
Auslander-Reiten theory in a Krull-Schmidt category

Shiping Liu

Abstract. We first introduce the notion of an Auslander-Reiten
sequence in a Krull-Schmidt category. This unifies the notion of
an almost split sequence in an abelian category and that of an
Auslander-Reiten triangle in a triangulated category. We then de-
fine the Auslander-Reiten quiver of a Krull-Schmidt category and
describe the shapes of its semi-stable components. The main result
generalizes those for an artin algebra and specializes to an arbi-
trary triangulated categories, in particular to the derived category
of bounded complexes of finitely generated modules over an artin
algebra of finite global dimension.

Introduction

Since its introduction in the early seventies; see [3, 4], the Auslander-Reiten
theory, that is the theory of irreducible morphisms and almost split sequences,
has been playing a fundamental role in the modern representation theory of artin
algebras. It has also an important impact to many other areas of mathematics
such as algebraic geometry and algebraic topology; see, for example, [1, 13, 14].
Indeed, it appears naturally in abelian categories such as the module category of
an artin algebra; see [4], additive categories with an exact structure such as the
representation category of a bocs; see [7], and triangulated categories such as
the derived category of bounded complexes in an abelian category; see [10, 13]
and cluster categories; see [9]. In order to unify the various existent versions, we
shall introduce and study this theory in a general Krull-Schmidt category. The
results generalize those, with some new ones, for a module category and are
applicable to general abelian categories and triangulated categories. We now
outline the content of the paper section by section.

While irreducible morphisms have been thoroughly studied in [6], we intro-
duce in Section 1 the notion of an Auslander-Reiten sequence in a Krull-Schmidt
category. Compared with those in categories with an exact structure and those
in triangulated categories, the Auslander-Reiten sequences in a Krull-Schmidt
category behave nicely under taking subcategories and quotients by an admis-
sible ideal; see (1.6). This has an interesting application on extensions between
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indecomposable modules over an artin algebra; see (2.11). In subsequent pa-
pers, we shall provide more applications in problems involving the stable module
category of an artin algebra.

In Section 2, we define as usual the Auslander-Reiten quiver of a Krull-
Schmidt category. One of the important features of the Auslander-Reiten quiver
of an artin algebra is that it does not contain any sectional oriented cycle; see
[8]. We shall prove that the same holds true for a left or right Auslander-Reiten
category; for definition, see (2.6).

In Section 3, we recall the notion of degrees of an irreducible morphism,
which is originally introduced in a module category; see [17]. This is a powerful
tool in handling oriented cycles in an Auslander-Reiten quiver, the hardest task
in describing the shapes of Auslander-Reiten components.

Section 4 is purely combinatorial which deals with semi-stable valued trans-
lation quivers. If such a valued translation quiver contains no oriented cycle,
then it embeds in Z∆ with ∆ some valued quiver without oriented cycles. On
the other hand, the typical examples of semi-stable valued translations quivers
containing oriented cycles are ray tubes and co-ray tubes. A characterization
of these semi-stable tubes was implicitly used in [18] and was explicitly stated
in [19, Section 2] but with no proof. Later, a rigorous proof first appeared in
a master thesis [15] written under the author’s supervision. Since it has never
been published, we include an improved version here.

Section 5 contains the main results of the paper. For many special kinds
of categories, a complete description of the Auslander-Reiten components has
been obtained; see, for example, [10, 13, 16, 22, 24]. For the module category
of an artin algebra, a general description of these components can be found
in [11, 18, 28]. Using the theory of degrees of irreducible morphisms as we
did in [17, 18], we shall show that most of these results hold true for Krull-
Schmidt categories, except that loops may show up in general. Fortunately, if
the category is a connected left or right Auslander-Reiten category, then we can
determine completely the Auslander-Reiten quiver in case it contains a loop.

In Section 6, we specialize our results to a triangulated category which is
triangle-connected but not triangle-simple. If such a triangulated category ad-
mits a left or right Serre functor; see [21], then each of its Auslander-Reiten
components is either a stable or semi-stable tube, or of shape Z∆/G with ∆ a
Dynkin quiver and G a group of automorphisms containing a positive power of
the translation, or embeds in Z∆ with ∆ a locally finite valued quiver containing
no oriented cycle, where the semi-stable tubes will not appear if the functor is a
Serre functor. Applying this to the bounded derived category of an artin algebra
of finite global dimension, we show that every Auslander-Reiten component is
a stable tube or of shape Z∆ where ∆ is a locally finite valued quiver with no
oriented cycle.
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1. Auslander-Reiten sequences

All categories considered in this paper are skeletally small. Morphisms in a
category are composed from the left to the right. Let R denote a fixed commu-
tative artinian ring. An R-category is a category in which the morphism sets are
R-modules and the composition of morphisms is R-bilinear. Such an R-category
is Hom-finite if the morphism sets are finitely generated as R-modules. Further,
one says that an idempotent e : X → X in an R-category splits if there exist
morphisms f : X → Y and g : Y → X such that e = fg and gf = 1IY . In
a Hom-finite R-category, it is well known that idempotents split if and only if
indecomposable objects have a local endomorphism algebra.

Throughout, A stands for a Krull-Schmidt R-category, that is a Hom-finite
additive R-category in which idempotents split. The Jacobson radical rad(A)
of A is the ideal generated by the non-isomorphisms between indecomposable
objects. For n > 1, radn(A) denotes the ideal generated by the morphisms
which are composite of n morphisms lying in the radical. Finally, rad∞(A) =
∩n≥1radn(A) is called the infinite radical of A.

Let f : X → Y be a morphism in A. Recall from [4, 5] that f is irreducible
if f is neither a section nor a retraction while every factorization f = gh implies
that g is a section or h is a retraction. One calls f a source morphism, originally
called minimal left almost split morphism [4, 5], if f is not a section such that
every non-section morphism X → M factors through f and every factorization
f = fh implies that h an automorphism of Y . In this case, X is indecomposable,
and if f is non-zero, then g : X → M is irreducible if and only if g = fh with
h : Y → M a retraction. One defines a sink morphism, originally called minimal
right almost split morphism [4, 5], in a dual manner. If f is a sink morphism,
then Y is indecomposable, and if f is non-zero, then g : N → Y is irreducible if
and only if g = hf with h : N → X a section.

We begin with two easy results concerning sink morphisms, which are known
in a module category; see, for example, [5]. Note that the dual results for source
morphisms also hold true.

1.1. Lemma. If g : Y → Z is a sink morphism in A, then g = 0 if and only
if Y = 0.

Proof. If g : Y → Z is a zero sink morphism, then g = 0Y g. Thus 0Y is an
automorphism of Y , that is Y = 0. The proof of the lemma is completed.

1.2. Lemma. Given a commutative square

Y
f //

u

²²

Z

v

²²
Y

g // Z
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in A, where f, g are non-zero sink morphisms. Then u is an automorphism of
Y if and only if v is an automorphism of Z.

Proof. Assume that u is an automorphism of Y , while v is not an automor-
phism of Z. Since Z is indecomposable, EndA(Z) is local. Thus vr = 0 for some
r > 0. This yields urg = fvr = 0, and hence g = 0, a contradiction. Suppose
now that v is an automorphism of Z. Then gv−1 is not a retraction. Hence
gv−1 = wf for some w ∈ End(Y ). This gives rise to f = f(uw) and g = g(wu).
Hence, uw and wu are automorphisms of Y . Therefore, u is an automorphism
of Y . The proof of the lemma is completed.

Recall that a short exact sequence 0 → X
u−→ Y

v−→ Z → 0 in an abelian
category is an almost split sequence if u is a source morphism and v is a sink
morphism; see [3, 5]. We shall generalize this notion to a Krull-Schmidt cate-

gory. Let X
f−→ Y

g−→ Z be a sequence of morphisms in A. One says that
f is a pseudo-kernel of g if HomA(M, X)

f∗−→ HomA(M,Y )
g∗−→ HomA(M, Z)

is an exact sequence for every object M in A, and that g is a pseudo-cokernel

of f if HomA(Z, N)
g∗−→ HomA(Y, N)

f∗−→ HomA(X, N) is exact for every N in

A. Now we call the sequence X
f−→ Y

g−→ Z short exact if f is the kernel of g
while g is the cokernel of f , and short pseudo-exact if f is a pseudo-kernel of g
while g is a pseudo-cokernel of f .

1.3. Definition. A short pseudo-exact sequence X
f−→ Y

g−→ Z in A with
Y 6= 0 is called an Auslander-Reiten sequence if f is a source morphism and g
is a sink morphism.

It follows from Lemma 1.1 that an Auslander-Reiten sequence contains no
zero morphism. This property ensures that the following classical result for
almost split sequences in an abelian category holds true in a general Krull-
Schmidt category; compare [5].

1.4. Theorem. Let A be a Krull-Schmidt R-category with X
f−→ Y

g−→ Z
an Auslander-Reiten sequence.

(1) Up to isomorphism, the sequence is the unique Auslander-Reiten sequence
starting with X and the unique one ending with Z.

(2) Each irreducible morphism f1 : X → Y1 or g1 : Y1 → Z fits into an
Auslander-Reiten sequence

X
(f1,f2)// Y1 q Y2

(g1
g2

)
// Z.

Proof. Let X
f ′−→ Y ′ g′−→ Z ′ be another Auslander-Reiten sequence in A.

By the uniqueness of source morphisms, there exist isomorphisms u : Y → Y ′

and u′ : Y ′ → Y such that f ′ = fu and f = f ′u′. Now f(ug′) = f ′g′ = 0
and f ′(u′g) = fg = 0. Since the sequences are short pseudo-exact, we get a
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commutative diagram as follows:

X
f // Y

g //

u

²²

Z

v

²²
X

f ′ // Y ′ g′ //

u′

²²

Z ′

v′

²²
X

f // Y
g // Z.

Since uu′ is an automorphism of Y , by Lemma 1.2, vv′ is an automorphism of
Z. Similarly, v′v is an automorphism of Z ′, and hence v is an isomorphism.
This proves the uniqueness for X, and dually we have the uniqueness for Z.

Now let f1 : X → Y1 be an irreducible morphism in A. Since f : X → Y is
a source morphism, f1 fits in a source morphism (f1, f2) : X → Y1 q Y2. Hence
there exists an isomorphism u : Y → Y1 q Y2 such that (f1, f2) = fu. Setting(
g1
g2

)
= u−1g, we get the following commutative diagram :

X
f // Y

g //

u

²²

Z

X
(f1,f2)// Y1 q Y2

(g1
g2

)
// Z.

Since u is an isomorphism, the lower row is an Auslander-Reiten sequence.
Dually, each irreducible morphism g1 : Y1 → Z fits in a desired Auslander-
Reiten sequence. The proof of the theorem is completed.

1.5. Proposition. If A is abelian, then a sequence X
f−→ Y

g−→ Z in A
is an Auslander-Reiten sequence if and only if 0 → X

f−→ Y
g−→ Z → 0 is an

almost split sequence.
Proof. Let A be abelian with an Auslander-Reiten sequence X

f−→ Y
g−→ Z.

Let h : Y → M be the cokernel of f . Then h = gu and g = hv for some
morphisms u : Z → M and v : Z → M . Since h = hvu, we get vu = 1IM and uv
is an idempotent in EndA(Z). If uv = 0, then g = guv = 0, which is absurd.
Since EndA(Z) is local, vu = 1IZ . This shows that g is also a cokernel of f .
Dually, f is a kernel of g. The proof of the proposition is completed.

Next, we shall investigate how Auslander-Reiten sequences behave under
taking quotients of A. Let I be an ideal of A. One defines the quotient A/I of
A modulo I as follows. The objects of A/I are those of A, and the morphisms
are given by HomA/I(X, Y ) = HomA(X, Y )/I(X, Y ). It is evident that A/I is
an additive Hom-finite R-category. If X is an indecomposable object in A, then
either 1X ∈ I(X,X) or I(X, X) ⊆ rad(X, X). Hence X, as an object in A/I, is
either null or indecomposable with a local endomorphism algebra. Hence A/I
is also a Krull-Schmidt R-category.
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1.6. Definition. An ideal I of A is called admissible provided that it
satisfies the following conditions.

(1) If X, Y are indecomposable objects in A with 1X 6∈ I(X,X) and 1Y 6∈
I(Y, Y ), then I(X, Y ) ⊆ rad2(X, Y ).

(2) If f : X → Y is a source morphism in A with 1X 6∈ I(X,X), then every
g ∈ I(X,M) can be written as g = fh with h ∈ I(Y, M).

(3) If f : X → Y is a sink morphism in A with 1Y 6∈ I(Y, Y ), then every
g ∈ I(M, Y ) can be written as g = hf with h ∈ I(M, X).

1.7. Lemma. Let I be an admissible ideal A. For f ∈ HomA(X,Y ), write
f̄ = f + I(X,Y ) ∈ HomA/I(X, Y ).

(1) If f : X → Y is an irreducible morphism in A with X, Y indecomposable,
then f̄ : X → Y is irreducible in A/I whenever X, Y are non-zero in A/I.

(2) If f : X → Y is a source (epi)morphism in A, then f̄ : X → Y is a
source (epi)morphism in A/I whenever X is non-zero in A/I.

(3) If f : X → Y is a sink (mono)morphism in A, then f̄ : X → Y is a sink
(mono)morphism in A/I whenever Y is non-zero in A/I.

Proof. Firstly, let X,Y be indecomposable objects in A with 1X 6∈ I(X, X)
and 1Y 6∈ I(Y, Y ). By definition, I(X, Y ) ⊆ rad2(X, Y ). This gives rise to
radA/I(X, Y ) = rad(X, Y )/I(X, Y ), and rad2

A/I(X, Y ) = rad2(X, Y )/I(X, Y ).
Hence, if f ∈ rad(X, Y )\rad2(X, Y ), then f̄ ∈ radA/I(X,Y )\rad2

A/I(X,Y ).
Next, let f : X → Y be a source morphism in A with 1X 6∈ I(X,X). We

claim that f̄ is a not section. If this not the case, then there exists a morphism
f ′ : Y → X in A such that 1X −ff ′ ∈ I(X,X). However, 1X −ff ′ is invertible
since f ∈ rad(X, Y ). Hence 1X ∈ I(X,X), a contradiction. Let h : X → M
be a morphism in A such that h̄ is not a section. Then h is not a section, and
hence factors through f . As a consequence, h̄ factors through f̄ . Moreover, let
u : Y → Y be a morphism in A such that f̄ = f̄ ū. Then f − fu ∈ I(X, Y ). By
definition, f − fu = fv with v ∈ I(Y, Y ). This yields f = fw with w = u + v.
Then w is an automorphism of Y in A, and hence ū = w̄ is an automorphism
of Y in A/I. This shows that f̄ is a source morphism. Assume now that f is
an epimorphism. If q : Y → N is a morphism in A such that fq ∈ I(X,N),
then fq = fq′ with q′ ∈ I(Y, N). Since f is an epimorphism, we have q = q′.
Thus f̄ is an epimorphism. This proves Statement (2). In a dual manner, one
can prove Statement (3). The proof of the lemma is completed.

1.8. Proposition. Let I be an admissible ideal of A. If X
f−→ Y

g−→ Z

is an Auslander-Reiten sequence in A, then X
f̄−→ Y

ḡ−→ Z is a pseudo-exact
sequence in A/I, which is an Auslander-Reiten sequence whenever X, Y, and Z
are non-zero in A/I.

Proof. Let X
f−→ Y

g−→ Z be an Auslander-Reiten sequence in A. If
h : Y → M is a morphism in A such that f̄ h̄ = 0̄ then, since I is admissible,
there exists some h1 ∈ I(Y,M) such that fh = fh1, that is f(h−h1) = 0. Thus
h − h1 = gh2 for some h2 : Z → M . As a consequence, h̄ = ḡh̄2. This shows
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that ḡ is a pseudo-cokernel of f̄ . Dually, f̄ is a pseudo-kernel of ḡ. If X, Y, Z

are all non-zero in A/I, it follows from Lemma 1.7 that X
f̄−→ Y

ḡ−→ Z is an
Auslander-Reiten sequence in A/I. The proof of the proposition is completed.

We conclude this section with two examples of admissible ideals which are
important in our future application.

1.9. Lemma. (1) The infinite radical of A is an admissible ideal.
(2) If B is a subcategory of A closed under summands, then the ideal of the

morphisms factoring through objects in B is admissible.
Proof. (1) The condition stated in Definition 1.6(1) is clearly satisfied. Let

f : X → Y be a source morphism in A, and let g : X → M be a morphism lying
in the infinite radical. Note that rad∞(Y, M) = radr(Y, M) for some r > 0.
Write g =

∑s
i=1 gi0gi1 · · · gir, where the gij lie in the radical. Then gi0 = fhi,

i = 1, . . . , s. Hence g = fh, where h =
∑s

i=1 higi1 · · · gir ∈ radr(Y,M) =
rad∞(Y,M). This verifies Definition 1.6(2), and one can verify Definition 1.6(3)
in a dual manner.

(2) Let B be a subcategory of A closed under summands, and let I be the
ideal of the morphisms factoring through objects in B. Let X,Y be indecom-
posable objects in A not isomorphic to any objects in B. If f ∈ I(X,Y ), then
f = uv, where u : X → L and v : L → Y are morphisms with L ∈ B. Since B
is closed under summands, u is not a section and v is not a retraction. Hence
f ∈ rad2(X, Y ). This verifies Definition 1.6(1). Let now g : X → Y be a source
morphism in A with X not isomorphic to any object in B. If h ∈ I(X, M), then
h = h1h2, where h1 : X → N and h2 : N → M are morphisms with N ∈ B.
Note that h1 is not a section. Hence h1 = fh3 for some h3 : Y → N . This yields
h = f(h3h2), where h3h2 factors through N . Thus Definition 1.6(2) is verified.
Dually, one can verify Definition 1.6(3). The proof of the lemma is completed.

2. The Auslander-Reiten quiver

The objective of this section is to define the Auslander-Reiten quiver of a
Krull-Schmidt category. We begin with a brief recall of some combinatorial
background. Firstly, a quiver Γ consists of a set Γ 0 of vertices and a set Γ 1 of
arrows between vertices. If x → y is an arrow in Γ , we say that x is an immediate
predecessor of y while y is an immediate successor of x. For a vertex x in Γ ,
the set of immediate predecessors of x Γ and that of immediate successors are
denoted by x+ and x−, respectively. We say that Γ is left (respectively, right)
locally finite if x− (respectively, x+) is finite for all x ∈ Γ 0, and locally finite if
it is left and right locally finite. A subquiver Σ of a quiver Γ is called full if all
arrows x → y in Γ with x, y ∈ Σ0 lie in Σ, and convex if every path in Γ with
its end-points lying in Σ lies entirely in Σ.
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Next, a valued quiver consists of a pair (Γ , v), where Γ is a quiver without
multiple arrows and v is a valuation for the arrows, that is, each arrow x → y is
endowed with a pair of positive integers (vxy, v′xy). We say that an arrow x → y
has trivial valuation if vxy = v′xy = 1, and Γ has trivial valuation if all arrows
have trivial valuation. A valued quiver (Σ, u) is a valued subquiver of (Γ , v) if
Σ is a subquiver of Γ in which the arrows have the same valuation as in Γ .

Moreover, a valued translation quiver consists of a triple (Γ , ρ, v), where
(Γ , v) is a valued quiver, and ρ is a bijection, called the translation, from one
subset of Γ 0 to another one such that if x is a vertex with ρx defined, then x+ =
(ρx)− 6= ∅ and (vρx,y, v′ρx,y) = (v′yx, vyx) for every y ∈ x+. We should point
out that valued translation quivers considered in this paper are not necessarily
locally finite and may contain loops; compare [11, Section 2]. A vertex x in
(Γ , ρ, v) is called projective or injective if ρx or ρ−x is not defined, respectively.
Finally, a valued translation quiver (Σ, σ, u) is a valued translation subquiver of
(Γ , ρ, v) if (Σ, u) is a valued subquiver of (Γ , v) such that each non-projective
vertex x in Σ is not projective in Γ and σx = ρx.

We now turn our attention back to a Krull-Schmidt R-category A. If X, Y
are indecomposable objects in A, then irr(X, Y ) = rad(X, Y )/rad2(X,Y ) is a
kX -kY -bimodule, where kZ = End(Z)/rad(Z,Z). The dimension of irr(X,Y )
over kX and that over kY are written as d′XY and dXY , respectively. It follows
from Bautista’s result in [6, (3.4)] that if irr(X,Y ) 6= 0, then d′XY is the maximal
integer such that A admits an irreducible morphism from Xd′XY to Y , while dXY

is the maximal integer such that A admits an irreducible morphism from X to
Y dXY , where Zn denotes the co-product of n copies of Z. As a consequence, if
M → Y is a sink morphism, then d′XY is the multiplicity of X as a summand
of M , and if X → N is a source morphism, then dXY is the multiplicity of Y
as a summand of N .

We are ready to define the Auslander-Reiten quiver ΓA of A as follows. The
vertex set is a complete set of representatives of the isomorphism classes of
indecomposable objects in A. For vertices X, Y , there exists an unique arrow
X → Y with valuation (dXY , d′XY ) if and only if irr(X, Y ) 6= 0. The translation
τ , called the Auslander-Reiten translation, is such that X = τZ if and only if
A has an Auslander-Reiten sequence X → Y → Z.

2.1. Proposition. If A is a Krull-Schmidt R-category, then the Auslander-
Reiten quiver ΓA of A is a valued translation quiver.

Proof. Let A be a Krull-Schmidt R-category, and let Y be an object in ΓA
with τY defined. Then A has an Auslander-Reiten sequence τY

f−→ M
g−→ Y .

Since M is non-zero, Y has at least one immediate predecessor in ΓA. Now let
X → Y be an arrow in ΓA. Then X is a summand of M . Since f is a source
morphism, A admits an irreducible morphism from τY to X, that is ΓA contains
an arrow τY → X. This shows that τ is a translation for ΓA. Moreover, both
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d′XY and dτY,X are equal to the multiplicity of X as a summand of M . It
remains to show that d′τY,X = dXY . Indeed, by definition, each h ∈ EndA(Y )
induces a commutative diagram

τY
f //

h′

²²

M
g //

u

²²

Y

h

²²
τY

f // M
g // Y

in A, and every h′ ∈ End(τY ) can be induced in this way. Applying Lemma
1.2 and its dual, we see that h is an automorphism of Y if and only if h′ is an
automorphism of τY . This shows that kY

∼= kτY as R-algebras. In particular,
lR(kY ) = lR(kτY ), where lR(U) denotes the R-length of a finitely generated
R-module U . Therefore, lR(irr(τY, X)) = lR(kτY )d′τY,X = lR(kY )d′τY,X . On
the other hand, one has

lR(irr(τY, X)) = lR(kX)dτY,X = lR(kX)d′XY = lR(irr(X,Y )) = lR(kY )dX,Y .

This yields d′τY,X = dXY . The proof of the proposition is completed.

2.2. Definition. An object X in A is called pseudo-projective if there
exists a sink monomorphism M → X, and dually, pseudo-injective if there
exists a source epimorphism X → N .

2.3. Lemma. If X is a pseudo-projective object in A, then there exists
no Auslander-Reiten sequence ending with X. Dually, if X is pseudo-injective,
then there exists no Auslander-Reiten sequence starting with X.

Proof. Assume that A admits an Auslander-Reiten sequence Z
f−→ Y

g−→ X
as well as a sink monomorphism h : M → X. Then g = uh, where u is an
isomorphism. In particular, g is a monomorphism. Hence f = 0, a contradiction.
The proof of the lemma is completed.

2.4. Proposition. If A is abelian, then an object X in A is pseudo-
projective if and only if X is indecomposable projective with a unique maximal
subobject, and X is pseudo-injective if and only if X is indecomposable injective
with a unique maximal quotient object.

Proof. Let A be abelian with X an indecomposable object. It suffices to
prove the first part of the lemma, for which the sufficiency is well-known; see,
for example, [21]. Suppose that A has a sink monomorphism f : M → X. If
g : N → X is a monomorphism which is not an isomorphism, then g is not
an epimorphism. Hence g = uf for some morphism u : N → M . This shows
that M is the unique maximal subobject of X. If there exists an epimorphism
h : L → X which is not a retraction, then h = vf for some v : L → M . In
particular, f is an epimorphism, and hence an isomorphism. This contradiction
shows that X is projective. The proof of the proposition is completed.
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The following easy result will play an important role in our investigation. It
was first formulated in a module category [17, (1.2)], and its validity in A can
be established by an easy adaption of the argument given in [19, (1.4)].

2.5. Lemma. Let f : Y → Z be an irreducible morphism in A with Z
indecomposable. If there exists θ : M → Y with θ ∈ radn(M, Y )\radn+1(M,Y )
for some n > 0 such that θf ∈ radn+2(M,Z), then

(1) Z is not pseudo-projective, and
(2) if A admits an Auslander-Reiten sequence X

(f ′,g′) // Y q Y ′ (f
g) // Z,

then there exists η : M → X such that η 6∈ radn(M, X), θ+ηf ′ ∈ radn+1(M, Y ),
and ηg′ ∈ radn+1(M,Y ′).

2.6. Definition. A Krull-Schmidt R-category A is called a left Auslander-
Reiten category if each indecomposable object in A is either pseudo-projective
or the end-term of an Auslander-Reiten sequence; a right Auslander-Reiten cate-
gory if each indecomposable object in A is either pseudo-injective or the starting
term of an Auslander-Reiten sequence; and an Auslander-Reiten category if it
is a left and right Auslander-Reiten category.

Remark. It is easy to see that if A is a left or right Auslander-Reiten
category, then ΓA is left or right locally finite, respectively.

Example. (1) If A is an artin algebra then modA, the category of finitely
generated right A-modules, is an Auslander-Reiten category; see [3, 5].

(2) If k is an algebraically closed field, then the category of coherent sheaves
over Pn(k) with n > 1 can be exhausted an ascending chain of left Auslander-
Reiten subcategories; see [20].

(3) The finite dimensional representations of the infinite quiver

· · · → n → · · · → 2 → 1

over a field form a right Auslander-Reiten category; see [21].

Let p : x0 → x1 → · · · → xn with n > 0 be a path in a valued translation
quiver (Γ , ρ, v). A hook in p is an index i with 0 < i < n such that xi−1 = ρxi+1.
We say that p is sectional if p admits no hook; and pre-sectional if, for each hook
i in p, one has vxi,xi+1 > 1, or equivalently v′xi−1,xi

> 1. Clearly, a sectional
path is pre-sectional. Furthermore, an oriented cycle x0 → x1 → · · · → xn = x0

is called sectional or pre-sectional if the augmented path

x0 → x1 → · · · → xn−1 → x0 → x1

is sectional or pre-sectional, respectively. Specializing to the Auslander-Reiten
quiver ΓA, note that a path X0 → X1 → · · · → Xn is pre-sectional if and only
if, for each hook i, there exists an irreducible morphism Xi−1 qXi−1 → Xi, or
equivalently an irreducible morphism Xi → Xi+1 qXi+1, in A.

10



2.7. Lemma. Let A be a left or right Auslander-Reiten category, and let
X0 → X1 → · · · → Xn with n > 0 be a path in ΓA.

(1) If the path is sectional and fi : Xi−1 → Xi is irreducible, i = 1, . . . , n,
then f1 · · · fn 6∈ radn+1(X0, Xn).

(2) If the path is pre-sectional, then A admits some irreducible morphisms
fi : Xi−1 → Xi, i = 1, . . . , n, such that f1 · · · fn 6∈ radn+1(X0, Xn).

Proof. We consider only the case whereA is a left Auslander-Reiten category.
For i = 2, . . . , n, set Yi = τXi if Xi is not pseudo-projective and Yi = 0
otherwise, and put Yn+1 = 0. In both cases, A has irreducible morphisms from
Xi−1 q Yi+1 to Xi, i = 1, . . . , n.

Assume first that the path is sectional. Let fi : Xi−1 → Xi, i = 1, . . . , n, be
irreducible morphisms. Applying Lemma 2.5, one can show by induction that
if

(
fi

gi

)
: Xi−1 q Yi+1 → Xi is irreducible, then f1 · · · fi − ηigi 6∈ radi+1(X0, Xi),

for every ηi : X0 → Yi+1; for details, see [12, (13.3)]. Setting ηn = 0, we get
f1 · · · fn 6∈ radn+1(X0, Xn).

Assume next that the path is pre-sectional. Applying Lemma 2.5, one can
find by induction irreducible morphisms

(
fi

gi

)
: Xi−1 q Yi+1 → Xi, i = 1, . . . , n,

such that f1 · · · fi − ηigi 6∈ radi+1(X0, Xi) for every ηi : X0 → Yi+1; for details,
see [17, (1.15)]. The proof of the lemma is completed.

The following theorem generalizes a well known result of Bautista and Smalø
saying that the Auslander-Reiten quiver of an artin algebra has no sectional
oriented cycle; see [8].

2.8. Theorem. If A is a left or right Auslander-Reiten category, then ΓA
contains no pre-sectional oriented cycle.

Proof. We consider only the case whereA is a left Auslander-Reiten category.
Let X0 → · · · → Xn−1 → Xn = X0 be an oriented cycle in ΓA. Suppose
that X0 → · · · → Xn−1 → X0 → X1 is a pre-sectional path. Let r be the
nilpotency of the radical of End(X1). Repeating the preceding path, we get
a pre-sectional path Y0 → · · · → Yn−1 → Yn → · · · → Yrn−1 → Yrn in ΓA,
where Yjn+i = Xi, 0 ≤ j ≤ r and 0 ≤ i < n. By Lemma 2.7(2), there exist
irreducible morphisms fi : Yi−1 → Yi such that f1 · · · frn 6= 0. On the other
hand, f1 · · · frn ∈ radr(X1, X1) = 0, a contradiction. The proof of the theorem
is completed.

Next, we shall study the quotient categories of a left or right Auslander-
Reiten category modulo an admissible ideal.

2.9. Proposition. Let I be an admissible ideal of A. If A is a (left,
right ) Auslander-Reiten category, then A/I is a (left, right ) Auslander-Reiten
category, and ΓA/I is the full translation subquiver of ΓA generated by the objects
X with 1X 6∈ I.

Proof. We consider only the case where A is a right Auslander-Reiten cate-
gory. First of all, the objects X in ΓA with 1X 6∈ I form a complete set of
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representatives of the isomorphism classes of indecomposable objects in A/I.
Fix an object X in ΓA with 1X 6∈ I. If X is pseudo-injective in A then, by
Lemma 1.7(2), X is pseudo-injective in A/I. Otherwise, A has an Auslander-

Reiten sequence X
f−→ Y

g−→ Z. By Proposition 1.8, X
f̄−→ Y

ḡ−→ Z is
short pseudo-exact in A/I, where f̄ is a source morphism by Lemma 1.7(2).
If 1Y ∈ I or 1Z ∈ I, then it is easy to see that f̄ is an epimorphism, that is
X is pseudo-injective in A/I. If 1Y 6∈ I and 1Z 6∈ I then, by Proposition 1.9,

X
f̄−→ Y

ḡ−→ Z is an Auslander-Reiten sequence in A/I. Thus, A/I is a right
Auslander-Reiten category.

Next, if Y is another object in ΓA with 1Y 6∈ I then, as we have seen before,
radA/I(X, Y ) = rad(X, Y )/I(X, Y ) and rad2

A/I(X, Y ) = rad2(X, Y )/I(X, Y ).
As a consequence, we have irrA/I(X, Y ) ∼= irr(X, Y ) as R-modules. Moreover,
k̄X = EndA/I(X)/radA/I(X,X) ∼= kX , and k̄Y = EndA/I(Y )/radA/I(Y, Y ) ∼=
kY as R-algebras. This concludes that ΓA/I contains an arrow X → Y if and
only if so does ΓA, and in this case, X → Y has the same valuation in ΓA/I and
in ΓA. Finally, let A/I have an Auslander-Reiten sequence M → N → X. We
may assume that M, N ∈ ΓA with 1M 6∈ I and 1N 6∈ I. As seen previously, A has
an Auslander-Reiten sequence M

u−→ U
v−→ V , where U, V ∈ ΓA with 1U 6∈ I

and 1V 6∈ I, which induces an Auslander-Reiten sequence M
ū−→ U

v̄−→ V in
A/I. By Theorem 1.4(1), X = V. Hence the Auslander-Reiten translate of X
in A and that in A/I coincide. The proof of the proposition is completed.

Example. (1) If A is an artin R-algebra then, by Lemma 1.9(2) and Propo-
sition 2.9, the projectively stable category modA of modA, as well as the injec-
tively stable category modA, is an Auslander-Reiten R-category.

(2) Let S be a complete regular local commutative k-algebra with residue
field k, and let Λ be an S-algebra which is free of finite rank as an S-module. If
Λ is an isolated sigularity or nonsingular, then the projectively stable category
of finitely generated Λ-modules which are free as S-modules is an Auslander-
Reiten k-category; see [2], [27, (3.4.5)].

2.10. Theorem. Let A be a left or right Auslander-Reiten category, and
let X0 → X1 → · · · → Xn be a sectional path in ΓA. If there exist irreducible
morphisms fi : Xi−1 → Xi such that f1 · · · fn factors through some object Y,
then one of the Xi is a summand of Y .

Proof. We consider only the case whereA is a left Auslander-Reiten category.
Let Y be an object in A, and let I be the ideal of the morphisms factoring
through summands of Y . By Lemma 1.9(2), I is admissible, and for an object
X in ΓA, we see that 1X ∈ I if and only if X is isomorphic to a summand
of Y . By Proposition 2.9, A/I is a left Auslander-Reiten category. Assume
that 1Xi 6∈ I, i = 0, 1, . . . , n. By Proposition 2.9, X0 → X1 → · · · → Xn is a
sectional path in ΓA/I . If fi : Xi−1 → Xi are irreducible in A then, by Lemma
1.7(1), f̄i : Xi−1 → Xi is irreducible in A/I, i = 1, . . . , n. By Lemma 2.7(1),
f̄1 · · · f̄n 6= 0̄. That is, f1 · · · fn does not factor through any summand of Y . The
proof of the Theorem is completed.
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As an application, we have the following interesting result concerning the
extensions between indecomposable modules over an artin algebra.

2.11. Proposition. Let A be an artin algebra. Assume that the Auslander-
Reiten quiver of A has a sectional path X0 → X1 → · · · → Xn.

(1) If the Xi are all non-projective, then Ext1A(Xn, τXi) 6= 0 for 0 ≤ i ≤ n.
(2) If the Xi are all non-injective, then Ext1A(X0, τ

−Xi) 6= 0 for 0 ≤ i ≤ n.
Proof. It suffices to prove the first statement. If none of the Xi is projec-

tive, then τX0 → τX1 → · · · → τXn is a sectional path in the Auslander-
Reiten quiver of A. Let fj : τXj−1 → τXj be irreducible maps in modA,
j = 1, . . . , n. By Theorem 2.10, f1 · · · fn does not factor through any injective
module in mod A. Therefore, Ext1A(Xn, τXi) ∼= DHomA(τXi, τXn) 6= 0̄, for
i = 0, 1, . . . , n. The proof of the proposition is completed.

3. Degrees of irreducible morphisms

Let A be a Krull-Schmidt category. We shall introduce the notion of degrees
of irreducible morphisms in A and collect some of their properties. This was
originally introduced and studied in a module category; see [17]. In most cases,
we shall refer the details of a proof to [17, 19].

3.1. Definition. Let f : X → Y be an irreducible morphism in A with
X or Y indecomposable. We define the left degree dl(f) of f to be the minimal
integer n ≥ 1, if such an integer exists, for which there exists a morphism
θ ∈ radn(M,X)\radn+1(M,X) such that θf ∈ radn+2(M, Y ); and to be infinity
if such an integer does not exist. In a dual manner, we define the right degree
dr(f) of f .

The following result follows immediately from the definition.

3.2. Lemma. Let f : X → Y be an irreducible morphism in A with X or
Y indecomposable. If p : Y → Y1 is a retraction, then dl(fp) ≤ dl(f) and if
q : X1 → X is a section, then dr(qf) ≤ dr(f).

We now state the following key observation.

3.3. Lemma. Let X0
f1−→ X1 −→ · · · −→ Xn−1

fn−→ Xn be a chain of
irreducible morphisms between indecomposable objects in A. If X0

∼= Xn, then
at least one of the fi has finite left degree and at least one has finite right degree.

Proof. Assume that X0 = Xn. Then f1 · · · fn ∈ rad(X0, X0), and hence
(f1 · · · fn)r = 0 for some r > 0. Setting Xjn+j = Xj and fjn+i = fi, for
i = 1, . . . , n; j = 1, . . . , r − 1. Suppose that dl(fi) = ∞, i = 1, . . . , n. Then
dl(fi) = ∞, i = 1, 2, . . . , rn. Since f1 6∈ rad2(X0, X1), it follows by induction
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that f1 · · · fi 6∈ radi+1(X0, Xi), i = 1, 2, . . . , rn. In particular, f1f2 · · · frn 6= 0.
This contradiction shows that one of the fi is of finite left degree. Dually, one
of the fi is of finite right degree. The proof of the lemma is completed.

As an immediate consequence of Lemma 2.5, we have the following result.

3.4. Lemma. Let f : Y → Z be an irreducible morphism in A with Z
indecomposable. If f is of finite left degree, then

(1) Z is not pseudo-projective, and
(2) if A admits an Auslander-Reiten sequence X

(f ′,g′) // Y q Y ′ (f
g) // Z

with Y ′ 6= 0, then dl(g′) < dl(f).

In the sequel, we shall collect some properties of the left degree of irreducible
morphisms in a left Auslander-Reiten category. The dual results hold for the
right degree of irreducible morphisms in a right Auslander-Reiten category.

3.5. Lemma. Let A be a left Auslander-Reiten category, and let f : X → Y
with Y indecomposable be an irreducible morphism of finite left degree in A. If

Yn → · · · → Y1 → Y0 = Y

is a pre-sectional path in ΓA such that A admits an irreducible morphism from
X q Y1 to Y, then the Yi are not pseudo-projective and there exist irreducible
morphisms fi : τYi−1 → Yi such that dl(fn) < · · · < dl(f1) < dl(f), and
consequently, n < dl(f).

Proof. The result follows from a recursive application of Theorem 1.4(2),
Lemmas 3.2 and 3.4. The proof of the lemma is completed.

3.6. Lemma. Let A be a left Auslander-Reiten category. If X → Y is an
arrow in ΓA, then the irreducible morphisms from X to Y have the same left
degree which is infinite in case dXY > 1 and d′XY > 1.

Proof. Let f, g : X → Y be irreducible morphisms in A. If dXY > 1 and
d′XY > 1, using Lemma 3.5, one deduces that dl(f) = dl(g) = ∞; for details, see
[19, (1.6)]. Otherwise, f = ga+h or f = bg+h, where a ∈ Aut(Y ), b ∈ Aut(X),
and h ∈ rad2(X,Y ). It follows then from the definition that dl(f) = dl(g). The
proof of the lemma is completed.

Let A be a left Auslander-Reiten category. By Lemma 3.6, we may define
the left degree of an arrow X → Y in ΓA to be that of any irreducible morphism
f : X → Y . It follows from Lemma 3.3 that an oriented cycle in ΓA contains at
least one arrow of finite left degree.

3.7. Lemma. Let A be a left Auslander-Reiten category, containing an
irreducible morphism f : X → Y1 q Y2, where X, Y1, Y2 are indecomposable. If
dl(f) < ∞, then there exists an irreducible morphism g : τY1 q τY2 → X such
that dl(g) < dl(f).
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Proof. The result follows from Lemmas 2.5 and 3.6; for details, see [19,
(1.10)]. The proof of the lemma is completed.

A vertex x in a valued translation quiver (Γ , ρ, v) is called left stable if ρix is
defined for every i ≥ 0, right stable if ρ−ix is defined for every i ≥ 0, and stable
if ρix is defined for every integer i. If X → Y is an arrow in ΓA with X,Y left
stable, then we define the global left degree of X → Y to be the minimum of the
left degrees of the arrows of the form τ i+1Y → τ iX and τ iX → τ iY with i ≥ 0.

3.8. Lemma. Let A be a left Auslander-Reiten category, and let ΓA have
two infinite pre-sectional paths containing only left stable objects

· · · → Xn → · · · → X1 → X0

and
· · · → Yn → · · · → Y1 → Y0

with X0 = Y0. If A has an irreducible morphism from X1 q Y1 to X0, then
Xn+1 → Xn and Yn+1 → Yn are of infinite global left degree for every n ≥ 0.

Proof. Assume that A has an irreducible morphism from X1qY1 to X0. Fix
an integer i ≥ 0. For each j ≥ 0, since the Xn are left stable, ΓA has an infinite
pre-sectional path

· · · → τ jXn → · · · → τ jXi+2 → τ jXi+1

such that A has an irreducible morphism from τ j+1Xiq τ jXi+2 to τ jXi+1. By
Lemma 3.5, τ j+1Xi → τ jXi+1 is of infinite left degree. Consider now the arrow
τ jXi+1 → τ jXi. If i = 0, then τ jX1 → τ jX0 is of infinite left degree since ΓA
has an infinite pre-sectional path

· · · → τ jYn → · · · → τ jY1 → τ jY0

such that A has an irreducible morphism from τ jX1 q τ jY1 to τ jY0. If i > 0,
then ΓA has an infinite pre-sectional path

· · · → τ i+jY2 → τ i+jY1 → τ i+jX0 → · · · → τ j+1Xi−1 → τ jXi

such that A has an irreducible morphism from τ jXi+1 q τ j+1Xi−1 to τ jXi.
Hence τ jXi+1 → τ jXi is of infinite left degree. This shows that Xi+1 → Xi is
of infinite global left degree. By symmetry, Yi+1 → Yi is of infinite global left
degree. The proof of the lemma is completed.

3.9. Corollary. Let A be a left Auslander-Reiten category, and let

· · · → Xn → · · · → X1 → X0 → X−1 → · · · → X−n → · · ·

be a double infinite pre-sectional path in ΓA. If the Xn are all left stable, then
Xn+1 → Xn is of infinite global left degree for every integer n.
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Proof. Assume that the Xn are all left stable. Then, for each integer i, there
exist in A two infinite pre-sectional paths containing only left stable objects

· · · → Xn+1 → Xn → · · · → Xi+1 → Xi

and
· · · → τnXi−n → · · · → τXi−1 → Xi

such that A has an irreducible morphism from τXi−1 qXi+1 to Xi. Now the
result follows from Lemma 3.8. The proof of the corollary is completed.

3.10. Lemma. Let A be a left Auslander-Reiten category, and let ΓA have
an infinite sectional path containing only left stable objects as follows :

· · · → Xn → · · · → X1 → X0.

If there exists some i ≥ 1 such that Xi → Xi−1 is of finite global left degree,
then X0 has at most two left stable immediate predecessors in ΓA, moreover,
X1 → X0 is trivially valued in case i > 1.

Proof. Assume that Xi → Xi−1 with i ≥ 1 be of finite global left degree.
It follows from Lemma 3.8 that d′X1X0

= 1. We claim that the middle term
of the Auslander-Reiten sequence ending with X0 has at most two (including
multiplicity) left stable indecomposable summands. Indeed, let j ≥ 0 be such
that τ jXi → τ jXi−1 or τ j+1Xi−1 → τ jXi is of finite left degree. Note that ΓA
contains an infinite sectional path

· · · → τ jXn → · · · → τ jXi+1 → τ jXi.

By Lemma 3.5, τ j+1Xi−1 → τ jXi is of infinite left degree, and consequently,
τ jXi → τ jXi−1 is of finite left degree. Applying Lemma 3.5 to the sectional
path τ j+i−1X0 → τ j+i−2X1 → · · · → τ j+1Xi−2 → τ jXi−1 (which is trivial in
case i = 1), we see that τ j+i−1X1 → τ j+i−1X0 is of finite left degree. If the
claim is false, then the middle term of the Auslander-Reiten sequence ending
with τ j+i−1X0 has a summand of the form τ j+i−1X1qY1qY2, where Y1, Y2 are
left stable and indecomposable. By Lemma 3.4(2), there exists an irreducible
morphism f : τ j+iX0 → Y1 q Y2 of finite left degree, and by Lemma 3.7, we
have an irreducible morphism g : τY1 q τY2 → τ j+iX0 with dl(g) < dl(f). On
the other hand, Γ contains an infinite sectional path

· · · → τ j+iXn → · · · → τ j+iX1 → τ j+iX0

such that A has an irreducible morphism from τY1 q τY2 q τ j+iX1 to τ j+iX0.
By Lemma 3.5, dl(g) = ∞. This contradiction establishes the claim. In parti-
cular, X0 has at most two left stable immediate predecessors in ΓA. If i > 1,
applying the above claim to X1, we get d′τX0,X1

= 1, that is dX1X0 = 1. The
proof of the lemma is completed.

If P is a path in a valued translation quiver (Γ , ρ, v) containing only left
stable vertices then, for each i ≥ 0, we denote by ρiP the path in Γ obtained
by applying ρi to P .
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3.11. Lemma. Let A be a left Auslander-Reiten category, and let ΓA have
an infinite sectional path containing only stable objects

P : · · · → Xn → · · · → X1 → X0.

If P contains infinitely many arrows of finite global left degree, then so does
τmP for every m ≥ 0.

Proof. Assume that P contains infinitely many arrows of finite global left
degree. Fix a positive integer m. To show that τmP contains infinitely many
arrows of finite global left degree, it suffices to show that if Xs+1 → Xs is of finite
global left degree for some s > m, then there exists some i with s−m ≤ i ≤ s
such that τmXi+1 → τmXi is of finite global left degree. Indeed, let r ≥ 0
be such that τ rXs+1 → τ rXs or τ r+1Xs → τ rXs+1 is of finite left degree.
Applying Lemma 3.5 to the infinite sectional path

· · · → τ rXn+1 → τ rXn → · · · → τ rXs+2 → τ rXs+1,

we see that it is τ rXs+1 → τ rXs which has finite left degree. If r ≥ m, then
τmXs+1 → τmXs is of finite global left degree. Otherwise, applying Lemma 3.5
to the sectional path

τmXs−m+r → τmXs−m+r+1 → · · · → τ r+1Xs−1 → τ rXs,

we see that τmXs−m+r+1 → τmXs−m+r is of finite left degree with s − m ≤
s−m + r < s. The proof of the lemma is completed.

4. Semi-stable valued translation quivers

The objective of this section is to describe semi-stable valued translation
quivers. Let (Γ , ρ, v) be a valued translation quiver. We say that (Γ , ρ, v) is
left stable (respectively, right stable, stable, ρ-periodic) if each vertex in Γ is
left stable (respectively, right stable, stable, ρ-periodic). Given a valued quiver
(∆, v) with no oriented cycle, one defines a stable valued translation quiver
Z∆ as follows. The vertices are pairs (n, x), where n ∈ Z and x ∈ ∆0; each
arrow x → y with valuation (vxy, v′xy) in ∆ induces, for each integer n, two
arrows (n, x) → (n, y) and (n + 1, y) → (n, x) in Z∆ with valuations (vxy, v′xy)
and (v′xy, vxy), respectively; and the translation is defined by sending (n, x) to
(n + 1, x), for all n ∈ Z and x ∈ ∆0. Next, we recall the definition of the orbit
graph O(Γ ) of Γ . For each vertex x in Γ , the ρ-orbit o(x) of x is the set of
vertices of the form ρnx with n ∈ Z. Now the vertices in O(Γ ) are the ρ-orbits in
Γ , andO(Γ ) contains an edge o1 — o2 if and only if Γ contains an arrow x1 → x2

or x2 → x1 with xi ∈ oi, i = 1, 2. Note that O(Γ ) is not necessarily locally finite
even if Γ is locally finite. Furthermore, a valued translation quiver morphism
ϕ : (Σ, σ, u) → (Γ , ρ, v) is a quiver morphism ϕ : Σ → Γ such that ϕ(Σ) is a
valued translation subquiver of Γ . Such a morphism is called an embedding if its
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action on the vertices is injective, and an embedding ϕ : (Σ, σ, u) → (Γ , ρ, v) is
called orbit-complete if ϕ(Σ) meets each ρ-orbit in Γ . Finally, a full connected
valued subquiver ∆ of Γ is called a section if ∆ is convex, contains no oriented
cycle, and meets exactly once each ρ-orbit in Γ . In this case, there exists an
orbit-complete embedding Γ → Z∆ sending ρnx to (n, x), which we call the
canonical embedding; see [19, (2.1),(2.3)].

4.1. Lemma. Let (Γ , ρ, v) be a valued translation quiver which is connected
and left stable.

(1) If x, y ∈ Γ 0, then there exists r ≥ 0 such that ρrx is a predecessor of y.
(2) If Γ contains a non-trivial path from x to y, then x = ρny with n > 0 or

Γ contains a sectional path x = x0 → · · · → xs → xs+1 = ρry with r, s ≥ 0.
Proof. (1) Being connected, Γ contains a walk y = x0 — x1 — · · ·— xt = x.

Since ρ is defined everywhere, an easy induction on t shows that Γ contains a
path ρrx = ys → · · · → y0 = y with r, s ≥ 0.

(2) Let x = y0 → · · · → yt−1 → yt = y with t > 0 be a path in Γ . If t = 1,
then x → y is a sectional path. Assume that t > 1 and that either x = ρnyt−1

for some n > 0 or there exists a sectional path x = z0 → · · · → zs → zs+1 = ρrx
with s, r ≥ 0. In the first case, x → ρny is a sectional path. In the second
case, Γ contains a path x = z0 → · · · → zs → zs+1 → ρry. If this path is not
sectional, then zs = ρr+1y. If s = 0, then x = ρr+1y with r + 1 > 0. Otherwise,
x = z0 → · · · → zs−1 → zs = ρry is a sectional path. The proof of the lemma
is completed.

The following result describes the left stable valued translations with no
oriented cycle. This is a generalization of Theorem 3.4 stated in [18], where the
condition that Γ contain at most finitely many injective vertices is imposed.

4.2. Theorem. Let (Γ , ρ, v) be a connected left stable valued translation
quiver. If Γ contains no oriented cycle, then there exists an orbit-complete
embedding Γ → Z∆, where ∆ is a valued quiver with a unique sink but no
oriented cycle, and if in addition the paths in Γ with injective end-points have
bounded number of hooks, then ∆ can be chosen to be a section in Γ .

Proof. Assume that Γ contains no oriented cycle. We shall first construct
the valued quiver ∆ from the orbit graph O(Γ ) with the canonical orientation
and valuation. For this purpose, fix arbitrarily a vertex a in Γ . For n ≥ 0, let
∆(n) be the full valued subquiver of Γ generated by the vertices x for which
there exists some r ≥ 0 such that ρrx is a predecessor of ρr+na while there
exists no s ≥ 0 such that ρsx is a predecessor of ρs+n+1a. Since Γ contains no
oriented cycle, ρna ∈ ∆(n) for every n ≥ 0. Now we divide the proof into several
sub-lemmas.

(1) For each n ≥ 0, ∆(n) is convex in Γ . Let x, z be vertices in ∆(n), and y
a vertex lying on a path from x to z. If r ≥ 0 is such that ρrz is a predecessor
of ρr+na, then ρry is a predecessor of ρr+na. If there exists some s ≥ 0 such
that ρsy is a predecessor of ρs+n+1a, then ρsx is a predecessor of ρs+n+1a, a
contradiction. Thus y ∈ ∆(n).
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(2) If x ∈ ∆(n) for some n ≥ 0, then ρmx 6∈ ∆(n) for every m 6= 0. Let
r ≥ 0 be such that ρrx is a predecessor of ρr+na. If m > 0, then ρr(ρmx)
is a predecessor of ρr+n+ma, and hence a predecessor of ρr+n+1a. Therefore,
ρmx 6∈ ∆(n). Since x ∈ ∆(n), this in turn implies that ρmx 6∈ ∆(n) for m < 0.

(3) If x ∈ ∆(n) for some n ≥ 0, then ρx ∈ ∆(n+1), and ρ−x ∈ ∆(n−1)

whenever n > 0 and x is non-injective. Let r ≥ 0 be such that ρrx is a
predecessor of ρr+na. Then ρr(ρx) is a predecessor of ρr+(n+1)a. If s ≥ 0,
then ρs(ρx) = ρs+1x is not a predecessor of ρ(s+1)+n+1a = ρs+(n+1)+1a. Thus
ρx ∈ ∆(n+1). Suppose now that n > 0 and x is not injective. Then ρr+1(ρ−x) =
ρrx is a predecessor of ρr+na = ρ(r+1)+(n−1)a. Moreover, if there exists some
s ≥ 0 such that ρs(ρ−x) is a predecessor of ρs+(n−1)+1a = ρs+na, then ρsx is a
predecessor of ρs+n+1a, a contradiction. Thus ρ−x ∈ ∆(n−1).

(4) If x → y is an arrow with y ∈ ∆(n), then x lies in ∆(n) or ∆(n+1). Let
r ≥ 0 be such that ρry is a predecessor of ρr+na. Then ρrx is a predecessor
of ρr+na. Suppose that x 6∈ ∆(n). Then ρsx is a predecessor of ρs+n+1a =
ρs+(n+1)a for some s ≥ 0. If ρtx is a predecessor of ρt+(n+1)+1a for some t ≥ 0,
then ρt+1y is a predecessor of ρ(t+1)+n+1a, a contradiction. Hence x ∈ ∆(n+1).

(5) For each vertex x in Γ , there exist some s, n ≥ 0 such that ρsx ∈ ∆(n).
Moreover, `(x) = n − s is well-defined such that `(ρx) = `(x) + 1. By Lemma
4.1(1), there exists some s ≥ 0 such that ρsx is a predecessor of a. Since
a ∈ ∆(0), we deduce from (4) that ρsx ∈ ∆(n) for some n ≥ 0. Furthermore,
let r,m ≥ 0 be such that ρrx ∈ ∆(m). We may assume that m ≥ n. By
(3), ρm−n+sx ∈ ∆(m), and by (2), r = m − n + s. That is n − s = m − r.
Thus `(x) is well-defined. Finally, by (3), ρs(ρx) = ρ(ρsx) ∈ ∆(n+1). Hence
`(ρx) = (n + 1)− s = (n− s) + 1 = `(x) + 1.

(6) Let x → y be an arrow in Γ . If r, s ≥ 0 are such that ρrx, ρsy ∈ ∆(n)

for some n ≥ 0, then r = s or r = s− 1. By (4), ρsx lies in ∆(n) or ∆(n+1). On
the other hand, by (3), ρr+1x ∈ ∆(n+1). By (2), r = s or r + 1 = s.

(7) If o1 — o2 is an edge in O(Γ ), then o1 6= o2, and some ∆(n) with n ≥ 0
contains an arrow x → y or y → x with x ∈ o1 and y ∈ o2. By the definition of
O(Γ ), we may assume that Γ contains an arrow x → y with x ∈ o1 and y ∈ o2.
Suppose that o1 = o2. Then y = ρrx for some integer r. Since Γ contains no
oriented cycle, we have r < 0. Thus x is a predecessor of ρr+1x. This yields
an oriented cycle from ρr+1x from ρr+1x passing through x, a contradiction.
Therefore, o1 6= o2. Furthermore, by (3) and (5), there exist r, s, n ≥ 0 such
that ρrx, ρsy ∈ ∆(n). By (6), either r = s or r = s − 1. Note that ρrx → ρry
and ρr+1y → ρrx are arrows in Γ . Thus either ρrx → ρsy or ρsy → ρrx is an
arrow in ∆(n).

Now, let o1 — o2 be an edge in O(Γ ). By (7), there exists some n ≥ 0 such
that ∆(n) contains an arrow x → y or y → x with x ∈ o1 and y ∈ o2. We orient
the edge o1 — o2 from o1 to o2 with valuation (vxy, v′xy) in the first case, and
from o2 to o1 with valuation (vyx, v′yx) in the second case. It follows from (3)
and (2) that this orientation and the valuation do not depend on the choice of
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n. Hence, we have a well-defined orientation and valuation for O(Γ ), and we
denote by ∆ the resulted valued quiver.

(8) ∆ contains no oriented cycle and has o(a) as an unique sink. Assume
that o1 → · · · → ot is a path in ∆. It follows from (3) and (5) that there
exists some n ≥ 0 such that ∆(n) contains vertices xi ∈ oi, i = 1, . . . , t. By the
definition of the orientation on ∆, there exists a path x1 → x2 → · · · → xt in
∆(n). In particular, ∆ contains no oriented cycle. Now let o = o(y) be a vertex
in ∆. By (5), there exist s, n ≥ 0 such that ρsy ∈ ∆(n). Thus there exists some
r ≥ 0 such that Γ contains a path ρr+sy = y0 → y1 → · · · → ym = ρr+na. By
(3), ρr+sy, ρr+na ∈ ∆(r+n). By (1), the preceding path lies entirely in ∆(r+n).
This gives rise to a path o(y) → o(y1) → · · · → o(a) in ∆. Hence o(a) is the
unique sink in ∆.

(9) There exists an orbit-complete embedding ϕ : Γ → Z∆. For x ∈ Γ 0, we
define ϕ0(x) = (`(x), o(x)). By (5), ϕ0(ρx) = (`(ρx), o(ρx)) = (`(x) + 1, o(x)).
Thus ϕ0 is compatible with the translations. Let x, y be vertices in Γ . We
claim that Γ contains an arrow α : x → y if and only if Z∆ contains an
arrow α′ : (`(x), o(x)) → (`(y), o(y)) and we define ϕ1(α) = α′. First, assume
that α′ exists. By construction, ∆ contains either an arrow o(x) → o(y) with
`(x) = `(y) or an arrow o(y) → o(x) with `(x) = `(y) + 1. By the definition
of the orientation on ∆, there exists t ≥ 0 such that ∆(t) contains an arrow
ρpx → ρqy with `(x) = `(y) or an arrow ρqy → ρpx with `(x) = `(y) + 1 where
p, q are integers. If the first situation occurs, then t − p = `(x) = `(y) = t − q
that is p = q, and hence x → y is an arrow in Γ . If the second situation occurs,
then t − p = `(x) = `(y) + 1 = t − q + 1 that is q = p + 1, and consequently,
x → y is also an arrow in Γ . Conversely, assume that α exists. Let s, n ≥ 0 such
that ρsy ∈ ∆(n). Since ρsx → ρsy is an arrow in Γ , by (4), ρsx lies in ∆(n) or
∆(n+1). In the first case, ∆ contains an arrow o(x) → o(y) with `(x) = `(y), and
hence α′ exists. In the second case, `(x) = (n + 1)− s = (n− s) + 1 = `(y) + 1.
By (3), ρs+1y ∈ ∆(n+1), and hence ∆(n+1) contains an arrow ρs+1y → ρsx.
By definition, o(y) → o(x) is an arrow in ∆, and hence Z∆ has an arrow
(`(y)+ 1, o(x)) → (`(y), o(y)), that is, α′ exists. This establishes our claim, and
yields a valued translation quiver morphism ϕ = (ϕ0, ϕ1) from Γ to Z∆ such
that ϕ(Γ ) is a valued translation subquiver of Z∆ which meets every translation
orbit. Finally, let x, y be vertices in Γ such that (`(x), o(x)) = (`(y), o(y)). We
may assume that y = ρmx with m ≥ 0 and ρsy ∈ ∆(n) with s, n ≥ 0. Then
ρm+sx ∈ ∆(n). Hence n − (m + s) = `(x) = `(y) = n − s, and consequently
m = 0. This shows that ϕ is an orbit-complete embedding.

To conclude the proof, assume that the paths in Γ with injective end-points
have bounded number of hooks. We shall show that there exists some t ≥ 0
such that ∆(n) with n ≥ t contains no injective vertex. Suppose that this is
not the case. Let q0 be an injective vertex in ∆(n0) with n0 ≥ 0. Since Γ is
connected and contains no projective vertex, there exists some m0 > n0 such
that Γ contains a non-sectional path from ρm0a to q0. Now there exists some
n1 > m0 such that ∆(n1) contains an injective vertex q′1. Let r ≥ 0 be minimal
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such that Γ contains a path ζ from ρrq′1 to ρr+n1a. By the minimality of r, the
path ζ contains an injective vertex q1. Therefore, Γ contains a non-sectional
path from q1 to q0. Repeating this argument, Γ contains paths with injective
end-points which have arbitrarily many hooks, a contradiction.

Let o be an ρ-orbit in Γ . By (5) and (3), there exists some n ≥ t such
that ∆(n) contains a vertex z lying in o. If n > t, by (3), ρ−z ∈ ∆(n−1).
Using induction, we see that ρt−nz ∈ ∆(t). Thus ∆(t) meets every ρ-orbit in
Γ . Furthermore, let x be a vertex in ∆(t). Let r ≥ 0 be minimal such that ρrx
is a predecessor of ρr+ta. Since ρrx, ρr+na ∈ ∆(r+n) with r + t ≥ t, any path
from ρrx to ρr+ta contains no injective vertex. Thus r = 0 by the minimality
of r. This shows that ∆(t) is connected and has ρta as an unique sink. Since
Γ contains no oriented cycle, by (1) and (2), ∆(t) is a section in Γ . Now the
canonical embedding Γ → Z∆(t) is a desired embedding. The proof of the
theorem is completed.

A valued translation quiver is called smooth if it is trivially valued and each
vertex has at most two immediate predecessors and at most two immediate
successors.

4.3. Lemma. Let (Γ , ρ, v) be a connected left stable valued translation quiver
which is smooth and contains a path ρrx1 → xs → · · · → x1 with r > s. If the
ρ-orbits of x1, . . . , xs are pairwise different and not ρ-periodic, then they are the
only ρ-orbits in Γ .

Proof. Assume that the ρ-orbits o(x1), . . . , o(xs) are pairwise different and
not ρ-periodic. Applying repeatedly ρr, we get an infinite path

· · · → ρ2rx1 → ρrxs → · · · → ρrx1 → xs → · · · → x1

in Γ , which is sectional since the xi are not ρ-periodic. Let x be a vertex in Γ .
By Lemma 4.1(1), there exists some t ≥ 0 such that ρtx is an predecessor of
x1. It suffices to prove the following claim: if Γ contains a path of length n ≥ 0
from a vertex y to x1, then y lies in one of o(x1), . . . , o(xs). This is trivially
true if n = 0. Assume that n > 0 and the claim holds for n − 1. Then y is
an immediate predecessor of some ρjxi, where 1 ≤ i ≤ s and j is an integer.
If j < 0, then ρ−jy is an immediate predecessor of xi. Thus we may assume
with no loss of generality that j ≥ 0. Suppose first that i = 1. Let m ≥ 0 be
such that j + m = rq with q ≥ 1. Then ρmy is an immediate predecessor of
ρrqx1. If s > 1 then, since Γ is smooth, ρmy = ρr(q−1)+1xs or ρmy = ρrqx2.
If s = 1, then ρmy = ρr(q+1)x1 or ρmy = ρr(q−1)+1x1. Therefore, y lies in one
of o(x1), . . . , o(xs). Suppose now that 1 < i ≤ s. Since Γ is left stable, there
exists another infinite sectional path

· · · → ρ2r+jx1 → ρr+jxs → · · · → ρr+jx1 → ρjxs → · · · → ρjx1

in Γ . If i < s, then y = ρjxi+1 or y = ρj+1xi−1. If i = s, then y = ρj+rx1 or
y = ρj+1xs−1. This proves our claim. The proof of the lemma is completed.
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Next we shall deal with semi-stable valued translation quivers containing
oriented cycles. Recall that a vertex x in Γ is a coray vertex if Γ has an infinite
sectional path, called a coray,

· · · → xn → xn−1 → · · · → x2 → x1 = x,

with pairwise different vertices and trivially valued arrows such that, for each
i > 1, the path xi+1 → xi → · · · → x2 → x1 is the only sectional path of length
i in Γ ending with x. Let this be the case. For each positive integer n, we
construct a valued translation quiver Γ [x, n] as follows. The vertices of Γ [x, n]
are those of Γ plus the new vertices (i, j), where i ≥ 1 and 1 ≤ j ≤ n. The
arrows of Γ [x, n] are the arrows in Γ with the same valuation which are different
from the arrows y → xi with y 6= xi+1 and i ≥ 1, plus the following new arrows
with trivial valuation:

(1) (i + 1, j) → (i, j), where i ≥ 1 and 1 ≤ j ≤ n;
(2) (i, j + 1) → (i + 1, j), where i ≥ 1 and 1 ≤ j < n;
(3) (n + i− 1, 1) → xi, where i ≥ 1;
(4) y → (i, n), where i ≥ 1 and y → xi is an arrow in Γ with y 6= xi+1.
The translation σ of Γ [x, n] is defined so that, for z ∈ Γ 0, we have σz = ρz

in case ρz is defined and z 6= xi for every i ≥ 1, and σz = (n + i, 1) in case
z = xi for some i ≥ 1, and σ(i, j) = (i, j + 1) for i ≥ 1 and 1 ≤ j < n, and
finally, σ(i, n) = ρxi whenever ρxi is defined. We say that Γ [x, n] is obtained
from Γ by inserting n co-rays at x. Note that if Γ is left stable, then Γ [x, n]
is left stable and contains n new injective vertices (1, 1), . . . , (n, 1). Dually, we
have the notions of a ray vertex and a ray, and construct a valued translation
quiver [x, n]Γ from Γ by inserting n rays at a ray vertex x. If Γ is right stable,
then [x, n]Γ is right stable and contains n new projective vertices.

One calls Γ a stable tube if Γ ∼= ZA∞/<σn>, where σ is the translation
of ZA∞ and n is a positive integer called the rank of Γ . We shall say that Γ
is a coray tube (respectively, ray tube) if it is obtained from a stable tube by a
finite number of successive coray-insertions (respectively, ray-insertions). The
ray tubes and co-ray tubes do appear as Auslander-Reiten components of artin
algebras; see [23]. They can be characterized by the following result and its
dual.

4.4. Theorem. A connected valued translation quiver (Γ , ρ, v) is a coray
tube if and only if it is left stable, smooth, and contains a path

ρr+m1q1 → ρmsqs → · · · → ρm2q2 → ρm1q1,

where 1 ≤ s < r, and 0 ≤ m1 ≤ m2 ≤ · · · ≤ ms ≤ r + m1, and q1, . . . , qs are
pairwise distinct injective vertices.

Proof. For the necessity, let Γ (0),Γ (1), . . . ,Γ (m) = Γ be valued translations
quivers, where Γ (0) is a stable tube of rank n while Γ (k) with k > 0 is obtained
from Γ (k−1) by inserting sk (≥ 1) corays. By construction, the Γ (k) are left
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stable and smooth. We shall prove by induction that Γ (k) with k > 0 contains a
desired path. Indeed, the injective vertices in Γ (1) are qj1 = (j, 1), j = 1, . . . , s1,
and Γ (1) contains a path ρn+s1q11 → qs1,1 → qs1−1,1 → · · · → q11 with n+ s1 >

s1 ≥ 1. Suppose that Γ (k) with k ≥ 1 contains a path

ρrq11 → ρnkqsk,k → · · · → ρnkq1,k → ρnk−1qsk−1,k−1 → · · ·
→ ρn2q12 → qs1,1 → · · · → q11,

where 0 < n2 < · · · < nk ≤ r, and s1 + · · ·+ sk < r, and the qji with 1 ≤ i ≤ k

and 1 ≤ j ≤ si are the injective vertices in Γ (k). Then the coray-vertices in Γ (k)

are the ρlq1,1 with 0 ≤ l ≤ r − nk − 2 and the ρlq1i with 1 < i ≤ k and 0 ≤ l ≤
ni−ni−1−2. We consider only the case where Γ (k+1) = Γ (k)[ρl−1q1i, sk+1] with
1 < i ≤ k and 1 ≤ l ≤ ni − ni−1 − 1, since the case where i = 1 is similar. Let
q1,k+1, . . . , qsk+1,k+1 be the new injective vertices of Γ (k+1). By construction,
Γ (k+1) contains paths ρlqsi,i → · · · → ρlq1,i → qsk+1,k+1 → · · · → q1,k+1 and

ρsk+1+ni−ni−1−lqsk+1,k+1 → · · · → ρsk+1+ni−ni−1−lq1,k+1 →
→ qsi−1,i−1 → · · · → q1,i−1.

Thus Γ (k+1) contains a desired path

ρr+sk+1q11 → ρsk+1+nkqsk,k → · · · → ρsk+1+nkq1,k → · · ·
→ ρsk+1+niqsi,i → · · · → ρsk+1+niq1,i

→ ρsk+1+ni−lqsk+1,k+1 → · · · → ρsk+1+ni−lq1,k+1

→ ρni−1qsi−1,i−1 → · · · → ρni−1q1,i−1 → · · ·
→ qs1,1 → · · · → q11.

Conversely, assume that Γ is left stable, smooth and contains a path

(∗) : ρrx1 → xs → · · · → x1

as stated in the theorem. Applying repeatedly ρr to this path, we get an infinite
sectional path

P : · · · → ρ2rx1 → ρrxs → · · · → ρrx1 → xs → · · · → x1

in Γ . Rewrite the path (∗) in the following form:

(∗∗) ρr+n1q11 → ρnkqsk,k → · · · → ρnkq1,k → ρnk−1qsk−1,k−1 → · · ·
→ ρn2q12 → ρn1qs1,1 → · · · → ρn1q11,

where 0 ≤ n1 < n2 < · · · < nk ≤ r + n1, and s1 + · · · + sk = s < r, and the
qji with 1 ≤ i ≤ k and 1 ≤ j ≤ si are pairwise different injective vertices. Set
nk+1 = r + n1 and sk+1 = s1. If ni − ni−1 ≤ si for every 2 ≤ i ≤ k + 1, then
r =

∑k+1
i=2 (ni−ni−1) ≤

∑k
i=1si, which is a contradiction. Hence nt−nt−1 > st

for some t with 2 ≤ t ≤ k + 1. If t ≤ k, then Γ contains a path

ρnk+1q1t → ρnk+1−nt+nt−1qst−1,t−1 → · · · → ρnk+1−nt+nt−1q1,t−1 → · · ·
→ ρnk+1−ntqs1,1 → · · · → ρnk+1−ntq11

→ ρnk−ntqsk,k → · · · → ρnk−ntq1k → · · ·
→ ρnt+1−ntq1,t+1 → qst,t → · · · → q1t,
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where nk+1 − (nk+1 − nt + nt−1) = nt − nt−1 > st. Therefore, with no loss of
generality, we may assume that n1 = 0 and r − nk > s1 in the path (∗∗). In
particular, r − nk ≥ 2. If y is an immediate predecessor of ρr−nk−2q11, then
ρy is an immediate predecessor of ρr−nk−1q11. Since Γ is smooth, we have
ρy = qsk,k or ρy = ρr−nk−1z, where z is the immediate predecessor of q11 in
the path (∗). The first case does not happen since qsk,k is injective. This shows
that ρr−nk−2q11 has exactly one immediate predecessor ρr−nk−2z in Γ . Since
Γ is left stable, for each 1 ≤ l ≤ r − nk − 2, the vertex ρlq11 has exactly one
immediate predecessor ρlz in Γ . Since s1 − 1 ≤ r − nk − 2, we get s1 co-rays
ρlP ending with ρlq11, l = 0, . . . , s1− 1. Since P is a co-ray, we see that q11 has
no successor in case s1 > 1, and qj1 with 1 < j < s1 has exactly one immediate
successor qj−1,1. Set y1 = ρr−1q11 if k = 1, and otherwise y1 = ρn2−1q12, that
is y1 is the non-injective immediate successor of qs1,1. Let

(∗ ∗ ∗) · · · → yn → yn−1 → · · · → y2 → y1

be the infinite sectional path with y2 6= qs1,1, and let

· · · → zn → zn−1 → · · · → z2 → z1 = ρs1q11

be the infinite sectional path ρs1P . We shall construct a new valued translation
quiver (T , σ) with trivial valuation. The vertices in T are the vertices in Γ
which do not belong to any of the corays ρlP, l = 0, . . . , s1 − 1. The arrows in
T are the arrows a → b in Γ with a, b ∈ T , plus the new arrows zi → yi+1,
i = 1, 2, · · · . Finally, for each vertex x in T , we define σx = zi in case x = yi

for some i ≥ 1; and otherwise, σx = ρx. It is easy to see that T is connected,
left stable and smooth. Moreover, the path (∗ ∗ ∗) becomes a coray in T such
that Γ = T [y1, s1]. If k = 1, then z1 = σy1 and

y1 = ρr−1q11 = ρr−s1−1+s1q11 = σr−s1−1z1 = σr−s1y1.

Similarly, we have yi = σr−s1yi for i ≥ 2. This implies that T is a stable
tube of rank r − s1, and hence Γ is a coray tube. Assume that k > 1. Then
ρs1q11 = z1 = σy1 = σn2q21. Hence ρr−n2q11 = ρr−s1−n2+s1q11 = σr−s1q12. In
view of the path (∗∗), we see that T contains a path

σr−s1q12 → σnk−n2qsk,k → · · · → σnk−n2q1k → · · ·
→ σn3−n2q13 → qs2,2 → · · · → q12

with r − s1 > s2 + · · · + sk and 0 < n3 − n2 < · · · < nk − n2 < r − s1. By the
inductive hypothesis, T is a coray tube, and so is Γ . The proof of the theorem
is completed.

5. Auslander-Reiten components

Let A be a Krull-Schmidt R-category. We wish to have a general description
of the shapes of the connected components of ΓA. This can be achieved by
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studying certain subquivers of ΓA. We say that a full subquiver Γ of ΓA is left
(respectively, right) stable if it is closed under τ ( respectively, τ− ), stable if it
is left and right stable, and semi-stable if it is left or right stable. It is easy to
see that semi-stable subquivers of ΓA are locally finite. We start with stating a
well known result; see, for example, [22, (2.2)].

5.1. Lemma. Let A be a connected Krull-Schmidt R-category. If Γ is a
finite connected component of ΓA in which every object admits both a source
morphism and a sink morphism, then Γ = ΓA.

If A is abelian, then every irreducible morphism is a monomorphism or an
epimorphism, and consequently, ΓA contains no loop. This is, however, not the
case in general. On the other hand, if A is a connected left or right Auslander-
Reiten category, then we shall be able to determine completely ΓA if it contains
a loop. For this purpose, we say that A is AR-exact if every Auslander-Reiten
sequence is a short exact sequence. For instance, an abelian category is always
AR-exact; see (1.5). Moreover, we say that an indecomposable object X in A
is homogeneous if τX = X, and A is a homogeneous Auslander-Reiten category
if every indecomposable object in A is homogeneous.

5.2. Theorem. Let A be a connected left or right Auslander-Reiten cate-
gory. If ΓA contains a loop, then A is an Auslander-Reiten category which is
homogeneous but not AR-exact, and ΓA is smooth of the following shape :

•:: (( •hh · · · • (( •hh

Proof. We consider only the case whereA is a left Auslander-Reiten category.
Let X → X be a loop in ΓA. By Theorem 2.8, X → X → X is not pre-sectional.
Thus τX = X and d′XX = 1. Then dXX = dτX,X = d′XX = 1. Let f : X → X
be an irreducible morphism, which embeds in an Auslander-Reiten sequence :

X
(u,f1) // X q Y1

(f
g) // X.

If Y1 = 0, then the loop X → X alone is a connected component of ΓA.
By Lemma 5.1, ΓA consists of this loop. Hence A is a homogeneous Auslander-
Reiten category, which is not AR-exact since f is not an epimorphism.

Consider now the case where Y1 6= 0. By Lemma 3.3, dl(f) < ∞. Suppose
that Y1 has a summand Z1qZ2 with Z1, Z2 indecomposable. By Lemmas 3.4(2)
and 3.2, there exists an irreducible morphism h : X → Z1 q Z2 with dl(h) <
dl(f). By Lemma 3.7, there exists an irreducible morphism h′ : τZ1q τZ2 → X
with dl(h′) < dl(h). In particular, τZ1 q τZ2 is a summand of X q Y1. Since
d′XX = 1, we have X 6∼= Zi, and hence X 6∼= τZi, i = 1, 2. Therefore, τZ1 q τZ2

is a summand of Y1. By Lemma 3.4(2), there exists an irreducible morphism
f ′ : X → X such that dl(f ′) < dl(h′). This yields dl(f ′) < dl(f), a contradiction
to Lemma 3.6. Thus Y1 is indecomposable and Y1 6∼= X. Since dl(f) < ∞, it
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follows from Lemma 3.5 that there exists a maximal integer n ≥ 1 for which ΓA
contains a pre-sectional path

(∗) Yn → Yn−1 → · · · → Y1 → Y0 = X.

Moreover, the Yi with 0 ≤ i ≤ n are not pseudo-projective. For 0 ≤ i ≤ n,
denote by εi the Auslander-Reiten sequence ending with Yi. Setting Y−1 = X,
we claim that εi is of the form Yi → Yi−1 q Yi+1 → Yi, i = 0, 1, . . . , n − 1.
Indeed, this is the case for i = 0. Assume that there exists a minimal 0 < r < n
for which the claim does not hold. Then the middle term of εr−1 is Yr−2 q Yr.
Since τYi = Yi, for −1 ≤ i < r, we have Yr−2 q Yr

∼= Yr−2 q τYr, and thus
τYr

∼= Yr. Therefore, the middle term of εr has a summand Yr−1 q Yr+1 q Zr

with Zr indecomposable. By Lemmas 3.5 and 3.4(2), there exists an irreducible
morphism ur : Yr → Yr+1 q Zr such that dl(ur) < dl(f), and by Lemma
3.7, there exists an irreducible morphism vr : τYr+1 q τZr → Yr such that
dl(vr) < dl(ur). Since τYi

∼= Yi, i = −1, 0, . . . , r, there exists in ΓA a pre-
sectional path X → X → Y1 → · · · → Yr−1 → Yr. Since Yr−1 q τYr+1 q τZr is
a summand of the middle term of εr, by Lemma 3.5, there exists an irreducible
morphism h : X → X such that dl(h) < dl(vr), and hence dl(h) < dl(f), which is
again contrary to Lemma 3.6. Our claim is established. In particular, Yn−2qτYn

is isomorphic to Yn−2qYn, the middle term of εn−1. Hence τYn
∼= Yn. It follows

from the maximality of n that εn is of the form Yn → Yn−1 → Yn. Therefore, the
full translation subquiver of ΓA generated by the Yi with i ≤ 0 ≤ n is a connected
component. By Lemma 5.1, the Yi with i ≤ 0 ≤ n are the indecomposable
objects in A up to isomorphism. In particular, A is a homogeneous Auslander-
Reiten category.

Next, we claim that the Yi with 0 ≤ i ≤ n are pairwise non-isomorphic.
If this is not the case, then there exists some minimal s with 0 ≤ s < n such
that Ys

∼= Yt for some t with s < t ≤ n. Since the middle term of εn is
indecomposable, we have t < n. If s = 0, then t > 1 and Yt+1 = X or
Yt+1 = Y1. By Theorem 2.8, Yt+1 = X, and thus ΓA has a pre-sectional path

X → X → Yt−1 → · · · → Y1 → X → X,

which is contrary to Theorem 2.8. Thus 0 < s < t < n, and then Ys−1qYs+1
∼=

Yt−1 q Yt+1. Therefore, Ys−1
∼= Yt−1 or Ys−1

∼= Yt+1, which contradicts the
minimality of s. Our second claim is proved. In particular, ΓA is trivially
valued. This shows that ΓA is of the shape as stated in the theorem. It remains
to show that A is not AR-exact. Setting f0 = f and applying repeatedly
Theorem 1.4(2), we find Auslander-Reiten sequences

Yi
(pi, fi+1)−−−−−−→ Yi−1 q Yi+1

(fi
gi

)−−−−→ Yi, i = 0, 1, . . . , n− 1,

and Yn
pn−→ Yn−1

fn−→ Yn. Dually, setting u0 = f , we get Auslander-Reiten
sequences

Yi
(qi, ui)−−−−→ Yi+1 q Yi−1

(ui+1
hi

)
−−−−→ Yi, i = 0, 1, . . . , n− 1,
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and Yn
un−→ Yn−1

hn−→ Yn. This yields

fn(gn−1 · · · g1g0h0h1 · · ·hn) = pn−1 · · · p1p0q0q1 · · · qn−1unhn = 0.

Since gn−1 · · · g1g0h0h1 · · ·hn 6= 0 by Lemma 2.7(1), fn is not an epimorphism.
That is, εn is not a short exact sequence. The proof of the theorem is completed.

Remark. The above result was established by Xiao and Zhu for triangulated
categories having Auslander-Reiten triangles; see [26].

Example. (1) Let A be a Krull-Schmidt category over a field k with an
unique indecomposable object X whose endomorphism algebra is the quotient
of k[x] modulo x2. Setting f = x̄ ∈ End(X), we see that X

f−→ X
f−→ X is

the unique Auslander-Reiten sequence in A. Therefore, A is a homogeneous
Auslander-Reiten category with ΓA consisting of a single loop at X.

(2) Let S be a complete discrete valuation commutative ring with quotient
field K. In [25], Wiedemann gave a complete description of the indecomposable
S-orders Λ in a semi-simple K-algebra which admit an irreducible map from
some indecomposable Λ-lattice to itself, and showed that the Auslander-Reiten
quiver of such an order Λ is of the shape as stated in Theorem 5.2.

5.3. Lemma. Let A be a left Auslander-Reiten category, and let Γ be a
connected left stable subquiver of ΓA containing an infinite sectional path

· · · → Xn → · · · → X1 → X0.

If the path contains infinitely many arrows of finite global left degree, then Γ is
smooth and contains no double infinite sectional path.

Proof. Assume that the path contains infinitely many arrows of finite global
left degree. For i, j ≥ 0, by Lemma 3.11, the infinite sectional path in Γ ending
with τ jXi generated by the objects τ jXn with n ≥ i contains infinitely many
arrows of finite global left degree. By Lemma 3.10, τ jXi has at most two
immediate predecessors in Γ .

Let X be an object in Γ . We claim that there exists some r ≥ 0 such that
τ rX is the ending-point of an infinite sectional path in Γ with infinitely many
arrows of finite global left degree. Indeed, by Lemma 4.1, there exist r, s ≥ 0
such that either τ rX = τsX0 or Γ contains a sectional path

τ rX → Yt−1 → · · · → Y1 → Y0 = τsX0

with t ≥ 1. If Y1 = τsX1, then τ rX = τsXt, and the claim follows. Otherwise,
Γ contains an infinite sectional path

· · · → τs+tX1 → τ s+tX0 → τ t−1Y1 → · · · → τYt−1 → τ rX

which, by Lemma 3.11, contains infinitely many arrows of finite global left
degree. The claim is established. Since Γ is left stable, it follows from Lemma
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3.10 that X has at most two immediate predecessors and at most two immediate
successors in Γ . Let now X → Y be an arrow in Γ . In view of our claim, it
is easy to see that there exists some r ≥ 0 such that Γ contains an infinite
sectional path which ends with the arrow τ rX → τ rY or τ r+1Y → τ rX, and
has infinitely many arrows of finite global left degree. It then follows from
Lemma 3.10 that X → Y is trivially valued. This shows that Γ is smooth.
Finally, suppose that Γ contains a double infinite sectional path P as follows:

· · · → Zi → · · · → Z1 → Z0 → · · · → Z−i → · · ·

Then there exists some r ≥ 0 such that τ rZ1 → τ rZ0 or τ r+1Z0 → τ rZ1 is
the ending arrow of an infinite sectional path Q in Γ which has infinitely many
arrows of finite global left degree. If Q ends with τ r+1Z0 → τ rZ1, by applying
Lemma 3.8 to Q and the path generated by the τ rZn with n ≥ 1, we see that
Q has no arrows of finite global left degree, a contradiction. Thus Q ends with
τ rZ1 → τ rZ0. Since Γ is a smooth, Q coincides with the path generated by the
τ rZn with n ≥ 0, which is contained in the double infinite sectional path τ rP ,
a contradiction to Corollary 3.10. The proof of the lemma is completed.

5.4. Lemma. Let A be a left Auslander-Reiten category, and let Γ be a
connected left stable subquiver of ΓA. If Γ contains oriented cycles but no τ -
periodic object, then Γ contains an infinite sectional path

X1 → · · · → Xs → τ rX1 → · · · → τ rXs → τ2rX1 → · · · ,

where r, s > 0 and the τ -orbits of X1, . . . , Xs are pairwise different.
Proof. Suppose that Γ contains oriented cycles but no τ -periodic object.

By Theorem 5.2, Γ contains no loop. Let X be an object lying on an oriented
cycle. Since X is not τ -periodic, by Lemma 4.1(2), Γ contains a sectional path

(∗) X = X1 → · · · → Xs → Xs+1,

where s ≥ 1 and Xs+1 = τ rX1 for some r ≥ 0. We assume that s is the minimal
length of such sectional paths in Γ . Suppose that r = 0. Then s > 1. By
Theorem 2.8, Xs = τX2. Since X2 is not τ -periodic, we have s > 2, which
contradicts the minimality of s. This shows that r > 0. Assume now that there
exists some 1 ≤ i < j ≤ s such that Xi and Xj lie in the same τ -orbit. By the
minimality of s, we get Xj = τ−pXi with p > 0. Since Xs 6= τ r+1X2, we have a
sectional path Xj → · · · → Xs → τ rX1 → · · · → τ rXi of length s− (j − i) with
τ rXi = τ r+pXj , which is contrary again to the minimality of s. This proves
that the Xi with 1 ≤ i ≤ s lie in pairwise different τ -orbits. Applying repeatedly
τ r to the path (∗), we get an infinite path

X1 → · · · → Xs → τ rX1 → · · · → τ rXs → τ2rX1 → · · · ,

which is sectional since the Xi are not τ -periodic. The proof of the lemma is
completed.
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We are now ready to state our main result on a general description of the
shapes of semi-stable subquivers of ΓA. This generalizes the results on semi-
stable components of the Auslander-Reiten quiver of an artin algebra which can
be found in [11, 18, 28].

5.5. Theorem. Let A be a Krull-Schmidt R-category, and let Γ be a
connected left stable subquiver of ΓA.

(1) If Γ contains no oriented cycle, then Γ embeds in Z∆, where ∆ is a
valued quiver with an unique sink but no oriented cycle.

(2) If Γ contains τ -periodic objects, then Γ is a stable tube or Γ ∼= Z∆/G,
where ∆ is a valued Dynkin quiver and G is an automorphism group of Z∆
containing a positive power of the translation.

(3) If Γ contains oriented cycles but no τ -periodic object, then Γ is smooth
and not stable, and contains an infinite sectional path

· · · → τ2rX1 → τ rXs → · · · → τ rX1 → Xs → · · · → X1,

where r > s > 0, and X1, . . . , Xs form a complete set of representatives of the
τ -orbits in Γ .

Proof. Let B be the full additive subcategory of A generated by the objects
which have no summands isomorphic to objects lying in Γ . By Lemma 1.9(2),
the ideal I of the morphisms factoring through objects in B is admissible. We
then deduce from Proposition 1.8 that Γ is the Auslander-Reiten quiver of A/I.
In particular, A/I is a left Auslander-Reiten category. Hence we may assume
with no loss of generality that A is a connected left Auslander-Reiten category.

Statement (1) follows immediately from Theorem 4.2. For proving Statement
(2), assume that Γ contains a τ -periodic object. Since Γ is locally finite, the
objects in Γ are all τ -periodic. If Γ contains a loop then, by Theorem 5.2, Γ is
homogeneous, smooth, and of the shape

•:: (( •hh · · · • (( •hh

Let n be the number of vertices in Γ , and consider the trivially valued quiver

A2n : 2n −→ · · · −→ n + 1 −→ n −→ · · · −→ 1.

Denote by σ the unique automorphism of ZA2n satisfying the condition that
σ(i, j) = (2n − i + 1, j + 2n − i), for 1 ≤ i ≤ 2n and j ∈ Z, and let G be
the group generated σ and the translation of ZA2n. It is then easy to see that
Γ ∼= ZA2n/G. Consider next the case where Γ contains no loop. Choose an
object M in Γ . Let r be the τ -period of M and set N = qr

i=1τ
iM. For each

object X in Γ , put d(X) = `R(HomA(X,N)). We claim that d(X) > 0 for every
object X in Γ . Being τ -periodic, Γ contains a non-trivial path from X to M . If
X = τ iM for some i > 0, then it is evident that HomA(X, N) 6= 0. Otherwise,
by Lemma 4.1(2), Γ has a sectional path X = M0 → · · · → Ms → τ tM with
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s, t ≥ 0. Hence HomA(X, τ tM) 6= 0 by Lemma 2.7(1). This establishes our

claim. If X
f−→ Y

g−→ Z is an Auslander-Reiten sequence in A, then

HomA(Z, N)
g∗−→ HomA(Y, N)

f∗−→ rad(X,N) −→ 0

is an exact sequence in the category of finitely generated R-modules. Therefore,

d(Y ) = `R(HomA(Y, N)) ≤ `R(rad(X, N)) + d(Z) ≤ d(X) + d(Z),

where the last inequality is strict whenever X is a summand of N . This shows
that d is a subadditive function on Γ which is not additive in the sense of [11].
In this case, Statement (2) follows from the theorem stated in [11, Section 2]; see
also [5, (VII.3.3)]. For proving Statement (3), suppose that Γ contains oriented
cycles but no τ -periodic object. By Lemma 5.4, Γ contains an infinite sectional
path

Y1 → · · · → Ys → τ tY1 → · · · → τ tYs → τ2rY1 → · · · ,
where t, s ≥ 1, and Y1, . . . , Ys lie in pairwise different τ -orbits. Setting Xi =
τ i−1Yi, i = 1, . . . , s, we get an infinite sectional path

· · · → τ2rX1 → τ rXs → · · · → τ rX1 → Xs → · · · → X1

in Γ , where r = t + s > s. For each j ≥ 0, the path

Pj : τ (j+1)rX1 → τ jrXs → · · · → τ jrX1

induces an oriented cycle from τ (j+1)rX1 to τ (j+1)rX1 passing through τ jr+sX1

which, by Lemma 3.3, contains an arrow of finite left degree. Thus Pj contains
an arrow of finite global left degree. By Lemma 5.3, Γ is smooth and contains no
double infinite sectional path. Therefore, X1, . . . , Xs are not all stable. More-
over, by Lemma 4.3, every object in Γ lies in one of the τ -orbits of Y1, . . . , Ys.
That is, X1, . . . , Xs form a complete set of representatives of τ -orbits in Γ . The
proof of the theorem is completed.

As an application, we shall describe the connected stable subquivers of ΓA.
Note that the τ -periodic ones have already been described in Theorem 5.5(2).

5.6. Corollary. If A is a Krull-Schmidt R-category, then the connected
stable subquivers of ΓA are either τ -periodic or of shape Z∆, where ∆ is a locally
finite valued quiver with no oriented cycle.

Proof. Let Γ be a connected stable subquiver of ΓA. If Γ is not τ -periodic
then, by Theorem 5.5(3), Γ contains no oriented cycle. By Theorem 4.2, Γ
contains a section ∆. Since Γ is locally finite and stable, ∆ is locally finite
and the canonical embedding Γ → Z∆, which sends τnX to (n,X), is an
isomorphism; see [19, (2.3)]. The proof of the corollary is completed.

Let Γ be a connected component of ΓA. By abuse of language, we shall say
that an Auslander-Reiten sequence X → Y → Z lies in Γ if X, or equivalently
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Z, lies in Γ . Moreover, we say that Γ is left regular or right regular if Γ , as a
subquiver of ΓA, is left stable or right stable, respectively. Furthermore, Γ is
called semi-regular if it is left or right regular, and regular if it is left and right
regular. The semi-regular components of ΓA which are τ -periodic or contain no
oriented cycle are well described in Theorem 5.5. However, the description for
those containing oriented cycles but no τ -periodic object is less satisfactory. We
can do a better job if the Auslander-Reiten sequences lying in the component
are all short exact sequences; compare [18, (2.5)].

5.7. Theorem. Let A be a Krull-Schmidt R-category, and let Γ be a semi-
regular component of ΓA which contains oriented cycles but no τ -periodic object.
If the Auslander-Reiten sequences lying in Γ are all short exact sequences, then
Γ is a ray tube or a co-ray tube.

Proof. We consider only the case where Γ is a left regular component in
which every Auslander-Reiten sequence is short exact. Let B be the full additive
subcategory of A generated by the objects whose indecomposables summands
are isomorphic to objects lying in Γ . It is clear that B is a Krull-Schmidt R-
category. Let X be an indecomposable object in B lying in Γ . Since Γ is left
regular, there exists an Auslander-Reiten short exact sequence Z → Y → X
in A. Since X, Y, Z all lie in B, it is easy to verify that Z → Y → X is
an Auslander-Reiten short exact sequence in B. This implies that B is a left
Auslander-Reiten category which is AR-exact and has Γ as its Auslander-Reiten
quiver. As a consequence, we may assume with no loss of generality that A is a
left Auslander-Reiten category. By Theorem 5.5(3), Γ is smooth and contains
an infinite sectional path

(∗) · · · → τ2rX1 → τ rXs → · · · → τ rX1 → Xs → · · · → X1

with infinitely many arrows of finite global left degree, where r > s, and
X1, . . . , Xs are not all stable and form a complete set of representatives of the
τ -orbits in Γ . For convenience, rewrite (∗) as follows:

· · · → X2s+1 → X2s → · · · → Xs+1 → Xs → · · · → X1,

where Xjs+i = τ rjXi with j ≥ 0 and 1 ≤ i ≤ s. For each q ≥ 0, we claim
that if τ−qXi is defined for some i ≥ 1, then τ−qXi+1 is also defined. If this
is not the case, then we can find a minimal m > 0 for which there exists some
n ≥ 1 such that τ−mXn is defined but τ−mXn+1 is not. By the minimality of
m, there exists in Γ an infinite sectional path

(∗∗) · · · → τ−m+1Xi → · · · → τ−m+1Xn+1 → τ−m+1Xn.

Set Y0 = τ−mXn, and let τY0
f1−→ Y1

g1−→ Y0 be an Auslander-Reiten sequence
in A, which is a short exact sequence by assumption. In particular, f1 is a
monomorphism. Since Γ is smooth and left regular while τ−mXn+1 is not de-
fined, Y1 is indecomposable and τY1 6∼= τ−m+1Xn+1. Since (∗) contains infinitely
many arrows of finite global left degree, so does (∗∗). By Lemma 3.8, Γ contains
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no infinite sectional path ending with Y1 → Y0. Hence there exists a maximal
integer t > 0 such that Γ contains a sectional path

Yt → · · · → Y1 → Y0.

Since Γ is smooth, the middle term of the Auslander-Reiten sequence ending
with Yj is τYj−1qYj+1, j = 1, . . . , t−1. By the maximality of t, the middle term
of the Auslander-Reiten sequence ending with Yt is τYt−1. Choose irreducible
morphisms gj : Yj → Yj−1, hj : τYj → τYj−1, and fj : τYj−1 → Yj , j = 1, . . . , t,

such that τYt
ht−→ τYt−1

ft−→ Yt and

τYj
(fj+1,hj)−−−−−−→ Yj+1 q τYj−1

(gj+1
fj

)
−−−−→ Yj , j = 1, . . . , t− 1,

are Auslander-Reiten sequences in A. Then hn · · ·h1f1 = 0. Since f1 is a
monomorphism, hn · · ·h1 = 0. This is contrary to Lemma 2.7(1). Our claim is
established. If Xi is stable for some 1 ≤ i ≤ s, then it follows from the claim
that Xj is stable for all j ≥ i. As a consequence, the Xi with 1 ≤ i ≤ s are
all stable, a contradiction. Therefore, Xi = τmiIi, i = 1, . . . , s, where Ii is
some object in Γ for which τ− is not defined. Using the claim again, we have
ms ≥ · · · ≥ m2 ≥ m1. By Theorem 4.4, Γ is a coray tube. The proof of the
theorem is completed.

6. Specialization to triangulated categories

In this section, we shall apply the previously developed theory to triangu-
lated categories. Recall first that an additive category is triangulated if it is
equipped with an automorphism T , called shift functor, and a class of sextuples
X

f−→ Y
g−→ Z

h−→ TX, called exact triangles, satisfying the axioms TR1,
TR2, TR3 and TR4 stated in [10, (1.1)]. A classical example of a triangulated
category is given by the derived category Db(A) of the bounded complexes of
finitely generated modules over an artin algebra A; see [10]. We call a triangu-
lated category triangle-connected if it can not be decomposed as a product of two
non-zero triangulated categories; and triangle-simple if it admits exactly one in-
decomposable object up to isomorphism and shift, and the non-zero morphisms
between indecomposable objects are isomorphisms.

For the rest of the paper, A denotes a Krull-Schmidt triangulated R-category.
The shift of an object X by an integer n is written as X[n]. Consider an

exact triangle X
f−→ Y

g−→ Z
h−→ X[1] in A. It is important to note that

X
f−→ Y

g−→ Z is a pseudo-exact sequence; see [10, (1.2)]. Moreover, f is a
source morphism if and only if g is a sink morphism; see [10, (4.5)], and in
this case, the exact triangle is called an Auslander-Reiten triangle; compare
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[10, (4.1)]. The connection between the Auslander-Reiten sequences and the
Auslander-Reiten triangles in A is established in the following easy lemma.

6.1. Lemma. A sequence X
f−→ Y

g−→ Z with Y 6= 0 in A is an Auslander-
Reiten sequence if and only if it can be embedded in an Auslander-Reiten triangle
X

f−→ Y
g−→ Z

h−→ X[1].

Proof. The sufficiency is evident. Let X
f−→ Y

g−→ Z be an Auslander-
Reiten sequence in A. By the axiom TR1 stated in [10, (1.1)], f embeds in an

exact triangle X
f−→ Y

g′−→ Z ′ h−→ X[1], which is an Auslander-Reiten triangle

since f is a source morphism; see [10, (4.5)]. In particular, X
f−→ Y

g′−→ Z ′ is
an Auslander-Reiten sequence. By the uniqueness stated in Theorem 1.4(1), we
get a commutative diagram

X
f // Y

g //

u

²²

Z

v

²²

vh // X[1]

X
f // Y

g′ // Z ′
h // X[1]

in A, where u, v are isomorphisms. Therefore, the upper row is an Auslander-
Reinten triangle. The proof of the lemma is completed.

Note that a triangulated category (for instance, the bounded derived ca-
tegory of a simple algebra) may have Auslander-Reiten triangles of the form
X → 0 → Z → X[1]. However, this occurs rarely according to the next result.

6.2. Proposition. If A is triangle-connected, then the following statements
are equivalent.

(1) A is triangle-simple.
(2) A has a pseudo-projective object.
(3) A has a pseudo-injective object.
(4) A has an Auslander-Reiten triangle of the form X → 0 → Z → X[1].
Proof. Let A be triangle-connected. Assume first that A is triangle-simple.

Choose an indecomposable object X inA. By the definition of triangle-simplicity,
all non-zero morphisms Y → X are retractions and all non-zero morphisms
X → Y are sections. Thus 0 → X is a sink monomorphism while X → 0 is a
source epimorphism. That is, X is pseudo-projective as well as pseudo-injective.

Assume next that A has a sink monomorphism g : Y → Z. Then g embeds
in an Auslander-Reiten triangle X

f−→ Y
g−→ Z

h−→ X[1]; see [10, (1.3),(4.5)].
Moreover, f = 0 since g is a monomorphism. By Lemma 1.1, we get Y = 0.
This proves that (2) implies (4). Dually, one can show that (3) implies (4).

Finally, let X → 0 → Z
h→ X[1] be an Auslander-Reiten triangle in A.

Then X → 0 is a source morphism. Since 0 → Z
h−→ X[1] → 0 is an exact

triangle in A; see [10, (1.1)], h is an isomorphism. Thus 0 → X[1] is a sink
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morphism. As a consequence, X[n] → 0 is a source morphism and 0 → X[n]
is a sink morphism, for every integer n. Therefore, the non-zero morphisms
X[n] → M and N → X[n] with M, N indecomposable are isomorphisms. It is
easy to see that the full additive subcategory B of A generated by the X[n] is
a triangle-component of A. Since A is triangle-connected, we get B = A. In
particular, the X[n] are the indecomposable objects in A up to isomorphism.
This implies A is triangle-simple. The proof of the proposition is completed.

From now on, we assume that A is triangle-connected but not triangle-
simple. If A is a left or right Auslander-Reiten category, it follows from Lemma
6.1 and Proposition 6.2 that the Auslander-Reiten quiver of A defined in this
paper coincides with the one defined in [10]. Note that if R is an algebraically
closed field, then A is a left Auslander-Reiten category if and only if A admits
a right Serre functor, that is an additive endofunctor F : A → A such that
HomA(X, Y ) ∼= HomA(Y, FX)∗ which are natural for all X,Y in A, where
U∗ = HomR(U,R). Dually, A is a right Auslander-Reiten category if and only
if A admits a left Serre functor; see [21].

6.3. Theorem. Let A be a Krull-Schmidt triangulated R-category which is
triangle-connected but not triangle-simple. If A is a left (respectively, right)
Auslander-Reiten category, then every component of ΓA is left (respectively,
right) regular, which is either τ -periodic or a coray (respectively, ray) tube, or
embeds in Z∆, where ∆ is a locally finite valued quiver with no oriented cycle.

Proof. Assume that A is a left Auslander-Reiten category, and let Γ be a
component of ΓA which is left regular By Proposition 6.2. It suffices to consider
the case where Γ contains oriented cycles but no τ -periodic object. By Theorem
5.5(3), Γ is smooth and not stable. We want to show that Γ is a coray tube. In
view of the proof of Theorem 5.7, we need only to show the following statement:
given an infinite sectional path

· · · → Xn → · · · → X2 → X1

in Γ with infinitely many arrows of finite global left degree, if τ−pXi is defined
for some i, p > 0, then τ−pXi+1 is also defined. Assume that this is false. Let
m > 0 be minimal for which there exists some n ≥ 1 such that τ−mXn is defined
but τ−mXn+1 is not. Then Γ contains an infinite sectional path

· · · → τ−m+1Xi → · · · → τ−m+1Xn+1 → τ−m+1Xn

having infinitely many arrows of finite global left degree. Setting Y0 = τ−mXn

and arguing as in the proof of theorem 5.7, we see that Γ contains a sectional
path Yt → · · · → Y1 → Y0 with t ≥ 1 and τY1 6= τ−m+1Xn+1, and A has
irreducible morphisms gj : Yj → Yj−1, hj : τYj → τYj−1, and fj : τYj−1 → Yj ,

j = 1, . . . , t, such that τY0
f1−→ Y1

g1−→ Y0, and

τYj
(fj+1,hj)−−−−−−→ Yj+1 q τYj−1

(gj+1
fj

)
−−−−→ Yj , j = 1, . . . , t− 1,
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and τYt
ht−→ Y1

ft−→ Y0 are Auslander-Reiten sequences. In particular, we have
ht · · ·h1f1 = 0. Applying first Lemma 6.1 then Lemma 1.3 stated in [10], we

get an exact triangle Y0[−1] h−→ τY0
f1−→ Y1

g1−→ Y0 in A. Then ht · · ·h1 factors
through Y0[−1]. By Theorem 2.10, Y0[−1] = τYs for some 0 ≤ s ≤ t. Since the
shift functor is an automorphism of A, we see that Y1[−1] is the only immediate
predecessor of Y0[−1] in Γ . Hence s = t, and τ2Yt−1 = Y1[−1]. Now Γ contains
two sectional paths

τ t+1Y0 → τ tY1 → · · · → τ2Yt−1 → τYt

and
Yt[−1] → Yt−1[−1] → · · · → Y1[−1] → Y0[−1],

which end with the same arrow. Since Γ is smooth, the two paths coincide.
In particular, τ t+1Y0 = Yt[−1]. This is absurd since τ t+1Y0 has two distinct
immediate predecessors τ t+1Y1 and τ t−m+1Yn+1 in Γ , while Yt[−1] has only
one immediate predecessor τYt−1[−1]. This establishes the statement. The
proof of the theorem is completed.

6.4. Corollary. Let A be a Krull-Schmidt triangulated R-category which
is triangle-connected but not triangle-simple. If A is an Auslander-Reiten cate-
gory, then every component of ΓA is regular which is either τ -periodic or of
shape Z∆ where ∆ is a locally finite valued quiver with no oriented cycle.

Example. Let ∆ be a non-trivial Dynkin quiver and k an algebraically
closed field. The cluster category C constructed as a quotient of the bounded
derived category Db(k∆) of the path algebra k∆ is a triangulated Auslander-
Reiten k-category with Γ C ∼= Z∆/<σ>, where σ is a non-trivial automorphism
of Z∆; see [9].

We conclude the paper with an application to the bounded derived category
of an artin algebra of finite global dimension.

6.5. Theorem. Let A be a connected artin R-algebra. If A is of finite
positive global dimension, then the components of ΓDb(A) are either stable tubes
or of shape Z∆ where ∆ is a locally finite valued quiver with no oriented cycle.

Proof. Assume that A is of finite positive global dimension. Then Db(A) is
an Auslander-Reiten R-category; see [10, (4.6)], which is connected of infinite
type as an R-category and not triangle-simple as a triangulated category. Let
Γ be a component of ΓDb(A), which is infinite by Lemma 5.1. If Γ is τ -periodic,
then it is a stable tube by Theorem 5.5(2). Otherwise, by Corollary 6.4, Γ ∼= Z∆
where ∆ is a locally finite valued quiver with no oriented cycle. The proof of
the theorem is completed.
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