Shiping Liu

In [2], Auslander and Smalø introduced and studied extensively preprojective modules and preinjective modules over an artin algebra. We now call a module hereditarily preprojective or hereditarily preinjective if its submodules are all preprojective or its quotient modules are all preinjective, respectively. In [4], Coelho studied Auslander-Reiten components containing only hereditarily preprojective modules and gave a number of characterizations of such components. We shall study further these modules by using the description of shapes of semi-stable Auslander-Reiten components; see [6, 7]. Our results will imply the result of Coelho [4, (1.2)] and that of Auslander-Smalø [2, (9.16)]. As an application, moreover, we shall show that a stable Auslander-Reiten component with "few" stable maps in TrD-direction is of shape $\mathbb{Z} A_{\infty}$.

1. Preliminaries on Auslander-Reiten components

Throughout this note, A denotes an artin algebra, $\bmod A$ the category of finitely generated right A-modules, and $\operatorname{rad}^{\infty}(\bmod A)$ the infinite radical of $\bmod A$. Let Γ_{A} be the Auslander-Reiten quiver of A which is defined in such a way that its vertices form a complete set of the representatives of isoclasses of the indecomposables of $\bmod A$. We denote by τ the Auslander-Reiten translation DTr. The reader is referred to [7] for notions not defined here. We first reformulate a result stated in [7, (2.3)] for later use. Its proof can be found in the proofs of [7, (2.2), (2.3)].
1.1. Proposition. Let Γ be a left stable component of Γ_{A} with no τ periodic module. If Γ contains an oriented cycle, then every module in Γ admits at most two immediate successors in Γ and there exists an infinite sectional path

$$
N_{1} \rightarrow \cdots \rightarrow N_{s} \rightarrow \tau^{t} N_{1} \rightarrow \cdots \rightarrow \tau^{t} N_{s} \rightarrow \tau^{2 t} N_{1} \rightarrow \cdots
$$

with $t>0$ and $\left\{N_{1}, \ldots, N_{s}\right\}$ a complete set of representatives of τ-orbits in Γ.
1.2. Lemma. Let X be a module in Γ_{A}, not lying in any finite τ-periodic stable component. Then there exists some $r \geq 0$ such that $\tau^{r} X$ lies on an oriented cycle of Γ_{A} of left stable modules if one of the following holds:
(1) $\tau^{n} X$ lies on an oriented cycle in Γ_{A} for infinitely many $n>0$.
(2) A module is a predecessor of $\tau^{n} X$, for infinitely many $n>0$, in Γ_{A}.

Proof. Assume that either (1) or (2) occurs. In particular, X is left stable. It suffices to consider the case where X is not τ-periodic. Then there exists $s \geq 0$ such that the $\tau^{n} X$ with $n \geq s$ lie in an infinite non τ-periodic left stable component Γ of Γ_{A}. Suppose that Γ contains no oriented cycle. Then Γ admits a section Δ, and hence Γ is embedded in $\mathbb{Z} \Delta$; see $[7,(3.1),(3.4)]$. For modules M, N in Γ, there exist at most finitely many $n \geq 0$ such that N is predecessor in Γ of $\tau^{n} M$. Moreover, applying some power of τ, we may assume
that none of the predecessors of Δ in Γ is an immediate successor of a projective in Γ_{A}. This implies that Δ admits no projective predecessor in Γ_{A}. Now by (1) or (2), there exist infinitely many $n \geq s$ such that $\tau^{n} X$ admits a projective predecessor in Γ_{A}. However, $\tau^{n} X$ is a predecessor of Δ when n is suffiently large, a contradiction. Hence Γ contains an oriented cycle. The lemma now follows easily from Proposition 1.1. The proof is completed.
1.3. Lemma. Let X be a module in Γ_{A}, lying on an oriented cycle of left stable modules but not in any finite τ-periodic stable component. Then for every sufficient large positive integer n, there exists in Γ_{A} an infinite sectional path starting with $\tau^{n} X$ and one ending with $\tau^{n} X$.

Proof. It suffices to show that for some $r \geq 0, \tau^{r} X$ is the start-point of an infinite sectional path of left stable modules. By assumption, the left stable component Γ containing X is infinite and has oriented cycles. If Γ is τ-periodic, then it is a stable tube [5]. Hence X is the start-point of an infinite sectional path of τ-periodic modules. Otherwise, the lemma follows easily from Proposition 1.1. The proof is completed.

We now have our main result of this section which generalizes two equivalent conditions stated in $[4,(1.2)]$.
1.4. Proposition. Let Γ be a connected full subquiver of Γ_{A}, closed under predecessors. The following are equivalent:
(1) Every module in Γ admits only finitely many predecessors in Γ.
(2) All but finitely many modules in Γ lie in τ-orbits of projectives and do not lie on oriented cycles in Γ.
(3) Γ contains projectives but no infinite sectional path ending with a projective, and every immediate predecessor of a projective in Γ admits a projective predecessor.

Proof. That (2) implies (1) can be proved by using the argument given in the proof of $[4,(4.2)]$. Assume now that (1) occurs. Since Γ_{A} contains no sectional oriented cycle [3], there exists no infinite sectional path ending with some module in Γ. If Γ contains no projective, then Γ is τ-periodic by (1), and hence a connected component of Γ_{A} since it is closed under predecessors. Therefore Γ is infinite [1], and hence a stable tube [5], a contradiction to (1). Thus Γ contains projectives. Let Y be an immediate predecessor of a projective P in Γ. If Y is τ-periodic, then P is a predecessor of Y. Otherwise, Y lies in the τ-orbit of a projective, that is a predecessor of Y. Thus, (1) implies (3).

Finally assume that (3) holds. We shall prove that (2) is true. First suppose that the left stable part Θ of Γ is infinite. Then Θ has an infinite connected component Σ. Note that Σ is also closed under predecessors in Γ_{A}. Since Γ contains projectives, Σ contains modules which are immediate predecessors of projectives in Γ, say Y_{1}, \ldots, Y_{m} are all such modules. It follows easily from (3) that each Y_{i} with $1 \leq i \leq m$ has some Y_{j} with $1 \leq j \leq m$ as a predecessor in Σ. Thus some Y_{s} with $1 \leq s \leq m$ is on an oriented cycle in Σ. By Lemma $1.3, \Sigma$ contains an infinite sectional path ending with $\tau^{r} Y_{s}$ for some $r \geq 0$, and hence one ending with some projective, a contradiction. Thus all but finitely
many modules in Γ lie in τ-orbits of projectives. Suppose that Γ contains infinitely many modules lying on oriented cycles. Then there exists a right stable projective module Q such that $\tau^{n} Q$ lies in Γ for all $n \leq 0$ and $\tau^{n} Q$ lies on an oriented cycle in Γ for infinitely many $n<0$. Applying first the dual of Lemma 1.2.(1) and then the dual of Lemma 1.3, we infer that there exists some $r \leq 0$ such that $\tau^{r} Q$ is the end-point of an infinite sectional path in Γ. Thus Γ contains an infinite sectional path ending with a projective, a contradiction. The proof is completed.

2. Hereditarily preprojective modules

It has been shown by Auslander and Smalø $[2,(9.3)]$ that a module M in Γ_{A} is hereditarily preprojective if and only if $\operatorname{Hom}_{A}(X, M)=0$ for all but finitely many modules X in Γ_{A}. This leads to more characterizations of hereditarily preprojective modules. For doing so, we first fix some terminology. One says that a module M is generated by a module N if M is a quotient of a finite direct sum of copies of N and that a projective module P in $\bmod A$ is a progenerator of a family of modules if P is of minimal length such that every module in the family is generated by P. A path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n}$ of Γ_{A} is called nonzero if there exists an irreducible map $f_{i}: X_{i-1} \rightarrow X_{i}$ for each $1 \leq i \leq n$ such that $f_{1} \cdots f_{n}$ is nonzero. An infinite path is nonzero if every finite subpath is so.
2.1. Lemma. Let M be a module in Γ_{A}. The following are equivalent:
(1) M is hereditarily preprojective.
(2) M is not the end-point of any infinite nonzero path in Γ_{A}.
(3) $\operatorname{rad}^{\infty}(X, M)=0$ for all modules X in Γ_{A}.
(4) $\operatorname{rad}^{\infty}(P, M)=0$ with P a progenerator of the predecessors of M in Γ_{A}.

The proof of the above result is a routine application of the Harada-Sai Lemma [2, (5.12)] and the result of Auslander-Smalø [2, (9.3)]. Being nonzero [8, (13.4)], an infinite sectional path in Γ_{A} does not end with a hereditarily preprojective or start with a hereditarily preinjective.
2.2. Lemma. Let M be a module in Γ_{A}. The following are equivalent:
(1) All predecessors of M in Γ_{A} are preprojective.
(2) All predecessors of M in Γ_{A} are hereditarily preprojective.
(3) The number of predecessors of M in Γ_{A} is finite.

Proof. That (1) implies (2) can be proved by using the same argument in the the proof of $[4,(3.2)]$, and that (3) implies (2) follows from Lemma 2.1.(2) and the Harada-Sai Lemma. Assume now that the full subquiver Γ of Γ_{A} generated by the predecessors of M contains only hereditarily preprojective modules. In particular, every module in Γ admits a projective predecessor [2, (8.3)] and Γ has no infinite sectional path ending with some module. By Proposition 1.4, Γ is finite. The proof is completed.

Let Γ be a connected full subquiver of Γ_{A}. We say that Γ is generalized standard if $\operatorname{rad}^{\infty}(X, Y)=0$ for modules X, Y in Γ. Assume now that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a complete set of pairwise orthogonal primitive idempotents of A and r is an
integer with $1 \leq r \leq n$ such that $e_{i} A$ is isomorphic to a module in Γ if and only if $1 \leq i \leq r$. We then let $A(\Gamma)$ be the quotient of A modulo the ideal generated by $1-e_{1}-\cdots-e_{r}$. Finally, recall that a module M in Γ_{A} is directing if it does not lie on any cycle of nonzero non-isomorphisms between modules in Γ_{A}.
2.3. Theorem. Let Γ be a connected full subquiver of Γ_{A} which contains projectives and is closed under predecessors. The following are equivalent:
(1) Every module in Γ is preprojective.
(2) Every projective module in Γ is hereditarily preprojective.
(3) All but finitely many modules in Γ are directing and lie in τ-orbits of projectives.
(4) $\operatorname{rad}^{\infty}(P, Q)=0$ for projectives P, Q in Γ, and the predecessors of the projectives in Γ are generated by these projectives.
(5) Γ is a generalized standard full subquiver of the Auslander-Reiten quiver of $A(\Gamma)$ that is closed under predecessors.

Proof. That (1) implies (2) follows from Lemma 2.2, and that (3) implies (1) is a consequence of Proposition 1.4 and Lemma 2.2.

Assume now that (2) holds. Then Γ contains no infinite sectional path ending with a projective by Lemma 2.1.(2), and every immediate predecessor of a projective in Γ has a projective predecessor in Γ; see $[2,(8.3)]$. By Proposition 1.4, all but finitely many modules in Γ lie in τ-orbits of projectives and do not lie on oriented cycles. Moreover, every module in Γ has only finitely many predecessors. By Lemma 2.2, every module in Γ is hereditarily preprojective. Now it follows easily from Lemma 2.1.(3) that a module in Γ not lying on any oriented cycle in Γ is directing. This shows that (3) holds, and hence establishes the equivalence of the first three statements.

If (4) holds, then every projective in Γ is hereditarily preprojective by Lemma 2.1.(4). That is, (4) implies (2). Assume now that (5) holds. In particular, $\operatorname{rad}^{\infty}(\bmod A)$ vanishes on the projectives in Γ. Let X be a module in Γ, and let $P=e A$ with e a primitive idempotent be a projective in Γ_{A} but not in Γ. Then $X e=0$ since X is a module over $A(\Gamma)$. Hence $\operatorname{Hom}_{A}(P, X)=0$. This shows that X is generated by the projectives in Γ. Thus (5) implies (4).

Finally assume that (1) holds. Let X be a module in Γ. By Lemma $2.2, X$ is hereditarily preprojective. By Lemma 2.1.(3), $\operatorname{rad}^{\infty}(Y, X)=0$ for all modules Y in Γ_{A}. Now if Q is a projective in Γ_{A} but not in Γ, then $\operatorname{Hom}_{A}(Q, X)=$ $\operatorname{rad}^{\infty}(Q, X)=0$. So X is a module over $A(\Gamma)$. Let $f: M \rightarrow N$ be an irreducible map in ind $A(\Gamma)$ with N in Γ. Then $f \notin \operatorname{rad}^{\infty}(\bmod A)$, and hence M is in Γ. This proves that (1) implies (5). The proof is completed.

It is now easy to see that Coelho's result [4, (1.2)] is an immediate consequence of Proposition 1.4, Lemma 2.2 and Theorem 2.3 while the result of Auslander-Smalø [2, (9.16)] follows from Theorem 2.3.
2.4. Lemma. A module X in Γ_{A} lies in a finite τ-periodic stable component of Γ_{A} if one of the following holds:
(1) $\tau^{n} X$ is hereditarily preprojective for infinitely many $n>0$.
(2) $\tau^{n} X$ is hereditarily preinjective for infinitely many $n<0$.

Proof. Let X be a module in Γ_{A} such that $\tau^{n} X$ is hereditarily preprojective for infinitely many $n>0$. In particular, X is left stable and $\tau^{n} X$ admits a projective predecessor in Γ_{A} for infinitely many $n>0$. Suppose that X does not lie in any finite τ-periodic stable component. Using first Lemma 1.2.(2) and then Lemma 1.3, we conclude that there exists some $r>0$ such that for all $n \geq r, \tau^{n} X$ is the end-point of an infinite sectional path, a contradiction. The proof of the lemma is completed.

If A is of finite representation type, then every module in Γ_{A} is both hereditarily preprojective and hereditarily preinjective; see [2, (6.1)]. Conversely we have the following result.
2.5. Proposition. (1) There exist at most finitely many τ-orbits of Γ_{A} which contain a hereditarily preprojective or hereditarily preinjective module.
(2) There exist at most finitely many modules in Γ_{A} which are both hereditarily preprojective and hereditarily preinjective.

Proof. For part (1), it suffices to prove that there exist at most finitely many τ-orbits which contain a hereditarily preprojective module. If this is not true, then there exists a stable component Γ of Γ_{A} in which infinitely many τ-orbits contain hereditarily preprojective modules. However, by König's graph lemma, every module X in Γ is the end-point of an infinite path

$$
\cdots \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}=X
$$

with the X_{i} lying in pairwise different τ-orbits. Hence X is not hereditarily preprojective, a contradiction.

Suppose now that there exist infinitely many modules in Γ_{A} which are both hereditarily preprojective and hereditarily preinjective. It follows from (1) that there exists a τ-orbit \mathcal{O} of Γ_{A} containing infinitely many modules which are both hereditarily preprojective and hereditarily preinjective. Let Y be a module in \mathcal{O}. Then either $\tau^{n} Y$ is hereditarily preprojective for infinitely many $n>0$ or $\tau^{m} Y$ is hereditarily preinjective for infinitely many $m<0$. This is contrary to Lemma 2.4. The proof of the proposition is completed.

3. Components with "FEW" stable maps in TrD-direction

For modules M, N in $\bmod A$, we shall denote by $\underline{\operatorname{Hom}}_{A}(M, N)$ the quotient of $\operatorname{Hom}_{A}(M, N)$ modulo the subgroup of maps factoring through a projective module. We say that a map $f: M \rightarrow N$ is projectively stable if it has nonzero image in $\underline{\operatorname{Hom}}_{A}(M, N)$ and that a path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n}$ in Γ_{A} is projectively stable if there exists an irreducible map $f_{i}: X_{i-1} \rightarrow X_{i}$ for each $1 \leq i \leq n$ such that $f_{1} \cdots f_{n}$ is projectively stable. An infinite path is projectively stable if every finite subpath is so.
3.1. Lemma. Let M be a module in Γ_{A} with infinitely many predecessors. Then Γ_{A} has an infinite projectively stable path ending with a predecessor of M.

Proof. By Lemma 2.2, M admits a predecessor X in Γ_{A} which is not preprojective. By $[2,(10.2)]$, there exist infinitely many modules Y in Γ_{A} such that
$\underline{\operatorname{Hom}}_{A}(Y, X) \neq 0$. Let $f: Y \rightarrow X$ be a projectively stable map in $\operatorname{rad}(Y, X)$. If $f \in \operatorname{rad}^{\infty}(Y, X)$ then, by using well-known properties of almost split sequences, we deduce easily that there exists an infinite chain

$$
\cdots \rightarrow X_{n} \xrightarrow{f_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{f_{1}} X
$$

of irreducible maps through modules in Γ_{A} such that $f_{n} \cdots f_{1}$ is projectively stable for all $n \geq 1$. Otherwise, there exists some $r>0$ such that $f \in \operatorname{rad}^{r}(Y, X)$ but not in $\operatorname{rad}^{r+1}(Y, X)$. Then there exists a chain of irreducible maps through modules in Γ_{A} from Y to X of length r such that the composite is projectively stable. This shows that Γ_{A} contains projectively stable paths ending with X of arbitrary length. Since Γ_{A} is locally finite, by König's graph lemma, there exists an infinite projectively stable path ending with X. The proof is completed.
3.2. Proposition. Let Γ be a left stable component of Γ_{A}, meeting only finitely many τ-orbits of Γ_{A}. Then there exists a module X in Γ such that $\operatorname{Hom}_{A}\left(\tau^{n} X, X\right)$ is nonzero for infinitely many $n>0$.

Proof. We need only to consider the case where Γ is not τ-periodic. Assume first that Γ contains no oriented cycle. Then Γ contains a finite section Δ, which we may assume has no projective predecessor in Γ_{A}. Thus the predeccessors of Δ in Γ_{A} all lie in Γ. Now every module in Δ admits infinitely many predecessors in Γ. By Lemma 3.1, Γ contains an infinite projectively stable path

$$
\cdots \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}
$$

with X_{0} a predecessor of Δ in Γ. Since Δ is finite, there exists a sequence $0 \leq n_{0}<n_{1}<n_{2}<\cdots<n_{i}<\cdots$ such that the $X_{n_{i}}$ with $i \geq 1$ are pairwise distinct but belong to the same τ-orbit. Hence for each $i \geq 1, X_{n_{i}}=\tau^{m_{i}} X_{n_{0}}$ with m_{i} a nonzero integer. Since Γ is embedded in $\mathbb{Z} \Delta$, we have $m_{i}<m_{j}$ whenever $i<j$. Now the proposition holds since $\underline{\operatorname{Hom}}_{A}\left(X_{n_{i}}, X_{n_{0}}\right) \neq 0$ for all $i \geq 1$. Assume now that Γ contains oriented cycles. Let

$$
N_{1} \rightarrow \cdots \rightarrow N_{s} \rightarrow \tau^{t} N_{1} \rightarrow \cdots \rightarrow \tau^{t} N_{s} \rightarrow \tau^{2 t} N_{1} \rightarrow \cdots
$$

be an infinite path as stated in Proposition 1.1. Applying some power of τ, we may assume that for all $i \geq 0$ and $1 \leq j \leq s, \tau^{i} N_{j}$ is not an immediate predecessor of a projective in Γ_{A}. Setting $\tau^{r t} N_{j}=N_{r s+j}$ for $r \geq 0$ and $1 \leq j \leq$ s, and $M_{n}=\tau^{n-1} N_{n}$ for $n \geq 1$, one gets an infinite sectional path

$$
\cdots \rightarrow M_{2 s+1} \rightarrow M_{2 s} \rightarrow \cdots \rightarrow M_{s+1} \rightarrow M_{s} \rightarrow \cdots \rightarrow M_{2} \rightarrow M_{1}=N_{1}
$$

Note that for all $n>1$ and $1 \leq i<n, \tau^{i} N_{n}$ admits exactly two immediate successors $\tau^{i-1} N_{n-1}$ and $\tau^{i} N_{n+1}$ in Γ. Thus for all $n>1$, a path in Γ from $M_{n}=\tau^{n-1} N_{n}$ to N_{j} with $j>1$ is of length at least n. As a consequence, if there exists a path in Γ from M_{n} to X of length less than n, then $X=\tau^{i} N_{j}$ with $i \geq 0$ and $j \geq 1$. By our assumption the N_{j} with $1 \leq j \leq s$, for all $n>1$, there exists no path in Γ_{A} from M_{n} to a projective of length less than n. We choose an irreducible map $f_{n-1}: M_{n} \rightarrow M_{n-1}$ for each $n>1$. Then $g_{n}=f_{n-1} \cdots f_{2} f_{1} \notin \operatorname{rad}^{n}\left(M_{n}, M_{1}\right) ;$ see [8, (13.4)]. If g_{n} factors through a projective, then there exists a path in Γ_{A} from M_{n} to a projective of length less than n, a contradiction. Hence $\underline{\operatorname{Hom}}_{A}\left(M_{n}, M_{1}\right) \neq 0$ for all $n>1$. In particular,
for all $r \geq 1, \underline{\operatorname{Hom}}_{A}\left(\tau^{r(s+t)} N_{1}, N_{1}\right)=\underline{\operatorname{Hom}}_{A}\left(M_{r s+1}, M_{1}\right)$ is nonzero. The proof is completed.

Kerner proved in $[9,(1.1)]$ that for an indecomposable regular module X over a wild hereditary algebra H, both $\operatorname{Hom}_{H}\left(\tau^{n} X, X\right)$ and $\operatorname{Hom}_{H}\left(X, \tau^{-n} X\right)$ vanish for sufficiently large n, by using the fact that a regular component is of shape $\mathbb{Z} A_{\infty}$. Conversely we have the following result.
3.3. Theorem. Let Γ be a left stable component of Γ_{A}. Assume that for every module X in $\Gamma, \underline{\operatorname{Hom}}_{A}\left(\tau^{n} X, X\right)$ vanishes for sufficiently large n. Then Γ has a section of type A_{∞}.

Proof. It follows from our assumption and Proposition 3.2 that Γ is not τ periodic and meets infinitely many τ-orbits of Γ_{A}. Thus Γ contains no oriented cycle by Proposition 1.1, and hence contains an infinite section Δ with a unique $\operatorname{sink} X[7,(3.6)]$. Applying some power of τ, we may assume that Δ admits no projective predecessor in Γ_{A}. Now Δ contains an infinite sectional path

$$
\cdots \rightarrow X_{i} \rightarrow X_{i-1} \rightarrow \cdots \rightarrow X_{2} \rightarrow X_{1}=X
$$

We fix an integer $i>1$. Let $m>0$ be such that $\underline{\operatorname{Hom}}_{A}\left(\tau^{m} X_{i}, X_{i}\right)=0$. We choose irreducible maps $f_{j}: \tau^{j} X_{i} \rightarrow \tau^{j} X_{i-1}$ and $g_{j}: \tau^{j} X_{i-1} \rightarrow \tau^{j-1} X_{i}$ for each $1 \leq j \leq m$. Then $h_{m}=f_{m} g_{m} f_{m-1} \cdots f_{1} g_{1} \in \operatorname{rad}^{\infty}\left(\tau^{m} X_{i}, X_{i}\right)$ since X_{i} admits no projective predecessor in Γ_{A}. Thus one of the f_{j}, g_{j} with $1 \leq j \leq m$ is of finite left degree $[6,(1.1)]$. So the arrow $X_{i} \rightarrow X_{i-1}$ is of finite global left degree [7, section 1]. It follows now from $[7,(1.3),(1.4)]$ that Δ is of the form

$$
\cdots \rightarrow X_{i} \rightarrow X_{i-1} \rightarrow \cdots \rightarrow X_{2} \rightarrow X_{1}=X=Y_{1} \leftarrow Y_{2} \leftarrow \cdots \leftarrow Y_{r}
$$

with $r \geq 1$. That is, Δ is of type A_{∞}. The proof of the theorem is completed.

Acknowledgement. The author gratefully acknowledges partial support from NSERC of Canada.

References

[1] M. Auslander, "Applications of morphisms determined by objects", Proceedings, Conference on Representation Theory, Philadelphia 1976 (Dekker, New York, 1978) 245-327.
[2] M. Auslander and S. O. Smalø, "Preprojective modules over artin algebras", J. Algebra 66 (1980) 61-122.
[3] R. Bautista and S. O. Smalø, "Non-existent cycles", Comm. Algebra 11 (1983) 1755-1767.
[4] F. U. Coelho, "Components of Auslander-Reiten quivers with only preprojective modules", J. Algebra 157 (1993) 472-488.
[5] D. Happel, U. Preiser, and C. M. Ringel, "Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTrperiodic modules", Lecture Notes in Mathematics 832 (Springer, Berlin, 1980) 280-294.
[6] S. Liv, "Degrees of irreducible maps and the shapes of Auslander-Reiten quivers", J. London Math. Soc. (2) 45 (1992) 32-54.
[7] S. Liu, "Semi-stable components of an Auslander-Reiten quiver", J. London Math. Soc. (2) 47 (1993) 405-416.
[8] K. Igusa and G. Todorov, "Radical layers of representable functors", J. Algebra 89 (1984) 148-177.
[9] O. Kerner, "Tilting wild algebras", J. London Math. Soc. (2) 30 (1989) 29-47.

DÉPARTEMENT DE MATHÉMATIQUES
Université de Sherbrooke
Sherbrooke, Québec
Canada J1K 2R1
Email: shiping@dmi.usherb.ca

