KOSZUL DUALITY FOR NON-GRADED DERIVED CATEGORIES

MOHAMMED BOUHADA, MIN HUANG, AND SHIPING LIU

Abstract

We are concerned with relating derived categories of all modules of two dual Koszul algebras. First, we give a complete account of Koszul complexes, Koszul algebras and Koszul duals in terms of locally finite quivers with relations. Then, we generalize the well-known Acyclic Assembly Lemma and formalize an old method of extending a functor from an additive category into a complex category to its complex category. Applying these techniques to a Koszul algebra defined by a gradable quiver, we extend Beilinson, Ginzburg and Soergel's Koszul duality to dualities between a 2-real-parameter family of pairs of categories derived from subcategories of the complex categories of all modules of the Koszul algebra and its Koszul dual. In case the Koszul algebra is locally bounded on one side and its Koszul dual is locally bounded on the other side, our Koszul duality restricts to an equivalence of the bounded derived categories of finitely supported modules, and an equivalence of the bounded derived categories of finite dimensional modules.

InTroduction

The history of Koszul theory traces back to Cartan and Eilenberg's computing the cohomology groups of a Lie algebra using the Koszul resolution; see [8, Chapter 8, Section 7]. Later, various Koszul resolutions were used to compute the homology and the cohomology of Hopf algebras, restricted Lie algebras and Steenrod algebra; see [7, 24]. In dealing with graded algebras arising from algebraic topology, Priddy formalized the Koszul theory of Koszul complexes and Koszul algebras and discovered a duality among homology algebras of certain Koszul algebras; see [27]. This beautiful theory has applications in many branches of mathematics such as algebraic topology; see [14, 28], algebraic geometry; see [4, 5], quantum group; see [19], commutative algebra; see [9], the representation theory of Lie algebras; see [5,30] and that of associative algebras; see $[11,12,20,21]$.

Beilinson, Ginzburg and Soergel described in [5] the Koszul duality in terms of graded derived categories of two dual Koszul algebras; see also [4, 10, 15, 23]. More precisely, they established an equivalence between the category derived from a subcategory of the bounded-above complex category of the graded module category of a left finite Koszul algebra and the category derived from a subcategory of the bounded-below complex category of the graded module category of its Koszul dual.

[^0]Their duality restricts to an equivalence of the bounded derived categories of finitely generated graded modules if the Koszul algebra is of finite length and its Koszul dual is left noetherian. Under the setting of positively graded categories, Mazorchuk, Ovsienko and Stroppel generalized in [25] the Koszul duality to Koszul categories; see, for a similar consideration, [22].

The classic Koszul duality deals with derived categories of graded module categories. However, it is also important to study derived categories of non-graded modules of Koszul algebras, for instance, those arising from mixed geometry; see [5, (1.4.2)]. This is even more interesting from the representation theoretic viewpoint; see $[1,2]$. Indeed, given an algebra with radical squared zero defined by a gradable quiver, which turns out to be a Koszul algebra, Bautista and Liu established an equivalence between its bounded derived category of finite dimensional modules and the bounded derived category of finitely co-presented modules of the path algebra of the opposite quiver, that is the Koszul dual; see [2, (3.9)].

The objective of this paper is to present a self-contained complete account of the Koszul theory of Koszul complexes, Koszul algebras, Koszul duals and Koszul duality from a combinatorial viewpoint. In particular, our Koszul algebra is an algebra defined by a locally finite quiver with homogeneous relations such that every principal simple module has a linear projective resolution; see (2.14) and compare [20]. In case the quiver is gradable, we shall extend the classic Koszul duality, by establishing equivalences between a 2-real-parameter family of pairs of categories derived from subcategories of the complex categories of all modules of a Koszul algebra and its Koszul dual. In contrast to the highly sophisticated technique of spectral sequences used in [5], our technique is elementary with detailed arguments. Let us outline the content of the paper section by section.

In Section 1, we shall lay down the foundation of the paper. Besides collecting and proving some preliminary results, we shall introduce some new classes of algebras defined by a locally finite quiver with relations, which include the locally bounded categories; see $[6,(2.1)]$ and path algebras of strongly locally finite quivers; see [3, Page 100]. Their representation theory is worth future investigation.

In Section 2, we shall prepare for constructing linear projective resolutions and linear injective co-resolutions. We shall start with projective covers in the most general case; see $(2.3,2.4)$. Then, we shall obtain a class of principal injective modules in the locally finite dimensional case; see (2.5), and study injective envelopes in the strongly locally finite dimensional case; see (2.9, 2.10). Finally, we shall show that a graded algebra is quadratic if and only if every principal simple module admits a linear projective 2-presentation; see (2.13) and compare [5, (2.3.3)].

In Section 3, we shall present a description of Koszul complexes, Koszul algebras and Koszul duals in terms of locally finite quivers with quadratic relations. Given a quadratic algebra Λ, we shall define a local Koszul complex for each principal simple Λ-module S; see (3.3) and compare [5, (2.6)], which is a projective resolution of S if and only if S has a linear projective resolution; see (3.4). Next, we shall define the quadratic dual Λ ! of Λ by the opposite quiver with dual quadratic relations; see (3.7) and compare [5, (2.8.1)], and show that Λ ! is Koszul if and only if Λ is

Koszul; see (3.10) and compare [5, (2.9.1)], [25, Theorem 30]. In case Λ is locally finite dimensional, we show that Λ is Koszul if and only if its opposite algebra is Koszul, or equivalently, every simple Λ-module admits a particular linear injective co-resolution; see (3.13) and compare [5, (2.2.1)].

In Section 4, we shall provide tools for constructing Koszul duality. Let \mathcal{A} be an additive category with countable direct sums. First, we relate by taking total complex the double complex category $D C(\mathcal{A})$ to the complex category $C(\mathcal{A})$; see (4.1), and obtain a generalization of the Acyclic Assembly Lemma; see [31, (2.7.1)], which ensures the acyclicity of the total complex of a substantially larger family of double complexes; see (4.3). Next, we introduce a homotopy theory in $D C(\mathcal{A})$, which is compatible with taking total complex; see (4.4, 4.5). Finally, we formalize an old method for extending a functor from an additive category \mathcal{B} into $C(\mathcal{A})$ to the complex category $C(\mathcal{B})$. Such extended an functor descends to the homotopy category $K(\mathcal{B})$; see (4.8), but only to categories derived from some possible subcategories of $C(\mathcal{B})$; see (4.9).

In Section 5, we shall describe our Koszul duality. Let Λ be a quadratic algebra Λ defined by a locally finite gradable quiver. We first construct two Koszul functors : each sends one of the module categories $\operatorname{Mod} \Lambda$ and $\operatorname{Mod} \Lambda^{!}$into the complex category of the other; see (5.1). As explained above, they are extended to two complex Koszul functors: each sends one of the complex categories $C(\operatorname{Mod} \Lambda)$ and $C\left(\operatorname{Mod} \Lambda^{!}\right)$into the other one. Our generalized Acyclic Assembly Lemma ensures that they descend to a 2-real-parameter family of pairs of derived Koszul functors: each pair interchanges a pair of categories derived from subcategories of $C(\operatorname{Mod} \Lambda)$ and $C\left(\operatorname{Mod} \Lambda^{!}\right)$; see (5.3), all but the classical pair considered in $[5,25]$ contain doubly infinite complexes.

In case Λ is Koszul, the Koszul functors send an indecomposable injective $\Lambda^{!}$module to the minimal projective resolution of a simple Λ-module and an indecomposable projective Λ-module to the minimal injective co-resolution of a simple $\Lambda^{!}$-module, respectively; see (5.4). Moreover, the composites of one Koszul functor and the extension of the other one send respectively a bounded-above $\Lambda^{!}$-module to its minimal injective co-resolution and a Λ-module to its minimal projective resolution; see $(5.5,5.6)$. Using this fact, we show that each pair of derived Koszul functors is a pair of mutually quasi-inverse triangle equivalences; see (5.7). If Λ is locally bounded on one side and $\Lambda^{!}$is locally bounded on the other side, then our Koszul duality restricts to an equivalence of the bounded derived categories of finitely supported modules, and an equivalence of the bounded derived categories of finite dimensional modules; see (5.8) and compare [5, (2.12.6)]. This case occurs, for instance, when the quiver has no right infinite path or no left infinite path.

1. Preliminaries

The objective of this section is to recall some background and collect and prove some preliminary results. The terminology and notation introduced in this section will be used throughout the paper.
I. Linear algebra. Throughout, k denotes a commutative field. All tensor products will be over k unless the otherwise is explicitly stated. The k-vector space freely spanned by a set \mathcal{S} will be written as $k \mathcal{S}$. Let $\operatorname{Mod} k$ stand for the category of all k-spaces and $\bmod k$ for the category of finite dimensional k-spaces. We shall make a frequent use of the exact functor $D=\operatorname{Hom}_{k}(-, k): \operatorname{Mod} k \rightarrow \operatorname{Mod} k$. The following result is well-known.
1.1. Lemma. Given $U, V \in \bmod k$ and $M, N \in \operatorname{Mod} k$, we obtain an isomorphism

$$
\rho: \operatorname{Hom}_{k}(U, V) \otimes \operatorname{Hom}_{k}(M, N) \rightarrow \operatorname{Hom}_{k}(U \otimes M, V \otimes N): f \otimes g \mapsto \rho(f \otimes g),
$$

natural in all variables, where $\rho(f \otimes g)(u \otimes m)=f(u) \otimes g(m)$ for $u \in U$ and $m \in M$.
REmark. In the sequel, we shall identify the map $\varphi(f \otimes g)$ with $f \otimes g$.
As a consequence of Lemma 1.1, we obtain the following well-known result.
1.2. Corollary. Given $U \in \bmod k$ and $M, N \in \operatorname{Mod} k$, we obtain
(1) a natural isomorphism $\sigma: D U \otimes N \rightarrow \operatorname{Hom}_{k}(U, N): f \otimes n \mapsto \sigma(f \otimes n)$, where $\sigma(f \otimes n)(u)=f(u) n$, for $u \in U$ and $n \in N$;
(2) a natural isomorphism $\varphi: D U \otimes D M \rightarrow D(M \otimes U): f \otimes g \mapsto \varphi(f \otimes g)$, where $\varphi(f \otimes g)(m \otimes u)=g(m) f(u)$, for $u \in U$ and $m \in M$.

We shall need the following statement later.
1.3. Lemma. Given morphisms $f: U \rightarrow M$ and $g: N \rightarrow V$ in $\bmod k$, we obtain a commutative diagram with vertical isomorphisms as follows:

Proof. Composing the isomorphism $U \otimes D V \rightarrow D^{2} U \otimes D V$, induced from the canonical isomorphism $U \rightarrow D^{2} U$, with the isomorphism $D^{2} U \otimes D V \rightarrow D(V \otimes D U)$; see (1.2), we obtain an isomorphism $\theta_{U, V}$ such that $\theta_{U, V}(u \otimes \zeta)(v \otimes \xi)=\zeta(v) \xi(u)$, for all $u \in U, v \in V, \zeta \in D V$ and $\xi \in D U$. Similarly, we obtain an isomorphism $\theta_{M, N}$, making the diagram stated in the lemma commute. Indeed, given $u \in U$, $\zeta \in D V, n \in N$ and $\xi \in D M$, we obtain

$$
\theta_{M, N}((f \otimes D g)(u \otimes \zeta))(n \otimes \xi)=\theta_{M, N}(f(u) \otimes \zeta g)(n \otimes \xi)=\zeta(g(n)) \xi(f(u))
$$

and

$$
\begin{aligned}
D(g \otimes D f)\left(\theta_{U, V}(u \otimes \zeta)\right)(n \otimes \xi) & =\theta_{U, V}(u \otimes \zeta)((g \otimes D f)(n \otimes \xi)) \\
& =\theta_{U, V}(u \otimes \zeta)(g(n) \otimes \xi f) \\
& =\zeta(g(n)) \xi(f(u))
\end{aligned}
$$

The proof of the lemma is completed.
Let $U \in \operatorname{Mod} k$. Given a subspace V of U, we shall denote by V^{\perp} the subspace of $D U$ of linear forms vanishing on V, called the perpendicular of V in $D U$.
1.4. Lemma. Let U be a finite dimensional k-space.
(1) If V, W are subspaces of U, then $(V+W)^{\perp}=V^{\perp} \cap W^{\perp}$, and on the other hand, $(V \cap W)^{\perp}=V^{\perp}+W^{\perp}$.
(2) If $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ are bases of U with dual bases $\left\{u_{1}^{\star}, \ldots, u_{n}^{\star}\right\}$ and $\left\{v_{1}^{\star}, \ldots, v_{n}^{\star}\right\}$ respectively, then $\sum_{i=1}^{n} u_{i} \otimes u_{i}^{\star}=\sum_{i=1}^{n} v_{i} \otimes v_{i}^{\star}$ in $U \otimes D U$.
Proof. Statement (1) is evident. By Corollary 1.2, we obtain an isomorphism $\theta: U \otimes \operatorname{Hom}_{k}(U, k) \rightarrow \operatorname{End}_{k}(U): u \otimes f \rightarrow \theta(u \otimes f)$. Given a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of U, it is easy to see that $\theta\left(\sum_{i=1}^{n} u_{i} \otimes u_{i}^{\star}\right)=1_{U}$. The proof of the lemma is completed.
II. Quivers. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver, where Q_{0} is a set of vertices and Q_{1} is a set of arrows. Given an arrow $\alpha: x \rightarrow y$, we write $x=s(\alpha)$ and $y=e(\alpha)$. Given $x \in Q_{0}$, one has a trivial path ε_{x} of length 0 with $s\left(\varepsilon_{x}\right)=e\left(\varepsilon_{x}\right)=x$. A path of length $n>0$ is a sequence $\rho=\alpha_{n} \cdots \alpha_{1}$, with $\alpha_{i} \in Q_{1}$, such that $s\left(\alpha_{i+1}\right)=e\left(\alpha_{i}\right)$, for $i=1, \ldots, n-1$; and in this case, we write $s(\rho)=s\left(\alpha_{1}\right)$ and $t(\rho)=t\left(\alpha_{n}\right)$, and call α_{n} the terminal arrow of ρ. An infinite path in Q is called right infinite if it has no ending point and left infinite if it has no starting point.

The opposite quiver of Q is a quiver Q^{o} defined in such a way that $\left(Q^{\mathrm{o}}\right)_{0}=Q_{0}$ and $\left(Q^{\circ}\right)_{1}=\left\{\alpha^{\circ}: y \rightarrow x \mid \alpha: x \rightarrow y \in Q_{1}\right\}$. A non-trivial path $\rho=\alpha_{n} \cdots \alpha_{1}$ in $Q(x, y)$, where $\alpha_{i} \in Q_{1}$, corresponds to a non-trivial path $\rho^{\circ}=\alpha_{1}^{\mathrm{o}} \cdots \alpha_{n}^{\mathrm{o}}$ in $Q^{\circ}(y, x)$. However, the trivial path in Q at a vertex x will be identified with the trivial path in Q° at x.

Fix an integer $n \geq 0$ and some vertices x, y of Q. We shall denote by Q_{n} the set of paths of length n and by $Q(x, y)$ the set of paths from x to y. Moreover, we shall write $Q_{n}(x, y), Q_{\leq n}(x, y)$, and $Q_{\geq n}(x, y)$ for the subsets of $Q(x, y)$ of paths of length n, of length $\leq n$, and of length $\geq n$, respectively. Further, we put $Q_{n}(x,-)=\cup_{z \in Q_{0}} Q_{n}(x, z)$ and $Q_{n}(-, x)=\cup_{z \in Q_{0}} Q_{n}(z, x)$. Finally, we define $Q_{\leq n}(x,-)=\cup_{z \in Q_{0}} Q_{\leq n}(x, z)$ and $Q_{\leq n}(-, x)=\cup_{z \in Q_{0}} Q_{\leq n}(z, x)$, and similarly, $Q_{\geq n}(x,-)=\cup_{z \in Q_{0}} Q_{\geq n}(x, z)$ and $Q_{\geq n}(-, x)=\cup_{z \in Q_{0}} Q_{\geq n}(z, x)$. For convenience, we shall put $Q_{s}(x, y)=\emptyset$ for an integer $s<0$.

We say that Q is strongly locally finite if $Q(x, y)$ is finite for all $x, y \in Q_{0}$; see [3], and gradable if $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, a disjoint union called a grading, such that every arrow is of the form $x \rightarrow y$, where $x \in Q^{n}, y \in Q^{n+1}$ and $n \in \mathbb{Z}$; see $[1,(7.1)]$.
III. Path algebras. An algebra in this paper does not necessarily have an identity, and an ideal in an algebra is always a two-sided ideal. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a locally finite quiver. We denote by $k Q$ the path algebra of Q over k, whose opposite algebra is $k Q^{\circ}$. Given $\gamma=\sum_{i=1}^{s} \lambda_{i} \rho_{i} \in k Q$, where $\lambda_{i} \in k$ and ρ_{i} are paths, we shall write $\gamma^{\circ}=\sum_{i=1}^{s} \lambda_{i} \rho_{i}^{\mathrm{o}} \in k Q^{\mathrm{o}}$. This yields an algebra anti-isomorphism $k Q \rightarrow k Q^{\circ}: \gamma \mapsto \gamma^{\circ}$.

Let R be an ideal in $k Q$. We shall say that R is weakly admissible if $R \subseteq\left(k Q^{+}\right)^{2}$, where $k Q^{+}$is the ideal in $k Q$ generated by the arrows. A weakly admissible ideal R is called locally admissible if, for any $x, y \in Q_{0}$, there exists $n_{x y}>0$ such that $k Q_{n}(x, y) \subseteq R$ for all $n \geq n_{x y}$; right (respectively, left) admissible if, for any $x \in Q_{0}$, there exists $n_{x}>0$ such that $k Q_{n}(x,-) \subseteq R$ (respectively $\left.k Q_{n}(-, x) \subseteq R\right)$ for all $n \geq n_{x}$; and admissible if it is right and left admissible; compare [6, (2.1)].

Let R be a weakly admissible ideal in $k Q$. In this case, the pair (Q, R) a called bound quiver. For $n \geq 0$, we shall put $R_{n}=R \cap k Q_{n}$; and for $x, y \in Q_{0}$, we write $R(x, y)=R \cap k Q(x, y)$ and $R_{n}(x, y)=R \cap k Q_{n}(x, y)$. An element $\rho \in R(x, y)$ is called a relation in R from x to y. Such a relation ρ is called quadratic if $\rho \in k Q_{2}(x, y)$; homogeneous if $\rho \in k Q_{n}(x, y)$ for some $n \geq 2$; monomial if $\rho \in Q(x, y)$; and primitive if $\rho=\sum_{i=1}^{s} \lambda_{i} \rho_{i}$, where $\lambda_{i} \in k$ and $\rho_{i} \in Q(x, y)$ are such that $\sum_{i \in \Sigma} \lambda_{i} \rho_{i} \notin R$ for any $\Sigma \subset\{1, \ldots, s\}$. We shall say that R is quadratic (respectively, homogeneous, monomial) if it is generated by a set of quadratic (respectively, homogeneous, monomial) relations. A minimal generating set Ω of R is a set of primitive relations in R such that R is generated by Ω but not by any proper subset of Ω; and in this case, we put $\Omega(x, y)=\Omega \cap k Q(x, y)$ and $\Omega(x,-)=\cup_{z \in Q_{0}} \Omega(x, z)$.
1.5. Lemma. Let Q be a locally finite quiver with R a homogenous ideal in $k Q$. If Ω is a minimal generating set of R, the the classes of ρ modulo $\left(k Q^{+}\right) R+R\left(k Q^{+}\right)$, with $\rho \in \Omega$, are k-linearly independent.
Proof. Let Ω be a minimal generating set of R. Assume that $\lambda_{1} \rho_{1}+\cdots+\lambda_{r} \rho_{r}$ lies in $\left(k Q^{+}\right) R+R\left(k Q^{+}\right)$, where $\lambda_{i} \in k$ are non-zero and $\rho_{i} \in \Omega(x, y)$ are pairwise distinct, for some $x, y \in Q_{0}$. Then, $\rho_{1}=\sum_{i=1}^{s} \gamma_{i} \rho_{1} \delta_{i}+\sum_{j=1}^{t} \xi_{j} \sigma_{j} \zeta_{j}$, where $\sigma_{j} \in \Omega \backslash\left\{\rho_{1}\right\}$, and $\gamma_{i}, \delta_{i}, \xi_{j}, \zeta_{j} \in k Q$ are homogeneous such that γ_{i} or δ_{i} is of positive degree for every $1 \leq i \leq s$. Since ρ_{1} and the σ_{j} are homogeneous, $\rho_{1}=\sum_{j \in \Theta} \xi_{j} \sigma_{j} \zeta_{j}$, where Θ is the set of indices j for which $\xi_{j} \sigma_{j} \zeta_{j}$ is of the same degree as ρ_{1}, a contradiction to the minimality of Ω. The proof of the lemma is completed.
IV. Algebras and modules. In this subsection we fix $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a weakly admissible ideal in $k Q$. Write $\bar{\gamma}=\gamma+R \in \Lambda$, for $\gamma \in k Q$. Then, $\left\{e_{x}=\bar{\varepsilon}_{x} \mid x \in Q_{0}\right\}$ is a complete set of pairwise orthogonal idempotents, that is $\Lambda=\oplus_{x \in Q_{0}} \Lambda e_{x}=\oplus_{x \in Q_{0}} e_{x} \Lambda$. The opposite algebra of Λ is $\Lambda^{\circ}=k Q^{\circ} / R^{\mathrm{o}}$, where $R^{\mathrm{o}}=\left\{\rho^{\circ} \mid \rho \in R\right\}$. We shall write $\bar{\gamma}^{\mathrm{o}}=\gamma^{\mathrm{o}}+R^{\mathrm{o}}$ for $\gamma \in k Q$, but $e_{x}=\varepsilon_{x}+R^{\mathrm{o}}$ for $x \in Q_{0}$. This yields an anti-isomorphism $\Lambda \rightarrow \Lambda^{\mathrm{o}}: \bar{\gamma} \rightarrow \bar{\gamma}^{\mathrm{o}}$.

We shall say that Λ is locally finite dimensional if $e_{y} \Lambda e_{x}$ is finite dimensional for all $x, y \in Q_{0}$; compare $[6,(2.1)]$; strongly locally finite dimensional if R is locally admissible; right (respectively, left) locally bounded if R is right (respectively, left) admissible; and locally bounded if R is admissible; compare [6, (2.1)]. Clearly, a left or right locally bounded algebra is strongly locally finite dimensional.

We shall write J for the ideal in Λ generated by $\bar{\alpha}$ with $\alpha \in Q_{1}$, and say that J is locally nilpotent if, for each pair $(x, y) \in Q_{0} \times Q_{0}$, there exists an integer $n_{x y}>0$ such that $e_{y} J^{n_{x y}} e_{x}=0$. We shall need the following easy result.
1.6. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is weakly admissible.
(1) As a k-vector space, $\Lambda=\Lambda_{0} \oplus \Lambda_{1} \oplus J^{2}$, where Λ_{0} has a k-basis $\left\{e_{x} \mid x \in Q_{0}\right\}$ and Λ_{1} has a k-basis $\left\{\bar{\alpha} \mid \alpha \in Q_{1}\right\}$.
(2) The ideal R is locally admissible if and only if J is locally nilpotent; and in this case, J contains only nilpotent elements.
Proof. We shall prove only the second part of Statement (2). Given $u \in J$, write $u=\sum_{i=1}^{s} u_{i}$ with $u_{i} \in e_{y_{i}} J e_{x_{i}}$, for some $x_{i}, y_{i} \in Q_{0}$. If J is locally nilpotent, then
$e_{y_{j}} J^{n} e_{x_{i}}=0$ for some $n>0$ and all $1 \leq i, j \leq s$, and consequently, $u^{n}=0$. The proof of the lemma is completed.

Example. (1) If Q is a strongly locally finite quiver, then $k Q$ is strongly locally finite dimensional.
(2) Let $\Lambda=k Q / R$, where Q is a single loop α and R is generated by $\alpha^{2}-\alpha^{3}$. Then Λ is locally finite dimensional, but not strongly locally finite dimensional.

A left Λ-module M is called unitary if $M=\sum_{x \in Q_{0}} e_{x} M$. Such a unitary module M is called finitely supported if $e_{x} M=0$ for all but finitely many $x \in Q_{0}$ and locally finite dimensional if $e_{x} M$ is finite dimensional for all $x \in Q_{0}$. We shall denote by $\operatorname{Mod} \Lambda$ the category of all left unitary Λ-modules, and by $\operatorname{Mod}^{b} \Lambda, \bmod \Lambda$ and $\bmod ^{b} \Lambda$ its full subcategories of finitely supported modules, of locally finite dimensional modules and of finite dimensional modules, respectively.

Let $M \in \operatorname{Mod} \Lambda$. We shall write $\operatorname{rad} M$ for the Jacobson radical, and $\operatorname{soc} M$ for the socle, of M. We shall call $S_{J}(M)=\{u \in M \mid J u=0\}$ the J-socle, $J M$ the J-radical, and $T_{J}(M)=M / J M$ the J-top, of M. Recall that a submodule of M is essential if it intersects non-trivially every non-zero submodule of M. Associated with $a \in Q_{0}$, we have a principal projective module $P_{a}=\Lambda e_{a}$ and a principal simple module $S_{a}=P_{a} / J P_{a}$ in $\operatorname{Mod} \Lambda$.
1.7. Lemma. Let $\Lambda=k Q / R$ be a strongly locally finite dimensional algebra.
(1) If $a \in Q_{0}$, then $J P_{a}$ is the largest proper submodule of P_{a}.
(2) The non-isomorphic simple modules in $\operatorname{Mod} \Lambda$ are S_{a} with $a \in Q_{0}$; and consequently, $S_{J}(M)=\operatorname{soc} M$, for all $M \in \operatorname{Mod} \Lambda$.
(3) If $M \in \operatorname{Mod} \Lambda$ has a finitely supported essential socle, then every quotient module of M has an essential socle.
Proof. (1) If N is a submodule of P_{a} not contained in $J P_{a}$, then $e_{a}-u \in N$ for some $u \in J P_{a}$. Since $u=u e_{a}$, we see that $\left(e_{a}+e_{a} u+\cdots+e_{a} u^{n-1}\right)\left(e_{a}-u\right)=e_{a} \in N$.
(2) Let S be a simple module in $\operatorname{Mod} \Lambda$. Being unitary, S is generated by an element u in $e_{a} S$, for some $a \in Q_{0}$. By Statement (1), we have an epimorphism $f: P_{a} \rightarrow S$ with $J=\operatorname{Ker}(f)$, and hence, $S \cong S_{a}$.
(3) Let $\operatorname{soc} M$ be essential in M and supported by $a_{1}, \ldots, a_{r} \in Q_{0}$. Consider a submodule N of M such that M / N has a non-zero element $w+N \in M / N$, where $w \in e_{b_{1}} M+\cdots+e_{b_{s}} M$. Since J is locally nilpotent, $e_{a_{j}} J^{t} e_{b_{i}}=0$ for some $t>0$, and for all $i=1, \ldots, s ; j=1, \ldots, r$. Suppose that $v(w+N) \neq 0$, for some $v \in J^{t}$. Since $\operatorname{soc} M$ is essential in M, there exists some $u \in \Lambda$ such that $0 \neq(u v) w \in \operatorname{soc} M$. In particular, $e_{a_{j}}(u v) e_{b_{i}} \neq 0$ for some $1 \leq i \leq s$ and $1 \leq j \leq r$, a contradiction. Thus, there exists some maximal $0 \leq n<t$ such that $J^{n}(w+N) \neq 0$. Then, $0 \neq J^{n}(w+N) \subseteq \operatorname{soc}(M / N)$. The proof of the proposition is completed.

Remark. In case Λ is strongly locally finite dimensional, by Lemma $1.7(1), P_{a}$ is indecomposable for every $a \in Q_{0}$.

Example. Let Λ be the locally finite dimensional algebra defined by a loop α with a relation $\alpha^{2}-\alpha^{3}$. Then, the principal projective module Λ is decomposable. If α acts identically on k, then k is a non-principal simple module with a zero J-socle.

A representation M of the bound quiver (Q, R) consists of a family of k-spaces $M(x)$ with $x \in Q_{0}$ and a family of k-linear maps $M(\alpha): M(x) \rightarrow M(y)$ with $\alpha: x \rightarrow y \in Q_{1}$, such that $M(\rho)=0$ for all $\rho \in R(x, y)$ with $x, y \in Q_{0}$. Here, $M(\gamma)=\sum_{i} \lambda_{i} M\left(\alpha_{i, m_{i}}\right) \circ \cdots \circ M\left(\alpha_{i, 1}\right)$ for any $\gamma=\sum_{i} \lambda_{i} \alpha_{i, m_{i}} \cdots \alpha_{i, 1} \in k Q(x, y)$ with $\lambda_{i} \in k$ and $\alpha_{i j} \in Q_{1}$. In particular, we may write $M(\bar{\gamma})=M(\gamma)$, for $\gamma \in k Q$. A morphism $f: M \rightarrow N$ of representations consists of a family of k-linear maps f_{x} with $x \in Q_{0}$ such that $f_{y} \circ M(\alpha)=N(\alpha) \circ f_{x}$, for every $\alpha: x \rightarrow y$ in Q. We shall denote by $\operatorname{Rep}(Q, R)$ the category of all representations of (Q, R).

It is well known that a module $M \in \operatorname{Mod} \Lambda$ can be regarded as a representation $M \in \operatorname{Rep}(Q, R)$ such that $M(x)=e_{x} M$ for $x \in Q_{0}$, and $M(\alpha): M(x) \rightarrow M(y)$ is the left multiplication by $\bar{\alpha}$ for $\alpha \in Q_{1}(x, y)$. A morphism $f: M \rightarrow N$ in $\operatorname{Mod} \Lambda$ can be regarded as a morphism $\left(f_{x}\right)_{x \in Q_{0}}: M \rightarrow N$ in $\operatorname{Rep}(Q, R)$, where $f_{x}: M(x) \rightarrow N(x)$ is obtained by restricting f. Taking this point of view, we shall define an exact functor $D: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Lambda^{\circ}$ as follows. Given a module M, we define a module $D M$ by $(D M)(x)=\operatorname{Hom}_{k}(M(x), k)$ for $x \in Q_{0}$, and $(D M)\left(\alpha^{\mathrm{o}}\right)=\operatorname{Hom}_{k}(M(\alpha), k)$ for $\alpha \in Q_{1}$. Given a morphism $f: M \rightarrow N$, we define a morphism $D f: D N \rightarrow D M$ by $(D f)_{x}=\operatorname{Hom}\left(f_{x}, k\right)$, for every $x \in Q_{0}$.
1.8. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is weakly admissible.
(1) The functor $D: \bmod \Lambda \rightarrow \bmod \Lambda^{\circ}$ is an equivalence.
(2) If $M \in \operatorname{Mod} \Lambda$ and $V \in \bmod k$, then $D(M \otimes V) \cong D M \otimes D V$.

Proof. Statement (1) is evident, and Statement (2) follows from Corollary 1.2. The proof of the lemma is completed.
V. Graded algebras. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a homogeneous ideal in $k Q$. Then, Λ is positively graded with a J-grading $\Lambda=\oplus_{n \geq 0} \Lambda_{n}$, where $\Lambda_{n}=\left\{\bar{\gamma} \mid \gamma \in k Q_{n}\right\}$. Observe that Λ° is also positively graded as $\Lambda^{\circ}=\oplus_{n \geq 0} \Lambda_{n}^{\circ}$, where $\Lambda_{n}^{\circ}=\left\{\bar{\gamma}^{\mathrm{o}} \mid \gamma \in k Q_{n}\right\}$. One says that Λ is quadratic if R is a quadratic ideal.
1.9. Proposition. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a homogeneous ideal in $k Q$. Then Λ is locally finite dimensional if and only if Λ is strongly locally finite dimensional.
Proof. Assume that Λ is locally finite dimensional but R is not locally admissible. Then $Q(x, y)$, for some $x, y \in Q_{0}$, has arbitrarily long paths not lying in R. Since $e_{y} \Lambda e_{x}$ is finite dimensional, $\lambda_{1} \delta_{1}+\cdots+\lambda_{n} \delta_{n} \in R(x, y)$, where $\lambda_{i} \in k$ are nonzero and $\delta_{i} \in Q(x, y) \backslash R$ are of pairwise different lengths. Since R is homogeneous, $\lambda_{1} \delta_{1}+\cdots+\lambda_{n} \delta_{n}=\rho_{1}+\cdots+\rho_{s}$, where $\rho_{1}, \ldots, \rho_{s} \in R(x, y)$ are homogeneous of pairwise different degrees. Then, each δ_{i} is a summand of a unique ρ_{j}, say ρ_{i}. Thus, $\sum_{i=1}^{n}\left(\rho_{i}-\lambda_{i} \delta_{i}\right)+\left(\sum_{j>n} \rho_{j}\right)=0$, and $\lambda_{i} \delta_{i}=\rho_{i}$ for $i=1, \ldots, n$, a contradiction. The proof of the proposition is completed.

A module $M \in \operatorname{Mod} \Lambda$ is said to be graded if $M=\oplus_{i \in \mathbb{Z}} M_{i}$, where the M_{i} are k-spaces such that $\Lambda_{i} M_{j} \subseteq M_{i+j}$ for all $i, j \in \mathbb{Z}$. Such a graded module M is said to be generated in degree n if $M=\Lambda M_{n}$. A morphism $f: M \rightarrow N$ between graded modules is called homogeneous of degree n if $f\left(M_{i}\right) \subseteq N_{i+n}$ for all $i \in \mathbb{Z}$; and in this case, we shall write $f_{i, x}: M_{i}(x) \rightarrow N_{i+n}(x)$, where $i \in \mathbb{Z}$ and $x \in Q_{0}$, for the
map obtained by restricting f. A graded morphism is a homogeneous morphism of degree 0. Observe that the shifts of a graded module are isomorphic to each other by homogeneous isomorphisms. The following statement is evident.
1.10. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is homogeneous. A sequence of homogeneous morphisms of degree n between graded modules

$$
L \xrightarrow{f} M \xrightarrow{g} N
$$

is exact if and only if the sequence

$$
L_{i-n}(x) \xrightarrow{f_{i-n, x}} M_{i}(x) \xrightarrow{g_{i+n, x}} N_{i+n, x}(x)
$$

is an exact sequence, for all $i \in \mathbb{Z}$ and $x \in Q_{0}$.
VI. Derived categories. Throughout the paper, we shall compose morphisms in any category from the right to the left. All functors between additive categories are additive. Let \mathcal{A} be a full additive subcategory of an abelian category \mathfrak{A}. We shall denote by $C(\mathcal{A})$ and $C^{b}(\mathcal{A})$ the complex category and the bounded complex category of \mathcal{A} respectively, whose shift functor is written as [1]. By identifying an object M with the stalk complex $M[0]$, we shall regard \mathcal{A} as a full subcategory of $C(\mathcal{A})$. Moreover, $K(\mathcal{A})$ and $K^{b}(\mathcal{A})$ will stand for the homotopy category and the bounded homotopy category of \mathcal{A}, respectively. Let $\left(X^{\bullet}, d_{X}^{*}\right)$ be a complex in $C\left({ }_{b} A\right.$. The twist $\mathfrak{t}\left(X^{\bullet}\right)$ of X^{\bullet} is the complex $\left(M^{\bullet}, d_{M}^{\bullet}\right)$ defined by $M^{n}=X^{n}$ and $d_{M}^{*}=-d_{X}^{n}$; see $\left[2\right.$, Section 4]. Clearly, $\mathfrak{t}\left(M^{*}\right) \cong X^{\bullet}$. One calls X^{\bullet} acyclic if all its cohomological objects $\mathrm{H}^{n}\left(X^{\bullet}\right)$ with $n \in \mathbb{Z}$, which are objects in \mathfrak{A}, vanish. Given a morphism $f^{\bullet}: X^{\bullet} \rightarrow Y^{\bullet}$ in $C(\mathcal{A})$, its mapping cone $C_{f} \cdot$ is defined by $C_{f}^{n} \cdot=X^{n+1} \oplus Y^{n}$ and

$$
d_{C_{f}}^{n} \cdot=\left(\begin{array}{rr}
-d_{X}^{n+1} & 0 \\
f^{n+1} & d_{Y}^{n}
\end{array}\right) .
$$

A full additive subcategory \mathscr{A} of $C(\mathcal{A})$ is called derivable if it is closed under the shifts and taking cones. In this case, the quotient category $\mathcal{K}(\mathscr{A})$ of \mathscr{A} modulo nullhomotopic morphisms is a triangulated subcategory of the triangulated category $K(\mathfrak{A})$, and the localization $\mathcal{D}(\mathscr{A})$ of $\mathcal{K}(\mathscr{A})$ at quasi-isomorphisms is a triangulated category; see [26, Chapter 2, Sections 1.6 and 1.7], which we call the category derived from \mathscr{A}. In particular, we shall write $D(\mathcal{A})$ and $D^{b}(\mathcal{A})$ for the categories derived from $C(\mathcal{A})$ and $C^{b}(\mathcal{A})$ and call them the derived category and the bounded derived category of \mathcal{A}, respectively.

2. Projective covers and injective envelopes

The objective of this section is to obtain some preparatory results for constructing linear projective resolution and linear injective co-resolution, most of them are generalizations of classical results for modules over a locally bounded category; see [6, 13], or for representations of a strongly locally finite quiver; see [3].

Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a weakly admissible ideal in $k Q$. We shall denote by $\operatorname{Proj} \Lambda$ the full additive subcategory of $\operatorname{Mod} \Lambda$ generated by the modules isomorphic to $P_{a} \otimes V$ with $a \in Q_{0}$ and $V \in \operatorname{Mod} k$, and by $\operatorname{proj} \Lambda$ the one generated by the modules isomorphic to P_{a} with $a \in Q_{0}$.

We start with describing morphisms involving modules in Proj Λ. It is necessary to fix some notation, which will be used for the rest of the paper. Let $\gamma \in k Q(x, y)$ and $\bar{\gamma}=\gamma+R \in \Lambda$, where $x, y \in Q_{0}$. The left multiplication by $\bar{\gamma}$ yields a k-linear map $P_{a}(\bar{\gamma}): P_{a}(x) \rightarrow P_{a}(y)$ for every $a \in Q_{0}$, while the right multiplication by $\bar{\gamma}$ yields a Λ-linear morphism $P[\bar{\gamma}]: P_{y} \rightarrow P_{x}$, which restricts to a k-linear map $P[\bar{\gamma}]_{a}: P_{y}(a) \rightarrow P_{x}(a)$ for every $a \in Q_{0}$.
2.1. Proposition. Let $\Lambda=k Q / R$, where Q is locally finite and R is weakly admissible. Let $M \in \operatorname{Mod} \Lambda$ and $V \in \operatorname{Mod} k$. Given $a, b \in Q_{0}$, we obtain
(1) a k-linear isomorphism $\mathcal{P}_{x, y}: e_{b} \Lambda e_{a} \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{b}, P_{a}\right): u \mapsto P[u]$;
(2) a k-linear isomorphism $\mathcal{M}_{a}: \operatorname{Hom}_{\Lambda}\left(P_{a}, M\right) \rightarrow e_{a} M: f \mapsto f\left(e_{a}\right)$;
(3) a k-linear isomorphism $\psi_{M}: \operatorname{Hom}_{\Lambda}\left(P_{a} \otimes V, M\right) \rightarrow \operatorname{Hom}_{k}\left(V, e_{a} M\right)$;
(4) a k-linear map $\mathcal{M}_{a, b}: e_{b} \Lambda e_{a} \rightarrow \operatorname{Hom}_{k}\left(e_{a} M, e_{b} M\right): u \mapsto M(u)$, where $M(u)$ denotes the left multiplication by u.
Proof. Statements (1), (2) and (4) are evident. Observing that P_{a} is a Λ - k bimodule, we deduce Statement (3) from the adjoint isomorphism and Statement (2). The proof of the proposition is completed.

In the locally finite dimensional case, the morphisms in $\operatorname{Proj} \Lambda$ are completely described in the following statement; compare [1, (7.6)].
2.2. Lemma. Let $\Lambda=k Q / R$ be a locally finite dimensional algebra. Given $a, b \in Q_{0}$ and $V, W \in \operatorname{Mod} k$, every Λ-linear morphism $f: P_{a} \otimes V \rightarrow P_{b} \otimes W$ is uniquely written as $f=\sum P[u] \otimes f_{u}$, where u runs over a basis of $e_{a} \Lambda e_{b}$ and $f_{u} \in \operatorname{Hom}_{k}(V, W)$. Proof. Let $f: P_{a} \otimes V \rightarrow P_{b} \otimes W$ be Λ-linear. Then, $f\left(e_{a} \otimes V\right) \subset e_{a} \Lambda e_{b} \otimes W$. Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be a finite basis of $e_{a} \Lambda e_{b}$. If $v \in V$, then $f\left(e_{a} \otimes v\right)=\sum_{i=1}^{n} u_{i} \otimes w_{i}$, for some unique $w_{1}, \ldots, w_{n} \in W$. This yields k-linear maps $f_{i}: V \rightarrow W: v \mapsto w_{i}$, for $i=1, \ldots, n$. We see easily that $f=\sum_{i=1}^{n} P\left[u_{i}\right] \otimes f_{i}$, and this expression is unique. The proof of the lemma is completed.

Let $M \in \operatorname{Mod} \Lambda$. An epimorphism $d: P \rightarrow M$ with $P \in \operatorname{proj} \Lambda$ will be called a J-minimal projective cover over $\operatorname{proj} \Lambda$ if $\operatorname{Ker}(d) \subseteq J P$. For instance, the canonical projection $d_{a}: P_{a} \rightarrow S_{a}$ is a J-minimal projective cover of S_{a}, for every $a \in Q_{0}$. A generating set $\left\{u_{1}, \ldots, u_{s}\right\}$ of M is called a J-top basis if $\left\{u_{1}+J M, \ldots, u_{s}+J M\right\}$ is a k-basis of $T_{J}(M)$. The following statement is well-known in the finite dimensional case; see $[17,(1.1)]$, and its proof is left to the reader.
2.3. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is weakly admissible. A module $M \in \operatorname{Mod} \Lambda$ has a J-top basis $\left\{u_{1}, \ldots, u_{s}\right\}$ with $u_{i} \in e_{a_{i}} M$ if and only if it has a J-minimal projective cover $d: P_{a_{1}} \oplus \cdots \oplus P_{a_{s}} \rightarrow M$ with $d\left(e_{a_{i}}\right)=u_{i}$, where $a_{1}, \ldots, a_{s} \in Q_{0}$.

Let M be a module in $\operatorname{Mod} \Lambda$. Given an integer $n \geq 1$, a projective n-presentation over $\operatorname{proj} \Lambda$ of M is an exact sequence

$$
P^{-n} \xrightarrow{d^{-n}} P^{-n+1} \longrightarrow \cdots \longrightarrow P^{-1} \xrightarrow{d^{-1}} P^{0} \xrightarrow{d^{0}} M \longrightarrow 0
$$

with $P^{-i} \in \operatorname{proj} \Lambda$, for $i=0, \ldots, n$. Such a projective n-presentation is called J-minimal if $\operatorname{Ker}\left(d^{-i}\right) \subseteq J P^{-i}$, for $i=0, \ldots, n$. The following statement is well known in case Q is finite; compare [11, (2.5)].
2.4. Corollary. Let $\Lambda=k Q / R$, where Q is locally finite and R is weakly admissible. If $a \in Q_{0}$ with $Q_{1}(a,-)=\left\{\alpha_{i}: a \rightarrow b_{i} \mid i=1, \ldots, r\right\}$, then S_{a} admits a J-minimal projective presentation

$$
P_{b_{1}} \oplus \cdots \oplus P_{b_{r}} \xrightarrow{\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)} P_{a} \xrightarrow{d_{a}} S_{a} \longrightarrow 0
$$

Proof. Let $a \in Q_{0}$ with $Q_{1}(a,-)=\left\{\alpha_{i}: a \rightarrow b_{i} \mid i=1, \ldots, r\right\}$. It is evident that $\operatorname{Ker}\left(d_{a}\right)=J P_{a}$ with a J-top basis $\left\{\bar{\alpha}_{1}, \cdots, \bar{\alpha}_{r}\right\}$. Let $j: J P_{a} \rightarrow P_{a}$ be the inclusion map. By Lemma 2.3, we obtain a J-minial projective cover $d: P_{b_{1}} \oplus \cdots \oplus P_{b_{r}} \rightarrow J P_{a}$ such that $\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)=j \circ d$. The proof of the corollary is completed.

Next, we shall study injective envelopes. Let us fix some notation. Given $a \in Q_{0}$, we shall write $P_{a}^{\mathrm{o}}=\Lambda^{\circ} e_{a} \in \operatorname{Mod} \Lambda^{\circ}$ and $I_{a}=D P_{a}^{\mathrm{o}} \in \operatorname{Mod} \Lambda$. As a representation, $I_{a}(x)=\operatorname{Hom}_{k}\left(e_{x} \Lambda^{\circ} e_{a}, k\right)$ for all $x \in Q_{0}$; and $I_{a}(\alpha)$, with $\alpha \in Q_{1}$, sends $f \in I_{a}(x)$ to $I_{a}(\alpha)(f) \in I_{a}(y)$ so that $I_{a}(\alpha)(f)\left(v^{\mathrm{o}}\right)=f\left(\bar{\alpha}^{\mathrm{o}} v^{\mathrm{o}}\right)$, for all $v \in e_{a} \Lambda e_{y}$.
2.5. Proposition. Let $\Lambda=k Q / R$ be a locally finite dimensional algebra. Let $M \in \operatorname{Mod} \Lambda$ and $V \in \operatorname{Mod} k$. Given $a \in Q_{0}$, we obtain a k-linear isomorphism

$$
\phi_{M}: \operatorname{Hom}_{\Lambda}\left(M, I_{a} \otimes V\right) \rightarrow \operatorname{Hom}_{k}\left(e_{a} M, V\right)
$$

Proof. Fix $a \in Q_{0}$. We have a k-linear map $\psi_{a}: \operatorname{Hom}_{k}\left(e_{a} \Lambda^{\circ} e_{a}, V\right) \rightarrow V: g \mapsto g\left(e_{a}\right)$. For $x \in Q_{0}$, we deduce from Corollary $1.2(1)$ a k-linear isomorphism

$$
\sigma_{x}: I_{a}(x) \otimes V=\operatorname{Hom}_{k}\left(e_{x} \Lambda^{\circ} e_{a}, k\right) \otimes V \rightarrow \operatorname{Hom}_{k}\left(e_{x} \Lambda^{\circ} e_{a}, V\right)
$$

such that $\sigma_{x}(h \otimes v)\left(u^{\mathrm{o}}\right)=h\left(u^{\mathrm{o}}\right) v$, for $h \in I_{a}(x), v \in V$ and $u \in e_{a} \Lambda e_{x}$. Recall that a Λ-linear morphism $f: M \rightarrow I_{a} \otimes V$ consists of a family of k-linear maps $f_{x}: e_{x} M \rightarrow I_{a}(x) \otimes V$ with $x \in Q_{0}$. In particular, we obtain a k-linear map

$$
\phi_{M}: \operatorname{Hom}_{\Lambda}\left(M, I_{a} \otimes V\right) \rightarrow \operatorname{Hom}_{k}\left(e_{a} M, V\right): f \rightarrow \psi_{a} \circ \sigma_{a} \circ f_{a} .
$$

Suppose that $\phi_{M}(f)=0$. We claim that $f=0$, that is, $f_{x}=0$, for all $x \in Q_{0}$. Indeed, for any $m \in e_{x} M$, write $f_{x}(m)=\sum_{i=1}^{s} h_{i} \otimes v_{i}$, where $h_{i} \in \operatorname{Hom}_{k}\left(e_{x} \Lambda^{\circ} e_{a}, k\right)$ and $v_{i} \in V$ such that v_{1}, \ldots, v_{s} are k-linearly independent. Given any $u \in e_{a} \Lambda e_{x}$, we obtain $u m \in e_{a} M$ such that $f_{a}(u m)=u f_{x}(m)=\sum_{i=1}^{s}\left(u h_{i}\right) \otimes v_{i}$. Thus,

$$
0=\phi_{M}(f)(u m)=\sum_{i=1}^{s} \sigma_{a}\left(u h_{i} \otimes v_{i}\right)\left(e_{a}\right)=\sum_{i=1}^{s}\left(u h_{i}\right)\left(e_{a}\right) v_{i}=\sum_{i=1}^{s} h_{i}\left(u^{\mathrm{o}}\right) v_{i}
$$

Since the v_{i} are k-linearly independent, $h_{i}\left(u^{\mathrm{o}}\right)=0$, for $i=1, \ldots, s$. Hence, $h_{i}=0$, for $i=1, \ldots, s$. Thus, $f_{x}(m)=0$, and hence, $f_{x}=0$. This establishes our claim.

Next, consider a k-linear map $g_{a}: e_{a} M \rightarrow V$. Given $x \in Q_{0}$ and $m \in e_{x} M$, we have a k-linear map $g_{x}(m): e_{x} \Lambda^{\circ} e_{a} \rightarrow V: u^{\circ} \rightarrow g_{a}(u m)$, and then, a k-linear map $f_{x}: e_{x} M \rightarrow I_{a}(x) \otimes V: m \mapsto \sigma_{x}^{-1}\left(g_{x}(m)\right)$. Let $w \in e_{y} \Lambda e_{x}$ with $y \in Q_{0}$. For any $u \in e_{a} \Lambda e_{y}$, we have $\sigma_{y}\left(f_{y}(w m)\right)\left(u^{\mathrm{o}}\right)=g_{y}(w m)\left(u^{\mathrm{o}}\right)=g_{a}((u w) m)$. On the other hand, writing $g_{x}(m)=\sum_{i=1}^{s} \sigma_{x}\left(h_{i} \otimes v_{i}\right)$ with $h_{i} \in I_{a}(x)$ and $v_{i} \in V$, we obtain $w f_{x}(m)=w \sigma_{x}^{-1}\left(g_{x}(m)\right)=\sum_{i=1}^{s}\left(w h_{i}\right) \otimes v_{i}$. Then,

$$
\sigma_{y}\left(w f_{x}(m)\right)\left(u^{\mathrm{o}}\right)=\sum_{i=1}^{s} h_{i}\left(w^{\mathrm{o}} u^{\mathrm{o}}\right) v_{i}=\sum_{i=1}^{s} \sigma_{x}\left(h_{i} \otimes v_{i}\right)\left((u w)^{\mathrm{o}}\right)=g_{a}((u w) m)
$$

which is $\sigma_{y}\left(f_{y}(w m)\right)\left(u^{\mathrm{o}}\right)$. Since σ_{y} is bijective, $\left.w f_{x}(m)=f_{y}(w m)\right)$. This shows that the f_{x} with $x \in Q_{0}$ form a Λ-linear morphism $f: M \rightarrow I_{a} \otimes V$ such that $\phi_{M}(f)=g_{a}$. The proof of the proposition is completed.

Remark. In case Λ is locally finite dimensional, by Proposition $2.5, I_{a} \otimes V$ is injective in $\operatorname{Mod} \Lambda$, for $a \in Q_{0}$ and $V \in \operatorname{Mod} k$; compare [3, (1.3)]. We shall call I_{a} the principal injective module associated with a. In case Λ is strongly finite dimensional, by Lemmas 1.7 and 1.8, I_{a} indecomposable.

In general, I_{a} is probably not injective. By abuse of notation, however, we shall denote by $\operatorname{Inj} \Lambda$ the full additive subcategory of $\operatorname{Mod} \Lambda$ generated by the modules isomorphic to $I_{a} \otimes V$, where $a \in Q_{0}$ and $V \in \operatorname{Mod} k$, and by $\operatorname{inj} \Lambda$ the one generated by the modules isomorphic to I_{a} with $a \in Q_{0}$. To describe the morphisms in Inj Λ, we shall fix some notation. Given $u \in e_{b} \Lambda e_{a}$ with $a, b \in Q_{0}$, the right multiplication by u^{o} yields a Λ^{o}-linear morphism $P\left[u^{\mathrm{o}}\right]: P_{a}^{\mathrm{o}} \rightarrow P_{b}^{\mathrm{o}}$. Applying $D: \operatorname{Mod} \Lambda^{\circ} \rightarrow \operatorname{Mod} \Lambda$, we obtain a Λ-linear morphism $I[u]=D P\left[u^{\circ}\right]: I_{b} \rightarrow I_{a}$ such that $I[u](f)\left(v^{\mathrm{o}}\right)=f\left(v^{\mathrm{o}} u^{\mathrm{o}}\right)$, for all $f \in I_{a}(x)$ with $x \in Q_{0}$ and $v \in e_{a} \Lambda e_{x}$.
2.6. Lemma. Let $\Lambda=k Q / R$ be a locally finite dimensional algebra. Given $a, b \in Q_{0}$ and $V, W \in \operatorname{Mod} k$, every Λ-linear morphism $f: I_{a} \otimes V \rightarrow I_{b} \otimes W$ is uniquely written as $f=\sum I[u] \otimes f_{u}$, where u runs over a k-basis of $e_{a} \Lambda e_{b}$ and $f_{u} \in \operatorname{Hom}_{k}(V, W)$. Proof. Fix $a, b \in Q_{0}$. Since $e_{a} \Lambda e_{b}$ is finite dimensional, we have a k-isomorphism

$$
\theta_{a, b}: e_{a} \Lambda e_{b} \rightarrow \operatorname{Hom}_{k}\left(\operatorname{Hom}_{k}\left(e_{b} \Lambda^{\circ} e_{a}, k\right), k\right): u \mapsto \theta_{a, b}(u)
$$

such that $\theta_{a, b}(u)(f)=f\left(u^{\mathrm{o}}\right)$, for $f \in \operatorname{Hom}_{k}\left(e_{b} \Lambda^{\circ} e_{a}, k\right)=I_{a}(b)$ Let $V, W \in \operatorname{Mod} k$. Consider the following k-linear isomorphisms

where ρ and ϕ are as defined in Lemma 1.1 and Proposition 2.5, respectively. For $u \in e_{a} \Lambda e_{b}$ and $h \in \operatorname{Hom}_{k}(V, W)$, we claim that $\phi(I[u] \otimes h)=\left(\rho \circ\left(\theta_{a, b} \otimes 1\right)\right)(u \otimes h)$. Indeed, $\phi(I[u] \otimes h)$ is the composite of the maps in the sequence

$$
I_{a}(b) \otimes V \xrightarrow{I[u] \otimes h} I_{b}(b) \otimes W \xrightarrow{\sigma_{b}} \operatorname{Hom}_{k}\left(e_{b} \Lambda^{\circ} e_{b}, W\right) \xrightarrow{\psi_{b}} W
$$

where σ_{b} and ψ_{b} are as defined in the proof of Proposition 2.5. Given $g \in I_{a}(b)$ and $v \in V$, we obtain $\left(\varphi\left(\theta_{a, b}(u) \otimes h\right)\right)(g \otimes v)=\theta_{a, b}(u)(g) h(v)=g\left(u^{\circ}\right) h(v)$ and

$$
\phi(I[u] \otimes h)(g \otimes v)=\sigma_{b}(I[u](g) \otimes h(v))\left(e_{b}\right)=I[u](g)\left(e_{b}\right) h(v)=g\left(u^{\circ}\right) h(v) .
$$

This establishes our claim. As a consequence, we obtain a k-linear isomorphism $\phi^{-1} \circ \rho \circ\left(\theta_{a, b} \otimes 1\right): e_{a} \Lambda e_{b} \otimes \operatorname{Hom}_{k}(V, W) \rightarrow \operatorname{Hom}_{\Lambda}\left(I_{a} \otimes V, I_{b} \otimes W\right): u \otimes h \rightarrow I[u] \otimes h$. The proof of the lemma is completed.

We shall calculate explicitly the J-socle for I_{a} and $I_{a} / S_{J}\left(I_{a}\right)$.
2.7. Lemma. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a weakly admissible ideal. If $a \in Q_{0}$, then
(1) $S_{J}\left(I_{a}\right)$ has a k-basis $\left\{e_{a}^{\star}\right\}$, where $e_{a}^{\star} \in I_{a}(a)$ with $e_{a}^{\star}\left(e_{a}\right)=1$ and $e_{a}^{\star}\left(e_{a} J^{\circ} e_{a}\right)=0$;
(2) $S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$ has a k-basis $\left\{\alpha^{\star}+S_{J}\left(I_{a}\right) \mid \alpha: x \rightarrow a \in Q_{1}(-, a)\right\}$, where $\alpha^{\star} \in I_{a}(x)$ such that $\alpha^{\star}\left(\bar{\alpha}^{\mathrm{o}}\right)=1$ and $\alpha^{\star}\left(\bar{\gamma}^{\mathrm{o}}\right)=0$ for all $\gamma \in Q(x, a) \backslash\{\alpha\}$.
Proof. Fix $a \in Q_{0}$. Clearly, $e_{a}^{\star} \in S_{J}\left(I_{a}\right)$. If $f \in I_{a}(x)$ for some $x \in Q_{0}$, which is neither zero nor a multiple of e_{a}^{\star}, then $f\left(u^{\circ}\right) \neq 0$ for some $u \in e_{a} J e_{x}$, that is, $(u \cdot f)\left(e_{a}\right) \neq 0$. Hence, $f \notin S_{J}\left(I_{a}\right)$. Thus, $S_{J}\left(I_{a}\right)=k e_{a}^{\star}$.

Fix some vertex $x \in Q_{0}$. Consider first $\alpha \in Q_{1}(x, a)$. The existence of α^{\star} follows from Proposition 1.6(1). Observe that $\bar{\alpha} \cdot \alpha^{\star}=e_{a}^{\star}$. Let $\beta \in Q_{1}(x, y)$ with $\beta \neq \alpha$. For $\delta \in Q(y, a)$, since $\delta \beta \neq \alpha$, we obtain $\left(\bar{\beta} \cdot \alpha^{\star}\right)\left(\bar{\delta}^{\circ}\right)=\alpha^{\star}\left(\bar{\beta}^{\circ} \bar{\delta}^{\circ}\right)=0$. Therefore, $\alpha^{\star}+S_{J}\left(I_{a}\right) \in S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$. Now, assume that $Q_{1}(x, a)=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. If $\sum_{i=1}^{r} \lambda_{i} \alpha_{i}^{\star} \in S_{J}\left(I_{a}\right)$ for some $\lambda_{i} \in k$, then

$$
\lambda_{j}=\sum_{i=1}^{r} \lambda_{i} \cdot \alpha_{i}^{\star}\left(\bar{\alpha}_{j}^{\mathrm{o}}\right)=\sum_{i=1}^{r} \lambda_{i} \cdot\left(\bar{\alpha}_{j} \alpha_{i}^{\star}\right)\left(e_{a}\right)=\left(\bar{\alpha}_{j} \cdot\left(\sum_{i=1}^{r} \lambda_{i} \alpha_{i}^{\star}\right)\right)\left(e_{a}\right)=0,
$$

for $j=1, \ldots, r$. As a consequence, the classes $\alpha^{\star}+S_{J}\left(I_{a}\right)$ with $\alpha \in Q_{1}(-, a)$ are k-linearly independent in $S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$.

Finally, consider $g+S_{J}\left(I_{a}\right) \in S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$, where $g \in I_{a}(x)$ for some $x \in Q_{0}$. Let $\rho \in Q_{\geq 2}(x, a)$. Write $\rho=\delta \alpha$, where $\alpha: x \rightarrow y$ is an arrow and $\delta: y \rightsquigarrow a$ is non-trivial. Since $\bar{\alpha} g \in S_{J}\left(I_{a}\right)$ and δ is non-trivial, $g\left(\bar{\rho}^{\mathrm{o}}\right)=(\bar{\alpha} g)\left(\bar{\delta}^{\mathrm{o}}\right)=0$. Hence, $g\left(e_{x}\left(J^{\circ}\right)^{2} e_{a}\right)=0$. By Lemma 1.6(1), $g=\sum_{\gamma \in Q_{\leq 1}(-, a)} \lambda_{\gamma} \gamma^{\star}$, where $\lambda_{\gamma} \in k$. Thus, $g+S_{J}\left(I_{a}\right)=\sum_{\alpha \in Q_{1}(-, a)} \lambda_{\alpha}\left(\alpha^{\star}+S_{J}\left(I_{a}\right)\right)$. The proof of the lemma is completed.

The following statement is well-known in the finite dimensional case.
2.8. Corollary. Let $\Lambda=k Q / R$ be strongly locally finite dimensional. If $a \in Q_{0}$, then $S_{J}\left(I_{a}\right)$ and $S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$ are essential socles of I_{a} and $I_{a} / S_{J}\left(I_{a}\right)$.
Proof. By Lemma 1.7(2), the J-socle of a module is its socle. Let $h \in I_{a}(x) \backslash S_{J}\left(I_{a}\right)$, for some $x \in Q_{0}$. Then, $h\left(e_{x} J^{\circ} e_{a}\right) \neq 0$. Since J° is locally nilpotent, there exists a maximal positive integer s such that $h\left(e_{x}\left(J^{\mathrm{o}}\right)^{s} e_{a}\right) \neq 0$. Then, $h\left(\bar{\zeta}^{\circ}\right)=\lambda \neq 0$ for some $\zeta \in Q_{s}(x, a)$. Note that $\bar{\zeta} h \in I_{a}(a)$ with $(\bar{\zeta} h)\left(e_{a}\right)=h\left(\bar{\zeta}^{\mathrm{o}}\right)=\lambda$. By the maximality of s, we see that $(\bar{\zeta} h)\left(e_{a} J^{\mathrm{o}} e_{a}\right)=0$. Hence, $\bar{\zeta} h=\lambda e_{a}^{\star} \in S_{J}\left(I_{a}\right)$. Thus, $S_{J}\left(I_{a}\right)$ is essential in I_{a}.

Write $\zeta=\beta \xi$, where $\beta \in Q_{1}(b, a)$ and $\xi \in Q_{s-1}(x, b)$ with $b \in Q_{0}$. Then, $\bar{\xi} h \in I_{a}(b)$ with $(\bar{\xi} h)\left(\bar{\beta}^{\circ}\right)=h\left(\bar{\zeta}^{\circ}\right) \neq 0$. Therefore, $\bar{\xi}\left(h+S_{J}\left(I_{a}\right)\right)=\bar{\xi} h+S_{J}\left(I_{a}\right) \neq 0$. By the maximality of s, we see that $(\bar{\xi} h)\left(e_{b}\left(J^{\circ}\right)^{2} e_{a}\right)=0$. By Lemma 1.6(1), $\bar{\xi} h+S_{J}\left(I_{a}\right)=\sum_{\alpha \in Q_{1}(-, a)} \lambda_{\alpha} \cdot\left(\alpha^{\star}+S_{J}\left(I_{a}\right)\right) \in S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$, where $\lambda_{\alpha} \in k$. That is, $S_{J}\left(I_{a} / S_{J}\left(I_{a}\right)\right)$ is essential in $I_{a} / S_{J}\left(I_{a}\right)$. The proof of the corollary is completed.

Example. Let Λ be a locally finite dimensional algebra given by a loop α with a relation $\alpha^{2}-\alpha^{3}$. Then $S_{J}(D(\Lambda))=0$, which is not essential in $D(\Lambda)$.

Let $M \in \operatorname{Mod} \Lambda$. A subset $\left\{u_{1}, \ldots, u_{s}\right\}$ of M is called an essential socle basis if M has an essential socle, of which $\left\{u_{1}, \ldots, u_{s}\right\}$ is a k-basis. The following result is well-known in case Λ is finite dimensional, and its proof is left to the reader.
2.9. Lemma. Let $\Lambda=k Q / R$ be a strongly locally finite dimensional algebra. A module $M \in \operatorname{Mod} \Lambda$ has an essential socle basis $\left\{u_{1}, \ldots, u_{s}\right\}$ with $u_{i} \in e_{a_{i}} M$ if and only if M has an injective envelope $j: M \rightarrow I_{a_{1}} \oplus \cdots \oplus I_{a_{s}}$ with $j\left(u_{i}\right)=e_{a_{i}}^{\star}$, where $a_{1}, \ldots, a_{s} \in Q_{0}$.

The following statement is well-known in case Q is finite.
2.10. Corollary. Let $\Lambda=k Q / R$ be a strongly locally finite dimensional algebra. If $a \in Q_{0}$ with $Q_{1}(-, a)=\left\{\beta_{i}: b_{i} \rightarrow a \mid i=1, \ldots, s\right\}$, then

$$
0 \longrightarrow S_{a} \xrightarrow{j_{a}} I_{a} \xrightarrow{\left(I\left[\bar{\beta}_{1}\right], \ldots, I\left[\bar{\beta}_{s}\right]\right)^{t}} I_{b_{1}} \oplus \cdots \oplus I_{b_{s}},
$$

is a minimal injective co-presentation of S_{a}, where j_{a} sends $e_{a}+J e_{a}$ to e_{a}^{\star}.
Proof. Let $a \in Q_{0}$ with $Q_{1}(-, a)=\left\{\beta_{i}: b_{i} \rightarrow a \mid i=1, \ldots, s\right\}$. By Corollary 2.8 and Lemma 2.9, j_{a} is an injective envelope of S_{a} with $\operatorname{Im}\left(j_{a}\right)=S_{J}\left(I_{a}\right)$. By Lemma 2.7 and Corollary 2.8, $\left\{\beta_{1}^{\star}+S_{J}\left(I_{a}\right), \ldots, \beta_{s}^{\star}+S_{J}\left(I_{a}\right)\right\}$ is an essential socle basis for I_{a}. By Lemma 2.9, we obtain an injective envelope $j: I_{a} / S\left(I_{a}\right) \rightarrow I_{b_{1}} \oplus \cdots \oplus I_{b_{s}}$, sending $\beta_{i}^{\star}+S_{J}\left(I_{a}\right)$ to $\left(0, \ldots, e_{b_{i}}^{\star}, \ldots, 0\right)$, for $i=1, \ldots, s$. Since $I\left[\bar{\beta}_{i}\right]\left(\beta_{i}^{\star}\right)=e_{b_{i}}^{\star}$, we see that $\left(I\left[\bar{\beta}_{1}\right], \ldots, I\left[\bar{\beta}_{s}\right]\right)^{t}$ is the composite of the canonical projection $I_{a} \rightarrow I_{a} / S_{J}\left(I_{a}\right)$ and the injective envelope j. The proof of the corollary is completed.

For the rest of this section, assume that $\Lambda=k Q / R$, where R is homogeneous. Given $a \in Q_{0}$, in view of the J-grading $\Lambda=\oplus_{n \geq 0} \Lambda_{n}$, we see that P_{a} and S_{a} are graded and generated in degree one. In case Λ is locally finite dimensional, then I_{a} is negatively graded as $I_{a}=\oplus_{n \geq 0}\left(I_{a}\right)_{-n}$, where $\left(I_{a}\right)_{-n}=\operatorname{Hom}_{k}\left(\Lambda_{n}^{\circ} e_{a}, k\right)$, for all $n \geq 0$. However, I_{a} is not graded in general. For instance, if Λ is the path algebra of a single loop α, then $D \Lambda=\operatorname{Hom}_{k}\left(\oplus_{n \geq 0} k \alpha^{n}, k\right) \not \not \oplus_{n \geq 0} \operatorname{Hom}_{k}\left(\Lambda_{n}, k\right)$. The following statement is a variation of a classical result on graded projective covers; see, for example, $[11,(2.4)]$, and its proof is left to the reader.
2.11. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is homogeneous. Let M be a finitely generated graded module in $\operatorname{Mod} \Lambda$. If $f: P \rightarrow M$ and $f^{\prime}: P^{\prime} \rightarrow M$ are homogeneous J-minimal projective covers, then $f^{\prime}=f \circ g$, where $g: J P^{\prime} \rightarrow P$ is a graded isomorphism.

The following result describes a J-minimal projective 2-presentation of a principal simple module in the graded case; compare [13, (2.4)].
2.12. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is homogeneous with a minimal generating set Ω. Let $a \in Q_{0}$ with $Q_{1}(a,-)=\left\{\alpha_{i}: a \rightarrow b_{i} \mid i=1, \ldots, r\right\}$ and $\Omega(a,-)=\left\{\rho_{1}, \ldots, \rho_{s}\right\}$. If $\rho_{j}=\sum_{j=1}^{r} \gamma_{i j} \alpha_{i}$ with $\gamma_{i j} \in k Q\left(b_{i}, c_{j}\right)$, then S_{a} has a J-minimal projective 2-presentation

$$
P_{c_{1}} \oplus \cdots \oplus P_{c_{s}} \xrightarrow{\left(P\left[\bar{\gamma}_{i_{j}}\right]\right)_{r \times s}} P_{b_{1}} \oplus \cdots \oplus P_{b_{r}} \xrightarrow{\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)} P_{a} \xrightarrow{d_{a}} S_{a} \longrightarrow 0 .
$$

Proof. Let $\rho_{j}=\sum_{j=1}^{r} \gamma_{i j} \alpha_{i}$, where $\gamma_{i j} \in k Q\left(b_{i}, c_{j}\right)$. Write $d_{1}=\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)$ and $d_{2}=\left(P\left[\bar{\gamma}_{i j}\right]\right)_{r \times s}$. By Corollary 2.4, it suffices to show that d_{2} co-restricts to a J-minimal projective cover of $\operatorname{Ker}\left(d_{1}\right)$. Since $u_{j}=\left(\bar{\gamma}_{1 j}, \ldots, \bar{\gamma}_{r j}\right) \in \operatorname{Ker}\left(d_{1}\right)$, by Lemma 2.3, it amounts to show that $\left\{u_{1}, \ldots, u_{s}\right\}$ is a J-top basis of $\operatorname{Ker}\left(d_{1}\right)$.

Let $v=\left(\bar{\delta}_{1}, \ldots, \bar{\delta}_{r}\right) \in \operatorname{Ker}\left(d_{1}\right)$, where $\delta_{i} \in k Q\left(b_{i},-\right)$. We may assume that $\delta_{i} \in k Q\left(b_{i}, c\right)$, for some $c \in Q_{0}$. Since $d_{1}(v)=0$, we obtain $\sum_{i=1}^{r} \delta_{i} \alpha_{i} \in R(a, c)$, and hence, $\sum_{i=1}^{r} \delta_{i} \alpha_{i}=\sum_{j=1}^{s} \omega_{j} \rho_{j}+\sum_{i=1}^{r} \eta_{i} \alpha_{i}=\sum_{i=1}^{r}\left(\sum_{j=1}^{s} \omega_{j} \gamma_{i j}+\eta_{i}\right) \alpha_{i}$, where $\omega_{j} \in k Q\left(c_{j}, c\right)$ and $\eta_{i} \in R\left(b_{i}, c\right)$. This yields $\delta_{i}=\sum_{j=1}^{s} \omega_{j} \gamma_{i j}+\eta_{i}$, and hence,
$\bar{\delta}_{i}=\sum_{j=1}^{s} \bar{\omega}_{j} \bar{\gamma}_{i j}$, for $i=1, \ldots, r$. As a consequence, $v=\sum_{j=1}^{s} \bar{\omega}_{j} u_{j}$. This shows that $\operatorname{Ker}\left(d_{1}\right)=\sum_{i=1}^{n} \Lambda u_{i}$.

Assume next that $\sum_{j=1}^{s} \lambda_{j} u_{j} \in J \operatorname{Ker}\left(d_{1}\right)=\sum_{i=1}^{n} J u_{i}$, where $\lambda_{j} \in k$. Write $\sum_{j=1}^{s} \lambda_{j} u_{j}=\sum_{j=1}^{s} \bar{\nu}_{j} u_{j}$, with $\nu_{j} \in k Q^{+}$. Then, $\sum_{j=1}^{s} \lambda_{j} \gamma_{i j}=\sum_{j=1}^{s}\left(\nu_{j} \gamma_{i j}+\eta_{i j}\right)$, where $\eta_{i j} \in R\left(b_{i}, c_{j}\right)$, for $i=1, \ldots, r$. Calculating $\sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{j} \gamma_{i j} \alpha_{i}$, we obtain $\sum_{j=1}^{s} \lambda_{j} \rho_{j}=\sum_{j=1}^{s} \nu_{j}\left(\rho_{j}+\zeta_{j}\right)$, where $\zeta_{j} \in R\left(a, c_{j}\right)$. By Lemma 1.5, $\lambda_{j}=0$, for $i=1, \ldots, s$. The proof of the lemma is completed.

A projective n-presentation over proj Λ of a module is called linear if the morphisms between the projective modules are homogenous of degree one. The following statement extends a well-known result, saying that a classical Koszul algebra is quadratic; see [5, (2.3.3)].
2.13. Theorem. Let $\Lambda=k Q / R$, where Q is locally finite and R is homogeneous. Then, Λ is quadratic if and only if every principal simple Λ-module admits a J minimal linear projective 2-presentation over $\operatorname{proj} \Lambda$.
Proof. Let Ω be a minimal generating set of R. Fix $a \in Q_{0}$. Since $\Omega(a,-)$ contains only finitely many quadratic relations, the necessity follows immediately from Lemma 2.12. Assume that S_{a} admits a linear projective 2-presentation over $\operatorname{proj} \Lambda$. Letting $Q_{1}(a,-)=\left\{\alpha_{i}: a \rightarrow b_{i} \mid i=1, \ldots, r\right\}$, we deduce from Lemmas 2.6, 2.11 and 2.12 a commutative diagram with exact rows

where the upper row is a linear projective 2-presentation, f_{0}, f_{1} are graded isomorphisms, and $\gamma_{i j} \in k Q\left(b_{i}, c_{j}\right)$. Since $f_{1} \circ d_{2}$ is homogeneous of degree one, $\gamma_{i j} \in k Q_{1}\left(b_{i}, c_{j}\right)$ and $\eta_{j}=\sum_{i=1}^{r} \gamma_{i j} \alpha_{i} \in R_{2}\left(a, c_{j}\right)$, for $j=1, \ldots, s$. By Lemma 2.3, $\left\{u_{j}=\left(\bar{\gamma}_{1 j}, \ldots, \bar{\gamma}_{r j}\right) \mid j=1, \ldots, s\right\}$ is a J-top basis of $\operatorname{Ker}\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)$.

Let $\rho \in \Omega(a, c)$ be a relation of degree $n>2$. Write $\rho=\sum_{i=1}^{r} \gamma_{i} \alpha_{i}$, for some $\gamma_{i} \in k Q_{n-1}\left(b_{i}, c\right)$. Since $\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{r}\right) \in \operatorname{Ker}\left(P\left[\bar{\alpha}_{1}\right], \cdots, P\left[\bar{\alpha}_{r}\right]\right)$, we see that $\left(\bar{\gamma}_{1}, \ldots, \bar{\gamma}_{r}\right)=\sum_{j=1}^{s} \bar{\delta}_{j} u_{j}$, for some $\delta_{j} \in k Q_{n-2}\left(c_{j}, c\right)$. Then, $\gamma_{i}=\sigma_{i}+\sum_{j=1}^{s} \delta_{j} \gamma_{i j}$, where $\sigma_{i} \in R\left(b_{i}, c\right)$, for $i=1, \ldots, r$. This yields $\rho=\sum_{i=1}^{r} \sigma_{i} \alpha_{i}+\sum_{j=1}^{s} \delta_{j} \eta_{j}$. Since $n>2$, we see that $\rho \in R\left(k Q^{+}\right)+\left(k Q^{+}\right) R$, a contradiction to Lemma 1.5. The proof of the theorem is completed.

A complex P^{\bullet} over $\operatorname{proj} \Lambda$ is called a projective resolution over $\operatorname{proj} \Lambda$ of a module M if $P^{i}=0$ for all $i>0$, and $\mathrm{H}^{0}\left(P^{\bullet}\right) \cong M$ and $\mathrm{H}^{i}\left(P^{\bullet}\right)=0$ for $i<0$. The following definition is a variation of the classical one; see, for example, [5].
2.14. Definition. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a homogeneous ideal in $k Q$.
(1) A complex over $\operatorname{Mod} \Lambda$ is called linear if the differentials are homogeneous morphisms of degree one between indecomposable modules.
(2) The algebra Λ is called Koszul if S_{a} admits a linear projective resolution over $\operatorname{proj} \Lambda$, for every $a \in Q_{0}$.

Remark. By Theorem 2.13, a Koszul algebra is quadratic; compare [5, (2.3.3)].
Example. Given any locally finite quiver Q, it is evident that $\Lambda=k Q /\left(k Q^{+}\right)^{2}$ is a Koszul algebra.

3. Koszul complexes and Koszul duals

The objective of this section is to present a combinatorial account of Koszul complexes, Koszul algebras and Koszul duals. Although our main results will be similar to those stated in [5], we shall take an elementary approach with a local viewpoint and provide detailed arguments.

Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a quadratic ideal in $k Q$. In order to define the local Koszul complexes, we need to introduce some notation. Given $\alpha \in Q_{1}$, we obtain a derivation $\partial_{\alpha}: k Q \rightarrow k Q$, that is a k-linear map, sending a path ρ to δ if $\rho=\alpha \delta$; and to 0 if α is not a terminal arrow of ρ. In particular, ∂_{α} vanishes on $k Q_{0}$ and sends $k Q_{p}$ to $k Q_{p-1}$ for all $p>0$. Fix some $a, x \in Q_{0}$ and $n \geq 0$. Recall that $R_{n}=R \cap k Q_{n}$ and $R_{n}(a, x)=R(a, x) \cap k Q_{n}(a, x)$. We shall define a subspace $R^{(n)}(a, x)$ of $k Q_{n}(a, x)$ by $R^{(n)}(a, x)=k Q_{n}(a, x)$, for $n=0,1$, and $R^{(n)}(a, x)=\cap_{0 \leq j \leq n-j} k Q_{n-j-2}(-, x) \cdot R_{2} \cdot k Q_{j}(a,-)$, for $n \geq 2$. Observe that $R^{(2)}(a, x)=R_{2}(a, x)$. We shall write $R^{(n)}(a,-)=\oplus_{x \in Q_{0}} R^{(n)}(a, x)$. As shown below, these subspaces are stable under the derivations.
3.1. Lemma. Let Q be a locally finite quiver with R a quadratic ideal in $k Q$. Consider an element $\gamma \in R^{(n)}(a, x)$ for some $n>0$ and $a, x \in Q_{0}$.
(1) If $\alpha \in Q_{1}(y, x)$, then $\partial_{\alpha}(\gamma) \in R^{(n-1)}(a, y)$.
(2) If $\gamma=\alpha_{1} \gamma_{1}+\cdots+\alpha_{m} \gamma_{m}$, where $\gamma_{i} \in k Q_{n-1}\left(a, y_{i}\right)$ and $\alpha_{i} \in Q_{1}\left(y_{i}, x\right)$, then $\gamma_{i} \in R^{(n-1)}\left(a, y_{i}\right)$, for $i=1, \ldots, m$.
Proof. Let $\alpha \in Q_{1}(y, x)$. Clearly, $\partial_{\alpha}(\beta \delta)=\partial_{\alpha}(\beta) \delta$, for $\beta \in Q_{1}$ and $\delta \in k Q$. Since $\partial_{\alpha}\left(k Q_{n}(a, x)\right) \subseteq k Q_{n-1}(a, x)$, we may assume that $n \geq 3$. Given $0 \leq j \leq n-3$, write $\gamma=\sum_{i=1}^{r} \alpha_{i} \zeta_{i} \rho_{i} \delta_{i}$, where $\alpha_{i} \in Q_{1}\left(y_{i}, x\right) ; \zeta_{i} \in k Q_{n-3-j}\left(-, y_{i}\right) ; \rho_{i} \in R_{2}$; $\delta_{i} \in k Q_{j}(a,-)$. Thus, $\partial_{\alpha}(\gamma)=\sum_{i=1}^{r} \partial_{\alpha}\left(\alpha_{i}\right) \zeta_{i} \rho_{i} \delta_{i}$. Suppose that $\partial_{\alpha}(\gamma) \neq 0$. We may assume that $\alpha_{i}=\alpha$ if and only if $1 \leq i \leq s$, for some $1 \leq s \leq r$. Then,

$$
\partial_{\alpha}(\gamma)=\sum_{i=1}^{s} \zeta_{i} \rho_{i} \delta_{i} \in k Q_{n-3-j}(-, y) \cdot R_{2} \cdot k Q_{j}(a,-)
$$

Thus, $\partial_{\alpha}(\gamma) \in R^{(n-1)}(a, y)$. This establishes Statement (1), from which Statement (2) follows immediately. The proof of the lemma is completed.

As a consequence, we obtain the following statement.
3.2. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is quadratic. Given $a, x, y \in Q_{0}$ and $n>0$, we obtain a Λ-linear morphism

$$
\partial_{a}^{-n}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes \partial_{\alpha}: P_{x} \otimes R^{(n)}(a, x) \rightarrow P_{y} \otimes R^{(n-1)}(a, y)
$$

Moreover, if $\rho=\sum_{i=1}^{m} \zeta_{i} \delta_{i} \in R^{(n)}(a, x)$, where $\delta_{i} \in k Q_{n-1}\left(a, y_{i}\right)$ and $\zeta_{i} \in k Q_{1}\left(y_{i}, x\right)$, then $\partial_{a}^{-n}(y, x)(u \otimes \rho)=\sum_{i=1}^{m} u \bar{\zeta}_{i} \otimes \delta_{i}$, for all $u \in P_{x}$.
Proof. Fix $a, x, y \in Q_{0}$ and $n>0$. By Lemma 3.1(1), we do have a Λ-linear morphism $\partial_{a}^{-n}(y, x)$ as defined in the lemma. Consider $\rho=\sum_{i=1}^{m} \zeta_{i} \delta_{i} \in R^{(n)}(a, x)$,
where $\delta_{i} \in k Q_{n-1}\left(a, y_{i}\right)$ and $\zeta_{i} \in k Q_{1}\left(y_{i}, x\right)$. Write $\zeta_{i}=\sum_{j=1}^{s} \lambda_{i j} \alpha_{j}$, where $\lambda_{i j} \in k$ and $\alpha_{1}, \ldots, \alpha_{s}$ are the arrows in $Q_{1}(y, x)$. For any $u \in P_{x}$, we obtain

$$
\begin{aligned}
\partial_{a}^{-n}(y, x)(u \otimes \rho) & =\sum_{l=1}^{s}\left(P\left[\bar{\alpha}_{l}\right] \otimes \partial_{\alpha_{l}}\right)(u \otimes \rho) \\
& =\sum_{l, j=1}^{s} \sum_{i=1}^{m} u \lambda_{i j} \bar{\alpha}_{l} \otimes \partial_{\alpha_{l}}\left(\alpha_{j}\right) \delta_{i} \\
& =\sum_{i=1}^{m} u\left(\sum_{j=1}^{s} \lambda_{i j} \bar{\alpha}_{j}\right) \otimes \delta_{i} .
\end{aligned}
$$

The proof of the lemma is completed.
Fix $a \in Q_{0}$. Since $R^{(n)}(a, x)$ is finite dimensional and vanishes for almost all $x \in Q_{0}$, by Lemma 3.2, we obtain a sequence K_{a}^{*} over $\operatorname{proj} \Lambda$ as follows:

$$
\cdots \longrightarrow K_{a}^{-n} \xrightarrow{\partial_{a}^{-n}} K_{a}^{-n+1} \longrightarrow \cdots \longrightarrow K_{a}^{-1} \xrightarrow{\partial_{a}^{-1}} K_{a}^{0} \longrightarrow 0 \longrightarrow \cdots
$$

where $K_{a}^{-n}=\oplus_{x \in Q_{0}} P_{x} \otimes R^{(n)}(a, x)$ for every $n \geq 0$, and $\partial_{a}^{-n}=\left(\partial_{a}^{-n}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}: \oplus_{x \in Q_{0}} P_{x} \otimes R^{(n)}(a, x) \rightarrow \oplus_{y \in Q_{0}} P_{y} \otimes R^{(n-1)}(a, y)$,
which is homogeneous of degree one, for every $n>0$. Observing that $K_{a}^{0}=P_{a} \otimes k \varepsilon_{a}$, we obtain an augmented Λ-linear morphism $\partial_{a}^{0}: K_{a}^{0} \rightarrow S_{a}: e_{a} \otimes \varepsilon_{a} \mapsto e_{a}+J P_{a}$.
3.3. Lemma. Let $\Lambda=k Q / R$ with Q locally finite and R quadratic. If $a \in Q_{0}$, then
(1) $\operatorname{Ker}\left(\partial_{a}^{-n}\right) \subseteq J K_{a}^{-n}$ for $n \geq 0$;
(2) K_{a}^{*} is a linear complex over $\operatorname{proj} \Lambda$;
(3) S_{a} has as a linear projective 2-presentation the sequence

$$
K_{a}^{-2} \xrightarrow{\partial_{a}^{-2}} K_{a}^{-1} \xrightarrow{\partial_{a}^{-1}} K_{a}^{0} \xrightarrow{\partial_{a}^{0}} S_{a} \longrightarrow 0
$$

Proof. Fix $a \in Q_{0}$. We have $\operatorname{Ker}\left(\partial_{a}^{0}\right)=J K_{a}^{0}$. Let $w \in \operatorname{Ker}\left(\partial_{a}^{-n}\right)$, for some $n>0$. Then, $e_{x} w \in \operatorname{Ker}\left(\partial_{a}^{-n}\right)$ for every $x \in Q_{0}$. Since $e_{x} w \in P_{x} \otimes R^{(n)}(a, x)$, by definition, $\partial_{a}^{-n}\left(e_{x} w\right)=\sum_{y \in Q_{0}} \partial_{a}^{-n}(y, x)\left(e_{x} w\right)=0$, where $\partial_{a}^{-n}(y, x)\left(e_{x} w\right) \in P_{y} \otimes R^{(n-1)}(a, y)$. Thus, $\partial_{a}^{-n}(y, x)\left(e_{x} w\right)=0$, for every $y \in Q_{0}$.

Write $e_{x} w=\sum_{i=0}^{s} w_{i}$, where $w_{i} \in J^{i} P_{x} \otimes R^{(n)}(a, x)$. Since $\partial_{a}^{-n}(y, x)$ is homogeneous of degree one, $\partial_{a}^{-n}(y, x)\left(w_{0}\right)=0$. Now, $w_{0}=e_{x} \otimes \gamma$, where $\gamma \in R^{(n)}(a, x)$. Write $\gamma=\sum_{z \in Q_{0}}\left(\sum_{\beta_{z} \in Q_{1}(z, x)} \beta_{z} \xi_{\beta_{z}}\right)$, where $\xi_{\beta_{y}} \in k Q_{n-1}(a, y)$. By definition,
$\partial_{a}^{-n}(y, x)\left(e_{x} \otimes \gamma\right)=\sum_{\alpha \in Q_{1}(y, x) ; z \in Q_{0} ; \beta_{z} \in Q_{1}(z, x)} \bar{\alpha} \otimes \partial_{\alpha}\left(\beta_{z} \xi_{\beta_{z}}\right)=\sum_{\beta_{z} \in Q_{1}(z, x)} \bar{\beta}_{y} \otimes \xi_{\beta_{y}}$.
Since the $\bar{\beta}_{y}$ are k-linearly independent, $\xi_{\beta_{y}}=0$, for all $y \in Q_{0}$. This implies that $w_{0}=0$. That is, $e_{x} w \in J P_{x} \otimes R^{(n)}(a, x)$ for all $x \in Q_{0}$. As a consequence, $w \in J K_{a}^{-n}$. This establishes Statement (1).

Next, we shall show that $\partial_{a}^{1-n} \circ \partial_{a}^{-n}=0$, for $n>1$. Indeed, let $v \in P_{x}$ and $\gamma \in R^{(n)}(a, x)$, where $x \in Q_{0}$. By the definition of $R^{(n)}(a, x)$, we may assume that $\gamma=\rho \delta$, for some $\rho \in R_{2}(z, x)$ and $\delta \in k Q_{n-2}(a, z)$ with $z \in Q_{0}$. Write $\rho=\sum_{i=1}^{s} \lambda_{i} \beta_{i} \alpha_{i}$, where $\lambda_{i} \in k, \alpha_{i} \in Q_{1}\left(z, y_{i}\right)$ and $\beta_{i} \in Q_{1}\left(y_{i}, x\right)$ with $y_{i} \in Q_{0}$. By Lemma 3.2, we obtain
$\left(\partial_{a}^{1-n} \circ \partial_{a}^{-n}\right)(v \otimes \gamma)=\sum_{i=1}^{s}\left(\partial_{a}^{1-n} \circ \partial_{a}^{-n}\right)\left(v \otimes \lambda_{i} \beta_{i} \alpha_{i} \delta\right)=v\left(\sum_{i=1}^{s} \lambda_{i} \bar{\beta}_{i} \bar{\alpha}_{i}\right) \otimes \delta=0$.
This establishes Statement (2).
Finally, assume that $\alpha_{i}: a \rightarrow b_{i}, i=1, \ldots, r$ are the arrows in $Q_{1}(a,-)$. Then, $K_{a}^{-1}=\otimes_{i=1}^{r} P_{b_{i}} \otimes k \alpha_{i}$. Let Ω be a minimal generating set for R with $\rho_{j}: a \rightsquigarrow c_{j}$, $j=1, \ldots, s$, the relations in $\Omega(a,-)$. Then, $K_{a}^{-2}=\oplus_{j=1}^{s} P_{c_{j}} \otimes k \rho_{j}$. Writing
$\rho_{j}=\sum_{j=1}^{r} \gamma_{i j} \alpha_{i}$ for some $\gamma_{i j} \in k Q_{1}\left(b_{i}, c_{j}\right)$, in view of Lemma 3.2, we obtain a commutative diagram

with f_{a}, f_{1} and f_{2} graded isomorphisms such that $f_{a}\left(e_{a}\right)=e_{a} \otimes \varepsilon_{a} ; f_{1}\left(e_{b_{i}}\right)=e_{b_{i}} \otimes \alpha_{i}$ and $f_{2}\left(e_{c_{j}}\right)=e_{c_{j}} \otimes \rho_{j}$, for $i=1, \ldots, r ; j=1, \ldots, s$. By Lemma 2.12, the lower row is a linear projective 2-presentation of S_{a}. The proof of the lemma is completed.

In the sequel, the linear complex K_{a}^{*} will be called the local Koszul complex of Λ at a. The following statement is a local version under the combinatorial setting of a well-known result in $[5,(2.6 .1)]$.
3.4. Theorem. Let $\Lambda=k Q / R$, where Q is locally finite and R is quadratic. If $a \in Q_{0}$, then S_{a} has a linear projective resolution over $\operatorname{proj} \Lambda$ if and only if K_{a}^{*} is a projective resolution of S_{a}.
Proof. By Lemma 3.3, it suffices to show the necessity. Suppose that S_{a} has a linear projective resolution over $\operatorname{proj} \Lambda$. By Lemmas 2.11 and 3.3 , there exists a commutative diagram

where $p \geq 2$, the upper row is a linear projective resolution of S_{a}, and f^{-p}, \cdots, f^{0} are graded isomorphisms. In particular, ∂_{a}^{-i} co-restricts to a J-minimal projective cover of $\operatorname{Ker}\left(\partial_{a}^{1-i}\right)$, for $i=1, \ldots, p$.

We claim that ∂_{a}^{-p-1} co-restricts to J-minimal projective cover of $\operatorname{Ker}\left(\partial_{a}^{-p}\right)$. By Lemma 3.3(1), it suffices to show that it is surjective. We may assume that K_{a}^{-p} is non-zero. Then, $K_{a}^{-p}=\oplus_{j=1}^{n} P_{y_{j}} \otimes k \rho_{j}$, where $\rho_{j} \in R^{(p)}\left(a, y_{j}\right), j=1, \ldots, n$, form a basis of $R^{(p)}(a,-)$; while $K_{a}^{1-p}=\oplus_{i=1}^{m} P_{x_{i}} \otimes k \zeta_{i}$, where $\zeta_{i} \in R^{(p-1)}\left(a, x_{i}\right), i=1$, \ldots, m, form a basis of $R^{(p-1)}(a,-)$. Observe that $f^{-p} \circ d^{-p-1}$ is a J-minimal projective cover of $\operatorname{Ker}\left(\partial_{a}^{-p}\right)$. By Lemma 2.3, $\operatorname{Ker}\left(\partial_{a}^{-p}\right)$ admits a normalized J top basis T^{p}. Since $f^{-p} \circ d^{-p-1}$ is homogeneous of degree one, T^{p} consists of homogeneous elements of degree one.

Consider $u=\left(u_{1}, \ldots, u_{n}\right) \in T^{p} \cap e_{z} K_{a}^{-p}$, where $z \in Q_{0}$ and $u_{j} \in P_{y_{j}} \otimes k \rho_{j}$. Then $u_{j}=\bar{\gamma}_{j} \otimes \rho_{j}$, where $\gamma_{j} \in k Q_{1}\left(y_{j}, z\right) ; j=1, \ldots, n$. Since $\rho_{j} \in R^{(p)}\left(a, y_{j}\right)$, by Lemma $3.1(2)$, we may write $\rho_{j}=\sum_{i=1}^{m} \delta_{i j} \zeta_{i}$, where $\delta_{i j} \in k Q_{1}\left(x_{i}, y_{j}\right)$. Since $\partial_{a}^{-p}(u)=0$, by Lemma 3.2, we obtain

$$
\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \bar{\gamma}_{j} \bar{\delta}_{i j}\right) \otimes \zeta_{i}=\sum_{j=1}^{n} \sum_{i=1}^{m} \partial_{a}^{-p}\left(\bar{\gamma}_{j} \otimes \delta_{i j} \zeta_{i}\right)=0 .
$$

Since the ζ_{i} are k-linearly independent, we deduce that $\sum_{j=1}^{n} \bar{\gamma}_{j} \bar{\delta}_{i j}=0$. That is, $\eta_{i}=\sum_{j=1}^{n} \gamma_{j} \delta_{i j} \in R\left(x_{i}, z\right)$. Since R is quadratic, $\eta_{i} \in R_{2}\left(x_{i}, z\right)$, for $i=1, \ldots, m$.

Setting $\omega=\sum_{j=1}^{n} \gamma_{j}$, we see that $\omega \in R^{(p+1)}(a, z)$. Indeed, $\omega=\sum_{i=1}^{m} \eta_{i} \zeta_{i}$ with $\eta_{i} \in R_{2}\left(x_{i}, z\right)$ and $\zeta_{i} \in k Q_{p-1}\left(a, x_{i}\right)$; and for $0 \leq s<p-1$, since $\rho_{j} \in R^{(p)}\left(a, y_{j}\right)$, we
may write $\omega=\sum \mu_{l} \xi_{l} \delta_{l}$, where $\mu_{l} \in k Q_{p-2-s}\left(-, y_{j}\right), \xi_{l} \in R_{2}$ and $\delta_{l} \in k Q_{s}(a,-)$. In particular, $e_{z} \otimes \omega \in K_{a}^{-p-1}$.

Let f_{i} be the composite of $\partial^{-p-1}\left(y_{i}, z\right): P_{z} \otimes R^{(p+1)}(a, z) \rightarrow P_{y_{i}} \otimes R^{(p)}\left(a, y_{i}\right)$ and the canonical projection $p_{i}: P_{y_{i}} \otimes R^{(p)}\left(a, y_{i}\right) \rightarrow P_{y_{i}} \otimes k \rho_{i}$, for $i=1, \ldots, n$. Since $\gamma_{j} \in k Q_{1}\left(y_{j}, z\right)$, we deduce from Lemma 3.2 that

$$
f_{i}\left(e_{z} \otimes \omega\right)=p_{i}\left(\sum_{j=1}^{n} \partial_{a}^{-p-1}\left(y_{i}, z\right)\left(e_{z} \otimes \gamma_{j} \rho_{j}\right)\right)=p_{i}\left(\sum_{y_{j}=y_{i}} \bar{\gamma}_{j} \otimes \rho_{j}\right)=\bar{\gamma}_{i} \otimes \rho_{i}=u_{i}
$$

and hence, $\partial_{a}^{-p-1}\left(e_{z} \otimes \omega\right)=\left(f_{1}\left(e_{z} \otimes \omega\right), \ldots, f_{n}\left(e_{z} \otimes \omega\right)\right)=\left(u_{1}, \ldots, u_{n}\right)=u$. This is establishes our claim. By Lemma 2.11, we obtain a graded isomorphism $f^{-p-1}: P^{-p-1} \rightarrow K_{a}^{-p-1}$ such that $f^{-p} \circ d^{-p-1}=\partial_{a}^{-p-1} \circ f^{-p-1}$. By induction, K_{a}^{*} is a projective resolution of S_{a}. The proof of the theorem is completed.

The classical quadratic dual of a quadratic algebra is defined by the tensor algebra of the dual space of the generating space under the left finiteness condition; see $[5,(2.8 .1)]$. We shall define the quadratic dual of Λ by the opposite quiver Q°. For this, we need some preparation. Given $n \geq 0$, the finite basis Q_{n} of $k Q_{n}$ has a dual basis $\left\{\xi^{*} \mid \xi \in Q_{n}\right\}$ in $D\left(k Q_{n}\right)$. Given $\gamma=\sum \lambda_{i} \xi_{i}$, where $\lambda_{i} \in k$ and $\xi_{i} \in Q_{n}$, we shall write $\gamma^{*}=\sum \lambda_{i} \xi_{i}^{*} \in D\left(k Q_{n}\right)$. This yields a k-linear isomorphism

$$
\psi_{n}: k Q_{n}^{\circ} \rightarrow D\left(k Q_{n}\right): \gamma^{\circ} \rightarrow \gamma^{*} .
$$

Given $\xi \in k Q_{n}(x, y)$ with $x, y \in Q_{0}$, by abuse of notation, we shall identify ξ^{*} with its restriction to $k Q_{n}(x, y)$. In this way, $\left\{\xi^{*} \mid \xi \in Q_{n}(x, y)\right\}$ is the dual basis of $Q_{n}(x, y)$ in $D\left(k Q_{n}(x, y)\right)$. We collect some basic properties as follows.
3.5. Lemma. Let Q be a locally finite quiver with $\zeta \in k Q_{s}(x, y)$ and $\gamma \in k Q_{t}(y, z)$, for some $x, y, z \in Q_{0}$ and $s, t \geq 0$.
(1) If $\delta \in k Q_{s}$ and $\xi \in k Q_{t}$, then $(\gamma \zeta)^{*}(\xi \delta)=\gamma^{*}(\xi) \zeta^{*}(\delta)$.
(2) If $\gamma \in Q_{1}(y, z)$, then $(\gamma \zeta)^{*}(\eta)=\zeta^{*}\left(\partial_{\gamma}(\eta)\right)$ for all $\eta \in k Q_{s+1}$.

Proof. We may assume that $\zeta \in Q_{s}(x, y)$ and $\gamma \in Q_{t}(y, z)$. To prove Statement (1), we may assume $\delta \in Q_{s}$ and $\xi \in Q_{t}$. If $(\gamma \zeta)^{*}(\xi \delta)=1$, then $\xi \delta=\gamma \zeta$. Since ξ and γ are of the same length, $\xi=\gamma$ and $\delta=\zeta$. Thus, $\gamma^{*}(\xi) \zeta^{*}(\delta)=1$. If $(\gamma \zeta)^{*}(\xi \delta)=0$, then $\xi \delta \neq \gamma \zeta$. In particular, $\xi \neq \gamma$ or $\delta \neq \zeta$, and hence, $\gamma^{*}(\xi) \zeta^{*}(\delta)=0$.

Next, assume that $\gamma \in Q_{1}(y, z)$. To prove Statement (2), we may assume that $\eta \in Q_{s+1}$. Write $\eta=\alpha \delta$, for some $\alpha \in Q_{1}$ and $\delta \in Q_{s}$. By Statement (1), we see that $(\gamma \zeta)^{*}(\eta)=\gamma^{*}(\alpha) \zeta^{*}(\delta)$. If $\alpha \neq \gamma$, then $(\gamma \zeta)^{*}(\eta)=0=\zeta^{*}\left(\partial_{\gamma}(\eta)\right)$. Otherwise, $\delta=\partial_{\gamma}(\eta)$, and hence, $(\gamma \zeta)^{*}(\eta)=\zeta^{*}\left(\partial_{\gamma}(\eta)\right)$. The proof of the lemma is completed.

Let R be a quadratic ideal in $k Q$. For $x, y \in Q_{0}$, let $R_{2}^{!}(y, x)$ be the subspace of $k Q_{2}^{\mathrm{o}}(y, x)$ of elements ρ^{o}, where $\rho \in k Q_{2}(x, y)$ such that ρ^{*} vanishes on $R_{2}(x, y)$. The ideal in $k Q^{\circ}$ generated by the $R_{2}^{!}(y, x)$ with $x, y \in Q_{0}$ is denoted by $R^{!}$and called the quadratic dual of R. The following statement describes explicitly $R^{!}$.
3.6. Lemma. Let Q be a locally finite quiver and R be a quadratic ideal in $k Q$. If $\sigma \in k Q_{n}(x, y)$ with $x, y \in Q_{0}$ and $n \geq 0$, then $\sigma^{\circ} \in R_{n}^{!}(y, x)$ if and only if $\sigma^{*} \in R^{(n)}(x, y)^{\perp}$, the perpendicular of $R^{(n)}(x, y)$ in $D\left(k Q_{n}(x, y)\right)$.
Proof. Let $\sigma \in k Q_{n}(x, y)$, with $x, y \in Q_{0}$ and $n \geq 0$. If $n=0,1$, then $R_{n}^{!}(y, x)=0$, and since $R^{(n)}(x, y)=k Q_{n}(x, y)$, we have $R^{(n)}(x, y)^{\perp}=0$. In case $n=2$, since $R_{2}(x, y)=R^{(2)}(x, y)$, the lemma is the definition of $R_{2}^{!}(y, x)$. Let $n \geq 3$. Consider
the k-isomorphism $\psi_{n}(x, y): k Q_{n}^{\circ}(y, x) \rightarrow D\left(k Q_{n}(x, y)\right): \rho^{\circ} \rightarrow \rho^{*}$. By definition, $R_{n}^{!}(y, x)=\sum_{j=0}^{n-2} R_{n, j}^{!}(y, x)$, where

$$
R_{n, j}^{!}(y, x)=\sum_{a, b \in Q_{0}} k Q_{j}^{\mathrm{o}}(a, x) \cdot R_{2}^{!}(b, a) \cdot k Q_{n-j-2}^{\mathrm{o}}(y, b)
$$

and $R^{(n)}(x, y)=\cap_{j=0}^{n-2} R^{(n, j)}(x, y)$, where

$$
R^{(n, j)}(x, y)=\sum_{a, b \in Q_{0}} k Q_{n-j-2}(b, y) \cdot R_{2}(a, b) \cdot k Q_{j}(x, a)
$$

First, assume that $\sigma^{\circ} \in R_{n}^{!}(y, x)$. To show that $\sigma^{*} \in R^{(n)}(x, y)^{\perp}$, we may assume that $\sigma^{\circ} \in k Q_{j}^{\circ}(a, x) \cdot R_{2}^{!}(b, a) \cdot k Q_{n-j-2}^{\circ}(y, b)$, for some $a, b \in Q_{0}$ and $0 \leq j \leq n-2$. Furthermore, we may assume that $\sigma^{\circ}=(\delta \eta \gamma)^{\circ}$, where $\gamma \in k Q_{j}(x, a), \eta \in k Q_{2}(a, b)$ with $\eta^{\circ} \in R_{2}^{!}(b, a)$, and $\delta \in k Q_{n-2-j}(b, y)$. Given any $w \in R^{(n)}(x, y)$, we may write

$$
w=\sum_{i=1}^{t} \delta_{i} \eta_{i} \gamma_{i}
$$

where $\gamma_{i} \in k Q_{j}\left(x, a_{i}\right), \eta_{i} \in R_{2}\left(a_{i}, b_{i}\right), \delta_{i} \in k_{n-j-2} Q\left(b_{i}, y\right)$, and $a_{i}, b_{i} \in Q_{0}$. Since $\eta^{*} \in R_{2}(a, b)^{\perp}$, we see that $\eta^{*}\left(\eta_{i}\right)=0$ for all $1 \leq i \leq t$. By Lemma 3.5(1), $\sigma^{*}(w)=(\delta \eta \gamma)^{*}(w)=\sum_{i=1}^{t} \delta^{*}\left(\delta_{i}\right) \eta^{*}\left(\eta_{i}\right) \gamma^{*}\left(\gamma_{i}\right)=0$. Therefore, $\sigma^{*} \in R^{(n)}(x, y)^{\perp}$.

Next, assume that $\sigma^{*} \in R^{(n)}(x, y)^{\perp}$. By Lemma 1.4(1), $\sigma^{*} \in \sum_{j=0}^{n-2} R^{(n, j)}(x, y)^{\perp}$. Since $D\left(k Q_{n}(x, y)\right)=\left\{\rho^{*} \mid \rho \in k Q_{n}(x, y)\right\}$, we may assume that $\sigma^{*} \in R^{(n, p)}(x, y)^{\perp}$, for some $0 \leq p \leq n-2$. Write $\sigma=\sum_{i=1}^{m} \sigma_{i}$, with $\sigma_{i} \in k Q_{n-p-2}\left(b_{i}, y\right) \cdot k Q_{2}\left(a_{i}, b_{i}\right)$. $k Q_{p}\left(x, a_{i}\right)$, where $a_{i}, b_{i} \in Q_{0}$ such that $\left(a_{i}, b_{i}\right) \neq\left(a_{j}, b_{j}\right)$ for $i \neq j$. By Lemma $3.5(1)$, we see that σ_{i}^{*} vanishes on

$$
k Q_{n-p-2}\left(b_{j}, y\right) \cdot k Q_{2}\left(a_{j}, b_{j}\right) \cdot k Q_{p}\left(x, a_{j}\right)
$$

for any $i \neq j$. Therefore, $\sigma_{i}^{*} \in R^{(n, p)}(x, y)^{\perp}$, for $i=1, \ldots, m$. Thus, we may assume that $\sigma=\delta \zeta \gamma$, where $\delta \in k Q_{n-p-2}(b, y), \zeta \in k Q_{2}(a, b), \gamma \in k Q_{p}(x, a)$, for some $a, b \in Q_{0}$, such that σ^{*} is non-zero. Then, δ^{*} and γ^{*} are non-zero, and hence, $\delta_{i}^{*}(\nu)=\gamma_{i}^{*}(\mu)=1$, for some $\nu \in k Q_{n-p-2}(b, y)$ and $\mu \in k Q_{p}(x, a)$.

Choose a basis $\left\{\rho_{1}, \ldots, \rho_{r} ; \rho_{r+1}, \ldots, \rho_{s}\right\}$ of $k Q_{2}(a, b)$, where $\left\{\rho_{1}, \ldots, \rho_{r}\right\}$ is a basis of $R_{2}(a, b)$. Then, $k Q_{2}(a, b)$ has a basis $\left\{\eta_{1}, \ldots, \eta_{r} ; \eta_{r+1}, \ldots, \eta_{s}\right\}$ such that $\left\{\eta_{1}^{*}, \ldots, \eta_{r}^{*} ; \eta_{r+1}^{*}, \ldots, \eta_{s}^{*}\right\}$ is the dual basis of $\left\{\rho_{1}, \ldots, \rho_{r} ; \rho_{r+1}, \ldots, \rho_{s}\right\}$. Observe that $\left\{\eta_{r+1}^{\circ}, \ldots, \eta_{s}^{\circ}\right\}$ is a basis of $R_{2}^{!}(b, a)$. Write $\zeta=\sum_{i=1}^{s} \lambda_{i} \eta_{i}$, where $\lambda_{i} \in k$. Then, $\sigma^{*}=\sum_{i=1}^{s} \lambda_{i}\left(\delta \eta_{i} \gamma\right)^{*}$. By Lemma 1.4, $\sigma^{*} \in\left(k Q_{n-p-2}(b, y) \cdot R_{2}(a, b) \cdot k Q_{p}(x, a)\right)^{\perp}$. Given any $1 \leq i \leq r$, applying Lemma 3.5(1), we obtain

$$
0=\sigma^{*}\left(\nu \rho_{i} \mu\right)=\sum_{j=1}^{s} \lambda_{j}\left(\delta \eta_{j} \gamma\right)^{*}\left(\nu \rho_{i} \mu\right)=\sum_{j=1}^{s} \lambda_{j} \delta^{*}(\nu) \eta_{j}^{*}\left(\rho_{i}\right) \gamma^{*}(\mu)=\lambda_{i}
$$

Thus, $\sigma^{*}=\sum_{i=r+1}^{s} \lambda_{i}\left(\delta \eta_{i} \gamma\right)^{*}$, and consequently, $\sigma=\sum_{i=r+1}^{s} \lambda_{i}\left(\gamma \eta_{i} \delta\right)$. This implies that $\sigma^{\circ}=\sum_{i=r+1}^{s} \lambda_{i} \gamma^{\circ} \eta_{i}^{\circ} \delta^{\circ} \in R_{n}^{!}(y, x)$. The proof of the lemma is completed.

We are ready to define the quadratic dual of a quadratic algebra; compare [20, page 69] and [5, (2.8.1)]
3.7. Definition. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a quadratic ideal in $k Q$. The quadratic dual of Λ is defined to be $\Lambda^{!}=k Q^{\circ} / R^{!}$, where Q° is the opposite quiver of Q and $R^{!}$is the quadratic dual of R.
3.8. Proposition. Let $\Lambda=k Q / R$, where Q is locally finite and R is quadratic. Then $\Lambda^{!}$and Λ° are quadratic algebras with $\left(\Lambda^{!}\right)^{!}=\Lambda$ and $\left(\Lambda^{\circ}\right)^{!}=\left(\Lambda^{!}\right)^{\circ}$.

Proof. By definition, Λ° and $\Lambda^{!}$are quadratic algebras such that $\left(\Lambda^{!}\right)^{!}=k Q /\left(R^{!}\right)^{!}$ and $\left(\Lambda^{\circ}\right)^{!}=k Q /\left(R^{\circ}\right)^{!}$. Fix $x, y \in Q_{0}$, and consider the k-linear isomorphism

$$
\psi_{2}^{\mathrm{o}}(y, x): k Q_{2}(x, y) \rightarrow D\left(k Q_{2}^{\mathrm{o}}(y, x)\right): \gamma \rightarrow\left(\gamma^{\mathrm{o}}\right)^{*}
$$

Given $\gamma, \rho \in k Q_{2}(x, y)$, it is easy to see that $\left(\gamma^{\circ}\right)^{*}\left(\rho^{\mathrm{o}}\right)=\rho^{*}(\gamma)=\gamma^{*}(\rho)$. By definition, $\gamma \in\left(R^{!}\right)_{2}^{!}(x, y)$ if and only if $\left(\gamma^{\circ}\right)^{*}\left(\rho^{\circ}\right)=0$, for all $\rho^{\circ} \in R_{2}^{!}(y, x)$. That is, $\rho^{*}(\gamma)=0$, for all $\rho^{*} \in R_{2}(x, y)^{\perp}$. Since $R_{2}(x, y)$ is finite dimensional, the latter condition is equivalent to $\gamma \in R_{2}(x, y)$. Thus, $\left(R^{!}\right)^{!}=R$, and hence, $\left(\Lambda^{!}\right)^{!}=\Lambda$.

Next, $\gamma \in\left(R^{\circ}\right)_{2}^{!}(x, y)$ if and only if $\left(\gamma^{\circ}\right)^{*}\left(\rho^{\mathrm{o}}\right)=0$, for all $\rho^{\mathrm{o}} \in R_{2}^{\mathrm{o}}(y, x)$. That is, $\gamma^{*}(\rho)=0$, for all $\rho \in R_{2}(x, y)$. This is equivalent to $\gamma^{\circ} \in R_{2}^{!}(y, x)$, that is, $\gamma \in\left(R^{!}\right)_{2}^{\circ}(x, y)$. Hence, $\left(R^{\circ}\right)^{!}=\left(R^{!}\right)^{\circ}$, and thus, $\left(\Lambda^{\circ}\right)^{!}=k\left(Q^{\circ}\right)^{\circ} /\left(R^{!}\right)^{\circ}=\left(\Lambda^{!}\right)^{\circ}$. The proof of the proposition is completed.

Remark. It is known that a left finite quadratic algebra is the right quadratic dual of its left quadratic dual; see $[5,(2.8 .1)]$.

We shall give an alternative description of the local Koszul complexes of Λ in terms of $\Lambda^{!}$. We need some notation for $\Lambda^{!}$. Write $e_{x}=\varepsilon_{x}+R^{!}$and $P_{x}^{!}=\Lambda^{!} e_{x}$, for $x \in Q_{0}$; and $\gamma^{!}=\gamma^{\circ}+R^{!}$, for $\gamma \in k Q$. Then, $\Lambda^{!}$is graded as $\Lambda^{!}=\oplus_{n \geq 0} \Lambda_{n}^{!}$, where $\Lambda_{n}^{!}=\left\{\gamma^{!} \mid \gamma \in k Q_{n}\right\}$. Fix $a \in Q_{0}$. Given $\alpha \in Q_{1}(y, x)$, the right multiplication by $\bar{\alpha}$ yields a Λ-linear map $P[\bar{\alpha}]: P_{x} \rightarrow P_{y}$; and the right multiplication by $\alpha^{!}$yields a k-linear map $P\left[\alpha^{!}\right]_{a}: e_{a} \Lambda_{n-1}^{!} e_{y} \rightarrow e_{a} \Lambda_{n}^{!} e_{x}$. We define a sequence L_{a}^{\cdot} as follows:

$$
\cdots \longrightarrow L_{a}^{-n} \xrightarrow{d_{a}^{-n}} L_{a}^{1-n} \longrightarrow \cdots \longrightarrow L_{a}^{-1} \xrightarrow{d_{a}^{-1}} L_{a}^{0} \longrightarrow 0 \longrightarrow \cdots
$$

with $L_{a}^{-n}=\oplus_{x \in Q_{0}} P_{x} \otimes D\left(e_{a} \Lambda_{n}^{!} e_{x}\right)$ for $n \geq 0$; and $d_{a}^{-n}=\left(d_{a}^{-n}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}$ for $n>0$, where

$$
d_{a}^{-n}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes D P\left[\alpha^{!}\right]_{a}: P_{x} \otimes D\left(e_{a} \Lambda_{n}^{!} e_{x}\right) \rightarrow P_{y} \otimes D\left(e_{a} \Lambda_{n-1}^{!} e_{y}\right)
$$

3.9. Lemma. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a quadratic ideal. If $a \in Q_{0}$, then L_{a}^{\cdot} is isomorphic to the local Koszul complex of Λ at a.
Proof. Fix $a, x \in Q_{0}$ and $n \geq 0$. Recall that $D\left(k Q_{n}(a, x)\right)=\left\{\gamma^{*} \mid \gamma \in k Q_{n}(a, x)\right\}$ and $e_{a} \Lambda_{n}^{!} e_{x}=\left\{\gamma^{!}=\gamma^{\circ}+R^{!} \mid \gamma \in k Q_{n}(a, x)\right\}$. By Lemma 3.6, $\gamma^{*} \in R^{(n)}(a, x)^{\perp}$ if and only if $\gamma^{\circ} \in R_{n}^{!}(x, a)$. Thus, we obtain a k-bilinear form

$$
<-,->: R^{(n)}(a, x) \times e_{a} \Lambda_{n}^{!} e_{x} \rightarrow k:\left(\delta, \gamma^{!}\right) \mapsto \gamma^{*}(\delta),
$$

which is non-degenerate on the right. If $\delta \in R^{(n)}(a, x)$ is non-zero, then $\gamma^{*}(\delta) \neq 0$, that is, $\left\langle\delta, \gamma^{!}\right\rangle \neq 0$, for some $\gamma \in k Q_{n}(a, x)$. Hence, $<-,->$ is non-degenerate. This yields a k-linear isomorphism

$$
\phi_{n}(a, x): R^{(n)}(a, x) \rightarrow D\left(e_{a} \Lambda_{n}^{!} e_{x}\right): \delta \rightarrow<\delta,->.
$$

We claim, for $x, y \in Q_{0}$ and $n>0$, that

commutes. Given $\delta \in R^{(n)}(a, x)$ and $\zeta \in k Q_{n-1}(a, y)$, by Lemma 3.5(2), we obtain

$$
\begin{aligned}
\sum_{\alpha \in Q_{1}(y, x)} D P\left[\alpha^{!}\right]_{a}\left(\phi_{n}(a, x)(\delta)\right)\left(\zeta^{!}\right) & =\sum_{\alpha \in Q_{1}(y, x)} \phi_{n}(a, x)(\delta)\left(\zeta^{!} \alpha^{!}\right) \\
& =\sum_{\alpha \in Q_{1}(y, x)}(\alpha \zeta)^{*}(\delta) \\
& =\sum_{\alpha \in Q_{1}(y, x)} \zeta^{*}\left(\partial_{\alpha}(\delta)\right) \\
& =\left[\phi_{n-1}(a, y) \sum_{\alpha \in Q_{1}(x, y)} \partial_{\alpha}(\delta)\right]\left(\zeta^{!}\right)
\end{aligned}
$$

Thus, we obtain a commutative diagram with vertical isomorphisms

$$
\begin{aligned}
& \oplus_{x \in Q_{0}} P_{x} \otimes R^{(n)}(a, x) \xrightarrow{\partial_{a}^{-n}} \oplus_{y \in Q_{0}} P_{y} \otimes R^{(n-1)}(a, y) \\
& \oplus\left(1 \otimes \phi_{n}(a, x)\right) \downarrow \\
& \oplus_{x \in Q_{0}} P_{x} \otimes D\left(e_{a} \Lambda_{n}^{!} e_{x}\right) \xrightarrow{d_{a}^{-n}} \oplus_{y \in Q_{0}} P_{y} \otimes D\left(1 \otimes \phi_{n-1}(a, y)\right) \\
&\left.e_{a} \Lambda_{n-1}^{!} e_{y}\right),
\end{aligned}
$$

for every $n>0$. The proof of the lemma is completed.
The following result is a generalization of Proposition 2.9.1 in [5], where Λ is assumed to be left finite; see also [25, Theorem 30].
3.10. Theorem. Let $\Lambda=k Q / R$, where Q is a locally finite quiver and R is a quadratic ideal. Then Λ is Koszul if and only if $\Lambda^{!}$is Koszul.
Proof. By Proposition $3.8,\left(\Lambda^{!}\right)^{!}=\Lambda$. Thus, it suffices to prove the necessity. Suppose that Λ is Koszul. Fix $a \in Q_{0}$. By Lemma 3.9, the local Koszul complex of $\Lambda^{!}$at a is isomorphic to the sequence
$L^{\bullet}: \quad \cdots \longrightarrow L^{-n} \xrightarrow{d^{-n}} L^{1-n} \longrightarrow \cdots \longrightarrow L^{-1} \xrightarrow{d^{-1}} L^{0} \longrightarrow 0 \longrightarrow \cdots$ with $L^{-n}=\oplus_{x \in Q_{0}} P_{x}^{!} \otimes D\left(e_{a} \Lambda_{n} e_{x}\right)$ and $d^{-n}=\left(d^{-n}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}$, where $d^{-n}(y, x)=\sum_{\alpha \in Q_{1}(x, y)} P\left[\alpha^{!}\right] \otimes D P[\bar{\alpha}]_{a}: P_{x}^{!} \otimes D\left(e_{a} \Lambda_{n} e_{x}\right) \rightarrow P_{y}^{!} \otimes D\left(e_{a} \Lambda_{n-1} e_{y}\right)$.
We claim, for $n>0$, that L^{*} is exact at the degree $-n$. Since d^{-n-1} and d^{-n} are homogeneous of degree one, by Lemma 1.10, it amounts to establish, for all $b \in Q_{0}$ and $s \in \mathbb{Z}$, the exactness of the sequence

$$
\begin{align*}
\oplus_{x \in Q_{0}} e_{b} \Lambda_{s-1}^{!} e_{x} \otimes D\left(e_{a} \Lambda_{n+1} e_{x}\right) & \xrightarrow{d_{s-1, b}^{-n-1}} \oplus_{y \in Q_{0}} e_{b} \Lambda_{s}^{!} e_{y} \otimes D\left(e_{a} \Lambda_{n} e_{y}\right) \tag{*}\\
& \xrightarrow{d_{s, b}^{-n}} \oplus_{z \in Q_{0}} e_{b} \Lambda_{s+1}^{!} e_{z} \otimes D\left(e_{a} \Lambda_{n-1} e_{z}\right)
\end{align*}
$$

with $d_{s, b}^{-n}=\left(d_{b}^{-n}(z, y)\right)_{(z, y) \in Q_{0} \otimes Q_{0}}$, where $d_{s, b}^{-n}(z, y)=\sum_{\alpha \in Q_{1}(y, z)} P\left[\alpha^{!}\right]_{b} \otimes D P[\bar{\alpha}]_{a}$.
If $s<0$, then $e_{b} \Lambda_{s}^{!} e_{y}=0$, and hence, $(*)$ is exact. In case $s=0$, it becomes

$$
0 \longrightarrow e_{b} \Lambda_{0}^{!} e_{b} \otimes D\left(e_{a} \Lambda_{n} e_{b}\right) \xrightarrow{d_{s, b}^{-n}} \oplus_{z \in Q_{0}} e_{b} \Lambda_{1}^{!} e_{z} \otimes D\left(e_{a} \Lambda_{n-1} e_{z}\right)
$$

with $d_{s, b}^{-n}=\left(d_{s, b}^{-n}(z, b)\right)_{z \in Q_{0}}$, where $d_{s, b}^{-n}(z, b)=\sum_{\alpha \in Q_{1}(b, z)} P\left[\alpha^{!}\right]_{b} \otimes D P[\bar{\alpha}]_{a}$.
Let $f \in D\left(e_{a} \Lambda_{n} e_{b}\right)$ be a non-zero function. In particular, $f(u \bar{\beta}) \neq 0$, for some $\beta \in Q_{1}(b, z), u \in e_{a} \Lambda_{n-1} e_{z}$ and $z \in Q_{0}$. That is, $\left(D P[\bar{\beta}]_{a}\right)(f)(u) \neq 0$, and hence, $\left(D P[\bar{\beta}]_{a}\right)(f) \neq 0$. Now, $d_{s, b}^{-n}(z, b)\left(e_{b} \otimes f\right)=\sum_{\alpha \in Q_{1}(b, z)} \alpha^{!} \otimes\left(D P[\bar{\alpha}]_{a}\right)(f)$, which is non-zero since the $\alpha^{!}$with $\alpha \in Q_{1}(b, z)$ are k-linearly independent. Thus, the sequence $(*)$ is exact.

It remains to consider the case $s>0$. Since Λ is Koszul, by Theorem 3.4, the complex L_{b} as stated in Lemma 3.9 is exact at degree $-s$. By Lemma 1.10, we obtain an exact sequence

$$
\begin{align*}
\oplus_{z \in Q_{0}} e_{a} \Lambda_{n-1} e_{z} \otimes D\left(e_{b} \Lambda_{s+1}^{!} e_{z}\right) & \xrightarrow{d_{b, n-1, a}^{-s-1}} \oplus_{y \in Q_{0}} e_{a} \Lambda_{n} e_{y} \otimes D\left(e_{b} \Lambda_{s}^{!} e_{y}\right) \tag{**}\\
& \xrightarrow{d_{b, n, a}^{-s}} \oplus_{x \in Q_{0}} e_{a} \Lambda_{n+1} e_{x} \otimes D\left(e_{b} \Lambda_{s-1}^{!} e_{x}\right),
\end{align*}
$$

where $d_{b, n-1, a}^{-s-1}=\left(\sum_{\alpha \in Q_{1}(y, z)} P[\bar{\alpha}]_{a} \otimes D P[\alpha!]_{b}\right)_{(y, z) \in Q_{0} \times Q_{0}}$. Applying the duality D to the exact sequence $(* *)$, we obtain an exact sequence which, by Lemma 1.3 , is isomorphic to $(*)$. The proof of the theorem is completed.
Remark. In case Λ is Koszul, one calls Λ ! the Koszul dual of Λ.
We conclude this section by studying when the opposite algebra of a Koszul algebra is Koszul. By Proposition 3.8, $\left(\Lambda^{\circ}\right)^{!}=\left(\Lambda^{!}\right)^{\circ}=k Q /\left(R^{!}\right)^{\circ}$. We fix some notation for $\left(\Lambda^{!}\right)^{\circ}$. Write $\hat{\gamma}=\gamma+\left(R^{!}\right)^{\text {o }}$ for $\gamma \in k Q$; but $e_{x}=\varepsilon_{x}+\left(R^{!}\right)^{\circ}$ for $x \in Q_{0}$. Then $\left(\Lambda^{!}\right)^{\circ}=\oplus_{n \geq 0}\left(\Lambda^{!}\right)_{n}^{\circ}$, where $\left(\Lambda^{!}\right)_{n}^{\circ}=\left\{\hat{\gamma} \mid \gamma \in k Q_{n}\right\}$. Fix $a \in Q_{0}$. Given $\alpha \in Q_{1}(y, x)$, taking the dual of the right multiplication by $\bar{\alpha}^{o}$ yields a Λ-linear map $I[\bar{\alpha}]=D P\left[\bar{\alpha}^{\mathrm{o}}\right]: I_{x} \rightarrow I_{y}$, and the left multiplication by α y yields a k-linear $\operatorname{map} P_{a}^{!}\left(\alpha^{!}\right): e_{x} \Lambda_{n}^{!} e_{a} \rightarrow e_{y} \Lambda_{n+1}^{!} e_{a}$. We define a sequence T_{a}^{*} over inj Λ as follows:

$$
\cdots \longrightarrow 0 \longrightarrow T_{a}^{0} \stackrel{d_{a}^{0}}{\longrightarrow} T_{a}^{1} \longrightarrow \cdots \longrightarrow T_{a}^{n} \xrightarrow{d_{a}^{n}} T_{a}^{n+1} \longrightarrow \cdots
$$

with $T_{a}^{n}=\oplus_{x \in Q_{0}} I_{x} \otimes e_{x} \Lambda_{n}^{!} e_{a}$ and $d_{a}^{n}=\left(d_{a}^{n}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}$ for $n \geq 0$, where

$$
d_{a}^{n}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} I[\bar{\alpha}] \otimes P_{a}^{!}\left(\alpha^{!}\right): I_{x} \otimes e_{x} \Lambda_{n}^{!} e_{a} \rightarrow I_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}
$$

3.11. Lemma. Let $\Lambda=k Q / R$, where Q is locally finite and R is quadratic. If $a \in Q_{0}$, then T_{a}^{*} is isomorphic to the dual of the local Koszul complex of Λ° at a.
Proof. Fix $a \in Q_{0}$. By Proposition 3.8 and Lemma 3.9, the local Koszul complex of Λ° at a is isomorphic to the complex L^{\bullet} as follows:

$$
\cdots \longrightarrow L^{-n} \xrightarrow{d^{-n}} L^{1-n} \longrightarrow \cdots \longrightarrow L^{-1} \xrightarrow{d^{-1}} L^{0} \longrightarrow 0
$$

with $L^{-n}=\oplus_{y \in Q_{0}} P_{y}^{\mathrm{o}} \otimes D\left(e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{y}\right)$ and $d^{-n}=\left(d^{-n}(x, y)\right)_{(x, y) \in Q_{0} \times Q_{0}}$, where $d^{-n}(x, y)=\sum_{\alpha \in Q_{1}(y, x)} P\left[\bar{\alpha}^{\mathrm{o}}\right] \otimes D P[\hat{\alpha}]_{a}: P_{y}^{\mathrm{o}} \otimes D\left(e_{a}\left(\Lambda^{!}\right)_{n+1}^{\mathrm{o}} e_{y}\right) \rightarrow P_{x}^{\mathrm{o}} \otimes D\left(e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x}\right)$.

Since $e_{a}\left(\Lambda^{!}\right)_{n}^{o} e_{x}$ is finite dimensional, we may compose the canonical k-isomorphism $D^{2}\left(e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x}\right) \rightarrow e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x}$ with the k-isomorphism $e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x} \rightarrow e_{x} \Lambda_{n}^{!} e_{a}$, sending $\hat{\gamma}$ to $\gamma^{!}$. This yields a k-isomorphism $\theta_{n}(a, x): D^{2}\left(e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x}\right) \rightarrow e_{x} \Lambda_{n}^{!} e_{a}$ such that

$$
\begin{gathered}
I_{x} \otimes D^{2}\left(e_{a}\left(\Lambda^{!}\right)_{n}^{\mathrm{o}} e_{x}\right) \xrightarrow{I[\bar{\alpha}] \otimes D P[\hat{\alpha}]_{a}} I_{y} \otimes D^{2}\left(e_{a}\left(\Lambda^{!}\right)_{n+1}^{\mathrm{o}} e_{y}\right) \\
\begin{array}{c}
\downarrow \otimes \theta_{n}(a, x) \downarrow \\
I_{x} \otimes e_{x} \Lambda_{n}^{!} e_{a} \xrightarrow{I \otimes \theta_{n+1}(a, y)} \\
I[\bar{\alpha}] \otimes P_{a}^{!}\left(\alpha^{!}\right)
\end{array} I_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}
\end{gathered}
$$

commutes, for every $\alpha \in Q_{1}(y, x)$. Since the L^{-n} are finite direct sums, by Lemma $1.8(1)$, we see that $D\left(L^{*}\right) \cong T_{a}^{*}$. The proof of the lemma is completed.

As another preparation, we need to consider the Yoneda Ext-groups in $\operatorname{Mod} \Lambda$ which are defined in a canonical way; see, for example, [18, Section III.5].
3.12. Lemma. Let $\Lambda=k Q / R$ be a Koszul algebra. Then $\operatorname{Ext}_{A}^{n}\left(S_{b}, S_{a}\right)=e_{b} \Lambda_{n}^{!} e_{a}$, for all $a, b \in Q_{0}$ and $n \geq 0$.

Proof. Let $a, b \in Q_{0}$. By Theorem 3.4 and Lemma 3.9, L_{b} is a J-minimal projective resolution of S_{b}. Thus, $\operatorname{Ext}_{A}^{n}\left(S_{b}, S_{a}\right) \cong \operatorname{Hom}_{A}\left(L_{b}^{-n}, S_{a}\right)$ for $n \geq 0$; see [18, (III.6.4)]. Since $e_{b} \Lambda_{n}^{!} e_{a}$ is finite dimensional, we deduce from Proposition 2.1(3) that

$$
\operatorname{Ext}_{\Lambda}^{n}\left(S_{b}, S_{a}\right) \cong \operatorname{Hom}_{\Lambda}\left(P_{a} \otimes D\left(e_{b} \Lambda_{n}^{!} e_{a}\right), S_{a}\right) \cong \operatorname{Hom}_{k}\left(D\left(e_{b} \Lambda_{n}^{!} e_{a}\right), k\right) \cong e_{b} \Lambda_{n}^{!} e_{a}
$$

The proof of the lemma is completed.
In case Λ is locally finite dimensional, we obtain the following generalization of Proposition 2.2.1 stated in [5].
3.13. ThEOREM. Let $\Lambda=k Q / R$ be a locally finite dimensional qudratic algebra. The following statements are equivalent.
(1) The algebra Λ is Koszul.
(2) The opposite algebra Λ° is Koszul.
(3) The complex T_{a}^{\bullet} is an injective co-resolution of S_{a}, for every $a \in Q_{0}$.

Proof. By Proposition 1.6(3), Λ is strongly locally finite dimensional, and by Proposition $2.5, T_{a}^{\bullet}$ is a complex of injective modules. First, assume that T_{a}^{\bullet} is an injective co-resolution of S_{a} for every $a \in Q_{0}$. Since Λ° is locally finite dimensional, by Lemmas 1.8 and 3.11, every local Koszul complex of Λ° is exact at all non-zero degrees. By Theorem 3.4, Λ° is Koszul. Thus, Statement (3) implies Statement (2).

It suffices to show that Statement (1) implies Statement (3). Assume that Λ is Koszul. Fix $a \in Q_{0}$. Recall that $\left(T_{a}^{\cdot}, d^{*}\right)$ is defined by $T_{a}^{i}=\oplus_{x \in Q_{0}} I_{x} \otimes e_{x} \Lambda_{i}^{!} e_{a}$ and $d^{i}=\left(d^{i}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}$ for $i \geq 0$, where

$$
d^{i}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} I[\bar{\alpha}] \otimes P_{a}^{!}\left(\alpha^{!}\right): I_{x} \otimes e_{x} \Lambda_{i}^{!} e_{a} \rightarrow I_{y} \otimes e_{y} \Lambda_{i+1}^{!} e_{a}
$$

In particular, $T_{a}^{0}=I_{a} \otimes k e_{a}$ and $T_{a}^{1}=\oplus_{j=1}^{s} I_{b_{j}} \otimes k \beta_{j}^{!}$, where $\beta_{j}: b_{j} \rightarrow a, j=1, \ldots, s$, are the arrows in $Q_{1}(-, a)$. Consider the Λ-linear morphism $d^{-1}: S_{a} \rightarrow T^{0}$, sending $e_{a}+J e_{a}$ to $e_{a}^{\star} \otimes e_{a}$. By Corollary 2.10, we have an exact sequence

$$
0 \longrightarrow S_{a} \xrightarrow{d^{-1}} T_{a}^{0} \xrightarrow{d^{0}} T_{a}^{1} \longrightarrow \cdots \longrightarrow T_{a}^{n-1} \xrightarrow{d^{n-1}} T_{a}^{n} \xrightarrow{p^{n}} C^{n+1} \longrightarrow 0
$$

for some $n \geq 1$, such that $d^{i}=j^{i+1} p^{i}$, where $p^{i}: T_{a}^{i} \rightarrow C^{i+1}$ is the cokernel of d^{i-1}, and $j^{i+1}: C^{i+1} \rightarrow T_{a}^{i+1}$ is an injective envelope, for $i=0,1, \ldots, n-1$. Let $y \in Q_{0}$. It is well-known; see the proof of [18, (III.6.4)], and also [18, (III.8.2)], that

$$
\operatorname{Ext}_{\Lambda}^{n+1}\left(S_{y}, S_{a}\right) \cong \operatorname{Hom}_{\Lambda}\left(S_{y}, C^{n+1}\right) / \operatorname{Im}\left(\operatorname{Hom}_{\Lambda}\left(S_{y}, p^{n}\right)\right)
$$

On the other hand, applying $\operatorname{Hom}_{A}\left(S_{y},-\right)$ to the short exact sequence

$$
0 \longrightarrow C^{n} \xrightarrow{j^{n}} T_{a}^{n} \xrightarrow{p^{n}} C^{n+1} \longrightarrow 0
$$

we obtain an exact sequence

$$
\operatorname{Hom}_{\Lambda}\left(S_{y}, C^{n}\right) \xrightarrow{j_{*}^{n}} \operatorname{Hom}_{\Lambda}\left(S_{y}, T_{a}^{n}\right) \xrightarrow{p_{*}^{n}} \operatorname{Hom}_{\Lambda}\left(S_{y}, C^{n+1}\right) \longrightarrow \operatorname{Ext}_{\Lambda}^{n+1}\left(S_{y}, S_{a}\right) \longrightarrow 0
$$

Since S_{y} is simple, j_{*}^{n} is surjective. Thus, $\operatorname{Hom}_{\Lambda}\left(S_{y}, C^{n+1}\right) \cong \operatorname{Ext}_{\Lambda}^{n+1}\left(S_{y}, S_{a}\right)$. By Lemma 3.12, we obtain $\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}\left(S_{y}, C^{n+1}\right)=\operatorname{dim}_{k} e_{y} \Lambda_{n+1}^{!} e_{a}$, and consequently, $S_{J}\left(C^{n+1}\right) \cong \oplus_{y \in Q_{0}} S_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}$. Since $e_{y} \Lambda_{n+1}^{!} e_{a}$ is finite dimensional, so is $S_{J}\left(C^{n+1}\right)$. By Corollary 2.8 and Lemma $1.7(3), S_{J}\left(C^{n+1}\right)$ is essential in C^{n+1}. Thus, we obtain an injective envelope $j^{n+1}: C^{n+1} \rightarrow \oplus_{y \in Q_{0}} I_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}=T_{a}^{n+1}$; see 2.9 . We claim that the sequence

$$
0 \longrightarrow S_{a} \xrightarrow{d^{-1}} T_{a}^{0} \xrightarrow{d^{0}} \cdots \xrightarrow{d^{n-2}} T_{a}^{n-1} \xrightarrow{d^{n-1}} T_{a}^{n} \xrightarrow{d^{n}} T_{a}^{n+1}
$$

is exact with $S_{J}\left(T_{a}^{n+1}\right) \subseteq \operatorname{Im}\left(d^{n}\right)$. It suffices to show that $\operatorname{Ker}\left(d^{n}\right)=\operatorname{Im}\left(d^{n-1}\right)$. Indeed, set $g=j^{n+1} p_{n}: T_{a}^{n} \rightarrow T_{a}^{n+1}$. Since $d^{n} d^{n-1}=0$ and j^{n+1} is an injective envelope, $d^{n}=h g$ for some Λ-linear morphism $h: T_{a}^{n+1} \rightarrow T_{a}^{n+1}$. Write

$$
g=(g(z, x))_{(z, x) \in Q_{0} \times Q_{0}}: \oplus_{x \in Q_{0}} I_{x} \otimes e_{x} \Lambda_{n}^{!} e_{a} \rightarrow \oplus_{z \in Q_{0}} I_{z} \otimes e_{z} \Lambda_{n+1}^{!} e_{a}
$$

where $g(z, x): I_{x} \otimes e_{x} \Lambda_{n}^{!} e_{a} \rightarrow I_{z} \otimes e_{z} \Lambda_{n+1}^{!} e_{a}$ is Λ-linear, and

$$
h=(h(y, z))_{(y, z) \in Q_{0} \times Q_{0}}: \oplus_{z \in Q_{0}} I_{z} \otimes e_{z} \Lambda_{n+1}^{!} e_{a} \rightarrow \oplus_{y \in Q_{0}} I_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}
$$

where $h(y, z): I_{z} \otimes e_{z} \Lambda_{n+1}^{!} e_{a} \rightarrow I_{y} \otimes e_{y} \Lambda_{n+1}^{!} e_{a}$ is Λ-linear.
Given $x, y, z \in Q_{0}$, choose a basis $\left\{\bar{\alpha} \mid \alpha \in Q_{1}(z, x)\right\} \cup \mathcal{U}_{z, x}$ of $e_{x} J e_{z}$, where $\mathcal{U}_{z, x}$ consists of homogeneous elements of degrees >1, and a basis $\mathcal{V}_{y, z}$ of homogeneous elements of $e_{z} J e_{y}$. By Lemma 2.6, $h(y, y)=1_{I_{y}} \otimes h_{e_{y}}+\sum_{v \in \mathcal{V}_{y, y}} I[v] \otimes h_{v}$, where $h_{e_{y}}, h_{v}$ are k-linear maps, and $h(y, z)=\sum_{v \in \mathcal{V}_{y, z}} I[v] \otimes h_{v}$ in case $z \neq y$. Since g vanishes on $S_{J}\left(T_{a}\right)$, we obtain

$$
g(z, x)=\sum_{\alpha \in Q_{1}(z, x)} I[\bar{\alpha}] \otimes g_{\alpha}+\sum_{u \in \mathcal{U}_{z, x}} I[u] \otimes g_{u},
$$

where g_{α}, g_{u} are k-linear maps. In view of Lemma 2.6, we can write $d^{n}(y, x)$ as $d^{n}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} I[\bar{\alpha}] \otimes\left(h_{e_{y}} \circ g_{\alpha}\right)$. By the uniqueness, $\left(h_{e_{y}} \circ g_{\alpha}\right)=P_{a}^{!}\left(\alpha^{!}\right)$, for every $\alpha \in Q_{1}(y, x)$. Thus, we may assume that $h(y, y)=1_{I_{y}} \otimes h_{e_{y}}$, and $h(y, z)=0$ for $z \neq y$. Fix some $y \in Q_{0}$. Let $w \in e_{y} \Lambda_{n+1}^{!} e_{a}$, say $w=\xi^{!}$for some $\xi \in Q_{n+1}(y, a)$. Writing $\xi=\zeta \alpha$, where $\alpha \in Q_{1}(y, x)$ and $\zeta \in Q_{n}(x, a)$ for some $x \in Q_{0}$, we see that

$$
w=\alpha^{!} \zeta^{!}=P_{a}^{!}\left(\alpha^{!}\right)\left(\zeta^{!}\right)=h_{e_{y}}\left(g_{\alpha}\left(\zeta^{!}\right)\right)
$$

Thus, $h_{e_{y}}$ is surjective. Since $e_{y} \Lambda_{n+1}^{!} e_{a}$ is finite dimensional, $h_{e_{y}}$ is bijective. Thus, h is a Λ-linear isomorphism. Then, $\operatorname{Ker}\left(d^{n}\right)=\operatorname{Ker}(g)=\operatorname{Ker}\left(p^{n}\right)=\operatorname{Im}\left(d^{n-1}\right)$. Our claim is established. By induction, T_{a}^{*} is a minimal injective co-resolution of S_{a}. The proof of the theorem is completed.

4. Double complexes and extension of functors

The objective of this section is to provide tools for us to construct the Koszul duality. An additive category is called concrete if the objects are abelian groups and the morphisms are abelian group morphisms. Throughout this section, $\mathcal{A}, \mathcal{B}, \mathcal{C}$ stand for concrete additive categories, which are assumed to be full additive subcategories of concrete abelian categories.

Let $\left(M^{\bullet \bullet}, v_{M}^{\bullet}, h_{M}^{\bullet \bullet}\right)$ be a double complex over \mathcal{A}, where $v_{M}^{\bullet \bullet}$ is the vertical differential and h_{M}^{\bullet} is the horizontal one. We shall call $\left(M^{i, \cdot}, v_{M}^{i, \cdot}\right)$ the i-th column, and $\left(M^{\bullet, j}, h_{M}^{\bullet, j}\right)$ the j-th row, of $M^{\bullet \bullet}$. A double complex morphism $f^{\bullet \bullet}: M^{\bullet} \rightarrow N^{\bullet}$ consists of morphisms $f^{i, j}: M^{i, j} \rightarrow N^{i, j}$ in \mathcal{A} making the diagram

commute, for $i, j \in \mathbb{Z}$, that is, $f^{i, \bullet}: M^{i, \bullet} \rightarrow N^{i, \bullet}$ and $f^{\bullet, j}: M^{\bullet, j} \rightarrow N^{\bullet, j}$ are complex morphisms, for $i, j \in \mathbb{Z}$. Thus, the double complexes over \mathcal{A} form an additive category, written as $D C(\mathcal{A})$. Assume that \mathcal{A} has countable direct sums. Given $M^{\bullet} \in D C(\mathcal{A})$, its total complex $\mathbb{T}\left(M^{\bullet \bullet}\right)$ is defined by $\mathbb{T}\left(M^{\bullet \bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} M^{i, n-i}$ and

$$
d_{\mathbb{T}(M \cdot \cdot)}^{n}=\left(d_{\mathbb{T}(M \cdot \cdot)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} M^{j, n+1-j},
$$

where

$$
d_{\mathbb{T}(M \cdot \cdot)}^{n}(j, i)= \begin{cases}v_{M}^{i, n-i}, & j=i \\ h_{M}^{i, n-i}, & j=i+1 \\ 0, & j \neq i, i+1\end{cases}
$$

Given a morphism $f^{\bullet \bullet}: M^{\bullet} \rightarrow N^{\bullet}$ in $D C(\mathcal{A})$, we put

$$
\mathbb{T}(f \cdot \bullet)^{n}=\left(\mathbb{T}\left(f^{\bullet \cdot}\right)^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} N^{j, n-j}
$$

where

$$
\mathbb{T}\left(f^{\bullet \bullet}\right)^{n}(j, i)= \begin{cases}f^{i, n-i}, & j=i \\ 0, & j \neq i\end{cases}
$$

One verifies easily that $\mathbb{T}\left(f^{\bullet \bullet}\right)^{n+1} \circ d_{\mathbb{T}\left(M^{\bullet \bullet}\right)}^{n}=d_{\mathbb{T}\left(N^{*}\right)}^{n} \circ \mathbb{T}\left(f^{\bullet}\right)^{n}$. This yields a morphism $\mathbb{T}\left(f^{\bullet \bullet}\right)=\left(\mathbb{T}\left(f^{\bullet \bullet}\right)^{n}\right)_{n \in \mathbb{Z}}: \mathbb{T}\left(M^{\bullet \bullet}\right) \rightarrow \mathbb{T}\left(N^{\bullet}\right)$ in $C(\mathcal{A})$, called the total morphism of $f^{\bullet \bullet}$.
4.1. Lemma. Let \mathcal{A} be a concrete additive category with countable direct sums. The above construction yields a functor $\mathbb{T}: D C(\mathcal{A}) \rightarrow C(\mathcal{A})$.

It is important to know when the total complex of a double complex is acyclic. We need some terminology. Let $M^{\bullet} \in D C(\mathcal{A})$. Given $n \in \mathbb{Z}$, the n-diagonal of M^{\bullet} consists of the objects $M^{i, n-i}, i \in \mathbb{Z}$. We shall say that M^{\bullet} is n-diagonally bounded (respectively, bounded-above, bounded-below) if $M^{i, n-i}=0$ for all but finitely many (respectively, positive, negative) integers i. Moreover, M^{\bullet} is called diagonally bounded (respectively, bounded-above, bounded-below) if it is n-diagonally bounded (respectively, bounded-above, bounded-below) for every $n \in \mathbb{Z}$. Finally, we say that M^{\bullet} is bounded if there exists some $n>0$ such that $M^{i, j} \neq 0$ only if $-n \leq i, j \leq n$.
4.2. Lemma. Let \mathcal{A} be a concrete additive category with countable direct sums. Given $M^{\bullet \bullet} \in D C(\mathcal{A})$ and $n \in \mathbb{Z}$, we obtain $\mathrm{H}^{n}\left(\mathbb{T}\left(M^{\bullet}\right)\right)=0$ in case
(1) M^{\bullet} is n-diagonally bounded-below with $\mathrm{H}^{n-j}\left(M^{\bullet, j}\right)=0$ for all $j \in \mathbb{Z}$; or
(2) M^{\bullet} is n-diagonally bounded-above with $\mathrm{H}^{n-i}\left(M^{i, \cdot}\right)=0$ for all $i \in \mathbb{Z}$.

Proof. Let $\left(M^{\bullet}, v^{\bullet}, h^{\bullet}\right) \in D C(\mathcal{A})$. We shall only consider the case where Statement (1) holds for some n. Then, there exists some $t<0$ such that $M^{i, n-i}=0$ for all $i<t$. Write $\left(X^{\bullet}, d^{\bullet}\right)$ for $\mathbb{T}\left(M^{*}\right)$. Consider $c=\left(c_{i, n-i}\right)_{i \in \mathbb{Z}} \in \operatorname{Ker}\left(d^{n}\right)$, where $c_{i, n-i} \in M^{i, n-i}$. Then, $v^{i, n-i}\left(c_{i, n-i}\right)+h^{i-1, n-i+1}\left(c_{i-1, n-i+1}\right)=0$, for $i \in \mathbb{Z}$. Since c has at most finitely many non-zero components, we may assume that $c_{i, n-i}=0$ for all $i>0$. Then, $h^{0, n}\left(c_{0, n}\right)=-v^{1, n-1}\left(c_{1, n-1}\right)=0$. Since $\mathrm{H}^{0}\left(M^{\bullet, n}\right)=0$, there exists some $x_{-1, n} \in M^{-1, n}$ such that $c_{0, n}=h^{-1, n}\left(x_{-1, n}\right)$. This yields

$$
h^{-1, n+1}\left(c_{-1, n+1}-v^{-1, n}\left(x_{-1, n}\right)\right)=h^{-1, n+1}\left(c_{-1, n+1}\right)+v^{0, n}\left(c_{0, n}\right)=0
$$

Since $\mathrm{H}^{-1}\left(M^{\bullet, n+1}\right)=0$, we see that $c_{-1, n+1}-v^{-1, n}\left(x_{-1, n}\right)=h^{-2, n+1}\left(x_{-2, n+1}\right)$, with $x_{-2, n+1} \in M^{-2, n+1}$. Continuing this process, we obtain $x_{i, n-1-i} \in M^{i, n-1-i}$ such that $c_{i, n-i}=v^{i, n-1-i}\left(x_{i, n-1-i}\right)+h^{i-1, n-i}\left(x_{i-1, n-i}\right)$, for $i=-1,-2, \ldots, t$.

Since $M^{t-1, n-t+1}=0$, we see that $v^{t-1, n-t}\left(x_{t-1, n-t}\right)=0=c_{t-1, n-1+1}$. Setting $x=\left(x_{i, n-1-i}\right)_{i \in \mathbb{Z}}$, where $x_{i, n-1-i}=0$ for $i \geq 0$ or $i<t-1$, we obtain $c=d^{n-1}(x)$. The proof of the lemma is completed.

As an immediate consequence of Lemma 4.2, we obtain the promised generalization of the Acyclic Assembly Lemma stated, for example, in [31, (2.7.1)].
4.3. Proposition. Let \mathcal{A} be a concrete additive category with countable direct sums. If $M^{\bullet} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\bullet}\right)$ is acyclic in case M^{\bullet} is diagonally bounded-below with acyclic rows or diagonally bounded-above with acyclic columns.

Now, we shall introduce a homotopy theory in $D C(\mathcal{A})$. Given a double complex $\left(M^{\bullet \bullet}, v_{M}^{\bullet}, h_{M}^{\bullet}\right)$, we define its horizontal shift $M^{\bullet \bullet}[1]$ to be the double complex $\left(X^{\bullet}, v_{X}^{\bullet}, h_{x}^{\bullet}\right)$ such that $X^{i, j}=M^{i+1, j}, v_{X}^{i, j}=-v_{M}^{i+1, j}$ and $h_{X}^{i, j}=-h_{M}^{i+1, j}$. We shall say that a morphism $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ is horizontally null-homotopic if there exist $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j}$, with $i, j \in \mathbb{Z}$, such that $u^{i+1, j} h_{M}^{i, j}+h_{N}^{i-1, j} u^{i, j}=f^{i, j}$ and $v_{N}^{i-1, j} u^{i, j}+u^{i, j+1} v_{M}^{i, j}=0$.
4.4. Lemma. Let \mathcal{A} be a concrete additive category with countable direct sums.
(1) If $M^{\bullet \bullet} \in D C(\mathcal{A})$, then $\mathbb{T}\left(M^{\bullet \bullet[1])}=\mathbb{T}\left(M^{\bullet \bullet}\right)[1]\right.$.
(2) If $f^{\bullet \bullet}: M^{\bullet} \rightarrow N^{\bullet}$ is horizontally null-homotopic, then $\mathbb{T}\left(f^{\bullet \bullet}\right)$ is null-homotopic.

Proof. We shall prove only Statement (2). Let $f^{\bullet \bullet}: M^{\bullet \bullet} \rightarrow N^{\bullet}$ be a horizontally null-homotopic morphism $D C(\mathcal{A})$. Let $u^{i, j}: M^{i, j} \rightarrow N^{i-1, j} ; i, j \in \mathbb{Z}$ be morphisms such that $f^{i, j}=u^{i+1, j} \circ h_{M}^{i, j}+h_{N}^{i-1, j} \circ u^{i, j}$ and $v_{N}^{i-1, j} u^{i, j}+u^{i, j+1} v_{M}^{i, j}=0$. Define a morphism $h^{n}=\left(h^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}: \oplus_{i \in \mathbb{Z}} M^{i, n-i} \rightarrow \oplus_{j \in \mathbb{Z}} N^{j, n-j}$, where

$$
h^{n}(j, i)= \begin{cases}u^{i, n-i}, & \text { if } j=n-i \\ 0, & \text { if } j=n-i\end{cases}
$$

Given any $n, i, j \in \mathbb{Z}$, we obtain

$$
\begin{aligned}
\sum_{p \in \mathbb{Z}} h^{n+1}(j, p) \circ d_{\mathbb{T}(M \cdot \cdot)}^{n}(p, i) & =h^{n+1}(j, j+1) \circ d_{\mathbb{T}(M \cdot \bullet)}^{n}(j+1, i) \\
& = \begin{cases}u^{i+1, n-i} \circ h_{M}^{i, n-i}, & j=i \\
u^{i, n+1-i} \circ v_{M}^{i, n-i}, & j=i-1 ; \\
0, & j \neq i, i-1,\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{q \in \mathbb{Z}} d_{\mathbb{T}\left(N^{\bullet \bullet}\right)}^{n-1}(j, q) \circ h^{n}(q, i) & =d_{\mathbb{T}\left(N^{\bullet \bullet}\right)}^{n-1}(j, i-1) \circ h^{n}(i-1, i) \\
& = \begin{cases}h_{N}^{i-1, n-i} \circ u^{i, n-i}, & j=i \\
v_{N}^{i-1, n-i} \circ u^{i, n-i}, & j=i-1 \\
0, & j \neq i, i-1\end{cases}
\end{aligned}
$$

This yields $\mathbb{T}\left(f^{\bullet \bullet}\right)^{n}=h^{n+1} \circ d_{\mathbb{T}(M \cdot \bullet)}^{n}+d_{\mathbb{T}(N \cdot \cdot)}^{n-1} \circ h^{n}$. That is, $\mathbb{T}\left(f^{\bullet \bullet}\right)$ is null-homotopic. The proof of the lemma is completed.

Let $f^{\bullet \bullet}: M^{\bullet} \rightarrow N^{\bullet \bullet}$ be a morphism in $D C(\mathcal{A})$. We define its horizontal cone $H_{f} \cdot{ }^{\bullet}$ to be the double complex $\left(H^{\bullet \bullet}, v^{\bullet \bullet}, h^{\bullet \bullet}\right)$ such that $H^{i, j}=M^{i+1, j} \oplus N^{i, j}$ and

$$
v^{i, j}=\left(\begin{array}{cc}
-v_{M}^{i+1, j} & 0 \\
0 & v_{N}^{i, j}
\end{array}\right), h^{i, j}=\left(\begin{array}{cc}
-h_{M}^{i+1, j} & 0 \\
f^{i+1, j} & h_{N}^{i, j}
\end{array}\right) .
$$

This double complex is visualized as follows:

whose j-th row is the mapping cone of $f^{\bullet, j}: M^{\bullet, j} \rightarrow N^{\bullet, j}$, for every $j \in \mathbb{Z}$. In a similar fashion, we may define the vertical cone $V_{f} \cdot \cdot$ of $f *$ so that its i-th column is the mapping cone of $f^{i, \bullet}: M^{i, \bullet} \rightarrow N^{i, \cdot}$, for every $i \in \mathbb{Z}$.
4.5. Lemma. Let \mathcal{A} be a concrete additive category with countable direct sums. If $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ is a morphism in $D C(\mathcal{A})$, then

$$
\mathbb{T}\left(H_{f} \cdot \bullet\right)=C_{\mathbb{T}(f \cdot \bullet)}=\mathbb{T}\left(V_{f} \cdot \bullet\right)
$$

Proof. Let $f^{\bullet \bullet}: M^{\bullet} \rightarrow N^{\bullet}$ be a morphism in $D C(\mathcal{A})$. Given any $n \in \mathbb{Z}$, we obtain

$$
\mathbb{T}\left(H_{f} \cdot \cdot\right)^{n}=\oplus_{i \in \mathbb{Z}}\left(M^{i+1, n-i} \oplus N^{i, n-i}\right) \text { and } d_{\mathbb{T}\left(H_{f} \cdot \cdot\right)}^{n}=\left(d_{\mathbb{T}\left(H_{f} \cdot \cdot\right)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}
$$

where $d_{\mathbb{T}\left(H_{f} \cdot .\right)}^{n}(j, i): M^{i+1, n-i} \oplus N^{i, n-i} \rightarrow M^{j+1, n+1-j} \oplus N^{j, n+1-j}$ is defined by

$$
d_{\mathbb{T}\left(H_{f} \cdot \bullet\right)}^{n}(j, i)= \begin{cases}\left(\begin{array}{cc}
-v_{M}^{i+1, n-i} & 0 \\
0 & v_{N}^{i, n-i}
\end{array}\right), & j=i \\
\left(\begin{array}{cc}
-h_{M}^{i+1, n-i} & 0 \\
f^{i+1, n-i} & h_{N}^{i, n-i}
\end{array}\right), & j=i+1 \\
0, & j \neq i, i+1\end{cases}
$$

On the other hand, $\mathbb{T}\left(f^{\bullet \bullet}\right): \mathbb{T}\left(M^{\bullet}\right) \rightarrow \mathbb{T}\left(N^{*}\right)$ is a morphism in $C(\mathcal{A})$, whose mapping cone $C_{\mathbb{T}\left(f^{\bullet}\right)}$ is defined by

$$
C_{\mathbb{T}(f \cdot \bullet)}^{n}=\mathbb{T}(M \cdot \bullet)^{n+1} \oplus \mathbb{T}(N \cdot \bullet)^{n}=\oplus_{i \in \mathbb{Z}}\left(M^{i+1, n-i} \oplus N^{i, n-i}\right)=\mathbb{T}\left(H_{f} \cdot \cdot\right)^{n}
$$

and

$$
d_{\left.C_{\mathbb{T}(f \cdot} \cdot\right)}^{n}=\left(\begin{array}{cc}
-d_{\mathbb{T}(M \cdot \bullet)}^{n+1} & 0 \\
\mathbb{T}\left(f^{\bullet \bullet}\right)^{n+1} & d_{\mathbb{T}(N \cdot \bullet)}^{n}
\end{array}\right)=\left(d_{C_{\mathbb{T}(f \cdot \bullet)}^{n}}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}},
$$

where $d_{C_{\mathbb{T}(f \cdot \bullet}}^{n}(j, i): M^{i+1, n-i} \oplus N^{i, n-i} \rightarrow M^{j+1, n+1-j} \oplus N^{j, n+1-j}$ is defined to be

$$
\left(\begin{array}{ll}
-d_{\mathbb{T}(M \cdot \bullet)}^{n+1}(j, i) & 0 \\
\mathbb{T}\left(f^{\bullet \bullet}\right)^{n+1}(j, i) & d_{\mathbb{T}(N \cdot \bullet)}^{n}(j, i)
\end{array}\right)= \begin{cases}\left(\begin{array}{cc}
-v_{M}^{i+1, n-i} & 0 \\
0 & v_{N}^{i, n-i}
\end{array}\right), & j=i \\
\left(\begin{array}{cc}
-h_{M}^{i+1, n-i} & 0 \\
f^{i+1, n-i} & h_{N}^{i, n-i}
\end{array}\right), & j=i+1 \\
0, & j \neq i, i+1\end{cases}
$$

Thus, $d_{\left.C_{\mathbb{T}(f \cdot \bullet}\right)}^{n}(j, i)=d_{\mathbb{T}\left(H_{f} \cdot \bullet\right)}^{n}(j, i)$, for $i, j \in \mathbb{Z}$. This establishes the first part of the lemma, and the second part follows similarly. The proof of the lemma is completed.

As an application, we obtain a condition for the total morphism of double complex morphism is a quasi-isomorphism.
4.6. Lemma. Let \mathcal{A} be a concrete additive category with countable direct sums. Consider a morphism $f^{\bullet \bullet}: M^{\bullet \bullet} \rightarrow N^{\bullet \bullet}$ in $D C(\mathcal{A})$ such that $f^{i, \cdot}: M^{i, \cdot} \rightarrow N^{i, \cdot}$ is a quasi-isomorphism, for every $i \in \mathbb{Z}$. If $M^{\bullet \bullet}$ and N^{\bullet} are diagonally bounded-above, then $\mathbb{T}\left(f^{* *}\right)$ is a quasi-isomorphism.
Proof. Assume that $M^{\bullet \bullet}$ and $N^{\bullet \bullet}$ are diagonally bounded-above. Then, the vertical cone $V_{f} \cdot \bullet$ of $f^{\bullet \bullet}$ is also diagonally bounded-above. Given $i \in \mathbb{Z}$, since $f^{i, \cdot}: M^{i, \bullet} \rightarrow N^{i, \bullet}$ is a quasi-isomorphism, its cone, that is the i-th column of $V_{f} \cdot \cdot$, is acyclic. By Proposition 4.3, $\mathbb{T}\left(V_{f} \cdot \bullet\right)$, that is $C_{\mathbb{T}(f \cdot \bullet)}$; see (4.5), is acyclic. Thus, $\mathbb{T}\left(f^{\bullet \bullet}\right)$ is a quasi-isomorphism. The proof of the lemma is completed.

Let \mathcal{B} have countable direct sums. Consider a functor

$$
\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B}): M \rightarrow \mathfrak{F}(M)^{\bullet} ; f \mapsto \mathfrak{F}(f)^{\bullet} .
$$

We shall extend it to to $C(\mathcal{A})$. First, we construct a functor $\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B})$. Given a complex $M^{\bullet} \in C(\mathcal{A})$, applying \mathfrak{F} to its components yields a double complex $\mathfrak{F}\left(M^{\cdot}\right)^{\cdot}$ over \mathcal{B} as follows:

whose i-th column is $\mathfrak{t}^{i}\left(\mathfrak{F}\left(M^{i}\right)^{\bullet}\right)$, the i-th twist of $\mathfrak{F}\left(M^{i}\right)^{\bullet}$. Given a morphism $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ in $C(\mathcal{A})$, we obtain a commutative diagram

for all $i, j \in \mathbb{Z}$. Thus, $\mathfrak{F}\left(f^{\bullet}\right)^{\bullet}=\left(\mathfrak{F}\left(f^{i}\right)^{j}\right)_{i, j \in \mathbb{Z}}: \mathfrak{F}\left(M^{\bullet}\right)^{\bullet} \rightarrow \mathfrak{F}\left(N^{\bullet}\right)^{\bullet}$ is a morphism.
4.7. Proposition. Let \mathcal{A}, \mathcal{B} be concrete additive categories with \mathcal{B} having countable direct sums. Then every functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ induces a functor

$$
\mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow D C(\mathcal{B}): M^{\bullet} \mapsto \mathfrak{F}\left(M^{\bullet}\right)^{\bullet} ; f^{\bullet} \mapsto \mathfrak{F}\left(f^{\bullet}\right)^{\bullet}
$$

(1) If M^{\bullet} is an object in $C(\mathcal{A})$, then $\mathfrak{F}^{D C}\left(M^{\bullet}[1]\right)=\mathfrak{F}^{D C}\left(M^{*}\right)[1]$.
(2) If f^{\bullet} is a morphism in $C(\mathcal{A})$, then $\mathfrak{F}^{D C}\left(C_{f} \cdot\right)=H_{\mathfrak{F}^{D C}(f \cdot)}$. Moreover, $\mathfrak{F}^{D C}\left(f^{\bullet}\right)$ is horizontally null-homotopic whenever f^{\bullet} is null-homotopic.
Proof. Statement (1) is evident. Let $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ be a morphism in $C(\mathcal{A})$. Write its mapping cone as $\left(C^{\bullet}, d_{C}^{\bullet}\right)$. Then, $\mathfrak{F}\left(C^{n}\right)^{\bullet}=\mathfrak{F}\left(M^{n+1}\right)^{\bullet} \oplus \mathfrak{F}\left(N^{n}\right)^{\bullet}$, and

$$
d_{\mathfrak{F}\left(C^{n}\right)}=\left(\begin{array}{cc}
d_{\mathfrak{F}\left(M^{n+1}\right)}^{\bullet} & 0 \\
0 & d_{\mathfrak{F}\left(N^{n}\right)}^{*}
\end{array}\right)
$$

and

$$
\mathfrak{F}\left(d_{C}^{n}\right)^{\bullet}=\left(\begin{array}{cc}
-\mathfrak{F}\left(d_{M}^{n+1}\right)^{\bullet} & 0 \\
\mathfrak{F}\left(f^{n+1}\right)^{\bullet} & \mathfrak{F}\left(d_{N}^{n}\right)^{\bullet}
\end{array}\right) .
$$

Let $\left(H^{\bullet \bullet}, v_{H}^{\bullet}, h_{H}^{\bullet}\right)$ be the horizontal cone of $\mathfrak{F}^{D C}\left(f^{\bullet}\right): \mathfrak{F}^{D C}\left(M^{\bullet}\right) \rightarrow \mathfrak{F}^{D C}\left(N^{\bullet}\right)$. Then,

$$
H^{i, j}=\mathfrak{F}\left(M^{i+1}\right)^{j} \oplus \mathfrak{F}\left(N^{i}\right)^{j}=\mathfrak{F}\left(C^{i}\right)^{j}=\mathfrak{F}^{D C}\left(C^{\bullet}\right)^{i, j}
$$

with horizontal differentials

$$
h_{H}^{i, j}=\left(\begin{array}{cc}
-\mathfrak{F}\left(d_{M^{i+1}}\right)^{j} & 0 \\
\mathfrak{F}\left(f^{i+1}\right)^{j} & \mathfrak{F}\left(d_{N^{i}}\right)^{j}
\end{array}\right)=\mathfrak{F}\left(d_{C}^{i}\right)^{j}=h_{\mathfrak{F}^{D C}(C \cdot)}^{i, j}
$$

and vertical differentials

$$
v_{H}^{i, j}=\left(\begin{array}{cc}
(-1)^{i} d_{\mathfrak{F}\left(M^{i+1}\right)}^{j} & 0 \\
0 & (-1)^{i} d_{\mathfrak{F}\left(N^{i}\right)}^{j}
\end{array}\right)=(-1)^{i} d_{\mathfrak{F}\left(C^{i}\right)}^{j}=v_{\mathfrak{F} D C(C \cdot)}^{i, j}
$$

This shows that $C^{\bullet}=H^{\bullet}$, and the first part of Statement (2) is established. Suppose now that f^{\bullet} is null-homotopic. Let $u^{i}: M^{i} \rightarrow N^{i-1}$ be morphisms such that $f^{i}=u^{i+1} \circ d_{M}^{i}+d_{N}^{i-1} \circ u^{i}$, for all $i \in \mathbb{Z}$. In particular, for any $j \in \mathbb{Z}$, we obtain

$$
\mathfrak{F}\left(f^{i}\right)^{j}=\mathfrak{F}\left(u^{i+1}\right)^{j} \circ \mathfrak{F}\left(d_{M}^{i}\right)^{j}+\mathfrak{F}\left(d_{N}^{i-1}\right)^{j} \circ \mathfrak{F}\left(u^{i}\right)^{j}
$$

Since $\mathfrak{F}\left(u^{i}\right)^{\bullet}: \mathfrak{F}\left(M^{i}\right) \rightarrow \mathfrak{F}\left(N^{i-1}\right)^{\bullet}$ is a complex morphism, we obtain

$$
(-1)^{i} \mathfrak{F}\left(u^{i}\right)^{j+1} \circ d_{\mathfrak{F}\left(M^{i}\right)}^{j}+(-1)^{i} d_{\mathfrak{F}\left(N^{i-1}\right)}^{j} \circ \mathfrak{F}\left(u^{i}\right)^{j}=0
$$

for all $j \in \mathbb{Z}$. Considering $\mathfrak{F}\left(u^{i}\right)^{j}: \mathfrak{F}\left(M^{i}\right)^{j} \rightarrow \mathfrak{F}\left(N^{i-1}\right)^{j}$ with $i, j \in \mathbb{Z}$, we see that $\mathfrak{F}^{D C}\left(f^{\bullet}\right)$ is horizontally null-homotopic. The proof of the proposition is completed.

The following statement, which is a general version of Lemma 3.7 stated in [2], follows immediately from Lemma 4.5, Lemma 4.7 and Propositions 4.4.
4.8. Proposition. Let \mathcal{A}, \mathcal{B} be concrete additive categories with \mathcal{B} having countable direct sums. Then, every functor $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ extends to a functor

$$
\mathfrak{F}^{C}=\mathbb{T} \circ \mathfrak{F}^{D C}: C(\mathcal{A}) \rightarrow C(\mathcal{B})
$$

(1) If M is an object in \mathcal{A}, then $\mathfrak{F}^{C}(M)=\mathfrak{F}(M)^{\cdot}$.
(2) If M^{\bullet} is a complex in $C(\mathcal{A})$, then $\mathfrak{F}^{C}\left(M^{\bullet}[1]\right)=\mathfrak{F}^{C}\left(M^{\bullet}\right)[1]$.
(3) If f^{\bullet} is a morphism in $C(\mathcal{A})$, then $\left.\mathfrak{F}^{C}\left(C_{f} \cdot\right)=C_{\mathfrak{F}^{C}(f}{ }^{\bullet}\right)$ and $\mathfrak{F}^{C}\left(f^{\bullet}\right)$ is nullhomotopic whenever f^{\bullet} is null-homotopic.

Remark. The method of extending a functor stated in Proposition 4.8 has benn already used by many authors under some special circumstances; see [2, 5, 16, 29],

The following result is essential for our construction of the Koszul duality.
4.9. Theorem. Let \mathcal{A}, \mathcal{B} be concrete additive categories with \mathcal{B} having countable direct sums. Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ be a functor such that \mathfrak{F}^{C} sends a derivable subcategory \mathscr{A} of $C(\mathcal{A})$ into a derivable subcategory \mathscr{B} of $C(\mathcal{B})$.
(1) If \mathfrak{F} is exact such that $\mathfrak{F}^{D C}$ sends complexes in \mathscr{A} to diagonally bounded-below double complexes, then \mathfrak{F}^{C} sends acyclic complexes in \mathscr{A} to acyclic ones.
(2) If \mathfrak{F}^{C} sends acyclic complexes in \mathscr{A} to acyclic ones, then it induces a diagram

which is commutative with \mathfrak{F}^{K} and \mathfrak{F}^{D} being triangle-exact.
Proof. (1) Let \mathfrak{F} be exact such that, for every complex $M^{\bullet} \in \mathscr{A}$, the double complex $\mathfrak{F}\left(M^{*}\right)^{\bullet}$ is diagonally bounded-below. If M^{\bullet} is acyclic, then $\mathfrak{F}\left(M^{\bullet}\right)^{\bullet}$ has acyclic rows, and by Proposition 4.3, its total complex, that is $\mathfrak{F}^{C}\left(M^{\bullet}\right)$, is acyclic.
(2) By Proposition 4.8, there exists a triangle-exact functor $\mathfrak{F}^{K}: \mathcal{K}(\mathscr{A}) \rightarrow \mathcal{K}(\mathscr{B})$ making the left square commute. If \mathfrak{F}^{C} sends acyclic complexes in \mathscr{A} to acyclic ones in \mathscr{B}, then \mathfrak{F}^{K} sends quasi-isomorphisms in $\mathcal{K}(\mathscr{A})$ to quasi-isomorphisms in $\mathcal{K}(\mathscr{B})$. Thus, there exists a triangle-exact functor $\mathfrak{F}^{D}: \mathcal{D}(\mathscr{A}) \rightarrow \mathcal{D}(\mathscr{B})$ making the right square commute. The proof of the theorem is completed.

We shall also need the following fact that the extension of functors is compatible with the composition of functors.
4.10. Lemma. Let $\mathfrak{F}: \mathcal{A} \rightarrow C(\mathcal{B})$ and $\mathfrak{G}: \mathcal{B} \rightarrow C(\mathcal{C})$ be functors, where $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are concrete additive categories. If \mathcal{B}, \mathcal{C} have countable direct sums, then

$$
\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}=\mathfrak{G}^{C} \circ \mathfrak{F}^{C} .
$$

Proof. Assume that \mathcal{B}, \mathcal{C} have countable direct sums. Fix $M^{\cdot} \in C(\mathcal{A})$. Given $n \in \mathbb{Z}$, by definition, we obtain $\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)^{n}=\oplus_{i \in \mathbb{Z}} \mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i}\right)^{\cdot}\right)^{n-i}$ and $d_{\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)}^{n}=\left(d_{\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)}^{n}(j, i)\right)_{(j, i) \in \mathbb{Z} \times \mathbb{Z}}$, where

$$
d_{\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)}^{n}(j, i): \mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i}\right)^{\bullet}\right)^{n-i} \rightarrow \mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{j}\right)^{\bullet}\right)^{n+1-j}
$$

is given by

$$
d_{\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)}^{n}(j, i)= \begin{cases}(-1)^{i} d_{\mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i}\right) \cdot\right.}^{n-i}, & j=i ; \\ \mathfrak{G}^{C}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{\bullet}\right)^{n-i}, & j=i+1 \\ 0, & j \neq i, i+1\end{cases}
$$

Furthermore, by definition, we obtain a diagram

$$
\begin{array}{cc}
\mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i}\right)^{\bullet}\right)^{n-i} \xrightarrow[\mathfrak{G}^{C}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{\bullet}\right)^{n-i}]{ } & \mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i+1}\right)^{\bullet}\right)^{n-i} \\
\oplus_{p \in \mathbb{Z}} \mathfrak{G}\left(\mathfrak{F}\left(M^{i}\right)^{p}\right)^{n-i-p} \xrightarrow{\left(\mathfrak{G}^{C}\left(\mathfrak{F}\left(d_{M}^{i} \cdot\right)^{\cdot}\right)^{n-i}(q, p)\right)_{(q, p) \in \mathbb{Z} \times \mathbb{Z}}} \oplus_{q \in \mathbb{Z}} \mathfrak{G}\left(\mathfrak{F}\left(M^{i+1}\right)^{q}\right)^{n-i-q},
\end{array}
$$

where

$$
\mathfrak{G}^{C}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{\bullet}\right)^{n-i}(q, p)= \begin{cases}\mathfrak{G}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{p}\right)^{n-i-p}, & q=p \\ 0, & q \neq p\end{cases}
$$

and a diagram

where

$$
d_{\mathfrak{G}^{C}\left(\mathfrak{F}\left(M^{i}\right) \cdot\right.}^{n-i}(q, p)= \begin{cases}(-1)^{p} d_{\mathfrak{G}\left(\mathfrak{F}\left(M^{i}\right)^{p}\right)}^{n-i-p}, & q=p \\ \mathfrak{G}\left(d_{\mathfrak{F}\left(M^{i}\right)}^{p}\right)^{n-i-p}, & q=p+1 \\ 0, & q \neq p, p+1\end{cases}
$$

Therefore, $\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{\bullet}\right)$ is the complex described by the diagram

where

$$
d_{\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{*}\right)}^{n}(j, q ; i, p)= \begin{cases}(-1)^{i+p} d_{\mathfrak{G}\left(\mathfrak{F}\left(M^{i}\right)^{p}\right)}^{n-i-p}, & j=i ; q=p \\ (-1)^{i} \mathfrak{G}\left(d_{\mathfrak{F}\left(M^{i}\right)}^{p}\right)^{n-i-p}, & j=i ; q=p+1 \\ \mathfrak{G}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{p}\right)^{n-i-p} & j=i+1, q=p \\ 0, & \text { otherwise. }\end{cases}
$$

Next, given any integer n, we obtain $\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)^{n}=\oplus_{s \in \mathbb{Z}} \mathfrak{G}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)^{s}\right)^{n-s}$ and $d_{\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)}^{n}=\left(d_{\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)}^{n}(t, s)\right)_{(t, s) \in \mathbb{Z} \times \mathbb{Z}}$, where

$$
d_{\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)}^{n}(t, s): \mathfrak{G}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)^{s}\right)^{n-s} \rightarrow \mathfrak{G}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)^{t}\right)^{n+1-t}
$$

is given by

$$
d_{\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)}^{n}(t, s)= \begin{cases}(-1)^{s} d_{\mathfrak{G}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)^{s}\right)}^{n-s}, & t=s \\ \mathfrak{G}\left(d_{\mathfrak{F}^{C}\left(M^{\bullet}\right)}^{s}\right)^{n-s}, & t=s+1 \\ 0, & t \neq s, s+1\end{cases}
$$

Furthermore, by definition, we obtain diagrams

where

$$
d_{\mathfrak{G}\left(\mathfrak{F}^{C}\left(M^{\cdot}\right)^{s}\right)}^{n-s}(j, i)= \begin{cases}d_{\mathfrak{G}\left(\mathfrak{F}\left(M^{i}\right)^{s-i}\right)}^{n-s}, & j=i \\ 0, & j \neq i\end{cases}
$$

and

where

$$
\mathfrak{G}\left(d_{\mathfrak{F}}^{s}\left(M^{\bullet} \cdot\right)^{n-s}(j, i)= \begin{cases}\left.(-1)^{i} \mathfrak{G}\left(d_{\mathfrak{F}}^{s-i} M^{i}\right)\right)^{n-s}, & j=i ; \\ \mathfrak{G}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{s-i}\right)^{n-s}, & j=i+1 ; \\ 0, & j \neq i, i+1 .\end{cases}\right.
$$

Thus, $\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{*}\right)\right)$ is the complex described by the following diagram

where

$$
d_{\mathfrak{G}^{C}\left(\widetilde{\mathfrak{F}}^{C}\left(M^{\bullet}\right)\right)}^{n}(j, t ; i, s)= \begin{cases}(-1)^{s} d_{\mathfrak{G}\left(\tilde{\mathfrak{F}}\left(M^{i}\right)^{s-i}\right),}^{n-s} \quad t=s, j=i \\ (-1)^{i} \mathfrak{G}\left(d_{\mathfrak{F}\left(M^{i}\right)}^{s-1}\right)^{n-s}, & t=s+1, j=i ; \\ \mathfrak{G}\left(\widetilde{\left.\mathfrak{F}\left(d_{M}^{i}\right)^{s-i}\right)^{n-s},}\right. & t=s+1, j=i+1 ; \\ 0, & \text { otherwise. }\end{cases}
$$

Setting $p=s-i$ and $q=t-j$, we see that $\mathfrak{G}^{C}\left(\mathfrak{F}^{C}\left(M^{\bullet}\right)\right)$ is also described by

where

$$
\begin{aligned}
d^{n}(j, q ; i, p) & =d_{\mathfrak{G}^{C}\left(\mathfrak{F}^{C}(M \cdot)\right.}^{n}(j, q+j ; i, p+i) \\
& = \begin{cases}(-1)^{p+i} d_{\mathfrak{G}\left(\mathfrak{F}\left(M^{i}\right)^{p}\right)}^{n-i-p}, & q=p, j=i ; \\
(-1)^{i} \mathfrak{G}\left(d_{\mathfrak{F}\left(M^{i}\right)}\right)^{n-i-p}, & q=p+1, j=i ; \\
\mathfrak{G}\left(\mathfrak{F}\left(d_{M}^{i}\right)^{p}\right)^{n-i-p}, & q=p, j=i+1 ; \\
0, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Thus, we see that $\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(M^{*}\right)=\left(\mathfrak{G}^{C} \circ \mathfrak{F}^{C}\right)\left(M^{\bullet}\right)$. Similarly, we can verify that $\left(\mathfrak{G}^{C} \circ \mathfrak{F}\right)^{C}\left(f^{\bullet}\right)=\left(\mathfrak{G}^{C} \circ \mathfrak{F}^{C}\right)\left(f^{\bullet}\right)$, for every morphism $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ in $C(\mathcal{A})$. The proof of the proposition is completed.

To conclude this section, we shall study how to extend functorial morphisms.
4.11. Lemma. Let $\mathfrak{F}, \mathfrak{G}: \mathcal{A} \rightarrow C(\mathcal{B})$ be functors, where \mathcal{A}, \mathcal{B} are concrete additive categories with \mathcal{B} having countable direct sums. Then, every functorial morphism $\eta: \mathfrak{F} \rightarrow \mathfrak{G}$ induces functorial morphisms $\eta^{D C}: \mathfrak{F}^{D C} \rightarrow \mathfrak{G}^{D C}$ and $\eta^{C}: \mathfrak{F}^{C} \rightarrow \mathfrak{G}^{C}$.
Proof. Let $\eta=\left(\eta_{M}^{\cdot}\right)_{M \in \mathcal{A}}: \mathfrak{F} \rightarrow \mathfrak{G}$ be a functorial morphism. Fix $M^{\cdot} \in C(\mathcal{A})$. Given $i, j \in \mathbb{Z}$, since η_{M}^{\cdot} is natural in M, we obtain a commutative diagram

This yields a morphism $\eta_{M^{\bullet}}^{\cdot}=\left(\eta_{M^{i}}^{j}\right)_{i, j \in \mathbb{Z}}: \mathfrak{F}^{D C}\left(M^{\bullet}\right) \rightarrow \mathfrak{G}^{D C}\left(M^{\bullet}\right)$ in $D C(\mathcal{B})$ and a morphism $\eta_{M} \cdot=\mathbb{T}\left(\eta_{M^{\bullet}}^{\cdot}\right): \mathfrak{F}^{C}\left(M^{\bullet}\right) \rightarrow \mathfrak{G}^{C}\left(M^{\bullet}\right)$ in $C(\mathcal{B})$. Let $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ be a morphism in $C(\mathcal{A})$. Given $i, j \in \mathbb{Z}$, we obtain a commutative diagram

Hence, $\mathfrak{G}^{D C}\left(f^{\bullet}\right) \circ \eta_{M}^{\bullet} .=\eta_{N}^{\bullet} . \circ \mathfrak{F}^{D C}\left(f^{\bullet}\right)$. Applying \mathbb{T} to this equation, we obtain $\mathfrak{G}^{C}\left(f^{\bullet}\right) \circ \eta_{M}^{\bullet} \cdot=\eta_{N}^{\bullet} \cdot \circ \mathfrak{F}^{C}\left(f^{\bullet}\right)$. Thus, η_{M}^{\bullet}. and η_{M}. are natural in M^{\bullet}. Therefore, $\eta^{D C}=\left(\eta_{M \cdot}^{\cdot} \cdot\right)_{M \cdot \in C(\mathcal{A})}$ and $\eta^{C}=\left(\eta_{M} \cdot\right)_{M \cdot \in C(\mathcal{A})}$ are desired functorial morphisms. The proof of the lemma is complete.

5. Koszul duality

The objective of this section is to describe the Koszul duality for a Koszul algebra defined by gradable quiver, which relates derived categories of modules over a Koszul algebra and those of modules over its Koszul dual.

Throughout this section, $\Lambda=k Q / R$, where Q is a locally finite gradable quiver and R is a quadratic ideal in $k Q$. We fix a grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$, which will be used later without an explicit mention. Recall that $Q(x, y)=Q_{n-m}(x, y)$, for $x \in Q^{n}$ and $y \in Q^{m}$ with $m, n \in \mathbb{Z}$; see $[1,(7.2)]$. Here $Q_{s}(x, y)=\emptyset$ for $s<0$. In particular, Λ is strongly locally finite dimensional. We shall regard modules in $\operatorname{Mod} \Lambda$ as representations in $\operatorname{Rep}(Q, R)$. Thus, every module M in $\operatorname{Mod} \Lambda$ is graded as $M=\oplus_{n \in \mathbb{Z}} M_{n}$, where $M_{n}=\oplus_{x \in Q^{n}} M(x)$. Note that this grading for P_{a} with $a \in Q^{n}$ is the grading-shift by n of its J-grading. We say that M is bounded-above if $M_{n}=0$ for $n \gg 0$, and bounded-below if $M_{n}=0$ for $n \ll 0$. These notions are independent of the grading for Q_{0}; see $[1,(7.1)]$. The full subcategories of $\operatorname{Mod} \Lambda$ of bounded-above modules and of bounded-below modules are written as $\operatorname{Mod}^{-} \Lambda$ and $\operatorname{Mod}^{+} \Lambda$, respectively.

Let $\left(M^{*}, d^{*}\right)$ be a complex over $\operatorname{Mod} \Lambda$. Given $x \in Q_{0}$, we obtain a complex $M^{\cdot}(x)$ over $\operatorname{Mod} k$, whose n-th component is $M^{n}(x)$ and whose n-th differential is $d_{x}^{n}: M^{n}(x) \rightarrow M^{n+1}(x)$. Clearly, M^{\bullet} is acyclic if and only if $M^{\bullet}(x)$ is acyclic, for every $x \in Q_{0}$. Let $f^{\bullet}: M^{\bullet} \rightarrow N^{\bullet}$ be a morphism in $C(\operatorname{Mod} \Lambda)$. Given $x \in Q_{0}$, we obtain a morphism $f^{\bullet}(x): M^{\bullet}(x) \rightarrow N^{\bullet}(x)$ in $C(\operatorname{Mod} k)$, which is defined by $f^{n}(x)=f_{x}^{n}: M^{n}(x) \rightarrow N^{n}(x)$. Clearly, f^{\bullet} is a quasi-isomorphism if and only
if $f^{\bullet}(x)$ is a quasi-isomorphism, for every $x \in Q_{0}$. A similar consideration will be given to objects $M^{\bullet \bullet}$ and morphisms $f^{\bullet \bullet}$ in $D C(\operatorname{Mod} \Lambda)$ in such a way that $\mathbb{T}\left(M^{\bullet \bullet}\right)(x)=\mathbb{T}\left(M^{\bullet \bullet}\right)(x)$ and $\mathbb{T}\left(f^{\bullet \bullet}\right)(x)=\mathbb{T}\left(f^{\bullet \bullet}\right)(x)$, for every $x \in Q_{0}$.

Observe that Q^{o} admits a grading $\left(Q^{\mathrm{o}}\right)_{0}=\cup_{n \in \mathbb{Z}}\left(Q^{\mathrm{o}}\right)^{n}$ with $\left(Q^{\mathrm{o}}\right)^{n}=Q^{-n}$. Thus, the quadratic dual $\Lambda^{!}$is defined by the gradable quiver Q°. Given $a \in Q_{0}$, we denote by $S_{a}^{!}, P_{a}^{!}$and $I_{a}^{!}$the simple module, the indecomposable projective module and the indecomposable injective module in $\operatorname{Mod} \Lambda^{!}$associated with a, respectively. Now, we define two Koszul functors $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ and $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$. Indeed, given a module M in $\operatorname{Mod} \Lambda^{!}$, as shown below, we shall obtain a complex $F(M)^{\bullet}$ in $C(\operatorname{Mod} \Lambda)$ if, for $n \in \mathbb{Z}$, we put

$$
F(M)^{n}=\oplus_{x \in\left(Q^{\circ}\right)^{n}} P_{x} \otimes M(x)=\oplus_{x \in Q^{-n}} P_{x} \otimes M(x)
$$

and $d_{F(M)}^{n}=\left(d_{F(M)}^{n}(y, x)\right)_{(y, x) \in Q^{-n-1} \times Q^{-n}}: F(M)^{n} \rightarrow F(M)^{n+1}$, where

$$
d_{F(M)}^{n}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes M\left(\alpha^{\mathrm{o}}\right): P_{x} \otimes M(x) \rightarrow P_{y} \otimes M(y)
$$

And given a morphism $f: M \rightarrow N$ in $\operatorname{Mod} \Lambda^{!}$, we shall obtain a complex morphism $F(f)^{\bullet}: F(M)^{\bullet} \rightarrow F(N)^{\bullet}$ if, for any $n \in \mathbb{Z}$, we set

$$
F(f)^{n}=\oplus_{x \in Q^{-n}} 1 \otimes f(x): \oplus_{x \in Q^{-n}} P_{x} \otimes M(x) \rightarrow \oplus_{x \in Q^{-n}} P_{x} \otimes N(x)
$$

On the other hand, given a module N in $\operatorname{Mod} \Lambda$, we shall obtain a complex $G(N)^{\bullet}$ in $C\left(\operatorname{Mod} \Lambda^{!}\right)$provided that, for any integer n, we put

$$
G(N)^{n}=\oplus_{x \in Q^{n}} I_{x}^{!} \otimes N(x)
$$

and $d_{G(N)}^{n}=\left(d_{G(N)}^{n}(y, x)\right)_{(y, x) \in Q^{n+1} \times Q^{n}}$, where

$$
d_{G(N)}^{n}(y, x)=\sum_{\alpha: x \rightarrow y} I\left[\alpha^{!}\right] \otimes N(\alpha): I_{x}^{!} \otimes M(x) \rightarrow I_{y}^{!} \otimes N(y)
$$

And given a morphism $g: M \rightarrow N$ in $\operatorname{Mod} \Lambda$, we shall obtain a complex morphism $G(g)^{\bullet}: G(M)^{\bullet} \rightarrow G(N)^{\bullet}$ if, for any $n \in \mathbb{Z}$, we put

$$
G(g)^{n}=\oplus_{x \in Q^{n}} 1 \otimes g(x): \oplus_{x \in Q^{n}} I_{x}^{!} \otimes M(x) \rightarrow \oplus_{x \in Q^{n}} I_{x}^{!} \otimes N(x)
$$

5.1. Proposition. Let $\Lambda=k Q / R$, where Q is a locally finite gradable quiver and R is a quadratic ideal. The above construction yields two exact functors
(1) $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda): M \rightarrow F(M)^{\bullet} ; f \mapsto F(f)^{\bullet}$;
(2) $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right): N \rightarrow G(N)^{\bullet} ; g \mapsto G(g)^{\bullet}$.

Proof. We shall only prove Statement (1). Consider a module $M \in \operatorname{Mod} \Lambda^{!}$. We shall show that $F(M)^{\bullet}$ is a complex. Indeed, fix an integer n. Given $z \in Q^{-n-2}$ and $x \in Q^{-n}$, we write $Q(z, x)=\left\{\alpha_{1} \beta_{1}, \ldots, \alpha_{s} \beta_{s}\right\}$, where $\alpha_{i}, \beta_{i} \in Q_{1}$. Recall that $\Lambda^{!}=\left\{\gamma^{!} \mid \gamma \in k Q\right\}$, where $\gamma^{!}=\gamma^{0}+R^{!}$. By definition, we obtain

$$
\left(d_{F(M)}^{n+1} \circ d_{F(M)}^{n}\right)(z, x)=\sum_{i=1}^{s} P\left[\bar{\alpha}_{i} \bar{\beta}_{i}\right] \otimes M\left(\beta_{i}^{!} \alpha_{i}^{!}\right): P_{x} \otimes M(x) \rightarrow P_{z} \otimes M(z)
$$

As seen in the proof of Lemma 3.6, we may find bases $\left\{\rho_{1}, \ldots, \rho_{r}, \rho_{r+1}, \ldots, \rho_{s}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{r}, \eta_{r+1}, \ldots, \eta_{s}\right\}$ of $k Q(z, x)$ such that $\left\{\rho_{1}, \ldots, \rho_{r}\right\}$ is a basis of $R_{2}(z, x)$ and $\left\{\eta_{r+1}^{\mathrm{o}}, \ldots, \eta_{s}^{\mathrm{o}}\right\}$ is a basis of $R_{2}^{!}(x, z)$, while $\left\{\eta_{1}^{*}, \ldots, \eta_{r}^{*}, \eta_{r+1}^{*}, \ldots, \eta_{s}^{*}\right\}$ is the dual basis of $\left\{\rho_{1}, \ldots, \rho_{r}, \rho_{r+1}, \ldots, \rho_{s}\right\}$. In particular, $\bar{\rho}_{i}=0$ for $1 \leq i \leq r$ and $\eta^{!}=0$ for $r<i \leq s$. By Lemma 1.4(2), we obtain

$$
\sum_{i=1}^{s}\left(\alpha_{i} \beta_{i}\right) \otimes\left(\alpha_{i} \beta_{i}\right)^{*}=\sum_{i=1}^{s} \rho_{i} \otimes \eta_{i}^{*} \in k Q(z, x) \otimes D(k Q(z, x))
$$

In view of the canonical projections $k Q(z, x) \rightarrow e_{x} \Lambda e_{z}$ and $k Q^{\circ}(x, z) \rightarrow e_{z} \Lambda^{!} e_{x}$ and the isomorphism $D\left(k Q_{2}(z, x)\right) \rightarrow k Q_{2}^{\mathrm{o}}(x, z)$, we see from the above equation that

$$
\sum_{i=1}^{s} \bar{\alpha}_{i} \bar{\beta}_{i} \otimes \beta_{i}^{!} \alpha_{i}^{!}=\sum_{i=1}^{s} \bar{\rho}_{i} \otimes \eta_{i}^{!}
$$

Applying to this equation the k-linear map

$$
e_{x} \Lambda e_{z} \otimes e_{z} \Lambda!e_{x} \rightarrow \operatorname{Hom}_{\Lambda}\left(P_{x}, P_{z}\right) \otimes \operatorname{Hom}_{k}(M(x), M(z))
$$

obtained from Proposition 2.1, we conclude that

$$
\sum_{i=1}^{s} P\left[\bar{\alpha}_{i} \bar{\beta}_{i}\right] \otimes M\left(\beta_{i}^{!} \alpha_{i}^{!}\right)=\sum_{i=1}^{s} P\left[\bar{\rho}_{i}\right] \otimes M\left(\eta_{i}^{!}\right)=0
$$

That is, $d_{F(M)}^{n+1} \circ d_{F(M)}^{n}=0$. Now, it is easy to see that F is a functor, which is exact because the tensor product is over k. The proof of the proposition is completed.

REmARK. In case Q is finite, our Koszul functor F coincides with the one for Λ ! defined in [5, page 489]. Indeed, $\Lambda=\left(\Lambda^{!}\right)^{!}$. Let $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a module in $\operatorname{Mod} \Lambda$, where $M_{n}=\oplus_{x \in Q^{n}} M(x)$. Since $e_{y} M_{n}=0$ for all $y \notin Q^{n}$, we see that $\oplus_{x \in Q^{n}} P_{x} \otimes M(x)=\Lambda \otimes_{\Lambda / J \Lambda} M_{n},$.

As has been seen in Section 4, the Koszul functors are extended to functors $F^{C}: C\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C(\operatorname{Mod} \Lambda)$ and $G^{C}: C(\operatorname{Mod} \Lambda) \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$, call the complex Koszul functors, which descend to the homotopy categories; see (4.8). Since F^{C} does not send all acyclic complexes to acyclic ones, it does not descend to the full derived category of $\operatorname{Mod} \Lambda^{!}$. This forces us to consider subcategories of complex categories. For this purpose, we shall view a complex M^{\bullet} over $\operatorname{Mod} \Lambda$ as a bigraded k-space $M_{j}^{i}=\oplus_{x \in Q^{j}} M^{i}(x), i, j \in \mathbb{Z}$.
5.2. Definition. Let $\Lambda=k Q / R$, where Q is a locally finite gradable quiver and R is a quadratic ideal in $k Q$. Given $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, we denote by
(1) $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ the full abelian subcategory of $C(\operatorname{Mod} \Lambda)$ of complexes M^{\bullet} with $M_{j}^{i}=0$ for $i+p j \gg 0$ or $i-q j \ll 0$; in other words, M^{\cdot} concentrates in a lower triangle formed by two lines of slopes $-\frac{1}{p}$ and $\frac{1}{q}$ respectively;
(2) $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ the full abelian subcategory of $C(\operatorname{Mod} \Lambda)$ of complexes M^{\cdot} with $M_{j}^{i}=0$ for $i+p j \ll 0$ or $i-q j \gg 0$; in other words, M^{\cdot} concentrates in a upper triangle formed by two lines of slopes $-\frac{1}{p}$ and $\frac{1}{q}$ respectively.

REmark. (1) Taking $p=1$ and $q=0$, we recover the categories $C^{\downarrow}(\Lambda)$ and $C^{\uparrow}(\Lambda)$ considered in $[5,(2.12)]$, and also, $[25,(2.4)]$.
(2) The $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ are pairwise distinct derivable subcategories of $C\left(\operatorname{Mod}^{-} \Lambda\right)$, while the $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ are pairwise distinct derivable subcategories of $C\left(\operatorname{Mod}^{+} \Lambda\right)$.

In the sequel, we shall write $K_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ and $K_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ for the quotients of $C_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ and $C_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ modulo null-homotopic morphisms respectively, and write $D_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ and $D_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ for the localizations of $K_{p, q}^{\downarrow}(\operatorname{Mod} \Lambda)$ and $K_{p, q}^{\uparrow}(\operatorname{Mod} \Lambda)$ at quasi-isomorphisms, respectively.
5.3. Theorem. Let $\Lambda=k Q / R$, where Q is a locally finite gradable quiver and R is a quadratic ideal in $k Q$. Consider $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$. Then
(1) the Koszul functor $F: \operatorname{Mod} \Lambda^{!} \rightarrow C(\operatorname{Mod} \Lambda)$ induces a commutative diagram

(2) the Koszul functor $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$induces a commutative diagram

$$
\begin{aligned}
& C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \xrightarrow{P_{\Lambda}} K_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \xrightarrow{L_{\Lambda}} D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \\
& G_{p, q}^{C} \downarrow \quad \downarrow^{\prime} G_{p, q}^{K} \quad \downarrow^{G_{p, q}^{D}} \\
& C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \xrightarrow{P_{\Lambda}!} K_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \xrightarrow{L_{\Lambda}!} D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right),
\end{aligned}
$$

where F^{D} and G^{D} are triangle-exact, called the derived Koszul functors.
Proof. Consider the two complex Koszul functors $F^{C} C\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C(\operatorname{Mod} \Lambda)$ and $G^{C}: C(\operatorname{Mod} \Lambda) \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$. First, let $M^{\bullet} \in C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. We claim that $F^{C}\left(M^{\bullet}\right)$ belongs to $C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$. Indeed, by definition, there exist s, t such that $M^{i}(x)=0$, for $x \in\left(Q^{\circ}\right)^{j}$ with $i+p j>s$ or $i-q j<t$. Fix $n, m \in \mathbb{Z}$. Given any $y \in Q^{m}$, we obtain

$$
F^{C}\left(M^{\bullet}\right)^{n}(y)=\oplus_{i \in \mathbb{Z} ; x \in\left(Q^{\circ}\right)^{n-i}} P_{x}(y) \otimes M^{i}(x)=\oplus_{i \leq n+m ; x \in Q^{i-n}} P_{x}(y) \otimes M^{i}(x)
$$

Let $i \leq n+m$. If $n+(q+1) m<s$, then $i-q(n-i)<s$; and if $n-(p-1) m>t$, then $i+p(n-i)>t$. In either case, $M^{i}(x)=0$ for all $x \in\left(Q^{\circ}\right)^{n-i}$. Therefore, $F^{C}\left(M^{\cdot}\right)_{m}^{n}(y)=0$ if $n+(q+1) m<s$ or $n-(p-1) m>t$. This establishes our claim. Hence, F^{C} restricts to a functor $F_{p, q}^{C}: C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$.

Fix again $n \in \mathbb{Z}$. Then, $F\left(M^{i}\right)^{n-i}=\oplus_{x \in\left(Q^{\circ}\right) n-i} P_{x} \otimes M^{i}(x)$ with $i \in \mathbb{Z}$ form the n-diagonal of $F\left(M^{\bullet}\right)^{\bullet}$. By the assumption, $M^{i}(x)=0$ for $x \in\left(Q^{\circ}\right)^{n-i}$ with $i<(n q+t)(1+q)^{-1}$. Hence, $F\left(M^{\bullet}\right)^{\bullet}$ is diagonally bounded-below. By Theorem 4.9, we see that $F_{p, q}^{C}$ induces a commutative diagram as stated in Statement (1).

Next, using a similar argument, we can verify that G^{C} restricts to a functor $G_{p, q}^{C}: C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. Let $N^{\cdot} \in C(\operatorname{Mod} \Lambda)$ be acyclic. We shall show that $G^{C}\left(N^{\bullet}\right)$ is acyclic, or equivalently, $G^{C}\left(N^{\bullet}\right)(x)$ is acyclic for all $x \in Q_{0}$. Indeed, fix $x \in Q^{s}$ for some $s \in \mathbb{Z}$. By definition, $G^{C}\left(N^{\bullet}\right)=\mathbb{T}\left(G\left(N^{\bullet}\right)^{\bullet}\right)$, and hence, $G^{C}\left(N^{\bullet}\right)(x)=\mathbb{T}\left(G\left(N^{\bullet}\right)^{\bullet}(x)\right)$. Since G is exact, $G\left(N^{\bullet}\right)^{\bullet}$ has acyclic rows, and so does $G\left(N^{\bullet}\right)^{\bullet}(x)$. Given any $n \in \mathbb{Z}$, the n-diagonal of $G\left(N^{\bullet}\right)^{\bullet}(x)$ consists of $G\left(N^{i}\right)^{n-i}(x)=\oplus_{y \in Q^{n-i}} I_{y}^{!}(x) \otimes N^{i}(y), i \in \mathbb{Z}$. If $i<n-s$ and $y \in Q^{n-i}$, since Q contains no path from y to x, we have $I_{y}^{!}(x)=D\left(e_{x}\left(\Lambda^{!}\right)^{\circ} e_{y}\right)=0$, and consequently, $G\left(N^{i}\right)^{n-i}(x)=0$. Thus, $G\left(N^{\bullet}\right)^{\bullet}(x)$ is diagonally bounded-below, and by Proposition 4.3, $G^{C}\left(N^{\bullet}\right)(x)$ is indeed acyclic. Now, we deduce from Theorem $4.9(2)$ that $G_{p, q}^{C}$ induces a commutative diagram as stated in Statement (2). The proof of the theorem is completed.

Remark. The case $p=1$ and $q=0$ of Theorem 5.3 has been established for quadratic positively graded categories; see [25, Proposition 20].

In case Λ is Koszul, we shall show that the derived Koszul functors F^{D} and G^{D} are mutually quasi-inverse. For this purpose, given a simple module S, we shall
denote by $\mathcal{P}_{\dot{S}}$ its minimal projective resolution and by $\mathcal{I}_{\dot{S}}$ its minimal injective co-resolution. They can be explicitly described as below; compare [5, (1.2.6)]
5.4. Lemma. Let $\Lambda=k Q / R$ be a Koszul algebra, where Q is locally finite with a grading $Q_{0}=\cup_{n \in \mathbb{Z}} Q^{n}$. If $a \in Q^{s}$, then $F\left(I_{a}^{!}\right)^{\cdot} \cong \mathcal{P}_{S_{a}}^{\cdot}[s]$ and $G\left(P_{a}\right)^{\cdot} \cong \mathcal{I}_{S_{a}^{!}}^{\cdot}[-s]$.
Proof. Fix $a \in Q^{s}$. By Theorem 3.4 and Lemma 3.9, $\mathcal{P}_{S_{a}}$ is isomorphic to

$$
L^{\bullet}: \cdots \longrightarrow L^{-i} \xrightarrow{d^{-i}} L^{-i+1} \longrightarrow \cdots \longrightarrow L^{-1} \xrightarrow{d^{-1}} L^{0} \longrightarrow 0 \longrightarrow \cdots
$$

where $L^{-i}=\oplus_{x \in Q_{0}} P_{x} \otimes D\left(e_{a} \Lambda_{i}^{!} e_{x}\right)$ and $d^{-i}=\left(d^{-i}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}$ with

$$
d^{-i}(y, x)=\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes D P\left[\alpha^{!}\right]: P_{x} \otimes D\left(e_{a} \Lambda_{i}^{!} e_{x}\right) \rightarrow P_{y} \otimes D\left(e_{a} \Lambda_{i-1}^{!} e_{y}\right)
$$

Fix an integer $n \geq 0$. Observe that $e_{a} \Lambda_{n}^{!} e_{x}=0$ in case $x \notin Q^{n+s}$, and otherwise, $e_{a} \Lambda_{n}^{!} e_{x}=e_{a} \Lambda^{!} e_{x}$. Therefore, $L^{-n}=\oplus_{x \in Q^{n+s}} P_{x} \otimes D\left(e_{a} \Lambda^{!} e_{x}\right)$. Moreover, the k-linear isomorphism $e_{x}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a} \rightarrow e_{a} \Lambda^{!} e_{x}$ induces a k-linear isomorphism $\theta_{a, x}: D\left(e_{a} \Lambda^{!} e_{x}\right) \rightarrow D\left(e_{x}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a}\right)=I_{a}^{!}(x)$ such that the diagram

$$
\begin{aligned}
& \oplus_{x \in Q^{n+s}} P_{x} \otimes D\left(e_{a} \Lambda^{!} e_{x}\right) \xrightarrow{\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes D P\left[\alpha^{!}\right]} \oplus_{y \in Q^{n+s-1}} P_{y} \otimes D\left(e_{a} \Lambda^{!} e_{y}\right) \\
& \quad \oplus\left(1 \otimes \theta_{a, x}\right) \downarrow \\
& \quad \oplus_{x \in Q^{n+s}} P_{x} \otimes I_{a}^{!}(x) \xrightarrow{\sum_{\alpha \in Q_{1}(y, x)} P[\bar{\alpha}] \otimes I_{a}^{!}\left(\alpha^{\circ}\right)} \xrightarrow{\downarrow} \oplus_{y \in Q^{n+s-1}} P_{y} \otimes I_{a}^{!}(y)
\end{aligned}
$$

commutates with vertical isomorphisms. Since $F\left(I_{a}^{!}\right)^{-n-s}=0$ for $n<0$, we see that $L^{\cdot} \cong \mathfrak{t}^{s}\left(F\left(I_{a}^{!}\right)[-s]\right) \cong F\left(I_{a}^{!}\right)[-s]$. This establishes the first part of the lemma.

Next, by Theorem 3.10 and Proposition 3.8 , $\Lambda^{!}$is Koszul with $\left(\Lambda^{!}\right)^{!}=\Lambda$. In view of Theorem $3.13(3)$, we see that $\mathcal{I}_{S_{a}^{!}}$is isomorphic to

$$
T^{\cdot}: \quad 0 \longrightarrow T^{0} \xrightarrow{d^{0}} T^{1} \longrightarrow \cdots \longrightarrow T^{n} \xrightarrow{d^{n}} T^{n+1} \longrightarrow \cdots
$$

where $T^{n}=\oplus_{x \in Q_{0}} I_{x}^{!} \otimes e_{x} \Lambda_{n} e_{a}$ and $d^{n}=\left(d^{n}(y, x)\right)_{(y, x) \in Q_{0} \times Q_{0}}: T^{n} \rightarrow T^{n+1}$ with $d^{n}(y, x)=\sum_{\alpha \in Q_{1}(x, y)} I\left[\alpha^{!}\right] \otimes P_{a}(\alpha): I_{x}^{!} \otimes e_{x} \Lambda_{n} e_{a} \rightarrow I_{y}^{!} \otimes e_{y} \Lambda_{n+1} e_{a}$, for $n \geq 0$. Fix an integer $n \geq 0$. Note that $e_{x} \Lambda_{n} e_{a}=0$ in case $x \notin Q^{n+s}$; and otherwise, $e_{x} \Lambda_{n} e_{a}=e_{x} \Lambda e_{a}$. Thus, $T^{n}=\oplus_{x \in Q^{n+s}} I_{x}^{!} \otimes e_{x} \Lambda e_{a}=G\left(P_{a}\right)^{n+s}$ and $d^{n}=d_{G\left(P_{a}\right)}^{n+s}$, for $n \geq 0$. Since $G\left(P_{a}\right)^{n+s}=0$ for $n<0$, we see that $\mathcal{I}_{S_{a}^{\prime}}^{\bullet} \cong \mathfrak{t}^{s}\left(G\left(P_{a}\right)^{\bullet}[s]\right) \cong G\left(P_{a}\right)^{\bullet}[s]$. The proof of the lemma is completed.

The following statement describes in particular a projective resolution for every module over a Koszul algebra.
5.5. Proposition. Let $\Lambda=k Q / R$ be a Koszul algebra, where Q is a locally finite gradable quiver. If $M \in \operatorname{Mod} \Lambda$, then there exists a natural quasi-isomorphism $\eta_{M}^{\cdot}:\left(F^{C} \circ G\right)(M)^{\cdot} \rightarrow M$.
Proof. Fix $M \in \operatorname{Mod} \Lambda$. By definition, $\left(F^{C} \circ G\right)(M)^{\bullet}=\mathbb{T}\left(F\left(G(M)^{\bullet}\right)^{\bullet}\right)$. For $n \in \mathbb{Z}$, we obtain $\left(F^{C} \circ G\right)(M)^{n}=\oplus_{i \in \mathbb{Z}} F\left(G(M)^{i}\right)^{n-i}=\oplus_{i \in \mathbb{Z} ; a \in Q^{i-n}} P_{a} \otimes G(M)^{i}(a)$, where $G(M)^{i}=\oplus_{x \in Q^{i}} I_{x}^{!} \otimes M(x)$. Therefore,

$$
\left(F^{C} \circ G\right)(M)^{n}=\oplus_{i \in \mathbb{Z} ; a \in Q^{i-n} ; x \in Q^{i}} P_{a} \otimes I_{x}^{!}(a) \otimes M(x)
$$

Suppose that $n>0$. For any $a \in Q^{i-n}$ and $x \in Q^{i}$, since Q has no path from x to a, we see that $I_{x}^{!}(a)=0$. Thus, $\left(F^{C} \circ G\right)(M)^{n}=0$.

Suppose that $n<0$. We claim that $\mathrm{H}^{n}\left(\left(F^{C} \circ G\right)(M)^{\bullet}\right)=0$, or equivalently, $\mathrm{H}^{n}\left(\left(F^{C} \circ G\right)(M)^{\bullet}(y)\right)=0$, for $y \in Q^{p}$ with $p \in \mathbb{Z}$. Indeed, $\left(F^{C} \circ G\right)(M)^{\bullet}(y)$ is the total complex of the double complex $F\left(G(M)^{\bullet}\right)^{\bullet}(y)$, whose n-diagonal consists of

$$
F\left(G(M)^{i}\right)^{n-i}(y)=\oplus_{a \in Q^{i-n} ; x \in Q^{i}} P_{a}(y) \otimes I_{x}^{!}(a) \otimes M(x), i \in \mathbb{Z}
$$

If $i>n+p$, then $P_{a}(y)=0$ for all $a \in Q^{i-n}$. Hence, $F\left(G(M)^{i}\right)^{n-i}(y)=0$. That is, $F\left(G(M)^{\cdot}\right)^{\cdot}(y)$ is n-diagonally bounded-above. Given $i \in \mathbb{Z}$, the i-th column of $F\left(G(M)^{\bullet}\right)^{\bullet}$ is the complex $\mathfrak{t}^{i}\left(F\left(G(M)^{i}\right)^{\bullet}\right)=\oplus_{x \in Q^{i}} \mathfrak{t}^{i}\left(F\left(I_{x}^{!}\right)^{\bullet}\right) \otimes M(x)$, where $F\left(I_{x}^{!}\right)^{\bullet} \cong \mathcal{P}_{S_{x}}^{\cdot}[i] ;$ see (5.4). Thus,
$\mathrm{H}^{n-i}\left(\mathfrak{t}^{i}\left(F\left(G(M)^{i}\right)^{\bullet}\right)\right) \cong \oplus_{x \in Q^{i}} \mathrm{H}^{n-i}\left(\mathcal{P}_{S_{x}}^{\cdot}[i]\right) \otimes M(x)=\oplus_{x \in Q^{i}} \mathrm{H}^{n}\left(\mathcal{P}_{S_{x}}^{\cdot}\right) \otimes M(x)=0$.
Hence, $\mathrm{H}^{n-i}\left(\mathfrak{t}^{i}\left(F\left(G(M)^{i}\right)^{\bullet}\right)(y)\right)=0$, for all $i \in \mathbb{Z}$. In view of Lemma 4.2(2), we conclude that $\mathrm{H}^{n}\left(\left(F^{C} \circ G\right)(M)^{\bullet}(y)\right)=0$.

It remains to show that $\mathrm{H}^{0}\left(\left(F^{C} \circ G\right)(M)^{\bullet}\right)$ is naturally isomorphic to M. For this purpose, observing that the 1-diagonal of the double complex $F\left(G(M)^{\bullet}\right)^{\bullet}$ is zero, we illustrate its (-1)-diagonal and 0-diagonal as follows:

$$
\begin{gathered}
\oplus_{b \in Q^{i}} P_{b} \otimes I_{b}^{!}(b) \otimes M(b) \\
\oplus_{(a, x) \in Q^{i+1} \times Q^{i}} P_{a} \otimes I_{x}^{!}(a) \otimes M(x) \xrightarrow{h^{i,-i-1} \uparrow} \oplus_{c \in Q^{i+1}} P_{c} \otimes I_{c}^{!}(c) \otimes M(c),
\end{gathered}
$$

where $v^{i,-i-1}=\left(v^{i,-i-1}(b, a, x)\right)_{(b, a, x) \in Q^{i} \times Q^{i+1} \times Q^{i}}$, with

$$
v^{i,-i-1}(b, a, x)= \begin{cases}\sum_{\alpha \in Q_{1}(x, a)}(-1)^{i} P[\bar{\alpha}] \otimes I_{x}^{!}\left(\alpha^{\mathrm{o}}\right) \otimes \mathbb{1}_{M(x)}, & \text { if } b=x \\ 0, & \text { if } b \neq x\end{cases}
$$

and $h^{i,-i-1}=\left(h^{i,-i-1}(c, a, x)\right)_{(c, a, x) \in Q^{i+1} \times Q^{i+1} \times Q^{i}}$, with

$$
h^{i,-i-1}(c, a, x)= \begin{cases}\sum_{\alpha \in Q_{1}(x, a)} \mathbf{1}_{P_{a}} \otimes I\left[\alpha^{!}\right]_{a} \otimes M(\alpha), & \text { if } c=a \\ 0, & \text { if } c \neq a\end{cases}
$$

We recall that $\left(\Lambda^{!}\right)^{\circ}=k Q /\left(R^{!}\right)^{\circ}=\{\hat{\gamma} \mid \gamma \in k Q\}$, where $\hat{\gamma}=\gamma+\left(R^{!}\right)^{\circ}$. Given $(x, y) \in Q^{i} \times Q^{i+1}$ with $i \in \mathbb{Z}$, in view of Lemma 2.7, $I_{x}^{!}(x)$ has a k-basis $\left\{\hat{e}_{x}^{\star}\right\}$, while $I_{x}^{!}(y)$ has a k-basis $\left\{\hat{\alpha}^{\star} \mid \alpha \in Q_{1}(x, y)\right\}$.

Sublemma. Let d^{-1} be the differential of degree -1 of $\left(F^{C} \circ G\right)(M)^{\cdot}$. Consider $(x, a) \in Q^{i} \times Q^{i+1}$ for some $i \in \mathbb{Z}$. If $\bar{\gamma} \in P_{a}, \beta \in Q_{1}(x, a)$ and $u \in M(x)$, then

$$
d^{-1}\left(\bar{\gamma} \otimes \hat{\beta}^{\star} \otimes u\right)=(-1)^{i} \bar{\gamma} \bar{\beta} \otimes \hat{e}_{x}^{\star} \otimes u+\bar{\gamma} \otimes \hat{e}_{a}^{\star} \otimes \bar{\beta} u
$$

Proof. Given $\alpha \in Q_{1}(x, a)$, we see that $I_{x}^{!}\left(\alpha^{\circ}\right)\left(\hat{\beta}^{\star}\right)=0$ if $\alpha \neq \beta$, and otherwise, $I_{x}^{!}\left(\alpha^{\circ}\right)\left(\hat{\beta}^{\star}\right)=\hat{e}_{x}^{\star}$. On the other hand, $I\left[\alpha^{!}\right]_{a}\left(\hat{\beta}^{\star}\right)=0$ if $\alpha \neq \beta$, and otherwise, $I\left[\alpha^{!}\right]_{a}\left(\hat{\beta}^{*}\right)=\hat{e}_{a}^{\star}$. This yields

$$
\begin{aligned}
d^{-1}\left(\bar{\gamma} \otimes \hat{\beta}^{\star} \otimes u\right)= & (-1)^{i} \sum_{\alpha \in Q_{1}(x, a)}\left(P[\bar{\alpha}] \otimes I_{x}^{!}\left(\alpha^{o}\right) \otimes 1_{M(x)}\right)\left(\bar{\gamma} \otimes \hat{\beta}^{\star} \otimes u\right) \\
& +\sum_{\alpha \in Q_{1}(x, a)}\left(\mathbf{1}_{P_{a}} \otimes I\left[\alpha^{!}\right]_{a} \otimes M(\alpha)\right)\left(\bar{\gamma} \otimes \hat{\beta}^{\star} \otimes u\right) \\
= & (-1)^{i} \bar{\gamma} \bar{\beta} \otimes \hat{e}_{x}^{\star} \otimes u+\gamma \otimes \hat{e}_{a}^{\star} \otimes \bar{\beta} u .
\end{aligned}
$$

This establishes the sublemma. Next, we clearly have a natural Λ-linear map $\eta_{M}^{0}:\left(F^{C} \circ G\right)(M)^{0} \rightarrow M: \sum_{(i, x) \in \mathbb{Z} \times Q^{i}} \bar{\gamma}_{x} \otimes \hat{e}_{x}^{\star} \otimes u_{x} \mapsto \sum_{(i, x) \in \mathbb{Z} \times Q^{i}}(-1)^{\frac{i(i+1)}{2}} \bar{\gamma}_{x} u_{x}$,
where $\bar{\gamma}_{x} \in P_{x}$ and $u_{x} \in M(x)$. We claim that $\eta_{M}^{0} \circ d^{-1}=0$. Indeed, consider an element $\omega \in\left(F^{C} \circ G\right)(M)^{-1}$. We may assume that $\omega \in P_{a} \otimes I_{x}^{!}(a) \otimes M(x)$, for some $(a, x) \in Q^{i+1} \times Q^{i}$ with $i \in \mathbb{Z}$. In this case, we may assume further that $\omega=\bar{\gamma} \otimes \hat{\beta}^{\star} \otimes u$, where $\bar{\gamma} \in P_{a}, \beta \in Q_{1}(x, a)$, and $u \in M(x)$. In view of the sublemma, we obtain

$$
\begin{aligned}
\left(\eta_{M}^{0} \circ d^{-1}\right)(\omega) & =\eta_{M}^{0}\left((-1)^{i} \bar{\gamma} \bar{\beta} \otimes \hat{e}_{x}^{\star} \otimes u+\bar{\gamma} \otimes \hat{e}_{a}^{\star} \otimes \bar{\beta} u\right) \\
& =(-1)^{\frac{i(i+1)}{2}+i}(\bar{\gamma} \bar{\beta} u)+(-1)^{\frac{(i+1)(i+2)}{2}}(\bar{\gamma} \bar{\beta} u) \\
& =0 .
\end{aligned}
$$

Given $\omega \in \operatorname{Ker}\left(\eta_{M}^{0}\right)$, we shall define an integer n_{ω} as follows. If $\omega=0$, set $n_{\omega}=0$; and in this case, $\omega \in \operatorname{Im}\left(d^{-1}\right)$. Otherwise, let n_{ω} be minimal for which $\omega=\sum_{i=1}^{s} \bar{\gamma}_{i} \otimes \hat{e}_{x_{i}}^{\star} \otimes u_{i}$, where $x_{i} \in Q_{0} ; \gamma_{i} \in k Q_{\leq n_{\omega}}\left(x_{i},-\right)$; the u_{i} are linearly independent in $M\left(x_{i}\right)$. For $1 \leq i \leq s$, write $\gamma_{i}=\lambda_{i} \varepsilon_{x_{i}}+\sigma_{i 1} \alpha_{i 1}+\cdots+\sigma_{i, t_{i}} \alpha_{i, t_{i}}$, where $\lambda_{i} \in k ; \alpha_{i j} \in Q_{1}\left(x_{i}, a_{i j}\right) ; \sigma_{i j} \in k Q_{\leq n_{\omega}-1}\left(a_{i j},-\right)$. Setting $|x|=i$ for $x \in Q^{i}$, we obtain $\sum_{i=1}^{s}(-1)^{\frac{\left|x_{i}\right|\left(\left|x_{i}\right|+1\right)}{2}} \bar{\gamma}_{i} u_{i}=0$. Then, $\sum_{i=1}^{s} \lambda_{i} u_{i}=0$, and hence, $\lambda_{i}=0$, that is, $\gamma_{i}=\sigma_{i 1} \alpha_{i 1}+\cdots+\sigma_{i, t_{i}} \alpha_{i, t_{i}}$, for $i=1, \ldots, s$. Setting

$$
\sigma=\sum_{i=1}^{s} \sum_{j=1}^{t_{i}}(-1)^{\left|x_{i}\right|} \bar{\sigma}_{i, j} \otimes \hat{\alpha}_{i j}^{\star} \otimes u_{i} \in\left(F^{C} \circ G\right)(M)^{-1}
$$

we deduce from the sublemma that

$$
\begin{aligned}
d^{-1}(\sigma) & =\sum_{i=1}^{s} \sum_{j=1}^{t_{i}}\left(\bar{\sigma}_{i j} \bar{\alpha}_{i j} \otimes \hat{e}_{x_{i}}^{\star} \otimes u_{i}+(-1)^{\left|x_{i}\right|} \bar{\sigma}_{i j} \otimes \hat{e}_{a_{i j}}^{\star} \otimes \bar{\alpha}_{i j} u_{i}\right) \\
& =\sum_{i=1}^{s}\left(\bar{\gamma}_{i} \otimes \hat{e}_{x_{i}}^{\star} \otimes u_{i}+\sum_{j=1}^{t_{i}}(-1)^{\left|x_{i}\right|} \bar{\sigma}_{i j} \otimes \hat{e}_{a_{i j}}^{\star} \otimes \bar{\alpha}_{i j} u_{i}\right) \\
& =\omega+\omega^{\prime},
\end{aligned}
$$

where $\omega^{\prime}=\sum_{i=1}^{s} \sum_{j=1}^{t_{i}}(-1)^{\left|x_{i}\right|} \bar{\sigma}_{i j} \otimes \hat{e}_{a_{i j}}^{\star} \otimes \bar{\alpha}_{i j} u_{i}$. By definition, $n_{\omega^{\prime}}<n_{\omega}$, and

$$
\eta_{M}^{0}\left(\omega^{\prime}\right)=\sum_{i=1}^{s} \sum_{j=1}^{t_{i}}(-1)^{\left|x_{i}\right|+\frac{\left|x_{i}\right|\left(x_{i} \mid+1\right)}{2}} \bar{\sigma}_{i j} \bar{\alpha}_{i j} u_{i}=-\sum_{i=1}^{s}(-1)^{\frac{\left|x_{i}\right|\left(x_{i} \mid+1\right)}{2}} \bar{\gamma}_{i} u_{i}=0 .
$$

By induction, $\omega \in \operatorname{Im}\left(d^{-1}\right)$. Thus, $\operatorname{Im}\left(d^{-1}\right)=\operatorname{Ker}\left(\eta_{M}^{0}\right)$. This yields a natural quasiisomorphism $\eta_{M}^{*}:(F \circ G)(M)^{\bullet} \rightarrow M$. The proof of the proposition is completed.

The following statement describes in particular an injective co-resolution for every bounded-above module over the Koszul dual.
5.6. Proposition. Let $\Lambda=k Q / R$ be a Koszul algebra, where Q is a locally finite gradable quiver. If $N \in \operatorname{Mod}^{-} \Lambda^{!}$, then there exists a natural quasi-isomorphism $\theta_{N}^{\cdot}: N \rightarrow\left(G^{C} \circ F\right)(N)^{\bullet}$.
Proof. Fix $N \in \operatorname{Mod}^{-} \Lambda^{!}$. Let r be such that $N(a)=0$ for $a \in Q^{-i}$ with $i>r$. By definition, $\left(G^{C} \circ F\right)(N)^{\bullet}=\mathbb{T}\left(G\left(F(N)^{\bullet}\right)^{\bullet}\right)$. We split our proof into several statements.

Statement 1. Given $i \in \mathbb{Z}$, the i-th column of $G\left(F(N)^{\bullet}\right)^{\cdot}$ is

$$
\mathfrak{t}^{i}\left(G\left(F(N)^{i}\right)^{\bullet}\right)=\oplus_{a \in Q^{-i}} \mathfrak{t}^{i}\left(G\left(P_{a}\right)^{\cdot}\right) \otimes N(a) \cong \oplus_{a \in Q^{-i}} \mathfrak{t}^{i}\left(\mathcal{I}_{S_{a}^{!}}^{\cdot}[i]\right) \otimes N(a)
$$

Indeed, $F(N)^{i}=\oplus_{a \in Q^{-i}} P_{a} \otimes N(a)$. By Lemma 5.4, $G\left(P_{a}\right)^{\bullet} \cong \mathcal{I}_{S_{a}^{!}}[i]$ for $a \in Q^{-i}$.
Statement 2. Given $n \in \mathbb{Z}$, we obtain $\left(G^{C} \circ F\right)(N)^{n}=0$ in case $n<0$; and $\mathrm{H}^{n}\left(\left(G^{C} \circ F\right)(N)^{\bullet}\right)=0$ in case $n>0$.

Indeed, given any $n \in \mathbb{Z}$, we obtain $\left(G^{C} \circ F\right)(N)^{n}=\oplus_{i \in \mathbb{Z}} G\left(F(N)^{i}\right)^{n-i}$, where

$$
G\left(F(N)^{i}\right)^{n-i}=\oplus_{x \in Q^{n-i}} I_{x}^{!} \otimes F(N)^{i}(x)=\oplus_{x \in Q^{n-i} ; a \in Q^{-i}} I_{x}^{!} \otimes P_{a}(x) \otimes N(a) .
$$

If $n<0$, then $P_{a}(x)=0$ for $(x, a) \in Q^{n-i} \times Q^{-i}$ with $i \in \mathbb{Z}$, and therefore, $\left(G^{C} \circ F\right)(N)^{n}=0$. Suppose that $n>0$. Since $N(a)=0$ for $a \in Q^{-i}$ with $i>r$, we see that $G\left(F(N)^{\bullet}\right)^{\bullet}$ is n-diagonally bounded-above. And by Statement 1, the ($n-i$)-th cohomology of the i-th column of $G\left(F(N)^{\bullet}\right)^{\bullet}$ is given by

$$
\mathrm{H}^{n-i}\left(\mathrm{t}^{i}\left(G\left(F(N)^{i}\right)^{\bullet}\right)\right) \cong \oplus_{a \in Q^{-i}} \mathrm{H}^{n-i}\left(\mathcal{I}_{\dot{S}_{a}^{!}}^{\bullet}[i]\right) \otimes N(a)=\oplus_{a \in Q^{-i} \mathrm{H}^{n}\left(\mathcal{I}_{\dot{S}_{a}^{!}}\right) \otimes N(a)=0}
$$

In view of Lemma 4.2(2), we see that $\mathrm{H}^{n}\left(\left(G^{C} \circ F\right)(N)^{\bullet}\right)=0$.
It remains to construct a natural isomorphism $N \rightarrow \mathrm{H}^{0}\left(\left(G^{C} \circ F\right)(N)^{\bullet}\right)$. Indeed, the 0-diagonal of $G\left(F(N)^{\bullet}\right)^{\bullet}$ consists of

$$
G\left(F(N)^{i}\right)^{-i}=\oplus_{x \in Q^{n-i} ; a \in Q^{-i} I_{x}^{!} \otimes P_{a}(x) \otimes N(a), i \in \mathbb{Z} . . . ~}
$$

We recall that $\Lambda^{!}=k Q^{\circ} / R^{!}=\left\{\gamma^{!} \mid \gamma \in k Q\right\}$, where $\gamma^{!}=\gamma^{\circ}+R^{!}$, while $\left(\Lambda^{!}\right)^{\circ}=k Q /\left(R^{!}\right)^{\circ}=\{\hat{\gamma} \mid \gamma \in k Q\}$, where $\hat{\gamma}=\gamma+\left(R^{!}\right)^{\circ}$. Given $a, y \in Q_{0}$, there exists a k-linear map

$$
N_{a, y}: N(y) \rightarrow \operatorname{Hom}_{k}\left(e_{y}\left(\Lambda^{!}\right)^{\circ} e_{a}, P_{a}(a) \otimes N(a)\right): u \mapsto N_{a, y}(u)
$$

where $N_{a, y}(u)$ maps $\hat{\gamma}$ to $e_{a} \otimes \gamma^{!} u$, for all $\gamma \in k Q(a, y)$. By Corollary 1.2, there exists a k-linear isomorphism

$$
\theta_{a, y}: \operatorname{Hom}_{k}\left(e_{y}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a}, k\right) \otimes P_{a}(a) \otimes N(a) \rightarrow \operatorname{Hom}_{k}\left(e_{y}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a}, P_{a}(a) \otimes N(a)\right)
$$

This yields a k-linear map $f_{y}^{a}=\theta_{a, y}^{-1} \circ N_{a, y}: N(y) \rightarrow I_{a}^{!}(y) \otimes P_{a}(a) \otimes N(a)$.
Statement 3. If $\left\{\hat{\gamma}_{1}, \cdots, \hat{\gamma}_{s}\right\}$ is a basis of $e_{y}\left(\Lambda^{!}\right)^{\circ} e_{a}$ with dual basis $\left\{\hat{\gamma}_{1}^{\star}, \cdots, \hat{\gamma}_{s}^{\star}\right\}$, then $f_{y}^{a}(u)=\sum_{i=1}^{s} \hat{\gamma}_{i}^{\star} \otimes e_{a} \otimes \gamma_{i}^{!} u$, for all $u \in N(y)$.

Indeed, every $\hat{\gamma} \in e_{z}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a}$ is written as $\hat{\gamma}=\sum_{j=1}^{s} \lambda_{j} \hat{\gamma}_{j}$, for some $\lambda_{j} \in k$. Given $u \in N(z)$, by the definition of $\theta_{a, y}$, we obtain

$$
\begin{aligned}
\theta_{a, y}\left(\sum_{i=1}^{s} \hat{\gamma}_{i}^{\star} \otimes e_{a} \otimes \gamma_{i}^{\prime} u\right)(\hat{\gamma}) & =\sum_{1 \leq i, j \leq s}\left(\lambda_{j} \hat{\gamma}_{i}^{\star}\left(\hat{\gamma}_{j}\right)\right)\left(e_{a} \otimes \gamma_{i}^{\prime} u\right) \\
& =e_{a} \otimes \gamma^{!} u \\
& =N_{a, y}(u)(\hat{\gamma})
\end{aligned}
$$

Thus, $\theta_{a, z}\left(\sum_{i=1}^{s} \hat{\gamma}_{i}^{\star} \otimes e_{a} \otimes \gamma_{i}^{\prime} u\right)=N_{a, y}(u)$, and hence, $f_{y}^{a}(u)=\sum_{i=1}^{s} \hat{\gamma}_{i}^{\star} \otimes e_{a} \otimes \gamma_{i}^{\prime} u$.
Statement 4. Given any $a \in Q_{0}$, there exists a natural $\Lambda^{!}$-linear morphism $f^{a}=\left(f_{y}^{a}\right)_{y \in Q_{0}}: N \rightarrow I_{a}^{!} \otimes P_{a}(a) \otimes N(a)$.

Indeed, for any $\alpha: z \rightarrow y$ in Q_{1}, it is easy to verify that commutativity of

$$
\begin{array}{r}
N(y) \xrightarrow{N_{a, y}} \operatorname{Hom}_{k}\left(P_{a}^{!, \mathrm{o}}(y), P_{a}(a) \otimes N(a)\right) \stackrel{\theta_{a, y}}{\longleftrightarrow} I_{a}^{!}(y) \otimes P_{a}(a) \otimes N(a) \\
N\left(\alpha^{\circ}\right) \downarrow \\
N(z) \xrightarrow{N_{a, z}} \operatorname{Hom}_{k}\left(P_{a}^{!, \mathrm{o}}(z), P_{a}(a) \otimes N(a)\right) \stackrel{\theta_{a, z}}{\longleftrightarrow} I_{a}^{!}(z) \otimes P_{a}(a) \otimes N(a) .
\end{array}
$$

Thus, f^{a} is $\Lambda^{!}$-linear. Given a $\Lambda^{!}$-linear morphism $g: N \rightarrow M$, we have a diagram

where the left square is easily verified to be commutative, while the commutativity of the right square follows from the naturality stated in Lemma 1.2(1).

Given $a \in Q^{-i}$, in view of Statement (4), we obtain a natural $\Lambda^{!}$-linear morphism $g^{a}=\left(g_{y}^{a}\right)_{y \in Q_{0}}: N \rightarrow I_{a}^{!} \otimes P_{a}(a) \otimes N(a)$, where $g_{y}^{a}=(-1)^{\frac{(i-1) i}{2}} f_{y}^{a}$.

Statement 5. Setting $g=\left(g^{a}\right)_{a \in Q_{0}}$, we obtain a natural $\Lambda^{!}$-linear monomorphism $g: N \rightarrow\left(G^{C} \circ F\right)(N)^{0}$.

Indeed, g is a $\Lambda^{!}$-linear monomorphism if and only if, for any $y \in Q_{0}$, the linear morphism $g_{y}=\left(g_{y}^{a}\right): N(y) \rightarrow\left(G^{C} \circ F\right)(N)^{0}=\oplus_{a \in Q_{0}} I_{a}^{!}(y) \otimes P_{a}(a) \otimes N(a)$ is injective. Assume that $g_{y}(u)=0$, for some $u \in N(y)$. Then $g_{y}^{a}(u)=0$, for every $a \in Q_{0}$. In particular, $g_{y}^{y}(u)=0$, and hence, $f_{y}^{y}(u)=0$. Since $\left\{e_{y}\right\}$ is a basis of $e_{y}(\Lambda)^{\mathrm{o}} e_{y}$, by Statement 3, we have $e_{y}^{\star} \otimes e_{y} \otimes u=0$, and hence, $u=0$. This establishes Statement 5 .

For the rest of the proof, observing that the (-1)-diagonal of $G\left(F(M)^{\bullet}\right)^{\bullet}$ contains only zero objects, we illustrate its 0 -diagonal and 1-diagonal as follows:

$$
\begin{aligned}
& \oplus_{b \in Q^{-i}} I_{b}^{!} \otimes P_{b}(b) \otimes N(b) \xrightarrow{h^{i,-i}} \oplus_{(a, x) \in Q^{-i-1} \times Q^{-i}} I_{x}^{!} \otimes P_{a}(x) \otimes N(a) \\
& \upharpoonright_{v^{i+1,-i-1}} \\
& \oplus_{c \in Q^{-i-1}} I_{c}^{!} \otimes P_{c}(c) \otimes N(c),
\end{aligned}
$$

where $h^{i,-i}=\left(h^{i,-i}(a, x, b)\right)_{(a, x, b) \in Q^{-i} \times Q^{-i-1} \times Q^{-i}}$, with

$$
h^{i,-i}(a, x, b)= \begin{cases}\sum_{\alpha \in Q_{1}(a, x)} \mathbf{1}_{I_{x}^{\prime}} \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\mathrm{o}}\right), & \text { if } b=x \\ 0, & \text { if } b \neq x\end{cases}
$$

and $v^{i+1,-i-1}=\left(v^{i+1,-i-1}(a, x, c)\right)_{(a, x, c) \in Q^{-i} \times Q^{-i-1} \times Q^{-i-1}}$ with

$$
v^{i+1,-i-1}(a, x, c)= \begin{cases}\sum_{\alpha \in Q_{1}(a, x)}(-1)^{i+1} I\left[\alpha^{\prime}\right] \otimes P_{a}(\alpha) \otimes \mathbf{1}_{N(a)}, & \text { if } c=a \\ 0, & \text { if } c \neq a\end{cases}
$$

Statement 6. If d^{0} is the 0 -degree differential of $\left(G^{C} \circ F\right)(N)^{\circ}$, then $d^{0} \circ g=0$. Indeed, it amounts to show, for any $p \in \mathbb{Z}$, that the diagram

$$
\begin{aligned}
& \oplus_{x \in Q^{-p}} I_{x}^{!} \otimes P_{x}(x) \otimes N(x) \xrightarrow{\oplus h^{p,-p}(a, x, x)} \oplus_{a \in Q^{-p-1} ; x \in Q^{-p}} I_{x}^{!} \otimes P_{a}(x) \otimes N(a) \\
&\left(g^{x}\right)_{x \in Q^{-p}} \uparrow \begin{array}{c}
\\
N \longrightarrow v^{p+1,-p-1}(a, x, a)
\end{array} \\
&\left(g^{a}\right)_{a \in Q^{-p-1}} \longrightarrow \oplus_{a \in Q^{-p-1}} I_{a}^{!} \otimes P_{a}(a) \otimes N(a),
\end{aligned}
$$

is anti-commutative, or equivalently, we have an anti-commutative diagram

$$
\begin{aligned}
& \oplus_{x \in Q^{-p}} I_{x}^{!}(y) \otimes P_{x}(x) \otimes N(x) \xrightarrow{\oplus h^{p,-p}(a, x, x)(y)} \oplus_{a \in Q^{-p-1} ; x \in Q^{-p}} I_{x}^{!}(y) \otimes P_{a}(x) \otimes N(a) \\
& \left(g_{y}^{x}\right)_{x \in Q^{-p}} \uparrow \quad\left(g_{y}^{a}\right)_{a \in Q^{-p-1}} \uparrow \uparrow \oplus v^{p+1,-p-1}(a, x, a)(y) \\
& N(y) \xrightarrow{\left(g_{y}^{a}\right)_{a \in Q^{-p-1}}} \oplus_{a \in Q^{-p-1}} I_{a}^{!}(y) \otimes P_{a}(a) \otimes N(a),
\end{aligned}
$$

for all $y \in Q_{0}$. Fix $u \in N(y)$ for some $y \in Q_{0}$. Consider $\alpha \in Q_{1}(a, x)$ with $(a, x) \in Q^{-p-1} \times Q^{-p}$. Choosing a k-basis $\left\{\hat{\delta}_{1}, \ldots, \hat{\delta}_{s}\right\}$ of $e_{y}\left(\Lambda^{!}\right)^{\circ} e_{x}$, since $x \in Q^{-p}$, we deduce from Statement 3 that

$$
\left(1 \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\circ}\right)\right)\left(g_{y}^{x}(u)\right)=(-1)^{\frac{(p-1) p}{2}} \sum_{i=1}^{s} \hat{\delta}_{i}^{\star} \otimes \bar{\alpha} \otimes \alpha^{!} \delta_{i}^{!} u
$$

For any k-basis $\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{t}\right\}$ of $e_{y}\left(\Lambda^{!}\right)^{\mathrm{o}} e_{a}$, since $a \in Q^{-p-1}$, we obtain

$$
\left(I\left[\alpha^{!}\right] \otimes P_{a}(\alpha) \otimes 1\right)\left(g_{y}^{a}(u)\right)=(-1)^{\frac{p(p+1)}{2}} \sum_{i=1}^{t} I\left[\alpha^{!}\right]\left(\hat{\gamma}_{i}^{\star}\right) \otimes \bar{\alpha} \otimes \gamma_{i}^{\prime} u
$$

Let $\theta: I_{x}^{!}(y) \otimes P_{a}(x) \otimes N(a) \rightarrow \operatorname{Hom}_{k}\left(e_{y}\left(\Lambda^{!}\right)^{\circ} e_{x}, P_{a}(x) \otimes N(a)\right)$ be a k-linear isomorphism stated in Corollary 1.2. Given any $1 \leq j \leq s$, it is easy to see that

$$
\theta\left[\left(1 \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{o}\right)\right)\left(g_{y}^{x}(u)\right)\right]\left(\hat{\delta}_{j}\right)=(-1)^{\frac{(p-1) p}{2}}\left(\bar{\alpha} \otimes \alpha^{!} \delta_{j}^{!} u\right)
$$

and

$$
\theta\left[\left(I\left[\alpha^{!}\right] \otimes P_{a}(\alpha) \otimes \mathbb{1}\right)\left(g_{y}^{a}(u)\right)\right]\left(\hat{\delta}_{j}\right)=(-1)^{\frac{p(p+1)}{2}} \sum_{i=1}^{t} \hat{\gamma}_{i}^{\star}\left(\hat{\delta}_{j} \hat{\alpha}\right)\left(\bar{\alpha} \otimes \gamma_{i}^{\prime} u\right)
$$

Fix some $1 \leq j \leq s$. If $\hat{\delta}_{j} \hat{\alpha}=0$, then $\alpha^{!} \delta_{j}^{!}=0$, and hence,

$$
\theta\left[\left(I\left[\alpha^{!}\right] \otimes P_{a}(\alpha) \otimes \mathbf{1}\right)\left(g_{y}^{a}(u)\right)\right]\left(\hat{\delta}_{j}\right)=0=(-1)^{p} \theta\left[\left(1 \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\circ}\right)\right)\left(g_{y}^{x}(u)\right)\right]\left(\hat{\delta}_{j}\right)
$$

If $\hat{\delta}_{j} \hat{\alpha} \neq 0$, then it extends to a k-basis $\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{t}\right\}$ with $\hat{\gamma}_{1}=\hat{\delta}_{j} \hat{\alpha}$ of $e_{y}\left(\Lambda^{!}\right)^{\circ} e_{a}$. Under this assumption, we obtain

$$
\begin{aligned}
\theta\left[\left(I\left[\alpha^{!}\right] \otimes P_{a}(\alpha) \otimes 1\right)\left(g_{y}^{a}(u)\right)\right]\left(\hat{\delta}_{j}\right) & =(-1)^{\frac{p(p+1)}{2}} \sum_{i=1}^{t} \hat{\gamma}_{i}^{\star}\left(\hat{\gamma}_{1}\right)\left(\bar{\alpha} \otimes \gamma_{i}^{\prime} u\right) \\
& =(-1)^{\frac{p(p+1)}{2}}\left(\bar{\alpha} \otimes \gamma_{i}^{\prime} u\right) \\
& =(-1)^{\frac{p(p+1)}{2}}\left(\bar{\alpha} \otimes \hat{\delta}_{j} \hat{\alpha} u\right) \\
& =(-1)^{p} \theta\left[\left(1 \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\mathrm{o}}\right)\right)\left(g_{y}^{x}(u)\right)\right]\left(\hat{\delta}_{j}\right) .
\end{aligned}
$$

Thus, $\theta\left[\left(I\left[\alpha^{\prime}\right] \otimes P_{a}(\alpha) \otimes 1\right)\left(g_{y}^{a}(u)\right)\right]=(-1)^{p} \theta\left[\left(1 \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\circ}\right)\right)\left(g_{y}^{x}(u)\right)\right]$. Then,

$$
\left(I\left[\alpha^{!}\right] \otimes P_{a}(\alpha) \otimes 1\right)\left(g_{y}^{a}(u)\right)=(-1)^{p}\left(\mathbf{1} \otimes P[\bar{\alpha}] \otimes N\left(\alpha^{\circ}\right)\right)\left(g_{y}^{x}(u)\right)
$$

Therefore,

$$
\left(h^{p,-p}(a, x, x)(y) \circ g_{y}^{x}\right)(u)+\left(v^{p+1,-p-1}(a, x, a)(y) \circ g_{y}^{a}\right)(u)=0
$$

and hence,

$$
h^{p,-p}(a, x, x)(y) \circ g_{y}^{x}+v^{p+1,-p-1}(a, x, a)(y) \circ g_{y}^{a}=0 .
$$

This in turn implies the required anti-commutativity.
We are ready to conclude our proof by claiming that $\operatorname{Ker}\left(d^{0}\right) \subseteq \operatorname{Im}(g)$. Indeed, given any element $\omega=\left(\omega^{i}\right)_{i \in \mathbb{Z}} \in \operatorname{Ker}\left(d^{0}\right)$, where

$$
\omega^{i} \in G\left(F(N)^{i}\right)^{-i}=\oplus_{a \in Q^{-i}} I_{a}^{!} \otimes P_{a}(a) \otimes N(a)
$$

observing that $G\left(F(N)^{i}\right)^{-i}=0$ for $i>r$, we define an integer $n_{\omega}(\leq r)$ as follows: if $\omega=0$, then $n_{\omega}=r$; and otherwise, n_{ω} is minimal such that $w^{n_{\omega}} \neq 0$.

If $n_{\omega}=r$, then $\omega \in \operatorname{Im}(g)$. Assume that $n_{\omega}<r$. Since $\omega \in \operatorname{Ker}\left(d^{0}\right)$, we see that

$$
v^{n_{\omega},-n_{\omega}}\left(\omega^{n_{\omega}}\right)=-h^{n_{\omega}-1,1-n_{\omega}}\left(\omega^{n_{\omega}-1}\right)=0
$$

By Statement 1, the $n_{\omega^{-}}$-th column of the double complex $G\left(F(N)^{\bullet}\right)^{\bullet}$ is, up to a twist, the shift by n_{ω} of the minimal injective co-resolution of the module $\oplus_{a \in Q^{-n_{\omega}}} S_{a}^{!} \otimes P_{a}(a) \otimes N(a)$. Thus, $w^{n_{\omega}} \in S_{J}\left(\oplus_{a \in Q^{-n_{\omega}}} I_{a}^{!} \otimes P_{a}(a) \otimes N(a)\right)$, and by Lemma 2.7, $\omega^{n_{\omega}}=\sum_{a \in Q^{-n_{\omega}}} \hat{e}_{a}^{\star} \otimes e_{a} \otimes u_{a}$, where $u_{a} \in N(a)$. Now, by Statement 3 ,

$$
g\left(\sum_{a \in Q^{-n_{\omega}}} u_{a}\right)=\sum_{a \in Q^{-n_{\omega}}} \hat{e}_{a}^{\star} \otimes e_{a} \otimes u_{a}=\omega^{n_{\omega}}
$$

and by Statement $6, \nu=\omega-g\left(\sum_{a \in Q^{-n_{\omega}}} u_{a}\right) \in \operatorname{Ker}\left(d^{0}\right)$. Writing $\nu=\left(\nu^{i}\right)_{i \in \mathbb{Z}}$ with $\nu^{i} \in G\left(F(N)^{i}\right)^{-i}$, we see that $\nu^{n_{\omega}}=\omega^{n_{\omega}}-g\left(\sum_{a \in Q^{-n_{\omega}}} u_{a}\right)=0$, and $\nu^{i}=\omega^{i}=0$ for all $i<n_{\omega}$. Therefore, $n_{\nu}<n_{\omega}$. Assuming inductively that $\nu \in \operatorname{Im}(g)$, we obtain $\omega \in \operatorname{Im}(g)$. Therefore, $\operatorname{Ker}\left(d^{0}\right)=\operatorname{Im}(g)$. Setting $\theta_{N}^{0}=g$, and $\theta_{N}^{i}=0$ for all
$i \neq 0$, we obtain a quasi-isomorphism $\theta_{N}^{\cdot}: N \rightarrow\left(G^{C} \circ F\right)(N)^{\bullet}$ which, by Statement 4 , is natural in N. The proof of the proposition is completed.

We are ready to obtain our promised Koszul duality as follows.
5.7. ThEOREM. Let $\Lambda=k Q / R$ be a Koszul algebra, where Q is a locally finite gradable quiver. If $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$, then we obtain two mutual quasi-inverse triangle equivalences

$$
F_{p, q}^{D}: D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)
$$

and

$$
G_{p, q}^{D}: D_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda) \rightarrow D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)
$$

Proof. We shall make use of the Koszul functors $F: \operatorname{Mod} \Lambda!\rightarrow C(\operatorname{Mod} \Lambda)$ and $G: \operatorname{Mod} \Lambda \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$, the complex Koszul functors $F^{C}: C\left(\operatorname{Mod} \Lambda^{!}\right) \rightarrow C(\operatorname{Mod} \Lambda)$ and $G^{C}: C(\operatorname{Mod} \Lambda) \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$and two commutative diagrams in Theorem 5.3.

Let $p, q \in \mathbb{R}$ with $p \geq 1$ and $q \geq 0$. We first claim that the identity functor of $D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$is isomorphic to $G_{p, q}^{D} \circ F_{p, q}^{D}$. Consider the embedding functor $\kappa: \operatorname{Mod} \Lambda^{!} \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$and the functor $G^{C} \circ F: \operatorname{Mod}^{-} \Lambda^{!} \rightarrow C\left(\operatorname{Mod} \Lambda^{!}\right)$. By Proposition 5.6, we obtain a functorial morphism $\theta=\left(\theta_{N}^{\bullet}\right)_{N \in \operatorname{Mod}-\Lambda^{!}:}: \kappa \rightarrow G^{C} \circ F$, and by Lemma 4.11, it induces a functorial morphism $\theta^{C}: 1_{\operatorname{Mod} \Lambda}=\kappa^{C} \rightarrow\left(G^{C} \circ F\right)^{C}$.

Let $N^{\bullet} \in C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. Since $N^{\bullet} \in C\left(\operatorname{Mod}^{-} \Lambda^{!}\right)$, we obtain $\theta_{N}^{C} .=\mathbb{T}_{N}\left(\theta_{N^{\bullet}}\right)$, where $\theta_{N^{\bullet}}^{*}=\left(\theta_{N^{i}}^{j}\right)_{i, j \in \mathbb{Z}}: \kappa\left(N^{\bullet}\right)^{\bullet} \rightarrow\left(G^{C} \circ F\right)\left(N^{\bullet}\right)^{\bullet}$. We claim that $\theta_{N^{\bullet}}^{C}$ is a quasi-isomorphism. Indeed, by Lemma 5.6, $\eta_{N^{i}}^{\bullet}: \kappa\left(N^{i}\right)^{\bullet} \rightarrow\left(G^{C} \circ F\right)\left(N^{i}\right)^{\bullet}$ is a quasi-isomorphism, and so is $\theta_{M^{i}}^{\bullet}: \mathfrak{t}^{i}\left(\kappa\left(N^{i}\right)^{\bullet}\right) \rightarrow \hat{\mathfrak{t}}^{i}\left(\left(G^{C} \circ F\right)\left(N^{i}\right)^{\bullet}\right)$, for every $i \in \mathbb{Z}$. Moreover, given any $n \in \mathbb{Z}$, the n-diagonal of $\left(G^{C} \circ F\right)\left(N^{\bullet}\right)^{\bullet}$ consists of

$$
\left(G^{C} \circ F\right)\left(N^{i}\right)^{n-i}=\oplus_{j \in \mathbb{Z} ; x \in Q^{-j} ; y \in Q^{n-i-j}} I_{y}^{!} \otimes P_{x}(y) \otimes N^{i}(x) ; i \in \mathbb{Z}
$$

If $i>n$, then $P_{x}(y)=e_{y} \Lambda e_{x}=0$, for any $x \in Q^{-j}$ and $y \in Q^{n-i-j}$ with $j \in \mathbb{Z}$, and therefore, $\left(G^{C} \circ F\right)\left(N^{i}\right)^{n-i}=0$. That is, $\left(G^{C} \circ F\right)\left(N^{\bullet}\right)^{\bullet}$ is diagonally boundedabove. Since $\kappa\left(N^{\bullet}\right)^{\bullet}$ clearly is diagonally bounded-above, by Lemma 4.6, $\left.\mathbb{T}_{\left(\theta_{N^{\bullet}}\right.}^{*}\right)$, that is $\theta_{N^{\bullet}}^{C}: N^{\bullet} \rightarrow\left(G^{C} \circ F\right)^{C}\left(N^{\bullet}\right)$, is a quasi-isomorphism. Since $\left(G^{C} \circ F\right)^{C}=G^{C} \circ F^{C}$; see (4.10), we obtain a natural quasi-isomorphism $\theta_{N^{\bullet}}^{C}: N^{\bullet} \rightarrow\left(G_{p, q}^{C} \circ F_{p, q}^{C}\right)\left(N^{\bullet}\right)$, for $N^{\bullet} \in C_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. As a consequence, $\theta_{N^{\bullet}}^{D}=L_{\Lambda^{!}}\left(P_{\Lambda^{!}}\left(\theta_{N^{\bullet}}^{C}\right)\right): N^{\bullet} \rightarrow\left(G_{p, q}^{D} \circ F_{p, q}^{D}\right)\left(N^{\bullet}\right)$ is a natural isomorphism, for $N^{\bullet} \in D_{p, q}^{\downarrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. This establishes our first claim.

To show that $F_{p, q}^{D} \circ G_{p, q}^{D}$ is isomorphic to the identity functor of $D_{q+1, p-1}^{\uparrow}\left(\operatorname{Mod} \Lambda^{!}\right)$, we consider the functor $F^{C} \circ G: \operatorname{Mod} \Lambda \rightarrow C(\operatorname{Mod} \Lambda)$ and the embedding functor $\kappa: \operatorname{Mod} \Lambda \rightarrow C(\operatorname{Mod} \Lambda)$. In view of Lemma 5.5 , we obtain a functorial morphism $\eta=\left(\eta_{M}^{\cdot}\right)_{M \in \operatorname{Mod} \Lambda}: F^{C} \circ G \rightarrow \kappa$, and by Lemma 4.11, it induces a functorial morphism $\eta^{C}:\left(F^{C} \circ G\right)^{C} \rightarrow \kappa^{C}=1_{C(\operatorname{Mod} \Lambda)}$.

Let $M^{\cdot} \in C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$. We claim that $\eta_{M^{\bullet}}^{C}:\left(F^{C} \circ G\right)^{C}\left(M^{\bullet}\right) \rightarrow M^{\bullet}$ is a quasiisomorphism, that is, $\eta_{M}^{C} \cdot(z):\left(F^{C} \circ G\right)^{C}\left(M^{\bullet}\right)(z) \rightarrow M^{\bullet}(z)$ is a quasi-isomorphism, for all $z \in Q_{0}$. Let $z \in Q^{s}$ for some $s \in \mathbb{Z}$. By definition, $\eta_{M}^{C} \cdot(z)=\mathbb{T}\left(\eta_{M}^{\cdot} .(z)\right)$, where $\eta_{M}^{\cdot} \cdot(z)=\left(\eta_{M^{i}}^{j}(z)\right)_{i, j \in \mathbb{Z}}:\left(F^{C} \circ G\right)\left(M^{\cdot}\right)^{\bullet}(z) \rightarrow \kappa\left(M^{\bullet}\right)^{\bullet}(z)$.

Given $i \in \mathbb{Z}$, by Lemma 5.5, $\eta_{M^{i}}^{\cdot}: \mathfrak{t}^{i}\left(\left(F^{C} \circ G\right)\left(M^{i}\right)^{\bullet}\right) \rightarrow \mathfrak{t}^{i}\left(\kappa\left(M^{i}\right)^{\bullet}\right)$ is a quasi-
isomorphism, and so is $\eta_{M^{i}}^{\cdot}(z): \mathfrak{t}^{i}\left(\left(F^{C} \circ G\right)\left(M^{i}\right)^{\cdot}\right)(z) \rightarrow \mathfrak{t}^{i}\left(\kappa\left(M^{i}\right)^{\cdot}\right)(z)$. On the other hand, given any $n \in \mathbb{Z}$, the n-diagonal of $\left(F^{C} \circ G\right)\left(M^{\bullet}\right)^{\bullet}(z)$ consists of

$$
\begin{aligned}
\left(F^{C} \circ G\right)\left(M^{i}\right)^{n-i}(z) & =\oplus_{j \in \mathbb{Z} ; x \in Q^{j} ; y \in Q^{i+j-n}} P_{y}(z) \otimes I_{x}^{!}(y) \otimes M^{i}(x) \\
& =\oplus_{j \leq n+s-i ; x \in Q^{j} ; y \in Q^{i+j-n}} P_{y}(z) \otimes I_{x}^{!}(y) \otimes M^{i}(x), i \in \mathbb{Z}
\end{aligned}
$$

Since $M^{\cdot} \in C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$, there exists t such that $M^{i}(x)=0$ for $x \in Q^{j}$ with $i-(p-1) j>t$. Let $x \in Q^{j}$ with $j \leq n+s-i$. If $p i>(p-1)(n+s)+t$, then $i-(p-1) j \geq i-(p-1)(n+s-i)=p i-(p-1)(n+s)>t$, and consequently, $M^{i}(x)=0$. That is, $\left(F^{C} \circ G\right)\left(M^{\cdot}\right)^{\cdot}(z)$ is diagonally bounded-above. By Lemma 4.6, $\mathbb{T}\left(\eta_{M}^{\cdot} \cdot(z)\right)$, that is $\eta_{M}^{C} \cdot(z)$, is a quasi-isomorphism. Our second claim is established.

Now, since $\left(F^{C}{ }_{\circ} G\right)^{C}=F^{C}$ ○ G^{C}; see (4.10), we obtain a natural quasi-isomorphism $\eta_{M^{\bullet}}^{C}:\left(F_{p, q}^{C} \circ G_{p, q}^{C}\right)\left(M^{\bullet}\right) \rightarrow M^{\bullet}$, for $M^{\bullet} \in C_{q+1, p-1}^{\uparrow}(\operatorname{Mod} \Lambda)$. This induces, as has been seen above, a functorial isomorphism from $F_{p, q}^{D} \circ G_{p, q}^{D}$ to the identity functor of $D_{q+1, p-1}^{\uparrow}\left(\operatorname{Mod} \Lambda^{!}\right)$. The proof of the theorem is completed.
Remark. The case $p=1$ and $q=0$ of Theorem 5.7 has been established for a left finite Koszul algebra; see [5, (2.12.1)] and for a positively graded Koszul category; see [25, Theorem 30].

Specializing to the locally bounded case, we get the following result; see [2, (3.9)].
5.8. Theorem. Let $\Lambda=k Q / R$ be a Koszul algebra, where Q is a locally finite gradable quiver. If Λ is right (or left) locally bounded and Λ ! is left (or right) locally bounded, then $D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $D^{b}\left(\bmod ^{b} \Lambda^{!}\right) \cong D^{b}\left(\bmod ^{b} \Lambda\right)$.
Proof. First, assume that Λ is right locally bounded and $\Lambda^{!}$is left locally bounded. Then, $P_{a} \in \bmod ^{b} \Lambda$ and $I_{a}^{!} \in \bmod ^{b} \Lambda^{!}$, for every $a \in Q_{0}$. Therefore, the Koszul functors restrict to functors $F: \operatorname{Mod}^{b} \Lambda^{!} \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $G: \operatorname{Mod}^{b} \Lambda \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$.

Given $M^{\bullet} \in C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$and $N^{\bullet} \in C^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$, the double complexes $F\left(M^{\bullet}\right)^{\bullet}$ and $G\left(N^{\bullet}\right)^{\bullet}$ are bounded. Therefore, the complex Koszul functors restrict to functors $F^{C}: C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $G^{C}: C^{b}\left(\operatorname{Mod}^{b} \Lambda\right) \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$.

Consider $F^{C} \circ G: \operatorname{Mod}^{b} \Lambda \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $G^{C} \circ F: \operatorname{Mod}^{b} \Lambda^{!} \rightarrow C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$. In view of Propositions 5.5 and 5.6 , we obtain two natural quasi-isomorphisms $\theta_{N^{\bullet}}^{C}: N^{\bullet} \rightarrow\left(F^{C} \circ G\right)\left(N^{\bullet}\right)$ and $\eta_{M^{\bullet}}^{C}: M^{\bullet} \rightarrow\left(F^{C} \circ G\right)\left(M^{\bullet}\right)$, for $N^{\bullet} \in C^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $M^{\bullet} \in C^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$. As have argued in the proof of Theorem 5.7 , we see that the functors F^{C} and G^{C} descend to two mutually quasi-inverse triangle equivalences $F^{D}: D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right) \rightarrow D^{b}\left(\operatorname{Mod}^{b} \Lambda\right)$ and $G^{D}: D^{b}\left(\operatorname{Mod}^{b} \Lambda\right) \rightarrow D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$.

Next we can show, in the same way, that $D^{b}\left(\bmod ^{b} \Lambda\right) \cong D^{b}\left(\bmod ^{b} \Lambda^{!}\right)$. Finally, suppose that Λ is left locally bounded and $\Lambda^{!}$is right locally bounded. Since $\Lambda^{!}$is a Koszul algebra with $\left(\Lambda^{!}\right)!=\Lambda$, as has been seen, $D^{b}\left(\operatorname{Mod}^{b} \Lambda\right) \cong D^{b}\left(\operatorname{Mod}^{b} \Lambda^{!}\right)$and $D^{b}\left(\bmod ^{b} \Lambda\right) \cong D^{b}\left(\bmod ^{b} \Lambda^{!}\right)$. The proof of the theorem is completed.
Remark. In case Λ is of finite length and $\Lambda^{!}$is left noetherian, Beilinson, Ginzburg and Soergel proved the graded version of the second part of Theorem 5.8 with a rather sophisticated proof; see $[5,(2.12 .6)]$, and also, [25, Theorem 35].
Example. (1) Theorem 5.8 holds in case Q has no right infinite path or no left infinite path. Indeed, if this is the case, then Q° has no left infinite path or no right
infinite path, and consequently, Λ is right or left locally bounded and $\Lambda^{!}$is left or right locally bounded, respectively.
(2) Let $\Lambda=k Q /\left(k Q^{+}\right)^{2}$, where Q is a locally finitely gradable having some right infinite paths. Then Λ is locally bounded, but $\Lambda^{!}=k Q^{\circ}$ is not left locally bounded. In this case, $D^{b}\left(\operatorname{Mod}^{b} \Lambda\right) \cong D^{b}\left(\operatorname{Rep}^{-}\left(Q^{\circ}\right)\right)$; see $[2,(3.9)]$, where $\operatorname{Rep}^{-}\left(Q^{\circ}\right)$ denotes the category of almost finitely co-presented representations, which is substantially larger than the category of finitely supported representations; [3, (1.12)].
(3) Let Λ be the k-algebra defined by the gradable quiver

$$
\cdots \xrightarrow{\gamma_{-4}}-3 \xrightarrow[\beta_{-3}]{\alpha_{-3}}-2 \xrightarrow{\gamma_{-2}}-1 \xrightarrow{\gamma_{-1}} 0 \underset{\beta_{0}}{\stackrel{\alpha_{0}}{\longrightarrow}} 1 \xrightarrow{\gamma_{1}} 2 \xrightarrow{\gamma_{2}} 3 \xrightarrow[\beta_{3}]{\alpha_{3}} 4 \xrightarrow{\gamma_{4}} \cdots
$$

with relations $\alpha_{3 n} \gamma_{3 n-1}, \beta_{3 n} \gamma_{3 n-1}, n \in \mathbb{Z}$. Then Λ is Koszul and $\Lambda^{!}$is defined by

with relations $\alpha_{3 n}^{\prime} \gamma_{3 n+1}^{\prime}, \beta_{3 n}^{\prime} \gamma_{3 n+1}^{\prime}, \alpha_{3 n+2}^{\prime} \gamma_{3 n+1}^{\prime}, n \in \mathbb{Z}$. By Theorem 5.8, we obtain $D^{b}(\operatorname{Mod} \Lambda) \cong D^{b}\left(\operatorname{Mod} \Lambda^{!}\right)$and $D^{b}\left(\bmod ^{b} \Lambda\right) \cong D^{b}\left(\bmod ^{b} \Lambda^{!}\right)$. Note that none of the results stated in [2], [5] or [25] applies in this situation.

Acknowledgement. The third named author is supported in part by the Natural Sciences and Engineering Research Council of Canada.

References

[1] R. Bautista and S. Liu, "Covering theory for linear categories with application to derived categories", J. Algebra 406 (2014) 173-225.
[2] R. Bautista and S. Liu, "The bounded derived categories of an algebra with radical squared zero", J. Algebra 482 (2017) 303-345.
[3] R. Bautista, S. Liu and C. Paquette, "Representation theory of strongly locally finite quivers", Proc. London Math. Soc. 106 (2013) 97-162.
[4] I. Bernstein, I. Gelfand, and S. Gelfand, "Algebraic bundles over \mathbb{P}^{n} and problems of linear algebras", Funkts. Anal. Prilozh. 12 (1978); English translation in Functional Analysis and its Applications 12 (1918) 212 - 214.
[5] A. Beilinson, V. Ginzburg and W. Soergel, "Koszul duality patterns in representation theory", J. Amer. Math. Soc. 9 (1996) 473-527.
[6] K. Bongartz and P. Gabriel, "Covering spaces in representation theory", Invent. Math. 65 (1982) 331-378.
[7] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, "The mod-p lower central series and the Adams spectral sequence", Topology 5 (1966) 331-342.
[8] H. Cartan and S. Eilenberg, "Homological Algebra", Princeton University Press, Princeton, New Jersey, 1956.
[9] D. Eisenbud, "Commutative Algebra with a view toward algebraic geometry", SpringerVerlarg, New York, 1995.
[10] G. Fløystad, "Koszul Duality and Equivalences of Categories", Trans. Amer. Math. Soc. 358 (2006) 2373-2398.
[11] E.L. Green and R. Martinez-Villa, "Koszul and Yoneda algebras," Canad. Math. Soc. Conf. Proc. 18 (1996) 247-298.
[12] E.L. Green and R. Martinez-Villa, "Koszul and Yoneda algebras II," Canad. Math. Soc. Conf. Proc. 24 (1998) 227-244.
[13] E. L. Green, \varnothing. Solberg and D. Zacharia, "Minimal projective resolutions," Trans. Amer. Math. Soc. 353 (2001) 2915-2939.
[14] M. Goresky, R. Kottwitz and R. MacPherson, "Equivariant cohomology, Koszul duality, and the localization theorem", Invent. Math. 131 (1998) 25-83.
[15] B. Keller, "Koszul duality and coderived categories (after K. Lefèvre)", Preprint 2003.
[16] B. Keller, "On the construction of triangle equivalences", Lecture Notes in Math. 1685 (1998) 155-176.
[17] S. Liu and J.-P. Morin, "The strong no loop conjecture for special biserial algebras", Proc. Amer. Math. Soc. 132 (2004) 3513-3523.
[18] S. MacLane, "Homology", Springer-Verlag, Berline, Heidelberg, New York, 1971.
[19] YU. I. MANIN, "Some remarks on Koszul algebras and quantum groups", Ann. Inst. Fourier 37 (1987) 191-205.
[20] R. Martinez-Villa, "Introduction to Koszul algebras," Rev. Un. Mat. Argentina 48 (2007) 67-95.
[21] R. Martinez-Villa, "Applications of Koszul algebras: The preprojective algebra," Canad. Math. Soc. Conf. Proc. 18 (1996) 487-504.
[22] R. Martinez-Villa and Ø. Solberg, "Graded and Koszul categories", Appl. Categ. Struct. 18 (2010) 615-652.
[23] R. Martinez-Villa and M. Saorin, "Koszul equivalences and dualities", Pacific J. Math. 214 (2004) 359-378.
[24] J. P. May, "The cohomology of restricted Lie algebras and of Hopf algebras", J. Algebra 3 (1966) 123-146.
[25] V. Mazorchuk, S. Ovsienko, and C. Stroppel, "Quadratic duals, Koszul dual functors, and applications", Trans. Amer. Math. Soc. 361(3) (2009) 1129-1172.
[26] D. Milicic, "Lectures on derived categories", www.math.utah.edu/~milicic/Eprints/dercat. pdf (preprint).
[27] S. B. Priddy, "Koszul resolutions and the Steenrod algebra", Bull. Amer. Math. Soc. 76 (1970) 834-839.
[28] S. B. Priddy, "Koszul resolutions", Trans. Amer. Math. Soc. 152 (1970) 39-60.
[29] J. Rickard, "Morita theory for derived categories", J. London Math. Soc. (2) 39 (1989) 436 - 456.
[30] S. Ryom-Hansen, "Koszul duality of translation and Zuckermann functor", J. Lie Theory 14 (2004) 151-163.
[31] C. A. Weibel, "An introduction to homological algebra", Cambridge Studies in Advanced Mathematics 38 (Cambridge University Press, Cambridge, 1994).

Mohammed Bouhada, Département de mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Email address: mohammed.bouhada@usherbrooke.ca
Min Huang, School of Mathematics (Zhuhai), Sun Yat-Sen University, Zhuhai, China.
Email address: huangm97@mail.sysu.edu.cn
Shiping Liu, Département de mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Email address: shiping.liu@usherbrooke.ca

[^0]: 2010 Mathematics Subject Classification. 16S37, 16G20, 16E35, 18G10.
 Key words and phrases. Algebras defined by a quiver with relations; representations of a bound quiver; graded algebras; graded modules; total complex of a double complex; triangulated categories; derived categories; Koszul algebras; Koszul complexes; Koszul duality.

 The last named author is supported in part by the Natural Sciences and Engineering Research Council of Canada.

