}(\bmod A)$, that is the radical of $\bmod A$, is nilpotent; see $[2,(\mathrm{~V} .7 .6)]$, and also $[12,14]$. Observe that A is simple if and only if $\operatorname{rad}(\bmod A)$ vanishes. It is natural to ask whether the nilpotency of $\operatorname{rad}(\bmod A)$ determines completely, or to what extent, the representation theory of A. One may approach this question from two aspects. Firstly, given a class of representation-finite algebras A, one may calculate or estimate the nilpotency of $\operatorname{rad}(\bmod A)$; and secondly, given an integer n, one may find a complete list of representation-finite algebras A such that $\operatorname{rad}(\bmod A)$ is of nipotency n and describe their representation theory if possible.

As to the first problem under the most general setting, the Harada-Sai Lemma says that the nipotency of $\operatorname{rad}(\bmod A)$ is bounded by $2^{b}-1$, where b is the maximal length of all indecomposable modules in $\bmod A$; see [12]. A sharper bound is given in [10] which depends also on the maximal length of all indecomposable modules. By a completely different approach, this nilpotency is shown to be the maximal depth of the composite of the projective cover and the injective envelope of simple modules in $\bmod A$; see [9]. In this paper, we shall use the latter result to show that the nilpotency of $\operatorname{rad}(\bmod A)$ is equal to n in case A is a hereditary algebra of type \mathbb{A}_{n}; see (2.5), and it is equal to $m-1$, where m is the maximal sum of the composition length of the projective cover and that of the injective envelope of simple modules in case A is a Nakayama algebra; see (2.7). It is evident that the nilpotency of $\operatorname{rad}(\bmod A)$ is greater than or equal to the nilpotency of the radical

[^0]of A. Surprisingly, these two numbers coincide if and only if A is hereditary of type \mathbb{A}_{n} with a linear orientation, that is, a hereditary Nakayama algebra; see (2.6).

This paper is mainly devoted to the second problem for small nilpotencies up to four. The result for nilpotency two is straightforward: the only artin algebras are hereditary algebras of type \mathbb{A}_{2}; see (5.1). The list for nilpotency three is short and nice, consisting of two well understood classes, namely, the hereditary algebras of type \mathbb{B}_{2} or \mathbb{A}_{3} and the non-hereditary Nakayama algebras with radical squared zero; see (5.2). However, it is quite long to obtain the list for nilpotency four. First, we shall show that they are all string algebras; see (3.1) and (4.1), an artin version of Butler and Ringel's string algebras defined by a quiver with relations; see [7]. Then, we shall divide them into three classes: the hereditary algebras of type \mathbb{A}_{4}, the non-hereditary Nakayama algebras of Loewy length three, and the non-hereditary non-Nakayama tri-string algebras; see (5.3), where the last class of algebras are string algebras with radical cubed zero plus some other additional conditions; see (3.5) and (4.4). The representation theory of all above-mentioned algebras will be explicitly described. In particular, the module category of a tri-string algebra is similar to that of Nakayama algebra; see (5.4) and (5.5).

Our tool consists of the Auslander-Reiten theory of irreducible maps and almost split sequences and the theory of degrees of irreducible maps, the latter appears to be particularly applicable in this topic. Our results provide some evidences that the nilpotency of $\operatorname{rad}(\bmod A)$ depends only on the composition lengths of the indecomposable projective or injective modules and determines to certain extent the shape of the Auslander-Reiten quiver of A, and we believe that they will stimulate future research in this direction. We are grateful to Gordana Todorov for pointing out a mistake in a previous version of the paper.

1. Preliminaries

The main objective of this section is to fix the notation and the terminology, which will be used throughout the paper, and collect some known results which will be needed for our investigation. Beside this, we shall also obtain some new results.

1) Radical of module categories. Throughout this paper, A stands for a connected artin algebra and $\operatorname{rad} A$ for the radical of A. The Loewy length of A, that is the minimal integer s such that $\operatorname{rad}^{s} A=0$, will be written as $\ell \ell(A)$. We shall denote by $\bmod A$ the category of finitely generated left A-modules in which the morphisms are composed from the right to the left, and by ind A the full subcategory of $\bmod A$ generated by the indecomposable modules. By a projective or injective module in $\operatorname{ind} A$ we mean a module in $\operatorname{ind} A$ which is projective or injective in $\bmod A$, respectively. The radical of $\bmod A$ is the two-sided ideal $\operatorname{rad}(\bmod A)$ in $\bmod A$ generated by the non invertible maps in $\operatorname{ind} A$. A map in $\bmod A$ is called radical if it lies in $\operatorname{rad}(\bmod A)$. We shall write $\operatorname{rad}^{m}(\bmod A)$ for the m-th power of $\operatorname{rad}(\bmod A)$ for each integer $m \geq 0$ and $\operatorname{rad}^{\infty}(\bmod A)$ for the intersection of all $\operatorname{rad}^{m}(\bmod A)$ with $m \geq 0$. In case A is representation-finite, there exists a minimal integer m such that $\operatorname{rad}^{m}(\bmod A)=0$; see $[2,($ V.7.6)], which will be called the nilpotency of $\operatorname{rad}(\bmod A)$, and also, the radical nipotency $\operatorname{of} \bmod A$.

Let M be a module in $\bmod A$. The composition length of M will be simply called the length and written as $\ell(M)$. And the top, the radical and the socle of M
will be written as $\operatorname{top} M, \operatorname{rad} M$ and $\operatorname{soc} M$, respectively. Moreover, for each simple module S in $\bmod A$, we shall fix a projective cover $\pi_{S}: P_{S} \rightarrow S$ and an injective envelope $\iota_{S}: S \rightarrow I_{S}$, and put $\theta_{S}=\iota_{S} \circ \pi_{S}$. For convenience of reference, we state the following well-known fact ; see, for example, $[2$, (III.1.15)].
1.1. Lemma. Let A be an artin algebra. If S, T are simple modules in $\bmod A$, then S is a direct summand of the top of the radical of P_{T} if and only if T is a direct summand of the socle of the socle-factor of I_{S}.
2) Auslander-Reiten theory. A comprehensive account of the AuslanderReiten theory of irreducible maps and almost split sequences can be found in [2]. By a sink map and a source map in $\bmod A$, we mean a minimal left almost split map and a minimal right almost split map respectively. For convenience of reference, we state the following well known fact; see [2, (V.5.5)].
1.2. Lemma. Let A be an artin algebra. If P is a projective injective module in $\bmod A$ of length at least two, then there exists $i n \bmod A$ an almost split sequence

$$
0 \longrightarrow \operatorname{rad} P \xrightarrow{\left(q, p_{1}\right)^{T}} P \oplus \operatorname{rad} P / \operatorname{soc} P \xrightarrow{\left(p, q_{1}\right)} P / \operatorname{soc} P \longrightarrow 0
$$

The following statement strengthens slightly a result stated in [13].
1.3. Lemma. Let A be an artin algebra. Consider almost split sequences

$$
0 \longrightarrow X_{1} \xrightarrow{\left(f_{1}, u_{1}\right)^{T}} Y \oplus M \xrightarrow{\left(g_{1}, v_{1}\right)} Z_{1} \longrightarrow 0
$$

and

$$
0 \longrightarrow X_{2} \xrightarrow{\left(f_{2}, u_{2}\right)^{T}} Y \oplus N \xrightarrow{\left(g_{2}, v_{2}\right)} Z_{2} \longrightarrow 0
$$

in $\bmod A$, where Y is indecomposable. If Y is not a direct summand of M, then $\left(f_{1}, f_{2}\right): X_{1} \oplus X_{2} \rightarrow Y$ is irreducible if and only if so is $\left(g_{1}, g_{2}\right)^{T}: Y \rightarrow Z_{1} \oplus Z_{2}$.
Proof. We shall prove only the necessity. Assume that $\left(f_{1}, f_{2}\right): X_{1} \oplus X_{2} \rightarrow Y$ is irreducible. If $X_{1} \not \neq X_{2}$, then $Z_{1} \not \not Z_{2}$, and hence, $\left(g_{1}, g_{2}\right)^{T}$ is irreducible; see [4, page 92]. Otherwise, there exists an isomorphism $f: X_{1} \rightarrow X_{2}$, which induces an isomorphism $g: Z_{2} \rightarrow X_{1}$. This gives rise to an almost split sequence

$$
0 \longrightarrow X_{1} \xrightarrow{\left(f_{2} f, u_{2} f\right)^{T}} Y \oplus Y^{\prime} \xrightarrow{\left(g g_{2}, g v_{2}\right)} Z_{1} \longrightarrow 0 .
$$

On the other hand, $\left(f_{1}, f_{2} f\right): X_{1} \oplus X_{1} \rightarrow Y$ is irreducible. By Lemma 1.10 in [15] and the dual of Corollary 3.4 in [4], $\left(g_{1}, g g_{2}\right)^{T}: Y \rightarrow Z_{1} \oplus Z_{1}$ is irreducible. As a consequence, $\left(g_{1}, g_{2}\right)^{T}$ is irreducible. The proof of the lemma is completed.

Throughout, Γ_{A} stands for the Auslander-Reiten quiver of A, which is a valued translation quiver having as vertex set the set of isomorphism classes of modules in ind A and as translation the Auslander-Reiten translation $\tau=\mathrm{DTr}$ with quasiinverse $\tau^{-}=\operatorname{TrD}$, where $D: \bmod A \rightarrow \bmod A^{\text {op }}$ denotes the standard duality and $\operatorname{Tr}: \underline{\bmod } A \rightarrow \underline{\bmod } A^{\mathrm{op}}$ denotes the transpose. For brevity, a module in ind A will be identified with its isomorphism class in Γ_{A}. We shall say that Γ_{A} is planar if the middle term of any almost split sequence in $\bmod A$ is either indecomposable or a direct sum of two indecomposable modules.

A path $X_{0} \longrightarrow X_{1} \longrightarrow \cdots \longrightarrow X_{n}$ in Γ_{A} with $n \geq 1$ is called sectional provided that $\tau X_{i+1} \not \not X_{i-1}$ for all $0<i<n$ and pre-sectional provided that $\tau X_{i+1} \cong X_{i-1}$
with $0<i<n$ occurs only if there exists an irreducible map $f: X_{i-1} \oplus X_{i-1} \rightarrow X_{i}$ or $g: X_{i} \rightarrow X_{i+1} \oplus X_{i+1}$; see [15, (1.4)].

By an irreducible map in $\operatorname{ind} A$ we mean a map in $\operatorname{ind} A$ which is irreducible in $\bmod A$. A path of irreducible maps in ind A is called sectional or pre-sectional if the corresponding path in Γ_{A} is sectional or pre-sectional respectively. In a diagram of irreducible maps in ind A, a left dotted arrow $X<\cdots \cdots$ indicates that $X=\tau Y$.
1.4. Definition. A diagram Ω of irreducible maps in ind A is called fitting provided, for all modules M and $\tau^{-} M$ in Ω, that the maps $f_{i}: M \rightarrow M_{i}$ of domain M and the maps $g_{i}: M_{i} \rightarrow \tau^{-} M$ of co-domain $\tau^{-} M$ in Ω, for $i=1, \ldots, r$, fit in an almost split sequence

$$
0 \longrightarrow M \xrightarrow{\left(f_{1}, \cdots, f_{r}, f\right)^{T}} M_{1} \oplus \cdots \oplus M_{r} \oplus X_{M} \xrightarrow{\left(g_{1}, \cdots, g_{r}, g\right)} \tau^{-} M \longrightarrow 0
$$

in $\bmod A$. Such a fitting diagram Ω is called mesh-complete if $X_{M}=0$ for all modules M and $\tau^{-} M$ in Ω; and in this case, the sub-diagram formed by f_{i} and g_{i} with $1 \leq i \leq r$ is called a mesh in $\operatorname{ind} A$.

We shall use frequently the following well known statement to construct fitting diagrams of irreducible maps in ind A.
1.5. Lemma. Let A be an artin algebra. Consider an almost split sequence

$$
0 \longrightarrow X \xrightarrow{\left(f_{1}, \cdots, f_{r}\right)^{T}} Y_{1} \oplus \cdots \oplus Y_{r} \xrightarrow{\left(g_{1}, \ldots, g_{r}\right)} Z \longrightarrow 0
$$

in $\bmod A$, where Y_{1}, \ldots, Y_{r} are indecomposable.
(1) If f_{i} is a monomorphism for some $1 \leq i \leq r$, then g_{j} is a monomorphism, and hence, X_{j} is not injective for every $j \neq i$.
(2) If g_{i} is an epimorphism for some $1 \leq i \leq r$, then f_{j} is an epimorphism, and hence, X_{j} is not projective for every $j \neq i$.
3) Degrees of irreducible maps. Given a map $f: X \rightarrow Y$ in $\bmod A$, its depth $\operatorname{dp}(f)$ is defined to be s if $f \in \operatorname{rad}^{s}(X, Y) \backslash \operatorname{rad}^{s+1}(X, Y)$; and to be infinity if $f \in \operatorname{rad}^{\infty}(X, Y)$; see [9]. This terminology allows us to reformulate the notion of degrees of irreducible maps as follows; compare [15, (1.1)].
1.6. Definition. Let $f: X \rightarrow Y$ be an irreducible map in $\bmod A$ with X or Y in $\operatorname{ind} A$. The left degree $d_{l}(f)$ of f is defined to be the minimal integer n such that there exists a map $g: M \rightarrow X$ of depth n with $f g \in \operatorname{rad}^{n+2}(M, Y)$; and $d_{l}(f)=\infty$ if such an integer n does not exist. The right degree $d_{r}(f)$ of f is defined dually.

Remark. It is handy to view the degrees of an irreducible map $f: X \rightarrow Y$ in the following way. If $g: M \rightarrow X$ is a map of depth $s<d_{l}(f)$, then $f g$ is of depth $s+1$; and if $h: Y \rightarrow N$ is a map of depth $t<d_{r}(f)$, then $h f$ is of depth $t+1$.

We shall use frequently the following statement, which combines the corollaries to Lemmas 1.2 and 1.3 stated in [15].
1.7. Lemma. Let A be an artin algebra. Consider an irreducible map $f: X \rightarrow Y$ in $\bmod A$, where X or Y is indecomposable.
(1) The left degree of f is equal to one if and only if f is a sink epimorphism. Moreover, $d_{l}(f)=\infty$ in case Y is projective.
(2) The right degree of f is equal to one if and only if f is a source epimorphism. Moreover, $d_{r}(f)=\infty$ in case X is injective.

The key ingredient in the application of degrees of irreducible maps is the reduction of finite degrees illustrated in the following two statements, which are quoted or reformulated from results stated in $[15,(1.2),(1.3),(1.11)]$.
1.8. Lemma. Let A be an artin algebra. Consider an almost split sequence

$$
0 \longrightarrow X \xrightarrow{\left(f_{1}, f_{2}\right)^{T}} Y_{1} \oplus Y_{2} \xrightarrow{\left(g_{1}, g_{2}\right)} Z \longrightarrow 0
$$

in $\bmod A$, where Y_{1}, Y_{2} are non-zero. If $d_{l}\left(g_{1}\right)<\infty$, then $d_{l}\left(f_{2}\right)<d_{l}\left(g_{1}\right)$; and if $d_{r}\left(f_{1}\right)<\infty$, then $d_{r}\left(g_{2}\right)<d_{r}\left(f_{1}\right)$.
1.9. Lemma. Let A be an artin algebra. If $\left(f_{1}, f_{2}\right)^{T}: X \rightarrow Y_{1} \oplus Y_{2}$ is an irreducible map of left degree n, where $X, Y_{1}, Y_{2} \in \operatorname{ind} A$, then there exists a fitting diagram

in ind A such that $\left(g_{1}, g_{2}\right)$ is an irreducible map of left degree $<n$.
We quote the following statement from $[15,(1.6),(1.15)]$.
1.10. Proposition. Let A be an artin algebra, and let Γ_{A} have a pre-sectional path

$$
Y_{n} \longrightarrow Y_{n-1} \longrightarrow \cdots \longrightarrow Y_{1} \longrightarrow Y_{0} .
$$

(1) There exist irreducible maps $f_{i}: Y_{i} \rightarrow Y_{i-1}$ such that $\operatorname{dp}\left(f_{1} \cdots f_{n}\right)=n$.
(2) If the path is sectional and $f_{i}: Y_{i} \rightarrow Y_{i-1}$ is irreducible, then $\operatorname{dp}\left(f_{1} \cdots f_{n}\right)=n$.
(3) If $\left(f, f_{1}\right): X \oplus Y_{1} \rightarrow Y_{0}$ is an irreducible map with $f: X \rightarrow Y_{0}$ non-zero, then $d_{l}(f)>n$, and $d_{l}(f)=\infty$ in case Y_{i} is projective for some $0 \leq i \leq n$.
(4) If $\left(f_{n}, g\right)^{T}: Y_{n} \rightarrow Y_{n-1} \oplus Y$ is an irreducible map with $g: Y_{n} \rightarrow Y$ non-zero, then $d_{r}(g)>n$, and $d_{r}(g)=n$ in case Y_{i} is injective for some $0 \leq i \leq n$.

The following statement will be useful for our investigation.
1.11. Lemma. Let A be an artin algebra with a fitting diagram

in $\operatorname{ind} A$, where $X_{i}=\tau Y_{i-1}$ for $i=1, \ldots, n$. Then, there exists a map $f: X_{n} \rightarrow Y_{0}$ of depth $n+1$.

Proof. By the assumption, $X_{n} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}$ and $Y_{n} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}$ are pre-sectional paths in Γ_{A}. By Proposition 1.10(1), we can find a map $g: X_{n} \rightarrow X_{0}$ of depth n, and by Lemma $1.10(3), d_{l}\left(h_{0}\right)>n$. Thus, $\operatorname{dp}\left(h_{0} g\right)=n+1$. The proof of the lemma is completed.
REMARK. In the sequel, a fitting diagram as described in Lemma 1.11 will be called a ladder of height n from X_{n} to Y_{0}.
4) Valued translation quivers. Let Δ be a valued quiver. The valuation $\left(d_{x y}, d_{x y}^{\prime}\right)$ for an arrow $x \rightarrow y$ in Δ is trivial if $d_{x y}=d_{x y}^{\prime}=1$; and in this case, the valuation will be omitted. If Σ is a valued subquiver of Δ, then the valuation for each arrow in Σ will be the same as in Δ. Given an integer $n \geq 1$, we shall denote by $\overrightarrow{\mathbb{A}}_{n}$ the trivially valued quiver, whose vertices are the integers $1, \ldots, n$ and whose arrows are $i \rightarrow i+1$, for $i=1, \ldots, n-1$. Moreover, we shall denote by $\hat{\mathbb{A}}_{n}$ a trivially valued quiver of type \mathbb{A}_{n} with a non-linear orientation.

Given a valued quiver Δ with no oriented cycle, one defines a valued translation quiver $\mathbb{Z} \Delta$ as follows. The vertices are the pairs (n, x), where $n \in \mathbb{Z}$ and $x \in \Delta_{0}$. Each arrow $x \rightarrow y$ in Δ with valuation $\left(v_{x y}, v_{x y}^{\prime}\right)$ induces arrows $(n, x) \rightarrow(n, y)$ with valuation $\left(v_{x y}, v_{x y}^{\prime}\right)$ and $(n-1, y) \rightarrow(n, x)$ with valuation $\left(v_{x y}^{\prime}, v_{x y}\right)$, where $n \in \mathbb{Z}$, in $\mathbb{Z} \Delta$. The translation of $\mathbb{Z} \Delta$ is defined so that it sends (n, x) to $(n-1, x)$, for all $n \in \mathbb{Z}$ and $x \in \Delta_{0}$; see $[6,(1.7)]$.

Let Γ be a valued translation quiver with translation ρ. If x is a vertex x in Γ such that $\rho(x)$ is defined, then the mesh starting with $\rho(x)$ and ending with x is the valued subquiver

where $\alpha_{1}, \ldots, \alpha_{r}$ are the arrows in Γ starting with $\rho(x)$, and $\beta_{1}, \ldots, \beta_{r}$ are the arrows ending with x. In this case, $\beta_{1} \alpha_{1}, \ldots, \beta_{r} \alpha_{r}$ are called the components of the mesh. Such a mesh is called monomial if $r=1$ and binomial if $r=2$. A full valued translation subquiver Ω of Γ is called mesh-complete if every mesh in Γ, whose starting point and ending point lie in Ω, lies entirely in Ω.

Two paths ξ and ζ in Γ are called homotopic if there exists a sequence of paths $\xi=\xi_{1}, \xi_{2}, \ldots, \xi_{m}=\zeta$ such that for each $1 \leq i<m$, either $\xi_{i}=\xi_{i+1}$ or else, $\xi_{i}=\eta_{i} \beta_{i} \alpha_{i} \theta_{i}$ and $\xi_{i+1}=\eta_{i} \delta_{i} \gamma_{i} \theta_{i}$, where η_{i}, θ_{i} are paths in Γ, while $\beta_{i} \alpha_{i}$ and $\delta_{i} \gamma_{i}$ are components of the same mesh; compare [6, (1.2)]. This is an equivalence relation on the set of paths in Γ, which is compatible with the concatenation of paths. Observe that two homotopic paths are parallel (that is, they star with the same vertex and end with the same vertex) of the same length.
1.12. LEMMA. The following statements hold in $\mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$ with $n \geq 2$.
(1) Any two parallel paths are homotopic, and hence, of the same length.
(2) Every path of length n is homotopic to a path passing through a monomial mesh.

Proof. Let ξ and ζ be paths in $\mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$ from a vertex x to another vertex y. It is clear that $\xi=\zeta$ in case ξ or ζ is sectional. In particular, Statement (1) holds if ξ or ζ is of length ≤ 1. Suppose that ξ and ζ are of length >1. Write $\xi=\xi_{1} \alpha$ and $\zeta=\zeta_{1} \gamma$, where $\alpha: x \rightarrow x_{1}$ and $\gamma: x \rightarrow y_{1}$ are arrows. If $\alpha=\gamma$, then ξ is homotopic to ζ by
the induction hypothesis. Otherwise, neither ξ nor ζ is sectional. Then, we obtain a path $\eta: \rho^{-} x \rightsquigarrow y$, where ρ denotes the translation of $\mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$. Consider the arrows $\beta: x_{1} \rightarrow \rho^{-} x$ and $\delta: y_{1} \rightarrow \rho^{-} x$. By the induction hypothesis, we deduce that ξ is homotopic to $\eta \beta \alpha$, while ζ is homotopic to $\eta \delta \gamma$. Since $\eta \beta \alpha$ and $\eta \delta \gamma$ are homotopic by definition, ξ is homotopic to ζ. This establishes Statement (1).

Assume now that $\xi: x \rightsquigarrow y$ is a path of length n. By Statement (1), it suffices to find a path from x to y, which passes through a monomial mesh. With no loss of generality, we may assume that $x=(0, i)$ for some $1 \leq i \leq n$. Then, $y=(s, j)$ for some $s \geq 0$ and $1 \leq j \leq n$. Let Σ be the convex hull generated by $(0, i)$ and ($n-i, i$), which has two boundary paths

$$
x=(0, i) \rightarrow(0, i+1) \rightarrow \cdots \rightarrow(0, n-1) \rightarrow(0, n) \rightarrow(1, n-1) \rightarrow \cdots \rightarrow(n-i, i)
$$

and
$x=(0, i) \rightarrow(1, i-1) \rightarrow \cdots \rightarrow(i-2,2) \rightarrow(i-1,1) \rightarrow(i-1,2) \rightarrow \cdots \rightarrow(n-i, i)$.
Since these paths are of length $n-1$, any path from x to a vertex in Σ is of length $<n$. Hence, $y \notin \Sigma$. That is, either $i \leq j \leq n$ and $s>n-j$, or else, $1 \leq j<i$ and $s>i$. This yields a path

$$
x=(0, i) \rightarrow \cdots \rightarrow(i-1,1) \rightarrow(i-1,2) \rightarrow(i, 1) \rightarrow \cdots \rightarrow(i, j) \rightarrow \cdots \rightarrow(s, j)=y
$$

or
$x=(0, i) \rightarrow \cdots \rightarrow(0, n) \rightarrow(1, n-1) \rightarrow(1, n) \rightarrow \cdots \rightarrow(n-j+1, j) \rightarrow \cdots \rightarrow(s, j)=y$,
which passes through a monomial mesh. The proof of the lemma is completed.
Suppose that Γ is connected. A connected full valued subquiver Δ of Γ is called a section if it is convex, contains no oriented cycle, and meets exactly once every ρ-orbit in Γ. In this case, there exists a canonical embedding $\Gamma \rightarrow \mathbb{Z} \Delta$ sending $\rho^{n} x$ to $(-n, x)$; see $[17,(2.1),(2.3)]$.
5) Hereditary algebras. Let A be a connected hereditary artin algebra. It is well known that the projective modules in Γ_{A} generate a section in the preprojective component; see [2, (VIII.1.15)], and dually, the injective modules generate a section in the preinjective component. We shall say that A is hereditary of type Δ, where Δ is a valued quiver, provided that the section of the preprojective component of Γ_{A} generated by the projective modules is isomorphic to Δ.
1.13. Proposition. Let A be a connected non-simple artin algebra. Then A is hereditary of finite representation type if and only if Γ_{A} has a connected non-trivial mesh-complete valued translation subquiver Γ in which the projective modules generate a section Δ and the injective modules also generate a section. In this case, Γ_{A} coincides with Γ and embeds in $\mathbb{Z} \Delta$ as a convex translation subquiver.
Proof. Suppose that A is hereditary and representation-finite. Since A is not simple, Γ_{A} is non-trivial finite and connected; see [2, (VII.2.1)]. Hence, the projective modules in Γ_{A} generate a section Δ; see [2, (VIII.1.15)], and dually, the injective modules in Γ_{A} also generate a section; see [2, (VIII.5.4)]. Consider the canonical embedding of Γ_{A} into $\mathbb{Z} \Delta$. Let $X_{0} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow X_{n}$ be a path in $\mathbb{Z} \Delta$. We may assume that $X_{i}=\left(s_{i}, P_{i}\right)$, where $s_{i} \geq 0$ and $P_{i} \in \Delta$ with $\tau^{-s_{0}} P_{0}, \tau^{-s_{n}} P_{n} \in \Gamma_{A}$. We shall show that $\tau^{-s_{i}} P_{i} \in \Gamma_{A}$ for every $0 \leq i \leq n$. Otherwise, there exists some $0<t \leq n$ such that $\tau^{-s_{t}} P_{t} \in \Gamma_{A}$ and $\tau^{-s_{t-1}} P_{t-1} \notin \Gamma_{A}$. Then, $\tau^{-s} P_{t-1}$ is an injective module, where $0 \leq s<s_{t-1}$. Now $X_{t-1} \rightarrow X_{t}$ is induced from an arrow $P_{t-1} \rightarrow P_{t}$ or $P_{t} \rightarrow P_{t-1}$ in Δ. In the first case, $s_{t}=s_{t-1}$ and $s<s_{t}$. This yields
an arrow $\tau^{-s} P_{t-1} \rightarrow \tau^{-s} P_{t}$ in Γ_{A}. Since A is hereditary, $\tau^{-s} P_{t}$ is injective, and hence, $\tau^{-s_{t}} P_{t} \notin \Gamma_{A}$, absurd. In the second case, $s_{t}=s_{t-1}+1$ and $s+1<s_{t}$. This yields an arrow $\tau^{-s} P_{t-1} \rightarrow \tau^{-s-1} P_{t}$ in Γ_{A}. Then $\tau^{-s-1} P_{t}$ is injective, and hence, $\tau^{-s_{t}} P_{t} \notin \Gamma_{A}$, absurd. Thus, Γ_{A} is convex in $\mathbb{Z} \Delta$.

Conversely, assume that Γ is a connected non-trivial mesh-complete valued translation subquiver of Γ_{A}, having a section Δ generated by the projective modules in Γ and a section Σ generated by the injective modules in Γ. Then, every module M in Γ is uniquely written as $M=\tau^{-s} P=\tau^{t} I$, where $s, t \geq 0$ and $P \in \Delta$ and $I \in \Omega$. In particular, Γ is finite. Moreover, it is easy to see that $\tau M \in \Gamma$ if M is not projective and $\tau^{-} M$ is in $\in \Gamma$ if M is injective.

Fix a module P in Δ. We claim that every indecomposable direct summand M of $\operatorname{rad} P$ lies in Δ. Suppose that $M \notin \Delta$. Since P is projective, M is not injective. If P is injective, then $M=\operatorname{rad} P$ and $M \rightarrow P$ and $P \rightarrow \tau^{-} M$ are the only arrows in Γ_{A} starting or ending in P; see (1.2). Not being projective, $\tau^{-} M \notin \Delta$. Thus, $\Delta=\{P\}$ and hence, $\Gamma=\{P\}$, absurd. Thus, P is not injective. As shown above, the path $P \rightarrow \tau^{-} M \rightarrow \tau^{-} P$ lies in Γ, and so does $M \rightarrow P \rightarrow \tau^{-} M$, absurd. This establishes our claim. In particular, Γ contains all arrows $X \rightarrow P$ in Γ_{A}. Let $P \rightarrow Y$ be an arrow in Γ_{A}. If P is not injective, then Γ contains the path $P \rightarrow Y \rightarrow \tau^{-} P$. Otherwise, $Y=P / \operatorname{soc} P$ with an arrow $\tau Y \rightarrow P$. As has been shown, $\tau Y \in \Delta$, and consequently, $Y \in \Gamma$.

Dually, if I is a module in Σ, then Γ contains all arrows $I \rightarrow Y$ and $X \rightarrow I$ in Γ_{A}. Furthermore, if $X \rightarrow M$ and $M \rightarrow Y$ are arrows in Γ_{A}, where $M \in \Gamma$ and $M \notin \Delta \cup \Sigma$, then Γ contains the paths $\tau M \rightarrow X \rightarrow M$ and $M \rightarrow Y \rightarrow \tau^{-} M$. This shows that Γ is a finite connected component of Γ_{A}. As a consequence, $\Gamma=\Gamma_{A}$; see $[2,(V I I .2 .1)]$. In particular, Δ contains essentially all projective modules in ind A. It follows from our claim that A is hereditary of type Δ. The proof of the proposition is completed.
REmARK. An hereditary algebra of type Δ, where Δ is a valued quiver, will also be called hereditary of type $\bar{\Delta}$, where $\bar{\Delta}$ is the underlying valued graph of Δ.

2. The \mathbb{A}-hereditary case and the Nakayama case

The main objective of this section is to calculate the nilpotency of $\operatorname{rad}(\bmod A)$ in case A is a hereditary of type \mathbb{A}_{n} or a Nakayama algebra. We start with some general properties of $\operatorname{ind} A$ in case $\operatorname{rad}^{n}(\bmod A)$ vanishes, which confirm that the Auslander-Reiten quiver of $\bmod A$ is controlled somehow by its radical nilpotency.
2.1. Lemma. Let A be an artin algebra with $\operatorname{rad}^{n}(\bmod A)=0$ for some $n>1$. If $f: X \rightarrow Y$ is a non-zero map in ind A, then $\operatorname{dp}(f) \leq n-1$, where the equality occurs only if X is projective and Y is injective.
Proof. Let $f: X \rightarrow Y$ be a non-zero map in ind A. Then, $f \notin \operatorname{rad}^{n}(X, Y)$, and hence, $\operatorname{dp}(f) \leq n-1$. Suppose that $\operatorname{dp}(f)=n-1$. If Y is not injective, then the injective envelope $q: Y \rightarrow I$ is a radical map such that $0 \neq q f \in \operatorname{rad}^{n}(X, I)$, a contradiction. Dually, X is projective. The proof of the lemma is completed.
2.2. Lemma. Let A be an artin algebra with $\operatorname{rad}^{n}(\bmod A)=0$ for some $n>1$. Consider non-zero radical maps $f_{i}: X_{i} \rightarrow X_{i+1}$ in ind A, for $i=1, \ldots, n-1$.
(1) If the f_{i} are monomorphisms, then X_{1} is simple projective and X_{n} is injective.
(2) If the f_{i} are epimorphisms, then X_{1} is projective and X_{n} is simple injective.

Proof. We consider only the case where f_{1}, \ldots, f_{n-1} are monomorphisms. In view of Lemma 2.1, we see easily that $\operatorname{dp}\left(f_{n-1} \cdots f_{1}\right)=n-1$. Thus, X_{1} is projective and X_{n} is injective. If X_{1} is not simple, then there exists a radical monomorphism $f: S \rightarrow X_{1}$, where S is simple. This yields that $0 \neq f f_{n-1} \cdots f_{1} \in \operatorname{rad}^{n}\left(S, X_{n}\right)$, a contradiction. The proof of the lemma is completed.

The following statement says that the degrees of irreducible maps are bounded by the radical nilpotency of $\bmod A$.
2.3. Lemma. Let A be an artin algebra with $\operatorname{rad}^{n}(\bmod A)=0$ for some $n>1$.
(1) If $f: X \rightarrow Y$ is an irreducible epimorphism in ind A, then $d_{l}(f) \leq n-1$.
(2) If $f: X \rightarrow Y$ is an irreducible monomorphism in ind A, then $d_{r}(f) \leq n-1$.

Proof. Let $f: X \rightarrow Y$ be an irreducible epimorphism in ind A. By Lemma 2.1, its kernel $q: L \rightarrow X$ is of depth $\leq n-1$. Since $f q=0$, by definition, $d_{l}(f) \leq n-1$. The proof of the lemma is completed.

The following statement says that the lengths of pre-sectional paths in Γ_{A} are bounded by the radical nilpotency of $\bmod A$.
2.4. Lemma. Let A be an artin algebra with $\operatorname{rad}^{n}(\bmod A)=0$ for some $n>1$. If Γ_{A} contains a pre-sectional path $X_{0} \longrightarrow X_{1} \longrightarrow \cdots \longrightarrow X_{m-1} \longrightarrow X_{m}$, then $m \leq n-1$, where the equality occurs only if X_{0} is projective and X_{n-1} is injective.

We are ready to calculate the radical nilpotency of the module category of a hereditary algebra of type \mathbb{A}_{n}.
2.5. Theorem. Let A be a hereditary artin algebra of type \mathbb{A}_{n} for some $n \geq 1$. Then the radical of $\bmod A$ is nilpotent of nilpotency n.
Proof. We may assume that $n \geq 2$. Let Δ be the section of Γ_{A} generated by the projective modules, which is a quiver of type \mathbb{A}_{n}. Since $\mathbb{Z} \Delta \cong \mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$; see $[11$, (5.6)], we may regard Γ_{A} as a convex translation subquiver of $\mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$; see (1.13). In particular, every mesh in Γ_{A} is monomial or binomial. Since Γ_{A} is finite and contains no oriented cycle, $\operatorname{End}_{A}(X)$ is a division algebra for any module X in Γ_{A}. Given an arrow $X \rightarrow Y$ in Γ_{A}, since it has a trivial valuation and is the only path from X to $Y, \operatorname{Hom}_{A}(X, Y)$ is one dimensional over each of $\operatorname{End}_{A}(X)$ and $\operatorname{End}_{A}(Y)$. Combining these two facts with Lemma 1.7, we obtain the following statement.
Sublemma. Let $f: \tau X \rightarrow Y$ and $g: Y \rightarrow X$ be irreducible maps in ind A. If the mesh ending with X is monomial, then $g f=0$; and otherwise, gf forms a basis of $\operatorname{Hom}_{A}(\tau X, X)$ over each of $\operatorname{End}_{A}(\tau X)$ and $\operatorname{End}_{A}(X)$.

For each arrow $\alpha: X \rightarrow Y$ in Γ_{A}, we choose an irreducible map $f_{\alpha}: X \rightarrow Y$ in $\bmod A$. Given a path $\xi=\alpha_{1} \cdots \alpha_{m}$ in Γ_{A}, where the α_{i} are arrows, we put $f_{\xi}=f_{\alpha_{1}} \cdots f_{\alpha_{m}}$. Since Γ_{A} is convex in $\mathbb{Z} \overrightarrow{\mathbb{A}}_{n}$, two paths ξ, ζ in Γ_{A} are homotopic in Γ_{A} if and only if they are homotopic in $\mathbb{Z}_{\mathbb{A}_{n}}$; and in this case, we deduce from the sublemma that $f_{\xi}=0$ if and only $f_{\zeta}=0$. Moreover, if ξ is a path of length n, then it is homotopic to a path in Γ_{A} passing through a monomial relation, and by the sublemma, $f_{\xi}=0$. This implies that $\operatorname{rad}^{n}(\bmod A)=0$.

It remains to show that $\operatorname{rad}^{n-1}(\bmod A) \neq 0$. Let $M_{1} \rightarrow \cdots \rightarrow M_{t-1} \rightarrow M_{t}$ be a sectional path in Γ_{A} of maximal length. Then, $M_{i}=\tau^{-s_{i}} P_{i}$, where $s_{i} \geq 0$ and $P_{i} \in \Delta$, for $i=1, \ldots, t$. Since the M_{i} are pairwise different, so are the P_{i}, and
hence, $t \leq n$. Suppose that $t<n$. Since Δ is of type \mathbb{A}_{n}, it contains an edge $P-P_{1}$ or $P-P_{t}$, where $P \notin\left\{P_{1}, \ldots, P_{t}\right\}$. Assume that the first case occurs. If M_{1} is not projective, then none of the M_{i} is projective. Applying τ if necessary, we may assume that $M_{1}=P_{1}$. By the maximality of t, we see that $M_{1} \rightarrow P$ is an arrow in Δ. Hence, there exists an irreducible monomorphism $f_{1}: M_{1} \rightarrow P$. Then, M_{1} is not injective and there exists an irreducible monomorphism $f_{2}: M_{2} \rightarrow \tau^{-} M_{1}$; see (1.5). By induction, M_{1}, \ldots, M_{t} are not injective. This yields a sectional path $P \rightarrow \tau^{-} M_{1} \rightarrow \cdots \rightarrow \tau^{-} M_{t}$ in Γ_{A}, contrary to the maximality of t. Thus, $t=n$. By Lemma 1.10, $\operatorname{rad}^{n-1}\left(M_{1}, M_{n}\right) \neq 0$. The proof of the theorem is completed.

The following statement describes in particular the Auslander-Reiten quiver of a hereditary artin algebra of type $\overrightarrow{\mathbb{A}}_{n}$.
2.6. Theorem. Let A be a connected artin algebra of finite representation type. If $\ell \ell(A)=n$, then $\operatorname{rad}(\bmod A)$ is of nilpotency $\geq n$, where the equality occurs if and only if A is hereditary of type $\overrightarrow{\mathbb{A}}_{n}$; and in this case, Γ_{A} is a wing of rank n.
Proof. Suppose that $\operatorname{rad}^{n} A=0$ and $\operatorname{rad}^{n-1} A \neq 0$ for some integer $n \geq 1$. It is clear that $\operatorname{rad}^{n-1}(\bmod A) \neq 0$, and hence, $\operatorname{rad}(\bmod A)$ is of nilpotency $\geq n$. If A is hereditary of type $\overrightarrow{\mathbb{A}}_{n}$, then $\operatorname{rad}(\bmod A)$ is of nilpotency n; see (2.5). Suppose conversely that $\operatorname{rad}^{n}(\bmod A)=0$. If $n=1$, then A is hereditary of type $\overrightarrow{\mathbb{A}}_{1}$. Otherwise, there exist orthogonal primitive idempotents $e_{0}, e_{1}, \ldots, e_{n-1}$ in A such that $e_{n-1}(\operatorname{rad} A) e_{n-2} \cdots e_{1}(\operatorname{rad} A) e_{0} \neq 0$. This yields a path of radical maps

$$
P_{n-1} \xrightarrow{f_{0, n-1}} P_{n-2} \xrightarrow{f_{0, n-2}} \cdots \xrightarrow{f_{02}} P_{1} \xrightarrow{f_{01}} P_{0}
$$

in ind A, where $P_{j}=A e_{j}$, such that $f_{01} \cdots f_{0, n-2} f_{0, n-1} \neq 0$. We observe that $f_{0 j} \notin \operatorname{rad}^{2}\left(P_{j}, P_{j-1}\right)$, that is, $f_{0 j}$ is irreducible, for $j=1, \ldots, n-1$. Since the P_{j} are projective, the path is a sectional. Starting with it and applying repeatedly Lemma 1.5, we can construct a fitting diagram

in ind A, where $f_{i j}$ with $0 \leq i<j \leq n-1$ are irreducible monomorphisms. We shall show that the diagram is mesh-complete.
(1) The modules $\tau^{-i} P_{i}$ with $0 \leq i \leq n-1$ are injective and $g_{i j}$ with $1 \leq i \leq j<n$ are irreducible epimorphisms.

Since $f_{01}, \ldots, f_{0, n-1}$ are monomorphisms, by Lemma $2.2, P_{0}$ is injective. Fix $0<i<n-1$. We obtain two sectional paths of irreducible maps

$$
\tau^{-i} P_{n-1} \xrightarrow{f_{i, n-1}} \tau^{-i} P_{n-2} \longrightarrow \cdots \longrightarrow \tau^{-i} P_{i+1} \xrightarrow{f_{i, i+1}} \tau^{-i} P_{i}
$$

and

$$
P_{n-1-i} \xrightarrow{g_{1, n-i}} \tau^{-} P_{n-i} \longrightarrow \cdots \longrightarrow \tau^{1-i} P_{n-1} \xrightarrow{g_{i, n-1}} \tau^{-i} P_{n-1}
$$

in ind A. By Lemma $1.10, \operatorname{dp}\left(g_{i, n-1} \cdots g_{1, n-i}\right)=i$. For each j with $i<j \leq n-1$, we have an irreducible map $\left(f_{i j}, g_{i, j-1}\right): \tau^{-i} P_{j} \oplus \tau^{1-i} P_{j-2} \rightarrow \tau^{-i} P_{j-1}$ and a sectional path $P_{j-i-1} \rightarrow \tau^{-} P_{j-i-1} \rightarrow \cdots \rightarrow \tau^{-i} P_{j-1}$ in Γ_{A}. Since P_{j-i-1} is projective, by Lemma 1.10(3), $d_{l}\left(f_{i j}\right)=\infty$. Thus, $\operatorname{dp}\left(f_{i, i+1} \cdots f_{i, n-1} g_{i, n-1} \cdots g_{1, n-i}\right)=n-1$. and by Lemma 2.1, $\tau^{-i} P_{i}$ is injective. This shows that $P_{0}, \tau^{-} P_{1}, \ldots, \tau^{2-n} P_{n-2}$ are injective, and consequently, $g_{11}, \ldots, g_{n-1, n-1}$ are irreducible epimorphisms. Then, by Lemma 2.2(2), $\tau^{1-n} P_{n-1}$ is injective. Finally, we deduce from Lemma 1.5(2) that $g_{i j}$ is an irreducible epimorphism for every $1 \leq i \leq j<n$.
(2) The maps $\left(g_{i j}, f_{i, j+1}\right): \tau^{1-i} P_{j-1} \oplus \tau^{-i} P_{j+1} \rightarrow \tau^{-i} P_{j}$ with $0<i \leq j<n-1$ are sink maps.

Suppose that this is not true, say $\left(g_{s t}, f_{s, t+1}\right)$ with $0<s<n-1$ is not a sink map. We may assume that s is minimal. Then, there exists an irreducible map $\left(g_{s t}, f_{t}, f_{s, t+1}\right): \tau^{1-s} P_{t-1} \oplus M_{t} \oplus \tau^{-s} P_{t+1} \rightarrow \tau^{-s} P_{t}$, where M_{t} is indecomposable. If $s=1$, then we obtain a pre-sectional path $P_{n-1} \rightarrow \cdots \rightarrow P_{t+1} \rightarrow P_{t} \rightarrow M_{t}$ in Γ_{A}, and by Lemma $1.10(1)$, we have a $\operatorname{map} \theta: P_{n-1} \rightarrow M_{t}$ of depth $n-t$. Since P_{j} is projective, $d_{l}\left(f_{t}\right)=d_{l}\left(f_{1 j}\right)=\infty$ for $2 \leq j \leq t-1$; see (1.10). Therefore, $d_{l}\left(f_{12} \cdots f_{1 t} f_{t} \theta\right)=n$, a contradiction. In case $s>1$, by the minimality of s, we see that M_{t} is projective. Then, $g_{s t}$ is a monomorphism; see (1.5), a contradiction.
(3) The maps $g_{i, n-1}: \tau^{1-i} P_{n-2} \rightarrow \tau^{-i} P_{n-1}$ with $0<i<n$ are sink maps.

Suppose that this does not hold, say $g_{s, n-1}$ with $0<s<n$ is not a sink map. This yields an irreducible map $\left(g_{s, n-1}, f_{n-1}\right): \tau^{1-s} P_{n-2} \oplus M_{n-1} \rightarrow \tau^{-s} P_{n-1}$, where M_{n-1} is indecomposable. We may assume that s is minimal. In case $s=1$, we obtain pre-sectional path $M_{t} \rightarrow \tau^{-} P_{n-1} \rightarrow \cdots \rightarrow \tau^{-} P_{1}$, and then, a ladder of height $n-1$ from P_{n-1} to $\tau^{-} P_{1}$. By Lemma 1.11, $\operatorname{rad}^{n}\left(P_{n-1}, \tau^{-} P_{1}\right) \neq 0$, absurd. In case $s>1$, it follows from the minimality of s that M_{n-1} is projective. Then, $g_{s, n-1}$ is a monomorphism; see (1.5), a contradiction.

By the above statements, the diagram is mesh-complete in ind A. Forgetting its irreducible maps, we obtain a mesh-complete translation subquiver Γ of Γ_{A}, which is a wing of rank n and has all the properties stated in Proposition 1.13. Thus A is hereditary of type $\overrightarrow{\mathbb{A}}_{n}$ with $\Gamma_{A}=\Gamma$. The proof of the theorem is completed.

We conclude this section with the case where A is a Nakayama algebra. Since Γ_{A} is planar; see [2, page 197], an irreducible monomorphism or epimorphism in $\operatorname{ind} A$ is of infinite left or right degree respectively; see $[8,(6.2)]$.
2.7. Theorem. Let A be a Nakayama algebra. Then the nilpotency of $\operatorname{rad}(\bmod A)$ is the maximal number of $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-1$, where S ranges over the simple modules.
Proof. It amounts to show that $\operatorname{dp}\left(\theta_{S}\right)=\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-2$, for every simple module S in $\bmod A$; see $[9,(2.7)]$. Write $n=\ell\left(I_{S}\right)$. If $n=1$, then ι_{S} is an isomorphism, and hence, $\operatorname{dp}\left(\iota_{S}\right)=0$. Otherwise, it is well known; see, for example, [2, Page 197] that there exists a sequence of canonical irreducible monomorphisms

$$
S \xrightarrow{q_{n-1}} \operatorname{rad}^{n-2} I_{S} \xrightarrow{q_{n-2}} \cdots \xrightarrow{q_{2}} \operatorname{rad} I_{S} \xrightarrow{q_{1}} I_{S}
$$

Thus, $\iota_{S}=f q_{1} \cdots q_{n-1}$, where $f: I_{S} \rightarrow I_{S}$ is an isomorphism. Since $d_{l}\left(q_{i}\right)=\infty$; see $[8,(6.2)], \operatorname{dp}\left(\iota_{S}\right)=\operatorname{dp}\left(q_{1} \cdots q_{n-1}\right)=n-1$. Thus, $\operatorname{dp}\left(\iota_{S}\right)=\ell\left(I_{S}\right)-1$ in any case. Dually, $\operatorname{dp}\left(\pi_{S}\right)=\ell\left(P_{S}\right)-1$. Now, if $n=1$, then $\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(\pi_{S}\right)=\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-2$. Otherwise, since $d_{r}\left(q_{i}\right)=\infty$ for $i=1, \ldots, n-1$, we see that

$$
\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(q_{1} \cdots q_{n-1} \pi_{S}\right)=\ell\left(P_{S}\right)-1+n-1=\ell\left(P_{S}\right)+\ell\left(I_{S}\right)-2
$$

The proof of the theorem is completed.
As an immediate consequence, we obtain the following interesting statement.
2.8. Corollary. Let A be a connected Nakayama algebra, and let m be the nilpotency of $\operatorname{rad}(\bmod A)$.
(1) If A is hereditary, then $m=\ell \ell(A)$; and otherwise, $\ell \ell(A)+1 \leq m \leq 2 \cdot \ell \ell(A)-1$.
(2) If the projective modules in ind A are of the same length, then $m=2 \cdot \ell \ell(A)-1$.

Proof. If A is hereditary, then it is not hard to see that A is of type $\overrightarrow{\mathbb{A}}_{n}$; see $[2$, (VIII.5.4)], and by Theorem 2.6, $m=\ell \ell(A)$. Suppose that A is not hereditary. By Theorem 2.6, $m>\ell \ell(A)$. Moreover, $\ell\left(P_{S}\right) \leq \ell \ell(A)$ and $\ell\left(I_{S}\right) \leq \ell \ell(A)$, for every simple module S in $\bmod A$. By Theorem $2.7, m \leq 2 \cdot \ell \ell(A)-1$.

Suppose that the projective modules in ind A are of the same length n. Then, $\ell \ell(A)=n$. Given a projective module P in ind A, considering the projective cover of the injective envelope of P, we see that P is injective. Thus, by Theorem 2.7, $m=2 n-1$. The proof of the corollary is completed.

Example. Let $A=k Q /\left(k Q^{+}\right)^{n}$, where k is a field, Q is a quiver consisting of a single oriented cycle and $k Q^{+}$is the ideal in $k Q$ generated by the arrows. Then $\operatorname{rad}(\bmod A)$ is nilpotency $2 n-1$.

3. String algebras

The objective of this preparatory section is to study the depth of the projective cover and the injective envelope of simple modules over some special classes of algebras. For this purpose, we first generalize the Butler and Ringel's notion of string algebras given by a quiver with relations; see [7] and then introduce a subclass of wedged string algebras. When the radical of a wedged string algebra is cubed zero, we shall be able to describe the almost split sequences involving the indecomposable projective or injective modules, which yields in particular a description of the depths of projective covers and injective envelopes of simple modules.
3.1. Definition. An artin algebra A is called a string algebra provided that the radical of any projective module, as well as the socle-factor of any injective module, in $\operatorname{ind} A$ is either uniserial or a direct sum of two uniserial modules.

REmARK. For finite dimensional algebras given by a quiver with relations, our notion of a string algebra coincides with the one defined in [7, Section 3].

As a special case of the theorem stated in [7, Section 1], the following statement gives an explicit description of the almost split sequence with a short proof.
3.2. Proposition. Let A be an artin algebra with P a projective module in ind A. If S is a simple direct summand of $\operatorname{rad} P$, then the canonical short exact sequence

$$
0 \longrightarrow S \xrightarrow{q} P \xrightarrow{p} P / S \longrightarrow 0
$$

is an almost split sequence if and only if the socle-factor of I_{S} has a simple socle.
Proof. Let S be a direct summand of $\operatorname{rad} P$. The inclusion map $q: S \rightarrow P$ is irreducible. Write $J=\operatorname{rad} A$. We may assume that $P=A e_{0}$ and $S \cong A e_{1} / J e_{1}$, where e_{0}, e_{1} are primitive idempotents in A. It is well known that $S=A u$, for some
$u \in e_{1} J e_{0} \backslash e_{1} J^{2} e_{0}$. Putting $N=P / S$, we obtain a minimal projective presentation

$$
A e_{1} \xrightarrow{R_{u}} A e_{0} \longrightarrow N \longrightarrow 0
$$

where R_{u} denotes the right multiplication by u. Applying $\operatorname{Hom}_{A}(-, A)$ to this sequence yields a minimal projective presentation

$$
e_{0} A \xrightarrow{L_{u}} e_{1} A \longrightarrow \operatorname{Tr} N \longrightarrow 0
$$

in $\bmod A^{\mathrm{op}}$, where L_{u} denotes the left multiplication by u.
Suppose that the socle-factor of $D\left(e_{1} A\right)$ has a simple socle, that is, $e_{1} J$ has a simple top. Since $u \notin e_{1} J^{2}$, we see that $e_{1} J / e_{1} J^{2}=\left(u+e_{1} J^{2}\right) A$, and since J is nilpotent, $e_{1} J=u A$. Thus, $\operatorname{Tr} N \cong e_{1} A / u A=e_{1} A / e_{1} J \cong S$, and consequently, $\mathrm{D} \operatorname{Tr} N \cong D\left(e_{1} A / e_{1} J\right) \cong A e_{1} / J e_{1} \cong S$. Now, it is not hard to see that the canonical short exact sequence stated in the proposition is an almost split sequence.

Suppose that the canonical short exact sequence is an almost split sequence. In particular, $\mathrm{D} \operatorname{Tr} N \cong S$, and consequently, S admits a minimal injective copresentation $0 \longrightarrow S \longrightarrow D\left(e_{1} A\right) \longrightarrow D\left(e_{0} A\right)$. In particular, the socle of the socle-factor of $D\left(e_{1} A\right)$ is isomorphic to the simple socle of $D\left(e_{0} A\right)$. The proof of the proposition is completed.
Remark. The dual of Proposition 3.2 is left for the reader to formulate.
Motivated by the previous statement, we introduce the following notion.
3.3. Definition. Let A be an artin algebra.
(1) A projective module P in ind A is called wedged if $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple such that the socle-factor of $I_{S_{i}}$ has a simple socle, for $i=1,2$.
(2) An injective module I in ind A is called co-wedged if $I / \operatorname{soc} I=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple such that the radical of $P_{S_{i}}$ has a simple top, for $i=1,2$.

Remark. It is easy to see that a projective module P in $\operatorname{ind} A$ is wedged if and only if the injective module $D P$ in ind A^{op} is a co-wedged.
Example. Let A be an algebra over a field given by a quiver Q with relations. A projective module in ind A is wedged if and only if its support has a wedge shape

where α is the only arrow in Q ending in b and β is the only arrow ending in c.
The following statement plays an important role in our investigation.
3.4. Lemma. Let A be an artin algebra with P a projective module in ind A. If A is a string algebra and P is wedged, then there exists a mesh-complete diagram

in ind A, where S_{1}, S_{2} are simple; and in this case, $I_{S_{1}}, I_{S_{2}}$ are uniserial of length at least two. Conversely, if such a mesh-complete diagram exists in $\operatorname{ind} A$, then
(1) P is wedged with $\operatorname{rad} P \cong S_{1} \oplus S_{2}$ and top $P \cong \tau^{-} P$;
(2) $\operatorname{dp}\left(\pi_{S}\right)=\operatorname{dp}\left(f_{1} g_{1}\right)=\operatorname{dp}\left(g_{2} q_{1}\right)=\operatorname{dp}\left(g_{1} q_{2}\right)=2$;
(3) $I_{S_{1}} \cong \tau^{-} S_{2}$ in case $\ell\left(I_{S_{1}}\right)=2$; and $I_{S_{2}} \cong \tau^{-} S_{1}$ in case $\ell\left(I_{S_{2}}\right)=2$.

Proof. Suppose that A is a string algebra and $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{i} is simple such that $\operatorname{soc}\left(I_{S_{i}} / S_{i}\right)$ is simple, for $i=1,2$. Being indecomposable, $I_{S_{i}} / S_{i}$ is uniserial, and hence, $I_{S_{i}}$ is uniserial of length ≥ 2, for $i=1,2$. Considering the inclusion map $q_{i}: S_{i} \rightarrow P$, by Proposition 3.2, we obtain an almost split sequence
$0 \longrightarrow S_{i} \xrightarrow{q_{i}} P \xrightarrow{g_{i}} \tau^{-} S_{i} \longrightarrow 0$, for $i=1,2$. Since $\left(q_{1}, q_{2}\right): P_{1} \oplus P_{2} \rightarrow P$ is a sink map, by Lemma $1.3,\left(g_{1}, g_{2}\right)^{T}: P \rightarrow \tau^{-} S_{1} \oplus \tau^{-} S_{2}$ is irreducible. Being non-uniserial, P is not a direct summand of the radical of any projective module in ind A. This implies that $\left(g_{1}, g_{2}\right)^{T}$ is a source map. Since P is not injective; see (1.2), we obtain a mesh diagram in ind A as stated in the lemma.

Suppose that $\operatorname{ind} A$ contains such a mesh-complete diagram. By Lemma 1.3, $\left(q_{1}, q_{2}\right)$ is an irreducible map. If it is not a sink map, then we have an irreducible map $\left(q_{1}, q_{2}, f\right): S_{1} \oplus S_{2} \oplus M \rightarrow P$, where M is indecomposable. Since P is projective, M is not injective. This yields an irreducible map $g: P \rightarrow \tau^{-} S_{1} \oplus \tau^{-} S_{2} \oplus \tau^{-} M$, absurd. Thus, $\left(q_{1}, q_{2}\right)$ is a sink monomorphism. In particular, $\operatorname{rad} P \cong S_{1} \oplus S_{2}$. Since q_{i} is a source map, $\operatorname{soc}\left(I_{S_{i}} / S_{i}\right)$ is simple; see (3.2), for $i=1,2$. That is, P is wedged. Write $S=\tau^{-} P$. Since $\ell(P)=3$, we see that S is simple. On the other hand, $\operatorname{dp}\left(f_{1} g_{1}\right)=2$; see (1.11). Thus, $\pi_{S}=f_{1} g_{1} h$, where $h: P_{S} \rightarrow P$ is an isomorphism. Therefore, top $P \cong \tau^{-} P$ and $\operatorname{dp}\left(\pi_{S}\right)=2$.

If $g_{2} q_{1} \in \operatorname{rad}^{3}\left(S_{1}, \tau^{-} S_{2}\right)$, then $q_{1}+u q_{2} \in \operatorname{rad}^{2}\left(S_{1}, \tau^{-} S_{2}\right)$ for some $u: S_{1} \rightarrow S_{2}$; see [15, Lemma 1.2]. Since q_{1} is irreducible, u is an isomorphism. Hence, $\left(q_{1}, q_{2}\right)$ is not irreducible; see [4, Proposition 1], absurd. Thus, $\operatorname{dp}\left(g_{2} q_{1}\right)=2$. And similarly, $\mathrm{dp}\left(g_{1} q_{2}\right)=2$. Since $\ell\left(\tau^{-} S_{1}\right)=2$, we see that $S_{2} \cong \operatorname{soc}\left(\tau^{-} S_{1}\right)$. Thus, $I_{S_{2}} \cong \tau^{-} S_{1}$ in case $\ell\left(I_{S_{2}}\right)=2$. Similarly, $I_{S_{2}} \cong \tau^{-} S_{1}$ in case $\ell\left(I_{S_{2}}\right)=2$. The proof of the lemma is completed.

Remark. The dual statement of Lemma 3.4 is left for the reader to formulate.
3.5. Definition. A string artin algebra A is called a wedged string algebra if every projective module in ind A is uniserial or wedged, and every injective module in $\operatorname{ind} A$ is uniserial or co-wedged.

By definition, Nakayama algebras are wedged string algebras. On the other hand, as shown below, hereditary non-Nakayama wedged string algebras are rare.
3.6. Proposition. Let A be a connected artin algebra. Then the following statements are equivalent:
(1) A is a hereditary algebra of type $\hat{\mathbb{A}}_{3}$ or \mathbb{B}_{2};
(2) A is a hereditary non-Nakayama wedged string algebra;
(3) A is a hereditary algebra with a wedged projective module in ind A or $\operatorname{ind} A^{\mathrm{op}}$;
(4) there exists a mesh-complete diagram

in ind A or ind A^{op}, where S_{1}, S_{2} are simple projective, and $\tau^{-} P$ is simple injective. In this case, $\operatorname{rad}^{3}(\bmod A)=0$.
Proof. It is evident that Statement (2) implies Statement (3). Suppose that Statement (1) holds. Then, the projective modules in Γ_{A} or those in $\Gamma_{A^{\text {op }}}$ generate a section Δ, which is either a trivially valued quiver $S_{1} \longrightarrow P \longleftarrow S_{2}$, or a single valued arrow $S_{1} \longrightarrow P$ with valuation (1,2). Since A is hereditary, S_{1}, S_{2} are simple such that $\operatorname{rad} P=S_{1} \oplus S_{2}$, where $S_{2}=S_{1}$ if the second case occurs. Moreover, the inclusion map $q_{i}: S_{i} \rightarrow P$ is a source map, and hence, $\operatorname{soc}\left(I_{S_{i}} / S_{i}\right)$ is simple; see (3.2), for $i=1,2$. That is, P is wedged. Thus, Statement (3) holds.

Suppose that Statement (3) holds, say ind A contains a wedged projective module P with $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple. By Lemma 3.4, there exists a meshcomplete diagram in ind A as stated in Statement (4), where $\tau^{-} P \cong \operatorname{top} P$ and f_{1}, f_{2} are epimorphisms; see (1.5). Since A is hereditary, S_{1}, S_{2} are projective. If f_{1} is not a source map, then there exists an irreducible map $\left(g, f_{1}\right): \tau^{-} S_{1} \rightarrow N \oplus \tau^{-} P$, where N is indecomposable. Since g_{1} is a sink map, N is projective, and so is $\tau^{-} S_{1}$, absurd. Similarly, f_{2} is a source map. As a consequence, $\tau^{-} S_{1}$ and $\tau^{-} S_{2}$ are injective, and since A is hereditary, so is $\tau^{-} P$. Thus, Statement (4) holds.

Suppose that Statement (4) holds, say ind A contains a mesh-complete diagram as stated in Statement (4). Since S_{1} is simple projective, P is projective, and since $\tau^{-} P$ is simple injective, $\tau^{-} S_{1}$ and $\tau^{-} S_{2}$ are injective. Forgetting the irreducible maps and identifying the isomorphic modules, we obtain a translation subquiver Γ of Γ_{A} with all the properties stated in Proposition 1.13, in which the projective modules generate a section of type $\hat{\mathbb{A}}_{3}$ or \mathbb{B}_{2} in case $S_{1} \not \approx S_{2}$ or $S_{1} \cong S_{2}$, respectively. Thus, A is hereditary of type $\hat{\mathbb{A}}_{3}$ or \mathbb{B}_{2} with $\Gamma_{A}=\Gamma$. In particular, S_{1}, S_{2}, P are essentially the only projective modules in ind A, while $\tau^{-} S_{1}, \tau^{-} S_{2}, \tau^{-} P$ are essentially the only injective modules in ind A. By Lemma 3.4, P is wedged. Being of length two, $\tau^{-} S_{1}$ and $\tau^{-} S_{2}$ are uniserial. That is, A is a non-Nakayama wedged string algebra. Therefore, Statements (1) and (2) hold. Finally, since every path of three irreducible maps in the diagram has a zero composite, $\operatorname{rad}^{3}(\bmod A)=0$. The proof of the proposition is completed.

We shall concentrate on a smaller class of wedged string algebras.
3.7. Lemma. Let A be a wedged string algebra with radical cubed zero.
(1) Every projective or injective module in ind A is of length ≤ 3.
(2) Every uniserial module of length 3 in ind A is projective injective.

Proof. Since $\operatorname{rad}^{3} A=0$, every uniserial module in $\bmod A$ is of length ≤ 3. Since A is a wedged string algebra, every projective or injective module in ind A is of length ≤ 3. Let L be a uniserial module of length 3 . Consider its projective cover $f: P \rightarrow L$ and injective envelope $g: L \rightarrow I$. Since L has a simple top and a simple socle, P and I are indecomposable. Since $\ell(P) \leq 3$ and $\ell(I) \leq 3$, both f and g are isomorphisms. The proof of the lemma is completed.

Example. The path algebra over a field of the quiver $\circ \Longrightarrow 0$ is a string algebra with radical squared zero. However, it is not a wedged string algebra.

We shall describe almost split sequences involving indecomposable projective or injective modules over a wedged string algebra with radical cubed zero. By Lemma 3.4 and its dual, it suffices to consider uniserial projective or injective module.
3.8. Lemma. Let A be a wedged string algebra with radical cubed zero. Let S be a simple module in $\bmod A$ such that I_{S} is uniserial of length 2 with $I_{S} / S=S_{1}$.
(1) If $P_{S_{1}}$ is uniserial of length 2, then there exists an almost split sequence

$$
0 \longrightarrow S \xrightarrow{\iota_{S}} I_{S} \xrightarrow{p} S_{1} \longrightarrow 0
$$

in $\bmod A$, where $I_{S} \cong P_{S_{1}}$. In particular, $\mathrm{dp}\left(\iota_{S}\right)=1$.
(2) If $P_{S_{1}}$ is uniserial of length 3, then there exists a mesh-complete diagram

in ind A. In particular, $\operatorname{dp}\left(\iota_{S}\right)=1$.
(3) If $P_{S_{1}}$ is wedged, then there exists a mesh-complete diagram

in $\operatorname{ind} A$ such that $\iota_{S}=p_{2} q_{1}$. In particular, $\operatorname{dp}\left(\iota_{S}\right)=2$.
Proof. If $P_{S_{1}}$ is uniserial, then $\operatorname{rad} P_{S_{1}}$ has a simple top. By the dual of Lemma 3.2, we obtain an almost split sequence as stated in Statement (1). If $\ell\left(P_{S_{1}}\right)=2=\ell\left(I_{S}\right)$, then it is clear that $P_{S_{1}} \cong I_{S}$. This establishes Statement (1).

Suppose that $P_{S_{1}}$ is uniserial of length 3 . Then, $P_{S_{1}}$ is projective-injective; see (3.7), and we obtain an almost split sequence as stated in Statement (1). Since $S_{1}=\operatorname{soc}\left(I_{S} / S\right)$, by Lemma 1.1, $S=\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right)=\operatorname{rad} P_{S_{1}} / \operatorname{soc} P_{S_{1}}$. By Lemma 1.2, we obtain an almost split sequence

$$
0 \longrightarrow \operatorname{rad} P_{S_{1}} \xrightarrow{\left(q_{1}, p_{2}\right)^{T}} P_{S_{1}} \oplus S \xrightarrow{\left(p_{1}, q_{2}\right)} P_{S_{1}} / \operatorname{soc} P_{S_{1}} \longrightarrow 0
$$

with $S=\operatorname{soc}\left(P_{S_{1}} / \operatorname{soc} P_{S_{1}}\right)$. Since $\ell\left(P_{S_{1}} / \operatorname{soc} P_{S_{1}}\right)=2=\ell\left(I_{S}\right)$, we have an isomorphism $u: P_{S_{1}} / \operatorname{soc} P_{S_{1}} \rightarrow I_{S}$ such that $\iota_{S}=u q_{2}$. Replacing q_{2} by ι_{S}, we obtain a mesh-complete diagram as stated in Statement (2). This establishes Statement (2).

Suppose that $P_{S_{1}}$ is wedged. Since $S_{1}=\operatorname{soc}\left(I_{S} / S\right)$, we see that $\operatorname{rad} P_{S_{1}}=S \oplus S_{2}$, where S_{2} is simple; see (1.1). By Lemma 3.4, we obtain a mesh-complete diagram

in $\operatorname{ind} A$ such that $\operatorname{dp}\left(g_{2} q_{1}\right)=2$. Since $\ell\left(I_{S}\right)=2$, we see that $\iota_{S}=v g_{2} q_{1}$, for some isomorphism $v: \tau^{-} S_{2} \rightarrow I_{S}$; see (3.4). Putting $p_{2}=v g_{2}$, we obtain a meshcomplete diagram as stated in Statement (3). The proof of the lemma is completed.
3.9. Lemma. Let A be a wedged string algebra with radical cubed zero. Let S be a simple module in $\bmod A$ such that I_{S} is uniserial of length 3 with $\operatorname{soc}\left(I_{S} / S\right)=S_{1}$.
(1) If $P_{S_{1}}$ is uniserial of length 2, then there exists a mesh-complete diagram

in ind A such that $\iota_{S}=q_{1} q_{2}$. In particular, $\operatorname{dp}\left(\iota_{S}\right)=2$.
(2) If $P_{S_{1}}$ is uniserial of length 3, then there exists a mesh-complete diagram

in $\operatorname{ind} A$ such that $\iota_{S}=q_{1} q_{2}$. In particular, $\operatorname{dp}\left(\iota_{S}\right)=2$.
(3) If $P_{S_{1}}$ is wedged, then there exists a mesh-complete diagram

in ind A such that $\iota_{S}=q_{1} p_{2} f$. In particular, $\mathrm{dp}\left(\iota_{S}\right)=3$.
Proof. Since $\ell\left(I_{S}\right)=3$, we see that $S_{1}=\operatorname{top}\left(\operatorname{rad} I_{S}\right)$ with a canonical projection $p_{1}: \operatorname{rad} I_{S} \rightarrow S_{1}$. Therefore, we have a projective cover $p_{2}: P_{S_{1}} \rightarrow \operatorname{rad} I_{S}$. This yields two short exact sequences

$$
0 \longrightarrow S \xrightarrow{q_{2}} \operatorname{rad} I_{S} \xrightarrow{p_{1}} S_{1} \longrightarrow 0
$$

and

$$
0 \longrightarrow S_{2} \xrightarrow{f_{2}} P_{S_{1}} \xrightarrow{p_{2}} \operatorname{rad} I_{S} \longrightarrow 0
$$

where S_{2} is a (possibly zero) submodule of $\operatorname{rad} P_{S_{1}}$. Since I_{S} is projective-injective; see (3.7), by Lemma 1.2, we obtain an almost split sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{rad} I_{S} \xrightarrow{\left(q_{1}, p_{1}\right)^{T}} I_{S} \oplus S_{1} \xrightarrow{(p, q)} I_{S} / S \longrightarrow 0 . \tag{*}
\end{equation*}
$$

Suppose first that $P_{S_{1}}$ is uniserial of length 2. Then p_{2} is an isomorphism. Hence, we may assume that $P_{S_{1}}=\operatorname{rad} I_{S}$. Then $S=\operatorname{rad} P_{S_{1}}$. In particular, $q_{2}: S \rightarrow P_{S_{1}}$ is irreducible. Since p_{1} is irreducible, (\star) is an almost split sequence; see [2, (V.5.9)]. This yields a mesh-complete diagram in ind A as stated in Statement (1). Since $S \rightarrow P_{S_{1}} \rightarrow I_{S}$ is a sectional path, $\operatorname{dp}\left(q_{1} q_{2}\right)=2$; see (1.10). Since $q_{1} q_{2} \neq 0$, we may assume that $\iota_{S}=q_{1} q_{2}$. This establishes Statement (1).

Suppose that $P_{S_{1}}$ is uniserial of length 3. Then, $P_{S_{1}}$ is projective-injective; see (3.7). Since $\ell\left(\operatorname{rad} I_{S}\right)=2$, we see that S_{2} is simple, and hence, $S_{2}=\operatorname{soc} P_{S_{1}}$. Thus, we may assume that $\operatorname{rad} I_{S}=P_{S_{1}} / \operatorname{soc} P_{S_{1}}$. Moreover, $S=\operatorname{top}\left(\operatorname{rad} P_{S_{1}}\right)$; see (1.1). By Lemma 1.2, we obtain an almost split sequence

$$
0 \longrightarrow \operatorname{rad} P_{S_{1}} \xrightarrow{\left(q_{3}, p_{3}\right)^{T}} P_{S_{1}} \oplus S \xrightarrow{\left(p_{2}, q_{2}\right)} \operatorname{rad} I_{S} \longrightarrow 0
$$

On the other hand, since q_{2} and p_{1} are irreducible, (\star) is an almost split sequence. This yields a mesh-complete diagram as stated in Statement (2). A seen above, $\mathrm{dp}\left(q_{1} q_{2}\right)=2$ and we may assume that $\iota_{S}=q_{1} q_{2}$. This establishes Statement (2).

Suppose now that $P_{S_{1}}$ is wedged. Then S_{2} is simple. Thus, $\operatorname{rad} P_{S_{1}}=S_{2} \oplus S_{0}$, where S_{0} is simple. Since $p_{2}\left(\operatorname{rad} P_{S_{1}}\right) \neq 0$, we see that $p_{2}\left(S_{0}\right) \neq 0$, and hence, $q_{1}\left(p_{2}\left(S_{0}\right)\right) \neq 0$. Therefore, $S_{0} \cong \operatorname{soc} I_{S}=S$. We may assume that $S_{0}=S$ with an inclusion map $f: S \rightarrow P_{S_{1}}$. Since $P_{S_{1}}$ is wedged, it follows from Lemma 3.2 that (\dagger) is an almost split sequence. In particular, $\tau^{-} S_{2}=\operatorname{rad} I_{S}$. Combining the mesh-complete diagram stated in Lemma 3.4 and the almost split sequence (*), we obtain a mesh-complete diagram as stated in Statement (3) with $\operatorname{dp}\left(p_{2} f\right)=2$. Since I_{S} is projective, $d_{l}\left(q_{1}\right)=\infty$, and hence, $\operatorname{dp}\left(q_{1} p_{2} f\right)=3$. Since $q_{1} p_{2} f \neq 0$, we may assume that $\iota_{S}=q_{1} p_{2} f$. The proof of the lemma is completed.

Remark. The dual statements of Lemmas 3.8 and 3.9 hold true, which are left for the reader to formulate.
3.10. Corollary. Let A be a wedged string algebra with radical cubed zero. If S is a simple module in $\bmod A$, then $\mathrm{dp}\left(\pi_{S}\right) \leq 3$ and $\mathrm{dp}\left(\iota_{S}\right) \leq 3$.
Proof. Let S be a simple module in $\bmod A$. By Lemma $3.7, \ell\left(I_{S}\right) \leq 3$. If $\ell\left(I_{S}\right)=1$, then $\operatorname{dp}\left(\iota_{S}\right)=0$. If I_{S} is uniserial of length 2 or 3 , then it follows from Lemmas 3.8 and 3.9 that $\operatorname{dp}\left(\iota_{S}\right) \leq 3$. If I_{S} is co-wedged, by the dual of Lemma 3.4, $\operatorname{dp}\left(\iota_{S}\right)=2$. Dually, $\operatorname{dp}\left(\pi_{S}\right) \leq 3$. The proof of the corollary is completed.

4. Module categories of radical nilpotency at most four

The objective of this section is to divide the class of artin algebras such that the radical of their module category has a vanishing fourth power into two subclasses: hereditary algebras of type \mathbb{A}_{4} and tri-string algebras. We begin with the following fact that these algebras need to be string algebras.
4.1. Proposition. Let A be an artin algebra. If $\operatorname{rad}^{4}(\bmod A)=0$, then A is a string algebra and Γ_{A} is planar.
Proof. Assume that $\operatorname{rad}^{4}(\bmod A)=0$. Then, A is representation-finite; see $[2$, (V.7.6)]. We shall first show that Γ_{A} is planar. Suppose on the contrary that there exists in $\bmod A$ an almost split sequence

$$
0 \longrightarrow X \xrightarrow{\left(f_{1}, \ldots, f_{r}\right)^{T}} Y_{1} \oplus \cdots \oplus Y_{r} \xrightarrow{\left(g_{1}, \ldots, g_{r}\right)} Z \longrightarrow 0,
$$

where $r \geq 3$ and Y_{1}, \ldots, Y_{r} are indecomposable. Applying Lemmas 1.7 and 1.8, we deduce easily that $d_{l}\left(g_{i}\right) \geq 3$ and $d_{r}\left(f_{i}\right) \geq 3$, for $i=1, \ldots, r$.

We claim that g_{1}, g_{2}, g_{3} are all monomorphisms. Otherwise, we may assume that g_{1} is an epimorphism. By Lemma 2.3, $d_{l}\left(g_{1}\right) \leq 3$. Then, by Lemma 1.8, $\left(f_{2}, f_{3}\right)^{T}: X \rightarrow Y_{2} \oplus Y_{3}$ is of left degree ≤ 2, and by Lemma 1.9, we obtain an irreducible map $v=\left(v_{2}, v_{3}\right): \tau Y_{2} \oplus \tau Y_{3} \rightarrow X$ of left degree one, which is a sink epimorphism by Lemma 1.7. This implies that Y_{1} is projective. In particular, f_{1} is a monomorphism. In a dual manner, we obtain a source monomorphism $w=\left(w_{2}, w_{3}\right)^{T}: Z \rightarrow \tau^{-} Y_{2} \oplus \tau^{-} Y_{3}$. In particular, Z is not injective. Observing that $\tau Y_{2} \rightarrow X \rightarrow Y_{3}$ is a pre-sectional path in Γ_{A}, by Proposition 1.10, we may
assume that $f_{3} v_{2}$ is of depth 2 . Since $d_{l}\left(g_{3}\right) \geq 3$, the composite $g_{3} f_{3} v_{2}$ is of depth 3 . By Lemma 2.1, Z is injective, a contradiction. This establishes our claim. Dually, f_{1}, f_{2}, f_{3} are all epimorphisms.

If $r \geq 4$, then one of the Y_{i}, say Y_{1}, is projective-injective; see [5] or [16, Theorem 7]. In particular, g_{1} is an epimorphism, a contradiction. Thus, $r=3$.

Since the g_{i} are all monomorphisms, Y_{1}, Y_{2}, Y_{3} are not injective. Hence, we have an irreducible map $h=\left(h_{1}, h_{2}, h_{3}\right)^{T}: Z \rightarrow \tau^{-} Y_{1} \oplus \tau^{-} Y_{2} \oplus \tau^{-} Y_{3}$. Consider a source map $\left(h, h_{4}\right)^{T}: Z \rightarrow \tau^{-} Y_{1} \oplus \tau^{-} Y_{2} \oplus \tau^{-} Y_{3} \oplus M$. If M is non-zero, since $\left(g_{1}, g_{2}, g_{3}\right)$ is a sink map, M is projective, and consequently, Z is not injective. This yields an almost split sequence starting with Z, whose middle term is a direct sum of at least four indecomposable modules, a contradiction. Thus, h is a source map. Since the f_{i} are all epimorphisms, we obtain in a dual fashion a sink map $p=\left(p_{1}, p_{2}, p_{3}\right): \tau Y_{1} \oplus \tau Y_{2} \oplus \tau Y_{3} \rightarrow X$. For each $1 \leq i \leq 3$, choose φ_{i} to be one of the two composites $g_{j} f_{j}$ with $j \neq i$. As argued above, we see that $\varphi_{i} p_{i}$ is of depth 3, and by Lemma 2.1, Z is injective and τY_{i} is projective, for $i=1,2,3$. And dually, X is projective and $\tau^{-} Y_{i}$ is injective, for $i=1,2,3$.

If τY_{i} is not simple for some $1 \leq i \leq 3$, then we obtain a radical monomorphism $q_{i}: S_{i} \rightarrow \tau Y_{i}$, where S_{i} is simple. Since p_{i} and $\left(f_{1}, f_{2}, f_{3}\right)^{T}$ are also monomorphisms, $f_{j} p_{i} q_{i} \neq 0$ for some $1 \leq j \leq 3$. Since g_{j} is a monomorphism, $g_{j} f_{j} p_{i} q_{i} \neq 0$, a contradiction. Thus, $\tau Y_{1}, \tau Y_{2}$ and τY_{3} are all simple. Dually, $\tau^{-} Y_{1}, \tau^{-} Y_{2}$ and $\tau^{-} Y_{3}$ are all simple. Since h is a source epimorphism and p is a source monomorphism, we conclude that $\ell(X)=\ell(Z)=4$.

Furthermore, given $1 \leq i \leq 3$, we see that $h \varphi_{i} p_{i}=0$. Hence, $\varphi_{i} p_{i}$ factors through the simple socle S of Z. Since τY_{i} is simple, $\tau Y_{i} \cong S$. That is, $Y_{i} \cong \tau^{-} S$, for $i=1,2,3$. In view of the above almost split sequence, we get $8=3 \cdot \ell\left(\tau^{-} S\right)$, absurd. This shows that Γ_{A} is indeed planar. Since A is representation-finite, the radical of any indecomposable projective module, as well as the socle-factor of any indecomposable injective module, is uniserial or a direct sum of two uniserial modules; see $[1,(4.6)]$. That is, A is a string algebra. The proof of the proposition is completed.
REmARK. If A is a string algebra given by a quiver with relations, then Γ_{A} is planar; see [7]. We do not know, however, if this is still true for a general string artin algebra.

We shall study hereditary algebras of type \mathbb{A}_{4} according to their Loewy length.
4.2. Proposition. Let A be a connected artin algebra. Then A is hereditary of type \mathbb{A}_{4} with Loewy length three if and only if $\operatorname{rad}^{4}(\bmod A)=0$ and there exists a projective module P in ind A or ind $A^{\text {op }}$ such that $\operatorname{rad} P=M_{1} \oplus M_{2}$, where M_{1}, M_{2} are uniserial and M_{1} is not simple. In this case, there exists in $\operatorname{ind} A$ or $\operatorname{ind} A^{\text {op }} a$ mesh-complete diagram

where S_{1}, M_{1}, P, M_{2} are projective, while $\tau^{-2} S, \tau^{-2} M_{1}, \tau^{-} P, \tau^{-} M_{2}$ are injective.

Proof. Let A be hereditary of type \mathbb{A}_{4} such that $\operatorname{rad}^{3} A=0$ and $\operatorname{rad}^{2} A \neq 0$. By Proposition 2.5, $\operatorname{rad}^{4}(\bmod A)=0$. Moreover, the projective modules in Γ_{A} or those in $\Gamma_{A^{\text {op }}}$ generate a section $\Delta: P_{0} \longrightarrow P_{1} \longrightarrow P \longleftarrow P_{2}$. Thus, $\operatorname{rad} P=P_{1} \oplus P_{2}$. Since A is hereditary, P_{0} and P_{2} are simple. Thus, P_{1} is uniserial of length two.

Suppose now that $\operatorname{rad}^{4}(\bmod A)=0$ and P is a projective module in ind A such that $\operatorname{rad} P=M_{1} \oplus M_{2}$, where M_{1}, M_{2} are uniserial and M_{1} is not simple. Then, A is neither a hereditary algebra of type $\overrightarrow{\mathbb{A}}_{4}$ nor a diamond algebra. By Theorem $2.6, \operatorname{rad}^{3} A=0$, and hence, $l\left(M_{2}\right)=2$. Note that P is not injective; see (1.2) and the inclusion maps $q_{i}: M_{i} \rightarrow P$ are irreducible, $i=1,2$. Put $S_{1}=\operatorname{rad} M_{1}$, which is simple. The inclusion map $j_{1}: S_{1} \rightarrow M_{1}$ is radical. Since $\operatorname{rad}^{4}\left(S_{1}, P\right)=0$ and $q_{1} j_{1} \neq 0, \operatorname{dp}\left(j_{1}\right) \leq 2$. If $\operatorname{dp}\left(j_{1}\right)=2$ then, by Lemma $2.1, P$ is injective, a contradiction. Starting with the irreducible monomorphisms j_{1}, q_{1}, q_{2} and applying Lemma 1.5 repeatedly, we obtain a fitting diagram in ind A, consisting of all modules except $\tau^{-2} M_{1}$ and all irreducible maps except h_{2}, g_{3} of the diagram stated in the proposition. We shall complete the construction of the desired diagram.
(1) The modules S_{1}, M_{2} are simple projective, M_{1} is projective, while $\tau^{-2} S_{1}$, $\tau^{-} M_{2}$ and $\tau^{-} P$ are injective.

Note that $M_{2} \rightarrow P \rightarrow \tau^{-} M_{1} \rightarrow \tau^{-2} S_{1}$ and $S_{1} \rightarrow M_{1} \rightarrow P \rightarrow \tau^{-} M_{2}$ are presectional paths in Γ_{A}. By Lemma 2.4, S_{1} and M_{2} are projective, while $\tau^{-2} S_{1}$ and $\tau^{-} M_{2}$ are injective. If M_{2} is not simple, then we may find a pre-sectional path $U \rightarrow M_{2} \rightarrow P \rightarrow \tau^{-} M_{1} \rightarrow \tau^{-2} S_{1}$ in Γ_{A}, a contradiction; see (2.4). Moreover, since S_{1} is simple projective, M_{1} is projective. Finally, considering the ladder of height 2 from M_{1} to $\tau^{-} P$, we obtain a map $f: M_{1} \rightarrow \tau^{-} P$ with $\operatorname{dp}(f)=3$; see (1.11). By Lemma 2.1, $\tau^{-} P$ is injective.
(2) The maps j_{1} and g_{1} are source monomorphisms.

Suppose that $j_{1}: S_{1} \rightarrow M_{1}$ is not a source map. This yields an irreducible map $\left(g, j_{1}\right): S_{1} \rightarrow N \oplus M_{1}$, where N is indecomposable. Thus, we can construct a ladder of height 3 from S_{1} to $\tau^{-} P$, and by Lemma 1.11, we obtain a map $h: S_{1} \rightarrow \tau^{-} P$ of depth 4 , a contradiction. Next, since q_{1} is a monomorphism, so is g_{1}. If g_{1} is not a source map, then we get an irreducible map $\left(u, h_{1}\right): L \oplus \tau^{-} M_{1} \rightarrow \tau^{-2} S_{1}$, where L is indecomposable. Observing that $u: L \rightarrow \tau^{-2} S_{1}$ is an irreducible monomorphism; see (1.5), we obtain pre-sectional path $M_{2} \rightarrow P \rightarrow \tau^{-} M_{1} \rightarrow \tau^{-2} S_{1} \rightarrow \tau^{-} L$ in Γ_{A}, a contradiction; see (2.4).
(3) There exists an injective module $\tau^{-2} M_{1}$ together with a sink epimorphism $\left(h_{2}, g_{3}\right): \tau^{-2} S_{1} \oplus \tau^{-} P \rightarrow \tau^{-2} M_{1}$.

Since $\ell\left(M_{1}\right)=2$, by Statement (2), $\tau^{-} S_{1}$ is simple and isomorphic to a submodule of $\tau^{-} M_{1}$. On the other hand, since $M_{2} \rightarrow P \rightarrow \tau^{-} M_{1}$ is a pre-sectional path in Γ_{A}, we get a non-zero map $w: M_{2} \rightarrow \tau^{-} M_{1}$; see (1.10). Thus, M_{2} is isomorphic to a simple submodule of $\tau^{-} M_{1}$. Since $M_{2} \not \approx \tau^{-} S_{1}$, we see that $\tau^{-} M_{1}$ is not injective. Thus, we may complete the construction of the fitting diagram stated in the proposition. By Proposition 4.1, $\left(h_{2}, g_{3}\right): \tau^{-2} S_{1} \oplus \tau^{-} P \rightarrow \tau^{-2} M_{1}$ is a sink map. Considering the ladder of height 2 from P to $\tau^{-2} M_{1}$, we obtain a map $v: P \rightarrow \tau^{-2} M_{1}$ of depth 3; see (1.11). By Lemma 2.1, $\tau^{-2} M_{1}$ is injective.
(4) The maps $\left(g_{1}, f_{2}\right): \tau^{-} S_{1} \oplus P \rightarrow \tau^{-} M_{1}$ and $\left(g_{2}, f_{3}\right): \tau^{-} M_{1} \oplus \tau^{-} M_{2} \rightarrow \tau^{-} P$ are sink epimorphisms, while q_{2} is a source monomorphism.

By Proposition 4.1, we have sink epimorphisms $\left(g_{1}, f_{2}\right): \tau^{-} S_{1} \oplus P \rightarrow \tau^{-} M_{1}$ and $\left(g_{2}, f_{3}\right): \tau^{-} M_{1} \oplus \tau^{-} M_{2} \rightarrow \tau^{-} P$. If q_{2} is not a source map, then we can find an irreducible map $\left(q_{2}, w\right)^{T}: M_{2} \rightarrow P \oplus W$, where W is indecomposable. This yields
a ladder of height 3 from M_{2} to $\tau^{-2} M_{1}$, and by Lemma 1.11, there exists a map $\theta: M_{2} \rightarrow \tau^{-1} M_{1}$ of depth 4, absurd.

By the above statements, the diagram constructed above is mesh-complete. Forgetting the irreducible maps yields a translation subquiver of Γ_{A} with all the properties stated in Proposition 1.13. Thus, A is hereditary of type \mathbb{A}_{4}. Since $\operatorname{rad}^{2} P \neq 0$, we see that $\ell \ell(A)=3$. The proof of the proposition is completed.
4.3. Proposition. Let A be a connected artin algebra. Then A is hereditary of type \mathbb{A}_{4} with Loewy length two if and only if $\operatorname{rad}^{4}(\bmod A)=0$ and there exists a projective module P in ind A or ind $A^{\text {op }}$ with $\operatorname{rad} P \cong S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple such that $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)$ not simple. In this case, there exists in $\operatorname{ind} A$ or $\operatorname{ind} A^{\mathrm{op}} a$ mesh-complete diagram

where M_{1}, S_{1}, P, S_{2} are projective, and $\tau^{-} M_{1}, \tau^{-2} S_{1}, \tau^{-} P, \tau^{-2} S_{2}$ are injective.
Proof. Let A be a hereditary algebra of type \mathbb{A}_{4} with $\operatorname{rad}^{2} A=0$. By Proposition $2.5, \operatorname{rad}^{4}(\bmod A)=0$. Moreover, the indecomposable projective modules in Γ_{A} or those in $\Gamma_{A^{\text {op }}}$ generate a section $\Delta: P_{0} \longrightarrow S_{1} \longleftarrow P \longrightarrow S_{2}$, where S_{1}, S_{2} are simple such that $S_{1} \oplus S_{2} \cong \operatorname{rad} P$. Since the inclusion map $q_{1}: S_{1} \rightarrow P$ is not a source map, $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)$ is not simple; see (3.2).

Suppose now that $\operatorname{rad}^{4}(\bmod A)=0$ and there exists a projective P in $\operatorname{ind} A$ with $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple such that $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)$ is not simple. Note that the inclusion mapi $q_{i}: S_{i} \rightarrow P$ is an irreducible monomorphism, for $i=1,2$, and q_{1} is not a source map; see (3.2). Since A is not a diamond algebra, by Proposition 4.1, there exists a source map $\left(f_{1}, q_{1}\right)^{T}: S_{1} \rightarrow M_{1} \oplus P$, where M_{1} is indecomposable and $f_{1}: S_{1} \rightarrow M_{1}$ is an irreducible monomorphism. Starting with f_{1}, q_{1}, q_{2} and applying Lemma 1.5 repeatedly, we obtain a fitting diagram in ind A, consisting of all modules except $\tau^{-2} S_{1}$ and all irreducible maps except h_{2}, h_{3} of the diagram stated in the proposition. We shall complete the construction of the desired mesh-complete diagram.
(1) The modules S_{1}, S_{2}, M_{1} are projective, and $\tau^{-} M_{1}, \tau^{-} P, \tau^{-2} S_{2}$ are injective.

Note that $M_{1} \rightarrow \tau^{-} S_{1} \rightarrow \tau^{-} P \rightarrow \tau^{-2} S_{2}$ and $S_{2} \rightarrow P \rightarrow \tau^{-} S_{1} \rightarrow \tau^{-} M_{1}$ are pre-sectional paths in Γ_{A}. By Lemma 2.4, M_{1} and S_{2} are projective, while $\tau^{-2} S_{2}$ and $\tau^{-1} M_{1}$ are injective. Considering the ladder of height two from S_{1} to $\tau^{-} P$, we obtain a map $\theta: S_{1} \rightarrow \tau^{-} P$ of depth 3 ; see (1.11). Hence, $\tau^{-} P$ is injective; see (2.1). If S_{1} is not projective, then we can find a pre-sectional path $X \rightarrow S_{1} \rightarrow P \rightarrow \tau^{-} S_{2}$ in Γ_{A}. By Lemma 2.4, $\tau^{-} S_{2}$ is injective, a contradiction. Thus, S_{1} is projective.
(2) The maps $\left(g_{1}, f_{2}\right): M_{1} \oplus P \rightarrow \tau^{-} S_{1}$ and $\left(g_{2}, f_{3}\right): \tau^{-} S_{1} \oplus \tau^{-} S_{2} \rightarrow \tau^{-} P$ are sink epimorphisms, while g_{1}, q_{2}, f_{3} are source monomorphisms.

By Proposition 4.1, $\left(g_{1}, f_{2}\right)$ and $\left(g_{2}, f_{3}\right)$ are sink epimorphisms. Since q_{1} is a monomorphism, so is g_{1}. If g_{1} is not a source map, then there exists an irreducible $\operatorname{map}\left(g, h_{1}\right): N \oplus \tau^{-} S_{1} \rightarrow \tau^{-} M_{1}$, where N is indecomposable. Observing that $g: N \rightarrow \tau^{-} M_{1}$ is a monomorphism; see (1.5), we obtain a pre-sectional path
$S_{2} \rightarrow P \rightarrow \tau^{-} S_{1} \rightarrow \tau^{-} M_{1} \rightarrow \tau^{-} N$ in Γ_{A}, a contradiction; see (2.4). Finally, since f_{1} is a monomorphism, so is f_{3}; see (1.5). Suppose that q_{2} or f_{3} is not a source monomorphism. Since S_{2} is simple, we see easily that there exists an irreducible map $\left(f_{3}, h\right)^{T}: \tau^{-} S_{2} \rightarrow \tau^{-} P \oplus L$, where L is indecomposable. This yields a ladder of height 3 from S_{1} to $\tau^{-2} S_{2}$, a contradiction; see (1.11).
(3) There exists an injective module $\tau^{-2} S_{1}$ together with a sink epimorphism $\left(h_{2}, h_{3}\right): \tau^{-} M_{1} \oplus \tau^{-} P \rightarrow \tau^{-2} S_{1}$.

By Lemma 1.11, $g_{1} f_{1} \neq 0$. Thus, S_{1} is isomorphic to a simple submodule of $\tau^{-} S_{1}$. Since f_{1} is a monomorphism, so is f_{2}. Thus, $f_{2} q_{2} \neq 0$, and hence, S_{2} isomorphic to a simple submodule of $\tau^{-} S_{1}$. Clearly, $S_{1} \not \neq S_{2}$. Having a nonsimple socle, $\tau^{-} S_{1}$ is not injective. Thus, we may complete the construction of the fitting diagram stated in the proposition. By Proposition 4.1, $\left(h_{2}, h_{3}\right)$ is a sink epimorphism. Considering the ladder of height 2 from P to $\tau^{-2} S_{1}$, we obtain a map $v: P \rightarrow \tau^{-2} M_{1}$ of depth 3; see (1.11). By Lemma 2.1, $\tau^{-2} S_{1}$ is injective.

In view of the above statements, the diagram constructed above is mesh-complete. By Proposition $1.13, A$ is hereditary of type \mathbb{A}_{4} with S_{1}, S_{2}, P, M_{1} being essentially the only projective modules in ind A. Since S_{1}, S_{2} are simple, we see that $\ell \ell(A)=2$. The proof of the proposition is completed.

For our purpose, we need to put more conditions on wedged string algebras.
4.4. Definition. A wedged string algebra A is called a tri-string algebra provided that the following conditions are satisfied.
(1) The cube of the radical of A is zero.
(2) If S is a simple module in $\bmod A$, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.
(3) If S is a simple direct summand of the radical of a wedged projective module or the socle-factor of a co-wedged injective module in ind A, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 4$.
(4) A wedged projective module and a co-wedged injective module in ind A have no common composition factor.

Example. (1) A local Nakayama algebra of Loewy length three satisfies all but the second conditions stated in Definition 4.4.
(2) A tri-string algebra over a field is given by the following quiver with relations $\alpha_{6} \alpha_{5} \alpha_{4}=0$ and $\alpha_{i+1} \alpha_{i}=0$, for $i \in\{1,2,3,6,7,9\}$:

We shall show that $\operatorname{rad}^{4}(\bmod A)=0$ in case A is a tri-string algebra. It amounts to study the depth of θ_{S} for each simple module S in $\bmod A$.
4.5. Lemma. Let A be a tri-string algebra with S a simple module in $\bmod A$. If P_{S} or I_{S} is uniserial of length 3 , then $\operatorname{dp}\left(\theta_{S}\right) \leq 3$.
Proof. We consider only the case where I_{S} is uniserial of length 3. Then, by Definition 4.4(2), $\ell\left(P_{S}\right) \leq 2$. Since $\mathrm{dp}\left(\iota_{S}\right) \leq 3$; see (3.10), we may assume that $\ell\left(P_{S}\right)=2$. Put $S_{0}=\operatorname{rad} P_{S}$, which is simple. Then, S is a direct summand of $\operatorname{soc}\left(I_{S_{0}} / S_{0}\right)$; see (1.1). Since $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=5$, by Definition 4.4(3), $I_{S_{0}}$ is not co-wedged. Hence, $I_{S_{0}}$ is uniserial. By Lemma 3.2, the inclusion map $j: S_{0} \rightarrow P_{S}$ is a source monomorphism, whose co-kernel $\pi_{S}: P_{S} \rightarrow S$ is a sink epimorphism.

Write $S_{1}=\operatorname{soc}\left(I_{S} / S\right)$. Then, S is a direct summand of the top of $\operatorname{rad} P_{S_{1}}$; see (1.1). Since $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=5$, by Definition 4.4(3), $P_{S_{1}}$ is not wedged. Thus, $P_{S_{1}}$ is uniserial of length 2 or 3; see (3.7). By Lemma 3.9(1) and (2), there exists sectional a path of irreducible maps $S \xrightarrow{q_{2}} M \xrightarrow{q_{1}} I_{S}$ in ind A such that $\iota_{S}=q_{1} q_{2}$. Since $P_{S_{1}}$ and I_{S} are projective, viewing the diagrams in Lemma 3.9(1) and (2), we see that $d_{l}\left(q_{2}\right)=d_{l}\left(q_{1}\right)=\infty$; see (1.7) and (1.10). Therefore, $\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(q_{1} q_{2} \pi_{S}\right)=3$. The proof of the lemma is completed.
4.6. Lemma. Let A be a tri-string algebra with S a simple module in $\bmod A$. If S is a direct summand of the radical of a wedged projective module or the socle-factor of a co-wedged injective module, then $\operatorname{dp}\left(\theta_{S}\right) \leq 3$.
Proof. We consider only the case where P is a wedged projective module with $\operatorname{rad} P=S \oplus S_{2}$ and top $P=S_{1}$. Then, I_{S} is uniserial of length 2 or 3 ; see (3.4). If $\ell\left(I_{S}\right)=3$, then $\operatorname{dp}\left(\theta_{S}\right) \leq 3$; see (4.5). Let $\ell\left(I_{S}\right)=2$. Since $S_{1}=\operatorname{soc}\left(I_{S} / S\right)$; see (1.1), by Lemma 3.8(3), we obtain a path of irreducible maps $S \xrightarrow{q_{1}} P \xrightarrow{p_{2}} I_{S_{1}}$ in ind A, where q_{1} is a source map, such that $\iota_{S}=p_{2} q_{1}$ and $\operatorname{dp}\left(\iota_{S}\right)=2$.

On the other hand, by Definition $4.4(3), \ell\left(P_{S}\right) \leq 2$. We need only to consider the case where $\ell\left(P_{S}\right)=2$. Write $S_{0}=\operatorname{rad} P_{S}$, which is simple. Then, S is a direct summand of $\operatorname{soc}\left(I_{S_{0}} / S_{0}\right)$; see (1.1). By Definition 4.4(4), $I_{S_{0}}$ is not co-wedged, that is, $I_{S_{0}}$ is uniserial. By Proposition 3.2, the inclusion map $j: S_{0} \rightarrow P_{S}$ is a source monomorphism, whose co-kernel $\pi_{S}: P_{S} \rightarrow S$ is a sink epimorphism. Since $q_{1}: S \rightarrow P$ is a source map, P_{S} is injective, and hence, $d_{r}\left(\pi_{S}\right)=\infty$. Therefore, $\mathrm{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(\iota_{S} \pi_{S}\right)=3$. The proof of the lemma is completed.
4.7. Lemma. Let A be a tri-string algebra with S a simple module in $\bmod A$. If P_{S} is wedged or I_{S} is co-wedged, then $\operatorname{dp}\left(\theta_{S}\right) \leq 3$.
Proof. We consider only the case where P_{S} is wedged with $\operatorname{rad} P_{S}=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple. Then, $\operatorname{dp}\left(\pi_{S}\right)=2$; see (3.4). By Definition $4.4(2), \ell\left(I_{S}\right) \leq 2$. We may assume that $\ell\left(I_{S}\right)=2$. Moreover, $I_{S_{1}}, I_{S_{2}}$ are uniserial of length 2 or 3 ; see (3.4) and (3.7). Then, $S=\operatorname{soc}\left(I_{S_{i}} / S_{i}\right)$; see (1.1), for $i=1,2$.

Suppose first that $I_{S_{1}}$ or $I_{S_{2}}$ is of length 3 , say $\ell\left(I_{S_{1}}\right)=3$. Then, $I_{S_{1}}$ is projectiveinjective with $S=\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)=\operatorname{rad} I_{S_{1}} / S_{1}$. In view of the almost split sequence as stated in Lemma 1.2, we obtain an irreducible monomorphism $q_{1}: S \rightarrow I_{S_{1}} / S_{1}$ with $d_{l}\left(q_{1}\right)=\infty$; see (1.10). Since $\ell\left(I_{S_{1}} / S_{1}\right)=2=\ell\left(I_{S}\right)$, we find an isomorphism $u: I_{S_{1}} / S_{1} \rightarrow I_{S}$ such that $\iota_{S}=u q_{1}$. Thus, $\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(q_{1} \pi_{S}\right)=3$. Suppose now that $\ell\left(I_{S_{1}}\right)=\ell\left(I_{S_{2}}\right)=2$. By Lemma 3.4, we obtain a mesh-complete diagram

in ind A. Since $\ell\left(I_{S}\right)=2$, there exists an irreducible map $g: S \rightarrow N$, where N is indecomposable. Since $\left(f_{1}, f_{2}\right): I_{S_{2}} \oplus I_{S_{1}} \rightarrow S$ is a sink map, N is projective. Hence, $d_{l}(g)=\infty$ and S is a direct summand of $\operatorname{rad} N$. Since $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=5$, by Definition $4.4(3), N$ is uniserial. Then, $\operatorname{rad} N=S=\operatorname{soc} N$, and consequently, $\ell(N)=2=\ell\left(I_{S}\right)$. Thus, $\iota_{S}=w g$, for some isomorphism $w: N \rightarrow I_{S}$. Hence, $\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(g \pi_{S}\right)=3$. The proof of the lemma is completed.

The following is our promised result.
4.8. Proposition. Let A be a tri-string artin algebra. Then $\operatorname{rad}^{4}(\bmod A)=0$.

Proof. It suffices to show that $\operatorname{dp}\left(\theta_{S}\right) \leq 3$, for every simple module S in $\bmod A$; see $[9,(2.7)]$. By Lemmas 4.5 and 4.7, we may assume that $\ell\left(P_{S}\right) \leq 2$ and $\ell\left(I_{S}\right) \leq 2$. By Corollary 3.10, we may further assume that $\ell\left(P_{S}\right)=\ell\left(I_{S}\right)=2$. Set $S_{1}=\operatorname{soc} P_{S}$ and $S_{0}=\operatorname{top} I_{S}$. Observing that $S_{1}=\operatorname{rad} P_{S}$ and $S_{0}=I_{S} / S$, we see that S is a direct summand of each of $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)$ and $\operatorname{top}\left(\operatorname{rad} P_{S_{0}}\right)$; see (1.1). If $I_{S_{1}}$ is cowedged, then $\operatorname{soc}\left(I_{S_{1}} / S_{1}\right)=I_{S_{1}} / S_{1}$, and by Lemma 4.7, $\operatorname{dp}\left(\theta_{S}\right) \leq 3$. Similarly, if $P_{S_{0}}$ is wedged, then $\operatorname{dp}\left(\theta_{S}\right) \leq 3$. Suppose now that $I_{S_{1}}$ and $P_{S_{0}}$ are uniserial. Since $S_{1}=\operatorname{rad} P_{S}$, by Proposition 3.2, the inclusion map $j: S_{1} \rightarrow P_{S}$ is a source monomorphism, whose co-kernel $\pi_{S}: P_{S} \rightarrow S$ is a sink epimorphism. Similarly, $\iota_{S}: S \rightarrow I_{S}$ is a source monomorphism. By Lemma 1.7(1), $d_{l}\left(\iota_{S}\right) \geq 2>\operatorname{dp}\left(\pi_{S}\right)$. Thus, $\operatorname{dp}\left(\theta_{S}\right)=\operatorname{dp}\left(\iota_{S} \pi_{S}\right)=2$. The proof of the proposition is completed.

We are ready to state and prove the main result of this section.
4.9. Theorem. Let A be a connected artin algebra. Then $\operatorname{rad}^{4}(\bmod A)=0$ if and only if A is a hereditary algebra of type \mathbb{A}_{4} or a tri-string algebra.
Proof. By Propositions 2.5 and 4.8, we need only to prove the necessity. Suppose that $\operatorname{rad}^{4}(\bmod A)=0$ and A is not a hereditary algebra of type \mathbb{A}_{4}. By Proposition 4.1, A is a string algebra. Let P be a non-uniserial projective module in ind A. Then, $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are uniserial. By Propositions 4.2 and $4.3, S_{i}$ is simple and the inclusion map $q_{i}: S_{i} \rightarrow P$ is a source map, and hence, $\operatorname{soc}\left(I_{S_{i}} / S_{i}\right)$ is simple; see (3.2), for $i=1,2$. That is, P is wedged. Dually, every non-uniserial injective module is co-wedged. Thus, A is a wedged string algebra. Now, we shall verify one by one the conditions stated in Definition 4.4.
(1) Note that A is representation-finite and $\operatorname{rad}^{4} A=0$. If $\operatorname{rad}^{3} A \neq 0$, then $\operatorname{rad}^{3}(\bmod A) \neq 0$. That is, A is of Loewy length 4 and $\operatorname{rad}(\bmod A)$ is of nilpotency 4. By Theorem $2.6, A$ is hereditary of type $\overrightarrow{\mathbb{A}}_{4}$, a contradiction. Thus, $\operatorname{rad}^{3} A=0$.
(2) Let S be a simple module in $\bmod A$. The projective cover $\pi_{S}: P_{S} \rightarrow S$ and the injective envelope $\iota_{S}: S \rightarrow I_{S}$ are such that $\operatorname{dp}\left(\iota_{S} \pi_{S}\right) \leq 3$; see (2.1). By Lemma 3.7, $\ell\left(P_{S}\right) \leq 3$ and $\ell\left(I_{S}\right) \leq 3$. Suppose that $\ell\left(I_{S}\right)=3$. If I_{S} is co-wedged then, by the dual of Lemma 3.4, $\operatorname{dp}\left(\iota_{S}\right)=2$. If I_{S} is uniserial of length 3, then $\mathrm{dp}\left(\iota_{S}\right) \geq 2$; see (3.9). Dually, if $\ell\left(P_{S}\right)=3$, then $\mathrm{dp}\left(\pi_{S}\right) \geq 2$. If $\ell\left(P_{S}\right)=\ell\left(I_{S}\right)=3$, then $\operatorname{dp}\left(\iota_{S} \pi_{S}\right) \geq 4$, a contradiction. Therefore, $\ell\left(P_{S}\right)+\ell\left(I_{S}\right) \leq 5$.
(3) Let S be a simple direct summand of the radical of a wedged projective module P in ind A. Write $\operatorname{rad} P=S \oplus S_{2}$ and $S_{1}=\operatorname{top} P$. Then, I_{S} is uniserial of length ≥ 2; see (3.4). In particular, $S_{1}=\operatorname{soc}\left(I_{S} / S\right)$; see (1.1). By Lemmas 3.8(3) and $3.9(3), \operatorname{dp}\left(\iota_{S}\right)=\ell\left(I_{S}\right)$. Suppose first that $\ell\left(I_{S}\right)=3$. Since $\operatorname{dp}\left(\iota_{S}\right)=3$ and $\mathrm{dp}\left(\iota_{S} \pi_{S}\right) \leq 3$, we see that π_{S} is an isomorphism. Therefore, $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=4$.

Suppose now that $\ell\left(I_{S}\right)=2$. Then, $\operatorname{dp}\left(\iota_{S}\right)=2$. If π_{S} is an isomorphism, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=3$. Otherwise, $\operatorname{dp}\left(\iota_{S} \pi_{S}\right) \geq 3$. Thus, $\operatorname{dp}\left(\iota_{S} \pi_{S}\right)=3$. As a consequence, $\mathrm{dp}\left(\pi_{S}\right)=1$. That is, π_{S} is irreducible. On the other hand, since P_{1} is wedged, the inclusion $\operatorname{map} q: S \rightarrow P_{1}$ is a source map; see (3.2). Thus, P_{S} is projective-injective. In particular, P_{S} is uniserial and the canonical projection $p: P_{S} \rightarrow P_{S} / \operatorname{soc} P_{S}$ is a source map. Since π_{S} is irreducible, $P_{S} / \operatorname{soc} P_{S} \cong S$. Therefore, $\ell\left(P_{S}\right)=2$, and consequently, $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=4$. Dually, if S is a simple direct summand of the socle-factor of a co-wedged injective module in ind A, then $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=4$.
(4) Consider a wedged projective module P_{0} and a co-wedged injective module I_{0}. Write top $P_{0}=S_{0}$ and $\operatorname{rad} P_{0} \cong S_{1} \oplus S_{2}$, and $\operatorname{soc} I_{0}=T_{0}$ and $I_{0} / T_{0}=T_{1} \oplus T_{2}$, where S_{i}, T_{j} are simple, $0 \leq i, j \leq 2$. As mentioned above, $I_{S_{i}}$ is uniserial of length ≥ 2 and $\operatorname{dp}\left(\iota_{S_{i}}\right) \geq 2, i=1,2$. Dually, $P_{T_{j}}$ is uniserial and $\operatorname{dp}\left(\pi_{T_{j}}\right) \geq 2, j=1,2$.

Since $\ell\left(P_{0}\right)+\ell\left(I_{0}\right)=6$, as shown above, $S_{0} \not \neq T_{0}$. Since $I_{S_{i}}$ is uniserial, $S_{i} \not \not T_{0}$ for $i=1,2$. And since $P_{T_{j}}$ is uniserial, $S_{0} \cong T_{j}$ for $j=1,2$. If $S_{i} \cong T_{j}$ for some $1 \leq i, j \leq 2$, then $\operatorname{dp}\left(\pi_{S_{i}}\right)=\operatorname{dp}\left(\pi_{T_{j}}\right) \geq 2$. This yields that $\operatorname{dp}\left(\iota_{S_{i}} \pi_{S_{i}}\right) \geq 4$, a contradiction. The proof of the theorem is completed.

5. Main statements

The objective of this section is to provide, for each $2 \leq n \leq 4$, an explicit list of connected artin algebras whose module category is of radical nilpotency n and describe the indecomposable modules and the almost split sequences in their module category. We start with the easy case where $n=2$.
5.1. Proposition. Let A be a connected artin algebra. The radical of $\bmod A$ is of nilpotency two if and only if A is hereditary of type $\overrightarrow{\mathbb{A}}_{2}$.
Proof. We need only to prove the necessity; see (2.5). If $\operatorname{rad}(\bmod A) \neq 0$ and $\operatorname{rad}^{2}(\bmod A)=0$, then $\operatorname{rad} A \neq 0$ and $\operatorname{rad}^{2} A=0$. By Theorem 2.6, A is hereditary of type $\overrightarrow{\mathbb{A}}_{2}$. The proof of the proposition is completed.

Remark. In case A is given by a quiver with relations, the above result is stated in a master dissertation under the supervision of the first named author; see [18].

The following statement is the list of algebras whose module category is of radical nilpotency three.
5.2. Theorem. Let A be a connected artin algebra. The radical of $\bmod A$ is of nilpotency three if and only if A is a hereditary algebra of type \mathbb{A}_{3} or \mathbb{B}_{2}, or else, a non-hereditary Nakayama algebra with radical squared zero.
Proof. If A is hereditary of type \mathbb{A}_{3} or \mathbb{B}_{2}, then $\operatorname{rad}^{2}(\bmod A) \neq 0$; see (5.1) and $\operatorname{rad}^{3}(\bmod A)=0$; see (2.5) and (3.6). If A is a non-hereditary Nakayama algebra with $\operatorname{rad}^{2} A=0$, then $\ell \ell(A)=2$. By Corollary $2.8(1), \operatorname{rad}(\bmod A)$ is of nilpotency m with $3 \leq m \leq 3$. This establishes the sufficiency.

Conversely, assume that $\operatorname{rad}(\bmod A)$ is of nilpotency 3. By Theorem 2.5, A is not a hereditary algebra of type \mathbb{A}_{4}. By Theorem $4.9, A$ is a tri-string algebra. In particular, A is a wedged string algebra.

Suppose first that A is a Nakayama algebra. By Corollary $2.8(1), \ell \ell(A)=3$ if A is hereditary, and otherwise, $\ell \ell(A)=2$. That is, A is hereditary of type $\overrightarrow{\mathbb{A}}_{3}$ or a non-hereditary Nakayama algebra with $\operatorname{rad}^{2} A=0$.

Suppose now that A is not a Nakayama algebra. Then, there exists a wedged projective module P in ind A or ind $A^{\text {op }}$ with $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple. By Lemma 3.4, there exists in ind A or ind $A^{\text {op }}$ a mesh-complete diagram

where $\tau^{-} P \cong \operatorname{top} P$, such that $\operatorname{dp}\left(g_{2} q_{1}\right)=\operatorname{dp}\left(q_{1} g_{2}\right)=\operatorname{dp}\left(f_{1} g_{1}\right)=2$. Since $\operatorname{rad}^{3}(\bmod A)=0$, by Lemma 2.1, S_{1}, S_{2} are projective and $\tau^{-} P$ is injective. In view of Proposition 3.6, we conclude that A is hereditary of type \mathbb{B}_{2} or $\hat{\mathbb{A}}_{3}$. The proof of the theorem is completed.
REmark. The hereditary Nakayama algebras with radical squared zero are hereditary algebras of type \mathbb{A}_{1} or \mathbb{A}_{2}.

We are ready to obtain the list of connected artin algebras whose module category is of radical nilpotency four.
5.3. Theorem. Let A be a connected artin algebra. The radical of $\bmod A$ is of nilpotency four if and only if A is a hereditary algebra of type \mathbb{A}_{4}, a non-hereditary Nakayama algebra of Loewy length three, or a non-hereditary non-Nakayama tristring algebra.
Proof. If A is hereditary of type \mathbb{A}_{4}, then $\operatorname{rad}(\bmod A)$ is of nilpotency 4 ; see (2.5). In view of Proposition 4.8 and Theorem 4.9, we may assume that A is a tri-string algebra. Since $\operatorname{rad}^{3} A=0$, we see that $\ell \ell(A) \leq 3$. And since $\operatorname{rad}^{4}(\bmod A)=0$, $\operatorname{rad}(\bmod A)$ is of nilpotency $m \leq 4$.

Suppose first that A is a Nakayama algebra. By Corollary 2.8, $m=\ell \ell(A)<4$ in case A is hereditary; and otherwise, $\ell \ell(A)+1 \leq m \leq 2 \cdot \ell \ell(A)-1$. Therefore, $m=4$ if and only if A is non-hereditary of Loewy length three. The theorem holds in this case.

Suppose now that A is not a Nakayama algebra. Being a tri-string algebra, A is a wedged string algebra. If A is hereditary then, by Proposition $3.6, \operatorname{rad}^{3}(\bmod A)=0$, and hence, $m<4$. Otherwise, by Proposition 5.1 and Theorem 5.2, we see that $m \notin\{1,2,3\}$, that is, $m=4$. Therefore, $m=4$ if and only if A is not hereditary. The proof of the theorem is completed.

Remark. The hereditary Nakayama algebras of Loewy length three are hereditary algebras of type $\overrightarrow{\mathbb{A}}_{3}$ and the hereditary non-Nakayama tri-string algebras are hereditary algebras of type \mathbb{B}_{2} or $\hat{\mathbb{A}}_{3}$.

Next, we shall describe the module categories whose radical is nilpotent of nilpotency up to four. For the hereditary case, this is done in Theorem 2.6 and Propositions 3.6, 4.2 and 4.3. In view of Theorem 4.9, it suffices to consider tri-string algebras. We start with describing their indecomposable modules.
5.4. Theorem. Let A be a connected tri-string algebra.
(1) If M is a module in $\operatorname{ind} A$, then M is of length at most three; and if M is not projective or injective, then M is uniserial of length at most two.
(2) If M, N are non-isomorphic non-uniserial modules in ind A, then they have no common composition factor.
(3) If A is not a local Nakayama algebra of Loewy length 2, then $\operatorname{Ext}_{A}^{1}(S, S)=0$ for every simple module S in $\bmod A$.
Proof. Let M be a module in ind A, which is neither projective nor injective. Then, there exist radical maps $f: P \rightarrow M$ and $g: M \rightarrow I$ in ind A such that $g f \neq 0$, where P is projective and I is injective. Since $\operatorname{rad}^{4}(\bmod A)=0$; see (4.8), $\operatorname{dp}(g f) \leq 3$. As a consequence, f or g is irreducible. We may assume that $g: M \rightarrow I$ is irreducible. Since M is not projective, I is not simple. That is, $2 \leq \ell(I) \leq 3$; see (3.7). Note that $I=I_{S}$, where $S=\operatorname{soc} I$. Suppose first that I is
co-wedged with $I / S=S_{1} \oplus S_{2}$ where S_{1}, S_{2} are simple. By the dual of Proposition 3.4, we may assume that $M \cong \tau S_{1}$. Since $\ell(I)=3$, we obtain $\ell(M)=2$. Being indecomposable, M is uniserial. Suppose now that I is uniserial. If $\ell(I)=3$, then I is projective-injective; see (3.7), and hence, $M=\operatorname{rad} I$, which is uniserial of length two. Let $\ell(I)=2$. Since M is not projective, by Proposition $3.8, M=S$. Since the projective or injective modules in ind A are of length ≤ 3, Statement (1) holds.

To prove Statement (2), note that the non-uniserial modules in ind A are wedged projective or co-wedged injective modules. By Definition $4.4(4)$, we only need to consider two non-isomorphic wedged projective modules P_{1} and P_{2} in ind A. Write $\operatorname{top} P_{1}=S_{0}$ and $\operatorname{rad} P_{1}=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple; and top $P_{2}=T_{0}$ and $\operatorname{rad} P_{2}=T_{1} \oplus T_{2}$, where T_{1}, T_{2} are simple. Then, $T_{0} \not \approx S_{0}$ by the assumption. Since $I_{S_{i}}, I_{T_{j}}$ are uniserial of length ≥ 2; see (3.4), $P_{S_{i}}, P_{T_{j}}$ are of length ≤ 2 by Definition $4.4(3)$. Hence, $T_{0} \neq S_{i}$ and $S_{0} \not \approx T_{j}$, for $1 \leq i, j \leq 2$. Suppose that $S_{1} \cong T_{1}$. Then, S_{1} is a direct summand of each of $\operatorname{rad} P_{S_{0}}$ and $\operatorname{rad} P_{T_{0}}$. Thus, S_{0} and T_{0} are direct summands of $I_{S_{1}} / S_{1}$. Since $S_{0} \not \approx T_{0}$, we see that $I_{S_{1}}$ is not uniserial, a contradiction. This establishes Statement (2).

Suppose that $\operatorname{Ext}_{A}^{1}(S, S) \neq 0$, for some simple module S in $\bmod A$. That is, S is a direct summand of $\operatorname{rad} P_{S}$. Observing that $\ell\left(I_{S}\right) \geq 2$, we deduce from Definition $4.4(3)$ that P_{S} is uniserial. Assume that $\ell\left(P_{S}\right)=3$. Then, P_{S} is projective-injective; see (3.7), and $S=\operatorname{top}\left(\operatorname{rad} P_{S}\right) \cong \operatorname{soc}\left(P_{S} / S_{1}\right)$, where $S_{1}=\operatorname{soc} P_{S}$. Moreover, $I_{S_{1}} \cong P_{S}$ with $S \cong \operatorname{soc}\left(I_{S_{1}} / S_{1}\right)$. By Lemma 1.1, $S_{1} \cong \operatorname{top}\left(\operatorname{rad} P_{S}\right)=S$. Hence, $I_{S} \cong P_{S}$, and consequently, $\ell\left(P_{S}\right)+\ell\left(I_{S}\right)=6$, a contradiction to Definition 4.4(2). Thus, $\ell\left(P_{S}\right)=2$. Dually, $\ell\left(I_{S}\right)=2$. Since $S=\operatorname{soc} P_{S}$, we see that $P_{S} \cong I_{S}$. That is, P_{S} is projective-injective. Being connected, A is a local Nakayama algebra of Loewy length two. The proof of the theorem is completed.
Remark. In view of Definition 4.4 and Theorem 5.4, we obtain some necessary and sufficient combinatorial conditions for a string algebra given by a quiver with relations to be a tri-string algebra. This is left for the reader to formulate explicitly.
Example. Let A be an algebra over a field given by the quiver

with relations $\gamma \beta=0$ and $\delta \beta=0$. Then $\operatorname{rad}^{4}(\bmod A) \neq 0$.
Finally, we shall describe the almost split sequences in the module category of a tri-string algebra. Recall that a non-injective module in $\operatorname{ind} A$ is either a wedged projective module or a uniserial module of length one or two; see (5.4).
5.5. Theorem. Let A be a tri-string artin algebra. Then every almost split sequence in $\bmod A$ is isomorphic to one of the following ones.
(1) If P is a wedged projective module in ind A with $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple, then there exists an almost split sequence

$$
0 \longrightarrow P \longrightarrow P / S_{1} \oplus P / S_{2} \longrightarrow \operatorname{top} P \longrightarrow 0
$$

(2) If M is a non-injective uniserial module of length two with an injective envelope I_{M}, then there exists an almost split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \longrightarrow I_{M} / M \longrightarrow 0
$$

in case I_{M} is co-wedged; and otherwise, an almost most split sequence

$$
0 \longrightarrow M \longrightarrow I_{M} \oplus \operatorname{top} M \longrightarrow I_{M} / \operatorname{soc} M \longrightarrow 0 .
$$

(3) If S is the socle of a co-wedged injective module I with $I / S=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple, then there exists an almost split sequence

$$
0 \longrightarrow S \longrightarrow M_{1} \oplus M_{2} \longrightarrow I \longrightarrow 0
$$

where $\operatorname{soc} M_{i}=\operatorname{rad} M_{i}=S$ and $\operatorname{top} M_{i}=S_{i}$, for $i=1,2$.
(4) If S is a simple direct summand of the radical of a wedged projective module P, then there exists an almost split sequence

$$
0 \longrightarrow S \longrightarrow P \longrightarrow P / S \longrightarrow 0
$$

(5) If S is the socle of a non-simple uniserial injective module I and is not a direct summand of the radical of any wedged projective module, then there exists an almost split sequence

$$
0 \longrightarrow S \longrightarrow N \longrightarrow N / S \longrightarrow 0
$$

where $N=I$ in case $\ell(I)=2$, and $N=\operatorname{rad} I$ in case $\ell(I)=3$.
Proof. Let $\delta: 0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$ be an almost split sequence in $\bmod A$. By Theorem $5.4, \ell(M) \leq 3$. Consider first the case where $\ell(M)=3$. Not being injective, M is not uniserial; see (3.7), and consequently, $M=P$, a wedged projective module in ind A with $\operatorname{rad} P=S_{1} \oplus S_{2}$, where S_{1}, S_{2} are simple. By Lemma 3.4, δ is of the form as stated in Statement (1).

Consider now the case where $\ell(M)=2$. Being indecomposable, M is uniserial. Write $S=\operatorname{soc} M$ and $S_{1}=\operatorname{top} M=M / S$. Then, $\operatorname{soc} I_{M}=S$ and $I_{M} \cong I_{S}$. Since M is not injective, $\ell\left(I_{M}\right)=3$. Suppose first that I_{M} is co-wedged. Then, S_{1} is a direct summand of I_{M} / S, say $I_{M} / S=S_{1} \oplus S_{2}$, where S_{2} is simple. Observe that $I_{M} / M \cong S_{2}$. By the dual of Lemma 3.2, δ is of the first form as stated in Statement (2). Suppose now that I_{M} is uniserial. Then, I_{M} is projective-injective with $M=\operatorname{rad} I_{M}$ and $\operatorname{rad} I_{M} / S=\operatorname{top} M$. By Lemma $1.2, \delta$ is of the second form as stated in Statement (2).

Consider finally the case where $M=S$, a non-injective simple module in $\bmod A$ with $I_{S}=I$. In case I is co-wedged, by the dual of Lemma 3.4, δ is of the form as stated in Statement (3). Otherwise, I is uniserial of length 2 or 3 . Write $S_{1}=\operatorname{soc}(I / S)$ and $P=P_{S_{1}}$. If P is wedged, then S is a direct summand of $\operatorname{rad} P$, and by Propositions 3.8(3) and $3.9(3), \delta$ is of the form as stated in Statement (4). In case P is uniserial, viewing the first two statements of each of Propositions 3.8 and 3.9, we conclude that δ is of the form as stated in Statement (5). The proof of the theorem is completed.

Data availability: Not applicable.
Ethical Statement/Conflict of Interest: No conflict of interest.

References

[1] M. Auslander and I. Reiten, "Uniserial functors", Proceedings of the Second International Conference on Representations of Algebras (Carleton University, Ottawa, 1979); Lecture Notes in Mathematics 832 (Springer, Berlin, 1981) 1-8.
[2] M. Auslander, I. Reiten and S. O. Smalø, "Representation Theory of Artin Algebras", Cambridge Studies in Advanced Mathematics 36 (Cambridge University Press, Cambridge, 1995).
[3] R. Bautista, "On irreducible maps", Bull. Amer. Math. Soc. (1) 2 (1980) 177 - 180.
[4] R. Bautista, "Irreducible morphisms and the radical of a category", Ann. Inst. Math. Univ. Nac. Auto. Mex. 22 (1982) 83-135.
[5] R. Bautista and S. Brenner, "On the number of terms in the middle of an almost split sequence", Lecture Notes in Mathematics 903 (Springer, Berlin, 1981) 1-8.
[6] K. Bongartz and P. Gabriel, "Covering Spaces in Representation-Theory", Invent. Math. 65 (1982) 331-378.
[7] M. C. Butler and C. M. Ringel, "Auslander-Reiten sequences with few middle terms and applications to string algebras", Comm. Algebra 15 (1987) 145-179.
[8] C. Chaio, "Degrees and composition of irreducible morphisms in almost pre-sectional paths", Algebr. Represent. Theor. 17 (2014) 407-432.
[9] C. Chaio and S. Liu, "A note on the radical of a module category", Comm. Algebra 41 (2013) 4419-4424.
[10] D. Eisenbud and J. A. de la Peña, "Chains of maps between indecomposable modules", J. Reine Angew. Math. 504 (1998) 29-35.
[11] D. Happel, "Triangulated Categories in the Representation Theory of Finite Dimensional Algebras", London Mathematical Society Lecture Notes Series 119 (Cambridge University Press, Cambridge, 1988). (1970) 323-344.
[12] M. Harada and Y. Sai, "On categories of indecomposable modules I", Osaka J. Math. 7 (1970) 323-344.
[13] K. Igusa and G. Todorov, "A characterization of finite Auslander-Reiten quivers", J. Algebra 89 (1984) 148-177.
[14] O. Kerner and A. Skowroński, "On module categories with nilpotent infinite radical", Compositio Math. 77 (1991) 313-333.
[15] S. Liu, "The degrees of irreducible maps and the shapes of Auslander-Reiten quivers", J. London Math. Soc. (2) 45 (1992) 32 - 54.
[16] S. LiU, "Almost split sequences for non-regular modules", Fund. Math. 143 (1993) 183-190.
[17] S. Liu, "Shapes of connected components of the Auslander-Reiten quivers of artin algebras", Representation Theory of Algebras and Related Topics (Mexico City, 1994) Canad. Math. Soc. Conf. Proc. 19 (1995) 109-137.
[18] S. Lo, "Algèbres de dimension finie dont le carré du radical de la catégorie des modules est nul", Mémoire de maitrîse, Université de Sherbrooke (2021) https://math.usherbrooke.ca /sliu/ Theses/SLO-M.pdf

Corresponding author: Shiping Liu, Département de mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada

Email address: shiping.liu@usherbrooke.ca
Youqi Yin, Department of mathematics, University of Shaoxing, Shaoxing 312000, China

Email address: yinyouqi@usx.edu.cn

[^0]: 2010 Mathematics Subject Classification. 16D90, 16G20, 16G70, 16E35.
 Key words and phrases. Artin algebras; representation-finite algebras; Nakayama algebras; hereditary algebras; almost split sequences; degrees of irreducible maps; Auslander-Reiten quiver.

 The first named author is supported in part by the Natural Science and Engineering Research Council of Canada.

