PREPROJECTIVE MODULES AND AUSLANDER-REITEN COMPONENTS

SHIPING L1u

In [2], Auslander and Smalg introduced and studied extensively preprojec-
tive modules and preinjective modules over an artin algebra. We now call a
module hereditarily preprojective or hereditarily preinjective if its submodules
are all preprojective or its quotient modules are all preinjective, respectively. In
[4], Coelho studied Auslander-Reiten components containing only hereditarily
preprojective modules and gave a number of characterizations of such compo-
nents. We shall study further these modules by using the description of shapes
of semi-stable Auslander-Reiten components; see [6, 7]. Our results will imply
the result of Coelho [4, (1.2)] and that of Auslander-Smalg [2, (9.16)]. As an
application, moreover, we shall show that a stable Auslander-Reiten component
with “few” stable maps in TrD-direction is of shape ZA..

1. PRELIMINARIES ON AUSLANDER-REITEN COMPONENTS

Throughout this note, A denotes an artin algebra, mod A the category of
finitely generated right A-modules, and rad® (mod A) the infinite radical of
mod A. Let I'4 be the Auslander-Reiten quiver of A which is defined in such
a way that its vertices form a complete set of the representatives of isoclasses
of the indecomposables of mod A. We denote by 7 the Auslander-Reiten trans-
lation DTr. The reader is referred to [7] for notions not defined here. We first
reformulate a result stated in [7, (2.3)] for later use. Its proof can be found in
the proofs of [7, (2.2), (2.3)].

1.1. PROPOSITION. Let I' be a left stable component of I' 4 with no 7-
periodic module. If I' contains an oriented cycle, then every module in I' admits
at most two itmmediate successors in I' and there exists an infinite sectional path

N1—>-~-—>NS—>7-tN1—>~-~—>7-tNS—>7-2tN1—>---

with t > 0 and {N1,..., N} a complete set of representatives of T-orbits in I.

1.2. LEMMA. Let X be a module in I' 4, not lying in any finite T-periodic
stable component. Then there exists some r > 0 such that 7" X lies on an
oriented cycle of I 4 of left stable modules if one of the following holds:

(1) 7™ X lies on an oriented cycle in I' 4 for infinitely many n > 0.

(2) A module is a predecessor of 7" X, for infinitely manyn >0, in I'4.

Proof. Assume that either (1) or (2) occurs. In particular, X is left stable.
It suffices to consider the case where X is not 7-periodic. Then there exists
s > 0 such that the 7" X with n > s lie in an infinite non 7-periodic left stable
component I' of I'4. Suppose that I’ contains no oriented cycle. Then I
admits a section A, and hence I' is embedded in ZA; see [7, (3.1), (3.4)]. For
modules M, N in I'; there exist at most finitely many n > 0 such that N is
predecessor in I' of 7" M. Moreover, applying some power of 7, we may assume



that none of the predecessors of A in I" is an immediate successor of a projective
in I"4. This implies that A admits no projective predecessor in I' 4. Now by
(1) or (2), there exist infinitely many n > s such that 77X admits a projective
predecessor in I' 4. However, 7"X is a predecessor of A when n is suffiently
large, a contradiction. Hence I' contains an oriented cycle. The lemma now
follows easily from Proposition 1.1. The proof is completed.

1.3. LEMMA. Let X be a module in I' 4, lying on an oriented cycle of left
stable modules but not in any finite T-periodic stable component. Then for every
sufficient large positive integer n, there exists in I 4 an infinite sectional path
starting with 7" X and one ending with 7" X.

Proof. It suffices to show that for some r > 0, 77X is the start-point of
an infinite sectional path of left stable modules. By assumption, the left stable
component I" containing X is infinite and has oriented cycles. If I' is T-periodic,
then it is a stable tube [5]. Hence X is the start-point of an infinite sectional path
of m-periodic modules. Otherwise, the lemma follows easily from Proposition
1.1. The proof is completed.

We now have our main result of this section which generalizes two equivalent
conditions stated in [4, (1.2)].

1.4. PROPOSITION. Let I' be a connected full subquiver of I' 4, closed under
predecessors. The following are equivalent:

(1) Every module in I' admits only finitely many predecessors in I'.

(2) All but finitely many modules in I' lie in T-orbits of projectives and do
not lie on oriented cycles in I.

(3) I' contains projectives but no infinite sectional path ending with a pro-
jective, and every immediate predecessor of a projective in I’ admits a projective
predecessor.

Proof. That (2) implies (1) can be proved by using the argument given in
the proof of [4, (4.2)]. Assume now that (1) occurs. Since I'4 contains no
sectional oriented cycle [3], there exists no infinite sectional path ending with
some module in I'. If I' contains no projective, then I' is 7-periodic by (1),
and hence a connected component of I" 4 since it is closed under predecessors.
Therefore I' is infinite [1], and hence a stable tube [5], a contradiction to (1).
Thus I' contains projectives. Let Y be an immediate predecessor of a projective
Pin I If Y is 7-periodic, then P is a predecessor of Y. Otherwise, Y lies in
the 7-orbit of a projective, that is a predecessor of Y. Thus, (1) implies (3).

Finally assume that (3) holds. We shall prove that (2) is true. First suppose
that the left stable part @ of I' is infinite. Then © has an infinite connected
component Y. Note that X is also closed under predecessors in I' 4. Since I’
contains projectives, X contains modules which are immediate predecessors of
projectives in I', say Y1, ...,Y,, are all such modules. It follows easily from (3)
that each Y; with 1 < ¢ < m has some Y; with 1 < j < m as a predecessor in
Y. Thus some Y, with 1 < s < m is on an oriented cycle in Y. By Lemma
1.3, X contains an infinite sectional path ending with 7"Y; for some r > 0, and
hence one ending with some projective, a contradiction. Thus all but finitely



many modules in I lie in 7-orbits of projectives. Suppose that I’ contains
infinitely many modules lying on oriented cycles. Then there exists a right
stable projective module @) such that 7@ lies in I" for all n < 0 and 7" Q lies
on an oriented cycle in I' for infinitely many n < 0. Applying first the dual of
Lemma 1.2.(1) and then the dual of Lemma 1.3, we infer that there exists some
r < 0 such that 7"(Q is the end-point of an infinite sectional path in I". Thus
I’ contains an infinite sectional path ending with a projective, a contradiction.
The proof is completed.

2. HEREDITARILY PREPROJECTIVE MODULES

It has been shown by Auslander and Smalg [2, (9.3)] that a module M in I" 4
is hereditarily preprojective if and only if Hom 4 (X, M) = 0 for all but finitely
many modules X in I"4. This leads to more characterizations of hereditarily
preprojective modules. For doing so, we first fix some terminology. One says
that a module M is generated by a module N if M is a quotient of a finite direct
sum of copies of N and that a projective module P in mod A is a progenerator
of a family of modules if P is of minimal length such that every module in the
family is generated by P. A path Xqg — X1 — -+ — X, of I'4 is called nonzero
if there exists an irreducible map f; : X;_1 — X; for each 1 <4 < n such that
f1-++ fn is nonzero. An infinite path is nonzero if every finite subpath is so.

2.1. LEMMA. Let M be a module in I 4. The following are equivalent:

(1) M is hereditarily preprojective.

(2) M is not the end-point of any infinite nonzero path in I 4.

(3) rad®> (X, M) =0 for all modules X in I 4.

(4) rad> (P, M) = 0 with P a progenerator of the predecessors of M in I 4.
The proof of the above result is a routine application of the Harada-Sai

Lemma [2, (5.12)] and the result of Auslander-Smalg [2, (9.3)]. Being nonzero

[8, (13.4)], an infinite sectional path in I'4 does not end with a hereditarily

preprojective or start with a hereditarily preinjective.

2.2. LEMMA. Let M be a module in I 4. The following are equivalent:

(1) All predecessors of M in 'y are preprojective.

(2) All predecessors of M in I'a are hereditarily preprojective.

(3) The number of predecessors of M in I 4 is finite.

Proof. That (1) implies (2) can be proved by using the same argument in the
the proof of [4, (3.2)], and that (3) implies (2) follows from Lemma 2.1.(2) and
the Harada-Sai Lemma. Assume now that the full subquiver I" of I" 4 generated
by the predecessors of M contains only hereditarily preprojective modules. In
particular, every module in I" admits a projective predecessor [2, (8.3)] and I"
has no infinite sectional path ending with some module. By Proposition 1.4, I
is finite. The proof is completed.

Let I' be a connected full subquiver of I" 4. We say that I" is generalized stan-
dard if rad*(X,Y) = 0 for modules X,Y in I'. Assume now that {e1,...,e,}
is a complete set of pairwise orthogonal primitive idempotents of A and r is an



integer with 1 < r < n such that e; A is isomorphic to a module in I if and only
if 1 <i <r. We then let A(I") be the quotient of A modulo the ideal generated
by 1 —e; —- -+ — e,. Finally, recall that a module M in I' 4 is directing if it does
not lie on any cycle of nonzero non-isomorphisms between modules in I"4.

2.3. THEOREM. Let I' be a connected full subquiver of I' 4 which contains
projectives and is closed under predecessors. The following are equivalent:

(1) Every module in I is preprojective.

(2) Every projective module in I' is hereditarily preprojective.

(3) All but finitely many modules in I' are directing and lie in T-orbits of
projectives.

(4) rad>(P,Q) = 0 for projectives P,Q in I', and the predecessors of the
projectives in I' are generated by these projectives.

(5) I' is a generalized standard full subquiver of the Auslander-Reiten quiver
of A(T") that is closed under predecessors.

Proof. That (1) implies (2) follows from Lemma 2.2, and that (3) implies
(1) is a consequence of Proposition 1.4 and Lemma 2.2.

Assume now that (2) holds. Then I' contains no infinite sectional path
ending with a projective by Lemma 2.1.(2), and every immediate predecessor of
a projective in I" has a projective predecessor in I'; see [2, (8.3)]. By Proposition
1.4, all but finitely many modules in I" lie in 7-orbits of projectives and do not
lie on oriented cycles. Moreover, every module in I' has only finitely many
predecessors. By Lemma 2.2, every module in I' is hereditarily preprojective.
Now it follows easily from Lemma 2.1.(3) that a module in I" not lying on any
oriented cycle in I is directing. This shows that (3) holds, and hence establishes
the equivalence of the first three statements.

If (4) holds, then every projective in I' is hereditarily preprojective by
Lemma 2.1.(4). That is, (4) implies (2). Assume now that (5) holds. In parti-
cular, rad® (mod A) vanishes on the projectives in I'. Let X be a module in I,
and let P = eA with e a primitive idempotent be a projective in I'4 but not in
I'. Then Xe = 0 since X is a module over A(I"). Hence Homx (P, X) = 0. This
shows that X is generated by the projectives in I'. Thus (5) implies (4).

Finally assume that (1) holds. Let X be a module in I". By Lemma 2.2, X is
hereditarily preprojective. By Lemma 2.1.(3), rad* (Y, X) = 0 for all modules
Y in I'y. Now if @ is a projective in I"'4 but not in I', then Hom(Q, X) =
rad*(Q, X) = 0. So X is a module over A(I"). Let f : M — N be an irreducible
map in ind A(I") with N in I'. Then f ¢rad®(mod A), and hence M is in I
This proves that (1) implies (5). The proof is completed.

It is now easy to see that Coelho’s result [4, (1.2)] is an immediate con-
sequence of Proposition 1.4, Lemma 2.2 and Theorem 2.3 while the result of
Auslander-Smalg [2, (9.16)] follows from Theorem 2.3.

2.4. LEMMA. A module X in I 5 lies in a finite T-periodic stable component
of I 4 if one of the following holds:

(1) 7™ X 1is hereditarily preprojective for infinitely many n > 0.

(2) 7™ X is hereditarily preinjective for infinitely many n < 0.



Proof. Let X be a module in I'" 4 such that 7" X is hereditarily preprojective
for infinitely many n > 0. In particular, X is left stable and 77X admits a
projective predecessor in I'4 for infinitely many n > 0. Suppose that X does
not lie in any finite 7-periodic stable component. Using first Lemma 1.2.(2) and
then Lemma 1.3, we conclude that there exists some r > 0 such that for all
n > r, 7" X is the end-point of an infinite sectional path, a contradiction. The
proof of the lemma is completed.

If A is of finite representation type, then every module in I" 4 is both hered-
itarily preprojective and hereditarily preinjective; see [2, (6.1)]. Conversely we
have the following result.

2.5. PROPOSITION. (1) There exist at most finitely many 7-orbits of I 4
which contain a hereditarily preprojective or hereditarily preinjective module.

(2) There exist at most finitely many modules in I" 4 which are both heredi-
tarily preprojective and hereditarily preinjective.

Proof. For part (1), it suffices to prove that there exist at most finitely many
T-orbits which contain a hereditarily preprojective module. If this is not true,
then there exists a stable component I" of I" 4 in which infinitely many 7-orbits
contain hereditarily preprojective modules. However, by Konig’s graph lemma,
every module X in I' is the end-point of an infinite path

=X, 2 XX 2 Xg=X

with the X; lying in pairwise different 7-orbits. Hence X is not hereditarily
preprojective, a contradiction.

Suppose now that there exist infinitely many modules in I' 4 which are both
hereditarily preprojective and hereditarily preinjective. It follows from (1) that
there exists a 7-orbit O of I 4 containing infinitely many modules which are both
hereditarily preprojective and hereditarily preinjective. Let Y be a module in
O. Then either 7Y is hereditarily preprojective for infinitely many n > 0 or
T™Y is hereditarily preinjective for infinitely many m < 0. This is contrary to
Lemma 2.4. The proof of the proposition is completed.

3. COMPONENTS WITH “FEW” STABLE MAPS IN TRD-DIRECTION

For modules M, N in mod A, we shall denote by Hom 4 (M, N) the quotient
of Homy4 (M, N) modulo the subgroup of maps factoring through a projective
module. We say that a map f : M — N is projectively stable if it has nonzero
image in Hom (M, N) and that a path X9 — X3 — -+ — X, in ['4 is
projectively stable if there exists an irreducible map f; : X;_1 — X; for each
1 <i < nsuchthat f--- f, is projectively stable. An infinite path is projectively
stable if every finite subpath is so.

3.1. LEMMA. Let M be a module in I' o with infinitely many predecessors.
Then I' 4 has an infinite projectively stable path ending with a predecessor of M.
Proof. By Lemma 2.2, M admits a predecessor X in I"4 which is not prepro-
jective. By [2, (10.2)], there exist infinitely many modules Y in I" 4 such that



Hom 4 (Y, X) # 0. Let f: Y — X be a projectively stable map in rad(Y, X). If
f €rad> (Y, X) then, by using well-known properties of almost split sequences,
we deduce easily that there exists an infinite chain

-—>Xn£>Xn71—>“-—>X1£>X

of irreducible maps through modules in I'4 such that f,--- f1 is projectively
stable for all n > 1. Otherwise, there exists some r > 0 such that f € rad"(Y, X)
but not in rad"*!(Y, X). Then there exists a chain of irreducible maps through
modules in I' 4 from Y to X of length r such that the composite is projectively
stable. This shows that I" 4 contains projectively stable paths ending with X of
arbitrary length. Since I 4 is locally finite, by Konig’s graph lemma, there exists
an infinite projectively stable path ending with X. The proof is completed.

3.2. PROPOSITION. Let I' be a left stable component of I' 4, meeting only
finitely many T-orbits of I' 4. Then there exists a module X in I’ such that
Hom 4 (7" X, X)) is nonzero for infinitely many n > 0.

Proof. We need only to consider the case where I is not 7-periodic. Assume
first that I" contains no oriented cycle. Then I" contains a finite section A, which
we may assume has no projective predecessor in I' 4. Thus the predeccessors of
Ain I' 4 allliein I'. Now every module in A admits infinitely many predecessors
in I'. By Lemma 3.1, I' contains an infinite projectively stable path

o Xy X == X1 - X

with X a predecessor of A in I'. Since A is finite, there exists a sequence
0<npg<m <ng <---<n;<--- such that the X,,, with ¢ > 1 are pairwise
distinct but belong to the same 7-orbit. Hence for each ¢ > 1, X,,, = 7™ X,
with m; a nonzero integer. Since I' is embedded in ZA, we have m; < m;
whenever ¢ < j. Now the proposition holds since Hom 4 (X,,,, Xy, ) # 0 for all
1 > 1. Assume now that I" contains oriented cycles. Let

N, — -+ —> Ny —> 7Ny - -+ > 7N, = 72tN; — -

be an infinite path as stated in Proposition 1.1. Applying some power of 7,
we may assume that for all i > 0 and 1 < j < s, 7'N; is not an immediate
predecessor of a projective in I' 4. Setting 77*N; = N,54; forr > 0and 1 < j <
s, and M,, = 7" N,, for n > 1, one gets an infinite sectional path

= Mogy) = Moy — - = Mgy = Mg — -+ — My — M; = Nj.

Note that for all n > 1 and 1 < i < n, 7°N,, admits exactly two immediate
successors 7' N,,_; and TiNn+1 in I'. Thus for all n > 1, a path in I'" from
M, = "IN, to N; with j > 1 is of length at least n. As a consequence, if
there exists a path in I from M,, to X of length less than n, then X = 7°N;
with 4+ > 0 and j > 1. By our assumption the N; with 1 < j < s, for all
n > 1, there exists no path in I'4 from M, to a projective of length less than
n. We choose an irreducible map f,_1 : M,, — M,_q for each n > 1. Then
In = fa-1--fofr ¢rad™(M,, My); see [8, (13.4)]. If g, factors through a
projective, then there exists a path in I" 4 from M, to a projective of length less
than n, a contradiction. Hence Hom 4 (M,,, M;) # 0 for all n > 1. In particular,



for all r > 1, HOHIA(TT(S—H)Nl,Nl) = Hom 4 (M;s41, M) is nonzero. The proof
is completed.

Kerner proved in [9, (1.1)] that for an indecomposable regular module X
over a wild hereditary algebra H, both Hompy (7" X, X) and Hompg (X, 7 "X)
vanish for sufficiently large n, by using the fact that a regular component is of
shape ZA.. Conversely we have the following result.

3.3. THEOREM. Let I' be a left stable component of I' . Assume that for
every module X in I', Hom 4 (7" X, X) wvanishes for sufficiently large n. Then
I' has a section of type As.

Proof. 1t follows from our assumption and Proposition 3.2 that I' is not 7-
periodic and meets infinitely many 7-orbits of I" 4. Thus I" contains no oriented
cycle by Proposition 1.1, and hence contains an infinite section A with a unique
sink X [7, (3.6)]. Applying some power of 7, we may assume that A admits no
projective predecessor in I' 4. Now A contains an infinite sectional path

-—>Xi—>Xi_1—>'--—>X2—>X1:X.

We fix an integer ¢ > 1. Let m > 0 be such that Hom 4 (7™ X;, X;) = 0.
We choose irreducible maps f; : X; - 177X,_1 and g X1 — 771X, for
each 1 < j < m. Then hy, = fingmfm—1-+- frg1 €rad®(v™X;, X;) since X;
admits no projective predecessor in I' 4. Thus one of the f;,g; with 1 <j <m
is of finite left degree [6, (1.1)]. So the arrow X; — X,_; is of finite global left
degree [7, section 1]. It follows now from [7, (1.3), (1.4)] that A is of the form

XX o X o Xi=X=1e Vo Y
with » > 1. That is, A is of type A. The proof of the theorem is completed.
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