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Introduction

The aim of these notes is to report some new developments on the prob-
lem of describing all possible shapes of the connected components of the
Auslander-Reiten quiver ΓA of an artin algebra A. The problem is interest-
ing since the shapes of these components carry some important information
of the module category of A. For instance the algebra A is hereditary if and
only if ΓA has a connected component of shape N∆ where ∆ is a quiver
without oriented cycles such that the number of its vertices is the same as
that of simple A-modules. More importantly, by analyzing the structure of
Auslander-Reiten components, Riedtmann classified the self-injective alge-
bras of finite representation type [44, 45, 46], and Erdmann did the same
for the blocks of finite groups with a dihedral or semidihedral defect group.
And remarkably Erdmann has recently showed that the representation type
of a block of a finite group is determined by the shapes of the connected com-
ponents of its Auslander-Reiten quiver [26]. More generally in any preprojec-
tive or preinjective Auslander-Reiten components, modules are determined
by their composition factors and the maps are sums of composites of irre-
ducible maps [29]. Furthermore modules in a quasi-serial Auslander-Reiten
component behave like serial modules [47].
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ondary 16G60
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For some classes of algebras (namely, hereditary algebras [2, 23, 47],
tilted algebras [28, 35, 38, 51], tubular algebras [49] and group algebras [14,
26, 43, 56]), the shapes of the connected components of their Auslander-
Reiten quivers have been described completely. For a general artin algebra A
one approach to the problem, which was initialized by Riedtmann [44], is to
delete the DTr-orbits containing projective or injective modules from ΓA to
obtain a well-behaved subquiver sΓA, called the stable part of ΓA, and then
to recover ΓA from sΓA. The possible shapes of the connected components
of sΓA are described by the works of Riedtmann [44], Todorov [55], Happel-
Preiser-Ringel [30] and Zhang [58].

The disadvantage of investigating sΓA is that the stable part of a con-
nected component of ΓA does not contain the most important modules (that
is, projective or injective modules), and sometimes it is even empty. Thus we
use replacements for sΓA, which are almost as well-behaved, but carry more
information of ΓA. We delete from ΓA the DTr-orbits of projective modules
to obtain the left stable part lΓA of ΓA and delete the TrD-orbits of injective
modules to get the right stable part rΓA. In these notes we shall present a
complete description of the possible shapes of the connected components of
the quivers lΓA, rΓA and some applications.

Most of the results in these notes are reformulations of those found in
[36, 37, 38, 39, 40] with shorter proofs. However, there exist also some
new results, namely Proposition 3.1 and Theorem 5.6. We are indebted to
Skowronski for some useful discussions.

1. Degrees of Irreducible Maps

Throughout these notes, we denote by A a fixed artin algebra and by
< the Jacobson radical of mod A, the category of finitely generated right
A-modules. Recall that for m > 0, the m-th power <m of < is defined so
that for any modules X, Y in mod A, <m(X, Y ) consists of the maps X → Y
which can be written as a sum of composites of m maps in <, and the infinite
radical of mod A is defined to be the intersection of the <m with m > 0.

We denote by ΓA the Auslander-Reiten quiver of A and by τ and τ− the
Auslander-Reiten translations DTr and TrD respectively. We do not distin-
guish between an indecomposable module X in mod A and the corresponding
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vertex [X], that is the isoclass of X in ΓA. We shall use freely the standard
notions and results of Auslander-Reiten theory which can be found in [3, 4,
5].

We devote this section to introduce the notion of degrees of an irreducible
map and study some of their properties. This notion emerged from a discus-
sion with Brenner and Butler on the problem as to when the composite of
n irreducible maps falls into <n+1. A partial solution to this problem is the
following result of Igusa and Todorov.

1.1. Proposition [33]. Let A be an artin algebra, and let

X0
f1−→ X1 → · · · → Xn−1

fn−→ Xn

be a chain of irreducible maps between indecomposable modules in mod A. If
Xi−1 6∼= DTr Xi+1 for all 0 < i < n, then f1f2 · · · fn is not in <n+1.

On the other hand we provide an example suggested by Skowronski where
the composite of two irreducible maps is a non-zero map in the infinite rad-
ical. Let K be a field, and let B be the K-algebra given by the bound
quiver consisting of one vertex with two loops x, y which satisfy the relations
x2 = y2 = xy = yx = 0. Let λ ∈ K∗, and let M be the 2-dimensional
representation with

x =

(
0 0
1 0

)
, y =

(
0 0
λ 0

)
.

Note that M is the quasi-simple module of a homogeneous tube, and the
endomorphism

η =

(
0 0
1 0

)

of M factors through the simple representation. So η is in the infinite radical.
Let

0 → M
f−→ E

g−→ M → 0

be an almost split sequence. Then η = φg for some φ : M → E. If φ is not
irreducible, then f + φ is irreducible and η = (f + φ)g.

1.2. Definition. Let f : X → Y be an irreducible map in mod A. Define
the left degree dl(f) of f to be infinity if for any integer n ≥ 1 and any map
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θ : M → X in <n\<n+1, we have θf 6∈ <n+2. Otherwise it is defined to be
the least positive integer m such that there exists some θ ∈ <m\<m+1 with
θf ∈ <m+2. We define the right degree dr(f) of f in a dual manner.

For example, if 0 → X
f−→ Y

g−→ Z → 0 is an almost split sequence,
then dl(g) = 1 and dr(f) = 1.

The following lemma is an immediate consequence of the above definition.

1.3. Lemma. The following statements hold for an artin algebra A:
(1) Let f : X → Y be an irreducible map in mod A. If Y ′ is a direct

summand of Y and g is the co-restriction of f to Y ′, then dl(g) ≤ dl(f).
Dually if X ′ is a direct summand of X and h is the restriction of f to X ′,
then dr(h) ≤ dr(f).

(2) Each chain of irreducible maps in mod A of length n with the composite
in <n+1 contains at least one maps of finite left degree and one of finite right
degree.

The following lemma and its dual are crucial in the study of degrees of
irreducible maps.

1.4. Lemma. Let A be an artin algebra, and let θ : M → X be a map
in <n\<n+1 with n ≥ 1 an integer. Suppose that f : X → Y is an irreducible
map in mod A with Y indecomposable. If θf ∈ <n+2, then

(1) Y is not projective, and

(2) for an almost split sequence 0 → DTr Y
(g,g′)−→ X ⊕X ′ ( f

f ′)−→ Y → 0 in
mod A, there exists a map ζ : M → DTr Y 6∈ <n such that θ + ζg ∈ <n+1

and ζg′ ∈ <n+1.

Proof. Assume that θf ∈ <n+2. Then θf = st with s ∈ <n+1 and t ∈ <.
Let (

f

f ′

)
: X ⊕X ′ → Y

be a sink map for Y . Then t has a factorization t = (u, u′)
(

f
f ′
)
. Hence

(su− θ, su′)
(

f

f ′

)
= 0.
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Since su− θ 6= 0, Y is not projective. Let

0 → τY
(g,g′)−→ X ⊕X ′ ( f

f ′)−→ Y → 0

be an almost split sequence. Then there exists a map ζ : M → τY such that
(su − θ, su′) = ζ(g, g′). Hence (θ + ζg, ζg) = (su, su′) ∈ <n+1. Moreover
θ 6∈ <n+1 implies that ζ 6∈ <n. The proof is completed.

Let X0 → X1 → · · · → Xn be a path in ΓA. Recall that the path is
sectional if Xi−1 6= DTr Xi+1 for all 0 < i < n, and more generally it
is pre-sectional if for all 0 < i < n, either Xi+1 is projective or otherwise
DTr Xi+1 ⊕Xi−1 is a direct summand of the domain of a sink map for Xi.

As an immediate consequence of Lemma 1.4, we have the following.

1.5. Corollary. Let A be an artin algebra, and let f : X → Y be an irre-
ducible map in mod A of finite left degree. Assume that Y is indecomposable
and that

Yn → Yn−1 → · · · → Y1 → Y0 = Y

is a pre-sectional path in ΓA such that X ⊕ Y1 is a direct summand of the
domain of a sink map for Y . Then the Yi are not projective, and for each
1 ≤ i ≤ n, there exists an irreducible map fi : DTr Yi−1 → Yi such that
dl(fn) < · · · < dl(f1) < dl(f). In particular dl(f) > n.

Recall that the valuation (dXY , d′XY ) of an arrow X → Y in ΓA is defined
so that dXY is the multiplicity of Y in the codomain of a source map for X
that is the dimension of <(X, Y )/<2(X, Y ) over End(Y )/<(End(Y )), and
d′XY is the multiplicity of X in the domain of a sink map for Y that is the
dimension of <(X, Y )/<2(X, Y ) over End(X)/<(End(X)).

1.6. Proposition. Let A be an artin algebra, and let X → Y be an
arrow in ΓA with valuation (dXY , d′XY ). If dXY > 1 and d′XY > 1, then all
irreducible maps f : X → Y have infinite left and right degrees.

Proof. Assume that dXY , d′XY > 1 and f : X → Y is an irreducible map.
For n ≥ 0, the path

τnX → τnY → τn−1X → · · · → τY → X → Y
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is pre-sectional. Note that X⊕X is a direct summand of the domain of a sink
map for Y . If τnX or τnY is projective for some n, then f has infinite left
degree by Corollary 1.5. Otherwise dl(f) > n for all n. Hence the left degree
of f is infinite. Finally f has infinite right degree by the dual of Corollary
1.5.

1.7. Corollary. Let A be an artin algebra, and let f : X → Y and
g : X → Y be irreducible maps in mod A with X,Y indecomposable. Then
dl(f) = dl(g) and dr(f) = dr(g).

Proof. Let (dXY , d′XY ) be the valuation of the arrow X → Y in ΓA. If
dXY > 1 and d′XY > 1 then by Proposition 1.6, dl(f), dl(g), dr(f) and dr(g)
are all infinite. Otherwise f − ga ∈ <2 for some a ∈Aut(Y ) or f − bg ∈ <2

for some b ∈Aut(X). It is now clear that dl(f) = dl(g), dr(f) = dr(g).

By the above corollary the following definition makes sense.

1.8. Definition. Let X → Y be an arrow in ΓA. Define the left degree
and the right degree of the arrow X → Y to be those of an irreducible map
f : X → Y .

1.9. Proposition. Let A be an artin algebra. Then each oriented cycle
in ΓA contains at least one arrow of finite left degree and at least one of finite
right degree.

Proof. Let X0
f1−→ X1 → · · · → Xn−1

fn−→ Xn = X0 be a cycle of irre-
ducible maps between indecomposable modules in mod A. Then (f1 · · · fn)r =
0 for some r > 0. Hence at least one of the fi is of finite left degree and one
is of finite right degree. This establishes the proposition.

1.10. Proposition. Let A be an artin algebra, and let

f = (f1, f2) : X → Y1 ⊕ Y2

be an irreducible map in mod A with X,Y1 and Y2 all indecomposable. If f
has finite left degree, then there exists an irreducible map

g =

(
g1

g2

)
: DTr Y1 ⊕DTr Y2 → X

with dl(g) < dl(f).
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Proof. Let dl(f) = m. Then there exists θ : M → X ∈ <m\<m+1 such
that θf ∈ <m+2. So θfi ∈ <m+2 for i = 1, 2. Let

0 → τYi
(gi,pi)−→ X ⊕ Zi

(fi
qi
)−→ Yi → 0

be an almost split sequence for 1 ≤ i ≤ 2. By Lemma 1.4, there exists
ζi : M → τYi /∈ <m such that θ + ζigi ∈ <m+1 for 1 ≤ i ≤ 2. Hence we have

(ζ1,−ζ2)

(
g1

g2

)
∈ <m+1.

Since (ζ1,−ζ2) 6∈ <m, it suffices to show that
(

g1

g2

)
: τY1 ⊕ τY2 → X

is irreducible. Assume that this was not the case. Then we may assume that
Y1 = Y2 and Z1 = Z2. Furthermore g1 = g2a − η where a ∈ Aut(X) and
η ∈ <2. We now have factorizations η = g1u1 + p1u2 with u1, u2 ∈ < and
ap2 = g1v1 + p1v2. Note v1 ∈ < since X is not a direct summand of Z1 by
Proposition 1.6. So

a(g2, p2) = (g1, p1)

(
1 + u1 v1

u2 v2

)
,

and hence
(

1+u1 v1

u2 v2

)
is an automophism. Thus there exists b ∈ Aut(Z) such

that

(
1 + u1 v1

u2 v2

)(
f2

q2

)
=

(
f1

q1

)
b.

Then f1b − f2 = u1f2 + v1q2 ∈ <2, and hence (f1, f2) : X → Y1 ⊕ Y2 is not
irreducible, which is a contradiction.

1.11. Definition. Let X → Y be an arrow in ΓA. The global left degree
of X → Y is the minimum of left degrees of all possible arrows DTrnX →
DTrnY, DTrn+1Y → DTrnX with n ≥ 0. The global right degree of X → Y
is defined in a dual manner.

A module X ∈ ΓA is said to be left stable if DTrnX 6= 0 for all n > 0,
right stable if TrDnX 6= 0 for all n > 0 and stable if it is both left and right
stable.
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1.12. Lemma. Let A be an artin algebra.
(1) Let

· · · → Xi+1 → Xi → · · · → X1 → X0

and
· · · → Yi+1 → Yi → · · · → Y1 → Y0

be infinite pre-sectional paths in ΓA containing only left stable modules. If
X0 = Y0 and there exists an irreducible map from X1 ⊕ Y1 to X0, then the
arrow Xi+1 → Xi has infinite global left degree for all i ≥ 0.

(2) Let

· · · → Xi → · · · → X1 → X0 → X−1 → · · · → X−i → · · ·

be a double infinite pre-sectional path in ΓA containing only left stable mod-
ules. Then Xi → Xi−1 has infinite global left degree for all integers i.

Proof. (1) follows from Corollary 1.5, and (2) follows from (1).

2. Semi-stable Translation Quivers

In this section we study some general translation quivers. Note that all
of our translation quivers are locally finite and admit no multiple arrow;
moreover each non-projective vertex has at least one direct predecessor.

2.1. Definition. Let Γ be a connected translation quiver with transla-
tion ρ. A connected full subquiver ∆ of Γ is said to be a section if

S1. There exists no oriented cycle in ∆.

S2. Each ρ-orbit in Γ meets ∆ exactly once.

S3. Each path in Γ with end-points in ∆ lies completely in ∆.

Remark. (1) If ∆ is a section in Γ and i is an integer such that ρix is
defined for all x ∈ ∆, then the full subquiver ρi∆ generated by the vertices
ρix with x ∈ ∆, is also a section in Γ .

(2) In [17], Bongartz also defined the notion of a section of a translation
quiver. It turns out that the only difference is that in his definition a section
can contain periodic vertices.

The following is an immediate consequence of our definition.
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2.2. Lemma. Let Γ be a translation quiver with translation ρ, and let
∆ be a section in Γ . If x → y is an arrow in Γ , then x ∈ ∆ implies y ∈ ∆
or ρy ∈ ∆, and y ∈ ∆ implies x ∈ ∆ or ρ−x ∈ ∆.

Let ∆ be a quiver, we denote by ∆ the set of vertices and by ∆ the
set of arrows. Assume that ∆ has no oriented cycle. Recall that Z∆ is a
translation quiver defined as follows: the vertices are the pairs (n, x) with
n ∈ Z, x ∈ ∆; the arrows are (n, x) → (n, y) and (n + 1, y) → (n, x) where
n ∈ Z, x → y ∈ ∆; and the translate of (n, x) is (n − 1, x). We denote
by N∆ the full sub-translation-quiver of Z∆ generated by the vertices (n, x)
with n ∈ N and x ∈ ∆.

It is easy to see from the construction that each copy of ∆ in Z∆, that
is the full subquiver generated by the vertices (n, x) with x ∈ ∆ and n
some fixed integer, is a section in Z∆. Conversely we have the following
observation.

2.3. Proposition. Let Γ be a translation quiver with translation ρ, and
let ∆ be a section in Γ . Then Γ is isomorphic to the full subquiver of Z∆
generated by the vertices (n, u) with n ∈ Z and u ∈ ∆0 such that ρnu is
defined. In particular Γ contains no oriented cycle.

Proof. By definition ∆ contains no ρ-periodic vertex. Let Σ be the
subquiver of Γ consisting of all possible arrows ρnu → ρnv, ρn+1v → ρnu
with u → v ∈ ∆1, n ∈ Z. Then Σ is isomorphic to the full subquiver of Z∆
generated by the vertices (n, u), where n ∈ Z and u ∈ ∆0 such that ρnx is
defined. It now suffices to show that Γ1 = Σ1.

Let x → y ∈ Γ1. Then x = ρnu, y = ρmv with u, v ∈ ∆; m, n ∈ Z.
If m = 0 or n = 0, then x → y ∈ Σ by Lemma 2.2. Now assume that
m > 0, n > 0. Then either u → ρm−nv ∈ Γ1 or ρn−mu → v ∈ Γ1. By S2 and
Lemma 2.2, one of the following identities

ρm−nv = v, ρm−n+1v = v, ρn−mu = u, ρn−m−1u = u

holds. Thus either m = n or n = m + 1. Hence x → y ∈ Σ1. Similarly we
can show that if m < 0 and n < 0, then x → y ∈ Σ1. Now assume that
m < 0 and n > 0. Then Γ contains a path

v → · · · → ρmv = y → ρ−x = ρn−1u → · · · → u,

which is a contradiction to S3 and S2. Similarly we can show that the case
where m > 0 and n < 0 can not happen. The proof is completed.

9



Let Γ be a translation quiver with translation ρ. A vertex x ∈ Γ is said
to be left stable if ρnx is defined for all n > 0, and right stable if ρnx is defined
for all n < 0, and finally stable if ρnx is defined for all n ∈ Z. We say that Γ
is left stable (right stable, stable respectively) if so are all the vertices in Γ .

2.4. Theorem. Let Γ be a connected left stable translation quiver with
translation ρ. Assume that Γ contains at most finitely many injective vertices
and no oriented cycle.

(1) There exist vertices in Γ which have no injective predecessor.
(2) Let x ∈ Γ be a vertex admitting no injective predecessor. Then each

ρ-orbit in Γ contains a vertex u such that u is a predecessor of x while ρ−u is
not, and the full subquiver of Γ generated by all such vertices u is a section
in Γ with x as a unique sink.

Proof. Since Γ is connected and left stable, for any vertices v, v′ in Γ ,
there exists r ≥ 0 such that ρrv is a predecessor of v′ in Γ .

(1) Pick w ∈ Γ . For any injective vertex p in Γ, ρrw is a predecessor
of p for some r ≥ 0. Thus p is not a predecessor of ρrw. Since Γ has at
most finitely many injective vertices, there exists s ≥ 0 such that ρsw has no
injective predecessor in Γ .

(2) Assume that x is a vertex in Γ admitting no injective predecessor. Let
O be a ρ-orbit in Γ and y ∈ O. Then ρny is a predecessor of x in Γ for some
n ≥ 0. We now claim that O contains a vertex which is not a predecessor of
x. Assume that this is not the case. Then y is right stable since x has no
injective predecessor in Γ , and for each m ≥ 0, there exists a path

σm : ρ−my = zm
0 → zm

1 → · · · → zm
im−1 → zm

im = x

in Γ . If σm0 contains only right stable vertices for some m0 ≥ 0, then
there exists m1 > m0 such that Γ contains a path from x to ρ−m1y, which
contradicts that Γ has no oriented cycle. Hence each σm contains a vertex
which is not right stable. Thus for each m ≥ 0, there exists jm, 0 < jm ≤ im
such that zm

jm
is not right stable but zm

k is right stable for all k, 0 ≤ k < jm.
Write zm

jm
= ρrmqm with qm an injective vertex and rm ≥ 0. Since Γ contains

at most finitely many injective vertices, there exists an injective vertex q such
that zm

jm
= ρrmq for infinitely many m ≥ 0. Note that there exists some no

such that ρn0q is a predecessor of y in Γ . Thus for each r ≥ n0, Γ has no
path from y to ρrq. So if zm

jm
= ρrmq, then 0 ≤ rm < n0. It follows that there

exists s, 0 ≤ s < n0 such that zm
jm

= ρsq for infinitely many m ≥ 0. That is,
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there exist infinitely many m ≥ 0 such that Γ contains a path

δm : ρ−my = zm
0 → zm

1 → · · · → zm
jm−1 → zm

jm
= ρsq

with zm
k stable for all 0 ≤ k < jm. Let m′ be an integer such that δm′ exists.

Then Γ contains a path from ρsq to ρ−m′−jm′x. Let m′′ > m′ + jm′ such that
δm′′ exists. This gives rise to an oriented cycle in Γ , which is a contradiction.
Thus our claim holds.

Let {Oi | i ∈ I} be the set of all ρ-orbits in Γ . Then each Oi contains a
unique vertex ui such that ui is a predecessor of x but ρ−ui is not. Let ∆ be
the full subquiver generated by the ui. Then ∆ has x as a unique sink and
satisfies the properties S1 and S2. Let

x0 → x1 → · · · → xt−1 → xt

be a path in Γ with x0, xt ∈ ∆. Then the xi are all predecessors of x since
xt ∈ ∆, and hence are all non-injective. Therefore if ρ−xi is a predecessor of
x for some i < t, then so is ρ−x0, which contradicts that x0 ∈ ∆. That is,
the xi are all in ∆. So ∆ is a section in Γ .

We shall now consider semi-stable translation quivers with oriented cycles.
We first recall the constructions of coray insertion and ray insertion from [22].

A vertex x in a translation quiver Γ is called a coray vertex if there exists
an infinite sectional path

· · · → xn → xn−1 → · · · → x2 → x1 = x,

called a coray, in Γ with pairwise different vertices such that for each integer
i > 0, the path xi+1 → xi → · · · → x2 → x1 is the only sectional path of
length i in Γ which ends with x1.

Let Γ be a translation quiver with translation ρ, and let x be a coray
vertex in Γ with a coray as above. For a positive integer n, we construct a
new translation quiver Γ [x, n] by inserting n corays into Γ as follows. The
vertices of Γ [x, n] are those of Γ together with the pairs (i, j) with i ≥ 1
and 1 ≤ j ≤ n. The arrows of Γ [x, n] are those of Γ , excluding the arrows
y → xi with i ≥ 1 other than xi+1 → xi, together with the following arrows:

(i + 1, j) → (i, j) for i ≥ 1 and 1 ≤ j ≤ n;
(i, j + 1) → (i + 1, j) for i ≥ 1 and 1 ≤ j < n;
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(n + i− 1, 1) → xi for i ≥ 1
and y → (i, n) whenever y → xi is an arrow in Γ other than xi+1 → xi. The
translation ρ′ of Γ [x, n] is defined so that for a vertex z ∈ Γ, ρ′z = ρz if z
is different from all xi such that ρz is defined, and ρ′z = (n + i, 1) if z = xi

for some i ≥ 1, and ρ′(i, j) = (i, j + 1) for i ≥ 1 and 1 ≤ j < n, and finally
ρ′(i, n) = ρxi if ρxi is defined. We call Γ [x, n] a translation quiver obtained
from Γ by coray insertion. From the construction we see that if Γ is left
stable, then Γ [x, n] is also left stable and contains n new projective vertices
(1, 1), . . . , (n, 1).

A ray vertex of a translation quiver is the dual concept to a coray vertex.
Let Γ be a translation quiver with a ray vertex x. For a positive integer n,
we define a new translation quiver [x, n]Γ by a construction dual to that of
Γ [x, n], and call [x, n]Γ a translation quiver obtained from Γ by ray insertion.
And if Γ is right stable, then [x, n]Γ is right stable and contains n new
injective vertices.

Recall that a translation quiver is called a stable tube if it is isomorphic
to ZA∞/(ρn) for some n > 0, where ρ is the translation of ZA∞.

2.5. Definition. A translation quiver Γ is called a coray tube if it is
obtained from a stable tube by a sequence of coray insertions, and a ray tube
if it is obtained from a stable tube by a sequence of ray insertions.

Let Γ be a connected left stable translation quiver with translation ρ. It
is not difficult to check that Γ is a coray tube if and only if each vertex in Γ
has at most two direct predecessors and there exists a sectional path

ρrx1 → xs → · · · → x2 → x1

in Γ , where r > s ≥ 1 and xi = ρniqi for 1 ≤ i ≤ s with the qi distinct
injective vertices and n1 ≤ n2 ≤ · · · ≤ ns. In this case Γ is obtained by
inserting s corays into the stable tube of rank r − s in a sequence of t coray
insertions, where t is the number of distinct integers in {n1, n2, . . . , nr}.

3. Semi-stable Components

In this section we apply the results obtained in the preceding section to
study the Auslander-Reiten quiver ΓA.
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Recall that the stable part sΓA of ΓA is the full subquiver generated by the
stable modules, and the connected components of the quiver sΓA are called
the stable components of ΓA. Accordingly we define the left stable part lΓA

of ΓA to be the full subquiver generated by the left stable modules, and the
right stable part rΓA to be the one generated by the right stable modules. The
connected components of the quiver lΓA are called the left stable components
of ΓA, and those of the quiver rΓA are called the right stable components. We
refer a semi-stable component of ΓA to a left stable or right stable component.
A semi-stable component is trivial if it contains only one module.

The following shows that the semi-stable parts of ΓA carry sufficient in-
formation of ΓA.

3.1. Proposition. Let A be an artin algebra. Then
(1) All but finitely many modules in ΓA lie in some non-trivial semi-stable

components of ΓA.
(2) All but finitely many non-trivial semi-stable components of ΓA are

connected components of ΓA.
(3) Each connected component of ΓA is covered by finitely many semi-

stable components of ΓA.

Proof. (1) Let X ∈ ΓA. If X is left stable and not τ -periodic, then there
exists r ≥ 0 such that for all n ≥ r, τnX is not a direct predecessor of any
projective module in ΓA. That is, the modules τnX with n ≥ r belong to the
same left stable component of ΓA. Dually if X is right stable, then either X
is τ -periodic or there exists s ≥ 0 such that the modules τ−mX with m ≥ s
belong to the same right stable component of ΓA. Hence any τ -orbit in ΓA

contains at most finitely many modules which are not in any non-trivial semi-
stable component of ΓA. Moreover, if X is not in any non-trivial left stable
component, then X is in the τ -orbit of a module which is either a projective
module or a direct predecessor of a projective module. Thus there exist at
most finitely τ -orbits in ΓA which contain modules not in any non-trivial
semi-stable component of ΓA.

(2) Let Γ be a non-trivial semi-stable component of ΓA. If Γ is not a
connected component of ΓA, then it contains a module which is either a
direct predecessor of a projective module or a direct successor of an injective
module in ΓA. This completes the proof since (3) clearly follows from the
first two statements.
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Let Γ be a non-trivial semi-stable component of ΓA. Then Γ is a trans-
lation quiver with the translation induced from the Auslander-Reiten trans-
lation in ΓA.

3.2. Lemma. Let A be an artin algebra, and let Γ be a non-trivial left
stable component of ΓA. Then Γ as a translation quiver is left stable and
contains at most finitely many injective vertices.

Proof. Let X ∈ Γ . Then X is not a projective module. If τX 6∈ Γ , then
all direct predecessors and successors of X in ΓA are not left stable modules.
Thus Γ contains only one module X, which is a contradiction. Thus Γ is
left stable as a translation quiver. Now let Y be an injective vertex in Γ
which is not an injective module. Then Y has a direct successor in ΓA which
is not a left stable module. Hence there exists n ≥ 0 such that τnY is a
direct predecessor of a projective module in ΓA. Note that different injective
vertices in Γ lie in different τ -orbits of ΓA. Thus Γ has at most finitely many
injective vertices.

As in immediate consequence of Theorem 2.5 and the above lemma, we
can now describe the shapes of semi-stable components of ΓA containing no
oriented cycle.

3.3. Theorem. Let A be an artin algebra, and let Γ be a non-trivial left
stable component of ΓA without oriented cycles. Then Γ contains a section ∆
of non-Dynkin type such that ∆ contains a unique sink and has no projective
predecessor in ΓA. Consequently Γ is isomorphic to the full subquiver of Z∆
generated by the vertices (n,X) with n ∈ Z and X ∈ ∆ such that DTrnX ∈ Γ .

Proof. By Lemma 3.2, Γ is a left stable translation quiver with at most
finitely many injective vertices. By Theorem 2.4, Γ has a section Σ with a
unique sink. It is clear that there exists t ≥ 0 such that for any i ≥ t, τ iΣ
contains no direct predecessor of any projective module in ΓA. Let ∆ = τ tΣ.
Then ∆ has no projective predecessor in ΓA. Thus the predecessors of ∆ in
ΓA are all in Γ . Using Proposition 2.7 in [8] and Lemma 1.7 in [23], we infer
that ∆ is not of Dynkin type.

We shall now describe the shapes of semi-stable components of ΓA con-
taining oriented cycles. First note that if a semi-stable component Γ contains
a DTr-periodic module, then all modules in Γ are DTr-periodic. Hence we
can apply the following result.
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3.4. Theorem [30, 55]. Let A be an artin algebra, and let Γ be a
non-trivial semi-stable component of ΓA containing a DTr-periodic module.

(1) If Γ is infinite, then Γ is a stable tube.
(2) If Γ is finite, then Γ ∼= Z∆/G, where ∆ is a Dynkin quiver and G is

an automorphism group of Z∆.

Remark. Hoshino considered a special case of the above result in [32].
He showed that if X is a module in ΓA such that DTrX = X, then either
the connected component of ΓA containing X is a homogeneous stable tube
or A is a local Nakayama algebra.

In the study of semi-stable components with oriented cycles, the following
lemma plays a crucial role.

3.5. Lemma. Let A be an artin algebra, and let Γ be a left stable
component of ΓA. Assume that

σ : · · · → Xs → Xs−1 → · · · → X1 → X0

is an infinite sectional path in Γ containing infinitely many arrows of finite
global left degree. Then

(1) Each arrow in σ has trivial valuation.
(2) Each module in σ has at most two direct predecessors in Γ .
(3) σ is not contained in any double infinite sectional path in Γ .

Proof. First of all (3) follows from Lemma 1.12.(2). We now claim that for
any i ≥ 0, the middle term of the almost split sequence ending with Xi has
at most two left stable indecomposable summands including multiplicities.
Assume that for some t ≥ 0, the middle term of the almost split sequence
ending with Xt admits a direct summand Y ⊕Z⊕Xt+1 with Y, Z left stable.
By assumption, there exists k > t such that the arrow Xk+1 → Xk has finite
global left degree. Since τn+1Xk → τnXk+1 is of infinite left degree for any
n ≥ 0 by Lemma 1.5, there exists m ≥ 0 such that τmXk+1 → τmXk is
of finite left degree. Thus τm+k−tXt+1 → τm+k−tXt is of finite degree by
Lemma 1.5 again. Since τm+k−tXt+1 ⊕ τm+k−tY ⊕ τm+k−tZ is a summand
of the middle term of the almost split sequence ending with τm+k−tXt, there
exists an irreducible map

g : τm+k−t+1Xt → τm+k−tY ⊕ τm+k−tZ
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of finite left degree. By Proposition 1.10, there exists an irreducible map

h : τm+k−t+1Y ⊕ τm+k−t+1Z → τm+k−t+1Xt

of finite degree, which is a contradiction to Lemma 1.5. Thus what we claimed
is true. Hence each Xi with i ≥ 0 has at most two direct predecessors in Γ
and each arrow Xi+1 → Xi with i > 0 has trivial valuation. Let (d, d′) be the
valuation of the arrow X1 → X0. Then d = 1. Assume that d′ > 1. Then
there exists an irreducible map from X1 ⊕X1 to X0. By Lemma 1.12.(1), σ
contains no arrow of finite global left degree, which is a contradiction. Hence
X1 → X0 also has trivial valuation. The proof is completed.

A valued translation quiver is said to be smooth if each arrow has trivial
valuation and each vertex has at most two direct predecessors and at most
two direct successors.

3.6. Theorem. Let A be an artin algebra, and let Γ be a non-trivial left
stable component of ΓA containing no DTr-periodic module. If Γ contains an
oriented cycle, then it is smooth and contains an infinite sectional path

· · · → DTrrXs → · · · → DTrrX2 → DTrrX1 → Xs → · · · → X2 → X1,

where r > s ≥ 1, and the Xi are not all stable and meet each DTr-orbit in Γ
exactly once.

Proof. Assume that Γ contains an oriented cycle. Let

Y1 → Y2 → · · · → Ys → Ys+1 (∗)

be a path in Γ of minimal positive length such that Ys+1 = τ tY1 for some
t ≥ 0. Then t > 0 since Γ contains no τ -periodic module and ΓA contains
no sectional oriented cycle [13]. Suppose that Yj = τ kYi with 1 ≤ i < j ≤ s
and k ∈ Z. Then we have paths

Yi → · · · → Yj = τ kXi

and
Yj → · · · → Ys → τ tY1 → · · · → τ tYi = τ t−kYj

of length < s. This contradicts the minimality of the length of the path (∗)
since either k ≥ 0 or t − k > 0. Hence we have shown that the Yi with
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1 ≤ i ≤ s belong to pairwise different τ -orbits. Let r = s+ t and Xi = τ i−1Yi

for 1 ≤ i ≤ s. Then r > s and

· · · → τ rXs → · · · → τ rX2 → τ rX1 → Xs → · · · → X2 → X1 (∗∗)
is an infinite sectional path in Γ . For each j ≥ 0, consider the subpath

τ (j+1)rX1 → τ jrXs → · · · → τ jrX2 → τ jrX1 (∗ ∗ ∗)
of the path (∗∗). Since r > s, there exists an oriented cycle from τ (j+1)rX1

to τ (j+1)rX1 containing only modules of form τnXi with jr ≤ n ≤ (j + 1)r.
Hence the path (∗∗∗) contains an arrow of finite global left degree. Therefore
the path (∗∗) contains infinitely many arrows of finite global left degree. By
Lemma 3.5, each module in the path (∗∗) has at most two direct predecessors
in Γ and each arrow has trivial valuation. Moreover at least one the of Xi is
not stable since otherwise (∗∗) could be extended to a double infinite sectional
path in Γ .

Assume that τ pXj with p ∈ Z is a module in Γ and Z is a direct predeces-
sor of τ pXj in Γ . Let q > 0 be an integer such that qr− p > 0. Then τ qr−pZ
is a direct predecessor of τ qrXj. Thus τ qr−pZ, and hence Z is in the τ -orbit
of the Xi. Therefore all modules in Γ belong to the τ -orbits of the Xi since
Γ is left stable. That is, the Xi constitute a complete set of representatives
of the τ -orbits in Γ . Now it is easy to see that each module in Γ has at most
two direct predecessors in Γ and each arrow in Γ has trivial valuation. This
completes the proof.

A connected component of ΓA is said to be semiregular if it does not con-
tain both a projective module and an injective module. Hence a semiregular
component itself is a semi-stable component of ΓA. As a special case of the
above result, we have the following.

3.7. Theorem. Let A be an artin algebra, and let C be a semiregular
component of ΓA with an oriented cycle. Then C is a coray tube, a stable
tube or a ray tube.

Proof. First of all C is clearly infinite [1]. We need only consider the case
where C contains no projective module. Assume that C is not a stable tube.
Then C contains no τ -periodic module. Thus by Theorem 3.6, C is smooth
and it contains an infinite sectional path

· · · → τ rXs → · · · → τ rX2 → τ rX1 → Xs → · · · → X2 → X1 (∗)
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where r > s ≥ 1, and the Xi are not all stable and meet each τ -orbit in C
exactly once. For convenience, let Zks+j = τ krXj for k ≥ 0 and 1 ≤ j ≤ s.
We claim that for any m, i > 0, if τ−mZi is defined, then τ−mZi+1 is also
defined. Suppose that this is not true. Let n > 0 be the least such that
τ−nZi0 is defined, but τ−nZi0+1 is not. Then τ−n+1Zi is defined for all i ≥ i0
and τ−n+1Zi0+1 is injective. Since C is smooth, τnZi0 has exactly one direct
predecessor, say Y0 in C. Then there exists an irreducible monomorphism
from τ−n+1Zi0 to Y0. Thus Y0 has exactly two distinct direct predecessors
τ−n+1Zi0 and Y1, and there exists an irreducible monomorphism from τY0 to
Y1. Similarly Y1 has exactly two distinct direct predecessors τY0 and Y2, and
there exists an irreducible monomorphism from τY1 to Y2. Inductively we
get an infinite sectional path

· · · → Yi+1 → Yi → · · · → Y2 → Y1 → Y0

in C. By Lemma 1.12. (1), the infinite sectional path

· · · → τ−n+1Zi+1 → τ−n+1Zi → · · · → τ−n+1Zi0+1 → τ−n+1Zi0 → Y0

contains no arrow of finite global left degree, and hence neither does the path
(∗). This is clearly a contradiction. Therefore our claim is true. Thus the
Xi are all non-stable, and if Xi = τniIi with Ii injective and ni ≥ 0, then
n1 ≤ n2 ≤ · · · ≤ ns. Hence C is a coray tube.

From Theorems 3.3 and 3.7, the shapes of semiregular Auslander-Reiten
components are fairly well-described. However so far we have no affirmative
answer to the following well-known problem.

Problem 1. Let A be a connected artin algebra of infinite representation
type. Does the Auslander-Reiten quiver of A necessarily have a semiregular
component or at least two connected components?

To conclude this section, we shall have a short discussion on the prob-
lem of which valued translation quivers can be realized as Auslander-Reiten
components. First of all, Brenner has established a combinatorial criterion
for a finite valued translation quiver to occur as an Auslander-Reiten quiver
[18]. Secondly one knows that all coray tubes, stable tubes and ray tubes
can be realized as semiregular components of Auslander-Reiten quivers [22].
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Finally we consider Z∆ with ∆ a locally finite and symmetrizable valued
quiver without oriented cycles. A combinatorial argument shows that Z∆
is not realizable if ∆ is of Dynkin or Euclidean type. On the other hand,
if ∆ is neither Dynkin nor Euclidean such that all but finitely many ver-
tices in ∆ have at most two neighbours and all but finitely many arrows
have trivial valuation, then Z∆ can be realized as a regular component of an
Auslander-Reiten quiver [21, 51]. For the remaining cases, the problem is
still open.

4. Non-semiregular Components

In this section we shall study almost split sequences in non-semiregular
components of ΓA. The result shows that an Auslander-Reiten component
either is not too complicate or behaves fairly well.

For a module M in mod A, we denote by `(M) its composition length.

4.1. Lemma. Let A be an artin algebra, and let

0 → X
f−→ ⊕r

i=1Yi
g−→ Z → 0

be an almost split sequence in mod A with the Yi indecomposable. If `(X) >
`(Yi) for all 1 ≤ i ≤ r, then any sectional path in ΓA ending with Z contains
no projective module.

Proof. Assume that `(X) > `(Yi) for all 1 ≤ i ≤ r. Let

Zn → Zn−1 → · · · → Z1 → Z0 = Z

be a sectional path in ΓA with n > 0. Then Z1
∼= Yk for some 1 ≤ k ≤ r, and

hence `(X) > `(Z1). So Z1 is not projective. If n > 1, then `(τZ1) > `(Z2),
and hence Z2 is not projective. Continuing this process, we conclude that all
Zi are not projective.

4.2. Lemma. Let A be an artin algebra, and let f : X → ⊕4
1 Yi be

an irreducible map in mod A, where X is indecomposable and the Yi are
indecomposable non-projective. If

2`(X) ≥
4∑

i=1

`(Yi),
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then X has no projective predecessor in ΓA.

Proof. Suppose that 2`(X) ≥ ∑4
i=1 `(Yi). Since `(τYi) + `(Yi) ≥ `(X) for

1 ≤ i ≤ 4, we have

4∑
i=1

`(τYi) ≥ 4`(X)−
4∑

i=1

`(Yi) > `(X).

Thus X is non-projective. Let τX → W be an arrow in ΓA. If W 6∼= τYi for
all 1 ≤ i ≤ 4, then

`(τX) ≥ `(W )+
4∑
1

`(τYi)−`(X) ≥ `(W )+
4∑
1

(`(X)−`(Yi))−`(X) > `(W ).

If W ∼= τYi for some i, say W ∼= τY1, then

`(τX) ≥
4∑
1

`(τYi)− `(X) ≥ `(W ) +
4∑
2

(`(X)− `(Yi))− `(X) > `(W ).

By Lemma 4.1, any sectional path in ΓA ending with X contains no projective
module. Moreover,

`(τX) ≥
4∑
1

`(τYi)− `(X) ≥
4∑
1

(`(X)− `(Yi))− `(X) ≥ `(X).

Thus 2`(τX) ≥ ∑4
1 `(τYi). Similarly any sectional path in ΓA ending with

τX contains no projective module. The lemma now follows by induction.

4.3. Corollary. Let A be an artin algebra, and let f : X → ⊕4
1 Yi an

irreducible epimorphism in mod A with X and the Yi indecomposable. Then
X has no projective predecessor in ΓA.

We are ready to get our main result of this section.

4.4. Theorem. Let A be an artin algebra, and let

0 → X
f−→ ⊕r

i=1Yi
g−→ Z → 0

be an almost split sequence in mod A with the Yi indecomposable. Assume
that X has a projective predecessor and Z has an injective successor in ΓA.
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Then r ≤ 4, and the equality occurs only when one of the Yi is projective-
injective and the others are neither.

Proof. Let r ≥ 4. We first consider the case where `(Z) ≥ `(X). Then
2`(Z) ≥ ∑r

i=1 `(Yi). By the dual of Lemma 4.2, one of the Yi, say Yr is
injective. Then `(X) >

∑r−1
i=1 `(Yi). Thus r = 4 by Corollary 4.3. Moreover

X is not projective since

r−1∑
i=1

`(τYi) ≥ 3`(X)−
r−1∑
i=1

`(Yi) > `(X).

Assume that Y4 is not projective. Then the modules τYi with 1 ≤ i ≤ 4 are
not injective. Since X has an injective successor in ΓA, we have `(τX) > `(X)
by the dual of Lemma 4.2. Hence τX has no projective predecessor in ΓA by
Lemma 4.2. Thus there exists a sectional path in ΓA ending with X which
contains a projective module. By Lemma 4.1, there exists an arrow τX → Y
such that `(τX) < `(Y ). If Y 6∼= τYi for all 1 ≤ i ≤ 4, then

∑4
1 `(τYi) < `(X).

This contradicts the dual of Lemma 4.2 since X has an injective successor in
ΓA. Thus Y ∼= τYi for some 1 ≤ i ≤ 4. However since

`(τY1) + `(τY2) ≥ 2`(X)− (`(Y1) + `(Y2)) > `(X),

we have `(τX) > `(τY3) + `(τY4). Similarly we have `(τX) > `(τY1) since
`(τY2) + `(τY3) > `(X) and `(τX) > `(τY2) since `(τY1) + `(τY3) > `(X).
This contradiction shows that Y4 is projective. Thus the theorem holds in
this case. Dually we can show that the theorem holds in the case where
`(X) ≥ `(Z).

Remark. (1) The above theorem also holds if we assume instead that X
is DTr-periodic.

(2) It is well-known that if A is of finite representation type, then any
indecomposable module has a projective predecessor and an injective succes-
sor in ΓA. Hence the above result generalizes the Bautista-Brenner theorem
[10].

5. Modules of Bounded Lengths in a Component

In this section we are concerned with the problem whether the number
of modules in an Auslander-Reiten component of the same length is finite.

21



We will show that this is not true in general by an infinite DTr-orbit of
modules of dimension four. Nevertheless it is still interesting to investigate in
which Auslander-Reiten components the problem has an affirmative answer.
For example, this is always the case for Auslander-Reiten components of
hereditary algebras [49, 57] and tame algebras [20].

5.1. Lemma. Let A be an artin algebra, and let Γ be a left stable
component of ΓA containing oriented cycles. Then for any module X ∈ Γ ,
the set {DTrnX; n ≥ 0} contains at most finitely many modules of any given
length.

Proof. Assume that Γ is infinite. If Γ is a stable tube, then the modules
in Γ belong to a finite number of corays in Γ , and each of which contains at
most finitely many modules of any given length by the Harada-Sai lemma and
Proposition 1.1. Thus the lemma holds in this case. Otherwise by Theorem
3.6, Γ is smooth and contains an infinite sectional path

σ : · · · → τ rXs → · · · → τ rX2 → τ rX1 → Xs → · · · → X2 → X1

where the Xi constitute a complete set of representatives of the τ -orbits in
Γ . Note that the modules τnXi with 1 ≤ i ≤ s and n ≥ 0 are distributed
into r sectional paths τ jσ, j = 0, 1, . . . , r − 1. The lemma follows again by
the Harada-Sai Lemma and Proposition 1.1.

5.2. Proposition. Let A be an artin algebra, and let Γ be a left stable
component of ΓA. If there exists a module M ∈ Γ such that {DTrnM ; n ≥ 0}
contains an infinite number of modules of the same length, then Γ has a
section of type A∞.

Proof. First of all there exists a constant c > 1 such that for any arrow
U → V in ΓA, c−1`(V ) ≤ `(U) ≤ c `(V ) (see [48, (2.1)]). Assume that
{τnM ; n ≥ 0} contains an infinite number of modules of the same length for
some M ∈ Γ . Then {τnN ; n ≥ 0} contains an infinite number of modules
of the same length for any module N ∈ Γ . By Lemma 5.1, Γ contains no
oriented cycle. By Theorem 3.3, Γ contains a section ∆ with a unique sink
X such that all predecessors of ∆ in ΓA are in Γ .

Assume that ∆ is finite, say it has m modules. Let b be an integer such
that `(τ jX) = b for infinitely many j > 0. Note `(τ jX) = b implies that
`(τ jY ) ≤ cmb for any Y ∈ ∆. Thus there exist infinitely many j > 0 such
that the modules in τ j∆ are of length ≤ cmb. Now choose a non-zero map
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θ : P → X with P a projective module in ΓA. Then there exists an infinite
chain

· · · → Xi+1
fi−→ Xi → · · · → X1

f0−→ X0 = X

of irreducible maps and homomorphisms θj : P → Xj for all j > 1 such
that f = θifi−1 · · · f0. Note that the Xi belong to Γ . Since ∆ is finite, the
modules Xi intersect τ j∆ for each j ≥ 0. This contradicts the Harada-Sai
Lemma. Thus ∆ is infinite. By König’s lemma, there exists an infinite path

· · · → Yi+1 → Yi → · · · → Y1 → Y0 = X

in ∆. By the Harada-Sai lemma and Lemma 1.3.(2), each arrow Yi+1 → Yi

has finite global left degree. Thus ∆ is of type A∞ by Lemmas 3.4 and 1.12.

As an immediate consequence we have the following.

5.3. Theorem. Let A be an artin algebra, and let Γ be a stable com-
ponent of ΓA. If there exists a DTr-orbit in Γ which contains an infinite
number of modules of the same length, then Γ is of shape ZA∞.

Proof. Assume that Γ contains a module X whose τ -orbit contains
an infinite number of modules of the same length. We may assume that
{τnX; n ≤ 0} contains an infinite number of modules of the same length.
By the dual of Proposition 5.2, the right stable component of ΓA containing
Γ has a section of type A∞. Consequently Γ has a section of type A∞. Hence
Γ ∼= ZA∞.

We believe that the above result should hold in a more general context
as follows.

Problem 2. Let A be an artin algebra, and let Γ be a stable component
of ΓA. If Γ contains an infinite number of modules of the same length, is it
necessarily of shape ZA∞?

As another application of Proposition 5.2, we obtain the following theo-
rem of Bautista and Coelho which generalizes the the related results in [36,
41].

5.4. Theorem [12]. Let A be an artin algebra, and let C be a connected
component of ΓA in which all but finitely many DTr-orbits are periodic. Then
C contains at most finitely many modules of any given length.
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Proof. Let Γ be a semi-stable, say left stable component of ΓA con-
tained in C. Assume that Γ contains an infinite number of modules of the
same length. We have seen that Γ is not a stable tube. Thus Γ has only
finitely many τ -orbits by the assumption on C. Hence Γ has a module X
whose τ -orbit contains an infinite number of modules of the same length.
By Proposition 5.2, X is right stable and the set {τnX; n ≤ 0} contains
an infinite number of modules of the same length. Note that there exists
some t ≤ 0 such that the modules τnX with n ≤ t belong to the same right
stable component of ΓA. By the dual of Proposition 5.2, this right stable
component has a section of type A∞, which is a contradiction. Therefore Γ
contains at most finitely many modules of any given length. The result now
follows from Proposition 3.1.

Recall that A is of strongly unbounded representation type if there exist
infinitely many positive integers d such that there exist infinitely many mod-
ules of length d in ΓA. Smalø has showed that A is of strongly unbounded
representation type if ΓA contains an infinite number of modules of the same
length. The second Brauer-Thrall conjecture, which has been established for
algebras over infinite perfect fields [9, 16, 42], states that a finite dimen-
sional algebra over an infinite field is either of finite representation type or
of strongly unbounded representation type.

As an immediate consequence of Theorem 5.4, we have the following.

5.5. Theorem. Let A be an artin algebra. Assume that ΓA has only
finitely many DTr-orbits. Then A is not of strongly unbounded representation
type. Consequently if in addition A is a finite dimensional algebra over an
infinite perfect field, then A is of finite representation type.

Proof. By assumption ΓA has only finitely many connected components.
By Theorem 5.4, each connected component has at most finitely many mod-
ules of the same length. Thus A is not of strongly unbounded representation
type.

It is well-known that if A is of finite representation type, then every non-
zero non-isomorphism between indecomposable modules is a sum of com-
posites of irreducible maps [6]. We shall show that the converse is true for
algebras over infinite perfect fields.
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5.6. Theorem. Let A be an artin algebra. Assume that every non-
zero non-isomorphism between modules in ΓA is a sum of composites of ir-
reducible maps. Then A is not of strongly unbounded representation type.
Consequently if in addition A is a finite dimensional algebra over an infinite
perfect field, then A is of finite representation type.

Proof. By assumption, every module in ΓA is a successor of a projective
module and a predecessor of an injective module. Thus ΓA has only finitely
many connected components. Let Γ be a semi-stable component of ΓA with-
out τ -periodic modules. By Theorem 3.3 and its dual, Γ contains oriented
cycles. By Theorem 3.6 and its dual, Γ contains only finitely many τ -orbits.
Hence by Proposition 3.1, all but finitely many τ -orbits in ΓA are τ -periodic.
The theorem follows now from Theorem 5.4.

In the preceding results we have to use the second Brauer-Thrall conjec-
ture to deduce that A is of finite representation type. A direct proof will be
useful to give an affirmative answer to the following.

Problem 3. Let A be an artin algebra. Is A necessarily of finite rep-
resentation type if either (i) there exist only finitely many DTr-orbits in ΓA

or (ii) every non-zero non-isomorphism between modules in ΓA is a sum of
composites of irreducible maps?

We shall now conclude these notes with the promised example. In [5],
Schulz found an Ω-bounded but not Ω-periodic module over a QF -algebra.
A symmetrization of the algebra yields an infinite DTr-orbit of modules of
bounded dimension.

5.7. Example [40]. Let λ be a complex number of multiplicative order
α, where α ∈ N ∪ {∞}. Let Rα be a C-algebra generated by x, y with
relations

x2 = y2 = yx + λxy = 0.

Let Tα be the trivial extension of Rα by DRα = HomC(Rα,C). If {a, b, c, d}
is the C-basis of DRα dual to the C-basis {1, x, y, xy} of Rα, then

{1, x, y, xy, a, b, c, d}

is a C-basis of Tα with multiplication as follows:

25



1 x y xy a b c d

1 1 x y xy a b c d
x x 0 xy 0 0 a 0 −λc
y y −λxy 0 0 0 0 a b
xy xy 0 0 0 0 0 0 a
a a 0 0 0 0 0 0 0
b b a 0 0 0 0 0 0
c c 0 a 0 0 0 0 0
d d c −λb a 0 0 0 0

Note Tα is a local algebra with J(Tα)4 = 0, where J(Tα) is the radical of
Tα. For i ∈ Z, let Mi = (x + λiy)Tα. Then dimCMi = 4. Since (x + λiy)(x +
λi+1y) = 0, Mi+1 is in the kernel of the epimorphism from Tα to Mi by the
left multiplication with (x + λiy). A simple calculation of the dimensions
shows that Mi+1 is the kernel. Thus

0 → Mi+1 → Tα → Mi → 0

is an exact sequence. Hence Mi = ΩiM for all i ∈ Z. Note DTr = Ωi in
this case. Thus the modules M2i with i ∈ Z constitute a DTr-orbit.

By Theorem 5.3, the stable component of ΓTα containing the M2i is either
a stable tube or of shape ZA∞. Note that dimCJ(Tα) = 7. By calculating the
dimensions, we infer that the stable component containing M0 is a regular
component of ΓTα .

Let 0 ≤ i < j < α be integers. Using the fact that Tα = C + J(Tα) and
J(Tα)4 = 0, we deduce that Mj(x + λj+1y)J(Tα) = 0, and that

Mi(x + λj+1y)J(T ) = (λj+1 − λi+1)(xy)J(Tα) 6= 0

since xyd = a. Thus Mi,Mj have different annihilators in Tα, and hence they
are not isomorphic.

(1) If α = ∞, then the modules Mi with i ∈ Z are pairwise not isomor-
phic. Hence the modules M2i with i ∈ Z constitute an infinite DTr-orbit of
modules of dimension four.

(2) Let n ∈ N and α = 2n. Then M2n = M0 and the modules Mi

with 0 ≤ i < 2n are pairwise not isomorphic. Thus M0 is DTr-periodic
of period n. So the regular component containing M0 is a stable tube of
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rank n. Note that the algebra T2n has only one simple module. Therefore
the rank of a stable tube in general is not bounded by any function of the
number of simple modules. This is in contrast to the case where the rank of a
generalized standard stable tube is at most s+1 with s the number of simple
modules. Here an Auslander-Reiten component C is generalized standard if
<∞(X,Y ) = 0 for all modules X, Y in C (see [53]).
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