Some Homological Conjectures for Quasi-stratified Algebras

Shiping Liu and Charles Paquette

Introduction

In this paper, we are mainly concerned with the Cartan determinant conjecture and the no loop conjecture. If A is an artin algebra of finite global dimension, the first conjecture claims that the Cartan determinant of A is equal to 1 , while the second one states that every simple A-module admits only the trivial self-extension. Among numerous partial solutions to these conjectures such as those in $[6,14,15,22,24]$, we observe particularly that both of them have been established for standardly stratified algebras; see [4, 21]. This class of algebras serves as a generalization of quasi-hereditary algebras introduced by Cline, Parshall and Scott; see, for example, [8]. The key idea for studying standardly stratified algebras is to relate the homological properties of an algebra A to those of A / I with I an idempotent projective ideal. We shall pursue further in this line by relaxing the condition that I be idempotent. This enables us to generalize many results found in $[4,11,21,24]$. More importantly, it leads us to the introduction of two new classes of algebras, called quasi-stratified and ultimate-hereditary algebras, which include standardly stratified and quasihereditary algebras, respectively. We shall show that the finiteness of the global dimension of a quasi-stratified algebra is equivalent to the Cartan determinant equal to one, as well as to the algebra being ultimate-hereditary. Moreover, in this case, we prove that every simple module admits only the trivial selfextension.

Remarkably, the no loop conjecture has been verified for finite dimensional algebras over a field given by quivers with relations; see [18, 19]. A stronger version, called the strong no loop conjecture, states that every simple module of finite projective dimension over an artin algebra admits only the trivial selfextension. This remains open except for algebras which are monomial [18] or special biserial [20]. We refer to [7, 16] for more special cases. The last result of this paper is to confirm the strong no loop conjecture for algebras which are quasi-stratified on one side, and in particular, for standardly stratified algebras.

1. Projective ideals and Quasi-Stratifications

Throughout this paper, A stands for an artin algebra. The radical and the global dimension of A will be written as $\operatorname{rad} A$ and $\operatorname{gdim}(A)$, respectively. The
category of finitely generated right A-modules and that of finitely generated left A-modules will be denoted by mod- A and A-mod, respectively. Moreover, D stands for the usual duality between these categories.

Let I be an ideal (that is, a two-sided ideal) of A. We say that I is right (respectively, left) projective if the right A-module I_{A} (respectively, the left A module ${ }_{A} I$) is projective. For brevity, we say that I is projective if it is either right or left projective. Furthermore, let t be the smallest positive integer such that $I^{t}=I^{t+1}$. Then I^{t} is the maximal idempotent ideal of A contained in I. We shall call t and I^{t} the idempotency and the idempotent part of I, respectively. In this case, it is well known that I^{t} is generated by an idempotent; see, for example, $[11$, Statement 6]. The main objective of this section is to relate the homological properties of A to those of A / I with I being projective. Let us start with an easy observation.
1.1. Lemma. Let I be an ideal of A with idempotent part J. If I is right projective, then J is an idempotent right projective ideal of A, while I / J is a nilpotent right projective ideal of A / J.

Proof. Assume that I_{A} is projective of idempotency t. Then $J=I^{t}$ is projective as a right A-module. Since $I J=I^{t+1}=I^{t}=J, I / J=I / I J$ is projective as a right A / J-module. This completes the proof of the lemma.

For a module M in mod- A, we write $\operatorname{pdim}_{A}(M)$ for the projective dimension of M over A. The following result is essential for our investigation.
1.2. Lemma. Let I be a right projective ideal of A of idempotency t. For every module M in $\bmod -A / I$, we have
(1) $\operatorname{pdim}_{A}(M) \leq \operatorname{pdim}_{A / I}(M)+1$, and
(2) $\operatorname{pdim}_{A / I}(M) \leq \operatorname{pdim}_{A}(M)+2(t-1)$.

Proof. The statement (1) is well-known; see, for example, [11, Statement 1]. In order to prove (2), write $B=A / I$ and let M be a module in mod- B. Clearly, we need only to consider the case where $\operatorname{pdim}_{A}(M)=r<\infty$. If $r=0$, then M is a projective A-module annihilated by I. Hence $M=M / M I$ is projective over B. This proves (2) for $r=0$. If $r=1$, then mod- A has a short exact sequence

with j an inclusion map between projective modules. Since $M I=0$, we get $P I \subseteq Q$, and hence a chain

$$
P I^{t+1} \subseteq Q I^{t} \subseteq P I^{t} \subseteq Q I^{t-1} \subseteq P I^{t-1} \subseteq \cdots \subseteq Q I \subseteq P I \subseteq Q \subseteq P
$$

of submodules of P. This gives rise to an exact sequence
$(*) P I^{t} / Q I^{t} \rightarrow Q I^{t-1} / Q I^{t} \rightarrow P I^{t-1} / P I^{t} \rightarrow \cdots \rightarrow Q / Q I \rightarrow P / P I \rightarrow M \rightarrow 0$
in mod- B. Since I_{A} is a projective A-module, so are the $P I^{i}$ and the $Q I^{i}$. As a consequence, the $P I^{i} / P I^{i+1}$ and the $Q I^{i} / Q I^{i+1}$ are projective modules in mod- B. Moreover, $P I^{t} / Q I^{t}=0$ since $P I^{t}=P I^{t+1} \subseteq Q I^{t} \subseteq P I^{t}$. Thus (*) is a projective resolution of M over B. In particular, $\operatorname{pdim}_{B}(M) \leq 2(t-1)+1$. This proves that (2) holds for $r=1$. Assume now that $\operatorname{pdim}_{A}(M)=r>1$ and that (2) holds for modules N in $\bmod -B$ with $\operatorname{pdim}_{A}(N) \leq r-1$. Consider a short exact sequence

$$
0 \longrightarrow \Omega \xrightarrow{j} P \xrightarrow{\varepsilon} M \longrightarrow 0
$$

in mod- A with P projective and j an inclusion map. Then $\operatorname{pdim}_{A}(\Omega)=r-1$, and there exists a short exact sequence

$$
0 \longrightarrow \Omega / P I \longrightarrow P / P I \longrightarrow M \longrightarrow 0
$$

in mod- B with $P / P I$ projective. In particular, $\operatorname{pdim}_{B}(M) \leq \operatorname{pdim}_{B}(\Omega / P I)+1$. Now the projectivity of $P I$ implies that $\operatorname{pdim}_{A}(\Omega / P I) \leq \operatorname{pdim}_{A}(\Omega)=r-1$. By the induction hypothesis, $\operatorname{pdim}_{B}(\Omega / P I) \leq r-1+2(t-1)$. Therefore,
$\operatorname{pdim}_{B}(M) \leq \operatorname{pdim}_{B}(\Omega / P I)+1 \leq r-1+2(t-1)+1=\operatorname{pdim}_{A}(M)+2(t-1)$.
This completes the proof of the lemma.
For convenience, we define $\operatorname{gdim}(0)=-1$. The following result generalizes Statement 4 in [11].
1.3. Proposition. Let I be a projective ideal of A of idempotency t, and let e be an idempotent which generates the idempotent part of I. Then
(1) $\operatorname{gdim}(A / I) \leq \operatorname{gdim}(A)+2(t-1)$.
(2) $\operatorname{gdim}(e A e) \leq \operatorname{gdim}(A) \leq \operatorname{gdim}(e A e)+\operatorname{gdim}(A / I)+2$.

Proof. Assume that I is right projective. The statement (1) follows immediately from Lemma $1.2(2)$. We shall now prove the first inequality in (2). For this purpose, we may assume that $e \neq 0$. By Lemma 1.1, $A e A_{A}$ is projective, and consequently, $A e A_{A}$ lies in $\operatorname{add}(e A)$, the full subcategory of $\bmod -A$ generated by the direct sums of the direct summands of $e A$. Thus $\operatorname{Hom}_{A}(e A, A e A)$ is a projective right module over $\operatorname{End}_{A}(e A)$; see, for example [2, (II.2.1)], that is, $A e$ is projective in mod- $e A e$. It then follows easily that $P e$ is projective in $\bmod -e A e$ whenever P is a projective module in $\bmod -A$. Let S be a simple right A-module such that $S e \neq 0$. If

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow S \rightarrow 0
$$

is a finite projective resolution of S over A, then

$$
0 \rightarrow P_{n} e \rightarrow P_{n-1} e \rightarrow \cdots \rightarrow P_{1} e \rightarrow P_{0} e \rightarrow S e \rightarrow 0
$$

is a finite projective resolution of $S e$ over $e A e$. Thus $\operatorname{gdim}(e A e) \leq \operatorname{gdim}(A)$.

In order to show the second inequality in (2), we need only to consider the case where $\operatorname{gdim}(e A e)=r<\infty$ and $\operatorname{gdim}(A / I)=s<\infty$. We begin with the following claim: if N is in $\bmod -A$ such that $N I^{m}=0$ for some $m>0$, then $\operatorname{pdim}_{A}(N) \leq s+1$. Indeed, if $m=1$, then N is a module over A / I. Hence by Lemma $1.2(1), \operatorname{pdim}_{A}(N) \leq \operatorname{pdim}_{A / I}(N)+1 \leq s+1$. In particular, $\operatorname{pdim}_{A}(M / M I) \leq s+1$ for all $M \in \bmod -A$. Suppose now that $m>1$. Since $(N I) I^{m-1}=0$, by the induction hypothesis, $\operatorname{pdim}_{A}(N I) \leq s+1$. This gives rise to $\operatorname{pdim}_{A}(N) \leq \max \left\{\operatorname{pdim}_{A}(N I), \operatorname{pdim}_{A}(N / N I)\right\} \leq s+1$. Our claim is proved.

If $e=0$, then $I^{t}=0$ and $\operatorname{gdim}(e A e)=-1$. It then follows from our claim that $\operatorname{gdim}(A) \leq \operatorname{gdim}(A / I)+1=\operatorname{gdim}(e A e)+\operatorname{gdim}(A / I)+2$. Assume now that $e \neq 0$. Let M be a module in $\bmod -A$, and let Ω_{r} be the r-th syzygy of M. Then $\bmod -A$ admits an exact sequence

$$
0 \rightarrow \Omega_{r} \rightarrow Q_{r-1} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow M \rightarrow 0
$$

with the Q_{i} projective, which induces an exact sequence

$$
0 \rightarrow \Omega_{r} e \rightarrow Q_{r-1} e \rightarrow \cdots \rightarrow Q_{1} e \rightarrow Q_{0} e \rightarrow M e \rightarrow 0
$$

in mod-eAe with the $Q_{i} e$ projective. Since $\operatorname{pdim}_{e A e}(M e) \leq r$, we see that $\Omega_{r} e$ is $e A e$-projective. Consider now a short exact sequence

$$
0 \longrightarrow L \xrightarrow{j} P \xrightarrow{\varepsilon} \Omega_{r} e A \longrightarrow 0
$$

in mod- A with j an inclusion and ε a projective cover of $\Omega_{r} e A$. It induces a short exact sequence

$$
0 \longrightarrow L e \longrightarrow P e \xrightarrow{\bar{\varepsilon}} \Omega_{r} e \longrightarrow 0
$$

in mod- $e A e$ with $P e$ projective. Noting that P lies in $\operatorname{add}(e A)$, we see that $(\operatorname{rad} P) e$ is contained in the radical of the $e A e$-module $P e$. Thus $\bar{\varepsilon}$ is a projective cover of $\Omega_{r} e$ in mod- $e A e$. Now the projectivity of $\Omega_{r} e$ implies that $L e=0$, that is, $L I^{t}=0$. It follows from the above claim that $\operatorname{pdim}_{A}(L) \leq s+1$, and hence $\operatorname{pdim}_{A}\left(\Omega_{r} e A\right) \leq s+2$. For the same reason, we have $\operatorname{pdim}_{A}\left(\Omega_{r} / \Omega_{r} e A\right) \leq s+1$. Therefore, $\operatorname{pdim}_{A}\left(\Omega_{r}\right) \leq \max \left\{\operatorname{pdim}_{A}\left(\Omega_{r} e A\right), \operatorname{pdim}_{A}\left(\Omega_{r} / \Omega_{r} e A\right)\right\} \leq s+2$. This gives rise to $\operatorname{pdim}_{A}(M) \leq r+\operatorname{pdim}_{A}\left(\Omega_{r}\right) \leq r+s+2$. The proof of the proposition is completed.

As an immediate consequence, we have the following interesting result.
1.4. Corollary. Let I be a projective ideal of A, and let e be an idempotent which generates the idempotent part of I. Then A is of finite global dimension if and only if $e A e$ and A / I are of finite global dimension.

Before proceeding further, we need some terminology on idempotents. Let e be an idempotent of A. We say that e is simple if e is primitive such that
$e \operatorname{rad} A e=0$, or equivalently, $e A e$ is a simple artin algebra. For convenience, we say that e is pseudo-primitive if e is zero or primitive, and pseudo-simple if e is zero or simple.
1.5. Definition. (1) An ideal of A is called right (respectively, left) quasistratifying if it is right (respectively, left) projective and its idempotent part is generated by a pseudo-primitive idempotent.
(2) A right (respectively, left) quasi-stratifying ideal of A is called right (respectively, left) quasi-heredity if its idempotent part is generated by a pseudosimple idempotent.

If I is a right quasi-stratifying ideal of A and e is a pseudo-primitive idempotent which generates the idempotent part of I, then it is easy to see that I is right quasi-heredity if and only if $e \operatorname{rad} A e=0$. For brevity, we say that an ideal of A is quasi-stratifying (respectively, quasi-heredity) if it is right or left quasi-stratifying (respectively, right or left quasi-heredity).

Recall that A is right standardly stratified (respectively, quasi-hereditary) if A admits a chain of ideals

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{n-1} \subset I_{n}=A
$$

such that I_{i+1} / I_{i} is a right projective ideal of A / I_{i} generated by a primitive (respectively, simple) idempotent, for all $0 \leq i<n$; see [10] for more equivalent conditions. Note that a right standardly stratified algebra is called a $Q H-1$ algebra in [21].
1.6. Definition. We call A quasi-stratified if A admits a chain of ideals

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

such that I_{i+1} / I_{i} is a quasi-stratifying ideal of A / I_{i}, for all $0 \leq i<r$. Such a chain is called a quasi-stratification.

Note that the notion of a quasi-stratified algebra is left-right symmetric. Moreover, standardly stratified algebras are clearly quasi-stratified.
1.7. Example. Let A be the algebra over a field given by the quiver

with relations $\sigma^{2}=\sigma \beta=\beta \gamma=\gamma \delta=\varepsilon \alpha=\varepsilon \sigma=\varepsilon \beta=\delta \alpha-\delta \sigma \alpha=0$.

It is easy to see that A is neither right nor left standardly stratified. However, one can verify that the chain
$0 \subset<\varepsilon>\subset<\varepsilon, \alpha>\subset<\varepsilon, \alpha, \delta>_{A} \subset<\varepsilon, \alpha, \delta, e_{2}>\subset<\varepsilon, \alpha, \delta, e_{2}, e_{3}>\subset A$
is quasi-stratification of A, where the projectivity for the first non-zero ideal is on the left, while that for other ideals is on the right. Thus A is quasi-stratified.
1.8. Definition. We call A ultimate-hereditary if A admits a chain of ideals

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

such that I_{i+1} / I_{i} is a quasi-heredity ideal of A / I_{i}, for all $0 \leq i<r$. Such a chain is called quasi-heredity.

It is clear that a quasi-hereditary algebra is ultimate-hereditary. Moreover, if I is a quasi-heredity ideal of A such that A / I is ultimate-hereditary, then A is ultimate-hereditary.

The Cartant determinant conjecture has been verified by Wilson for positively gradable algebras; see [22]. The referee has drawn our attention to the existence of a quasi-hereditary algebra which is not positively gradable. Based on this example, we shall construct an ultimate-hereditary algebra which is neither positively gradable nor quasi-hereditary.
1.9. Example. Let k be a field, and consider the k-algebra

$$
C=k<X, Y>/<X^{3}, X Y, Y X^{2}, X^{2}-Y^{3}, Y X-Y^{3}>.
$$

Setting

$$
M_{C}=C \oplus C / \operatorname{rad}(C) \oplus C / \operatorname{rad}^{2}(C) \oplus C / \operatorname{rad}^{3}(C)
$$

one gets a quasi-hereditary algebra $B=\operatorname{End}_{C}(M)$, which is not positively gradable; see [3]. Since B is elementary, we may assume that $B=k Q_{B} / I_{B}$ with $\left(Q_{B}, I_{B}\right)$ a bound quiver. Let a, b, c, d be the vertices of Q_{B} which correspond to the summands

$$
C, C / \mathrm{rad}(C), C / \mathrm{rad}^{2}(C), C / \mathrm{rad}^{3}(C)
$$

of M respectively. Note that b is neither a sink nor a source of Q_{B}. Moreover, among the canonical primitive idempotents of B, the one associated to b is the only simple idempotent. We now construct a new quiver Q from Q_{B} by adding a new vertex x and two new arrows $\alpha: b \rightarrow x$ and $\beta: x \rightarrow b$. Choose an arrow γ of Q_{B} which ends at b. We claim that $A=k Q / I$ with $I=<I_{B}, \alpha \beta, \gamma \alpha>$ is an ultimate-hereditary algebra which is neither positively gradable nor quasihereditary. Indeed, denote by $e_{a}, e_{b}, e_{c}, e_{d}, e_{x}$ the primitive idempotent of A associated to a, b, c, d, x, respectively. Since $\alpha \beta \in I$, we have $B \cong e A e$ with $e=e_{a}+e_{b}+e_{c}+e_{d}$. If A admits a positive grading $A=\oplus_{i \geq 0} A_{i}$, then
$e A e=\oplus_{i \geq 0} e A_{i} e$ with $\operatorname{rad}(e A e)=e \operatorname{rad}(A) e=\oplus_{i \geq 1} e A_{i} e$ is a positive grading of $e A e$, which is contrary to the non-gradablity of B. Moreover, e_{b} is the only simple idempotent in $\left\{e_{a}, e_{b}, e_{c}, e_{d}, e_{x}\right\}$. In particular, $A e_{b} A e_{x}=A \bar{\alpha}$, where $\bar{\alpha}=\alpha+I$. Since $\gamma \alpha \in I$, the left A-module $A \bar{\alpha}$ is not projective. Thus $A e_{b} A$ is not heredity. This shows that A is not quasi-hereditary. Finally, since $\alpha \beta \in I$, we have $A \bar{\beta} A=\bar{\beta} A$. Since there exists no relation on Q starting with β, we have $\bar{\beta} A_{A} \cong A_{A}$. Thus $A \bar{\beta} A$ is right projective, and hence right quasi-heredity in A. Further, it is clear that $<\bar{\beta}, e_{x}>/<\bar{\beta}>$ is left projective, and hence left quasi-stratifying in $A /<\bar{\beta}>$. Since $A /<\bar{\beta}, e_{x}>\cong B$, we conclude that A is ultimate-hereditary.

For a module M in $\bmod -A, \ell \ell\left(M_{A}\right)$ denotes the Loewy length of M over A.
1.10. Lemma. If A admits a quasi-stratification of length one, then A is Morita equivalent to eAe for every primitive idempotent e of A. Moreover, in this case, A is ultimate-hereditary if and only if A is hereditary.

Proof. Assume that A is a quasi-stratifying ideal of itself. Being idempotent, $A=A e_{0} A$ with e_{0} a primitive idempotent. If e is an arbitrary primitive idempotent of A, it is easy to see that $e A \cong e_{0} A$ and $A=A e A$. This shows the first part of the lemma.

For the second part of the lemma. it suffices to show the necessity. For doing so, suppose that $A=A e_{0} A$ with e_{0} a primitive idempotent and A is ultimatehereditary. Let I be a non-zero quasi-heredity ideal of A, and let e_{1} be a pseudosimple idempotent which generates the idempotent part of I. We consider only the case where I_{A} is projective. Then $I_{A} \cong\left(e_{0} A\right)^{s}$ for some $s>0$, and hence $\ell \ell\left(I_{A}\right)=\ell \ell_{A}\left(e_{0} A_{A}\right)=\ell \ell\left(A_{A}\right)$. In particular, I is not nilpotent. Hence $e_{1} \neq 0$, that is, e_{1} is simple. Since A is Morita equivalent to $e_{1} A e_{1}$, which is a simple algebra, A is hereditary. This completes the proof of the lemma.

We now give a bound on the global dimension of an ultimate-hereditary algebra in terms of the number of the non-isomorphic simple modules and the length of a quasi-heredity chain.
1.11. Proposition. Let A be an ultimate-hereditary algebra with n nonisomorphic simple modules and a quasi-heredity chain of length r. Then

$$
\operatorname{gdim}(A) \leq \min \{2(r-1), n+r-2\}
$$

Proof. Let $0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A$ be a quasi-heredity chain of A, and let e be a pseudo-simple idempotent which generates the idempotent part of I_{1}. We shall proceed by induction on r. If $r=1$ then, by Lemma $1.10, n=1$ and $\operatorname{gdim}(A)=0$. Assume now that $r>1$. Then A / I_{1} is ultimate-hereditary with a quasi-heredity chain

$$
0=I_{1} / I_{1} \subset \cdots \subset I_{r-1} / I_{1} \subset I_{r} / I_{1}=A / I_{1}
$$

If $e=0$, then A / I_{1} has n non-isomorphic simple modules. By the induction hypothesis, $\operatorname{gdim}\left(A / I_{1}\right) \leq \min \{2(r-2), n+r-3\}$. In view of Proposition 1.3(2), we see that $\operatorname{gdim}(A) \leq \operatorname{gdim}\left(A / I_{1}\right)+1 \leq \min \{2(r-1), n+r-2\}$. Suppose now that $e \neq 0$. Then e is primitive such that $\operatorname{gdim}(e A e)=0$. Note that the number of non-isomorphic simple A / I_{1}-modules is $n-1$. By the induction hypothesis, $\operatorname{gdim}\left(A / I_{1}\right) \leq \min \{2(r-2),(n-1)+(r-1)-2\}$. Applying Proposition 1.3(2), we get $\operatorname{gdim}(A) \leq \operatorname{gdim}\left(A / I_{1}\right)+2 \leq \min \{2(r-1), n+r-2\}$. The proof of the proposition is completed.

Note that the length of a heredity chain of an artin algebra is bound by the number of the non-isomorphic simple modules. In this way, we recover a result of Dlab and Ringel saying that the global dimension of a quasi-hereditary algebra of n non-isomorphic simple modules is at most $2(n-1)$; see [11].

2. The Cartan determinant

The objective of this section is to study the Cartan determinant of a quasistratified algebra. We begin with a brief recall. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basic set of primitive idempotents of A, that is, $e_{1} A, \ldots, e_{n} A$ are the non-isomorphic indecomposable projective modules in $\bmod -A$. For $1 \leq i, j \leq n$, let $c_{i j}$ be the multiplicity of the simple module $e_{i} A / e_{i} \operatorname{rad} A$ as a composition factor of $e_{j} A$. Then $\left(c_{i j}\right)_{n \times n}$ is called a right Cartan matrix of A. Similarly, $\left\{e_{1}, \ldots, e_{n}\right\}$ determines a left Cartan matrix of A. Since A is an artin algebra, the right Cartan matrices and the left Cartan matrices of A all have the same determinant; see, for example, $[13,(1.2)]$, which is called the Cartan determinant of A and denoted by $\operatorname{cd}(A)$. A well-known result of Eilenberg's, which is the origin of the Cartan determinant conjecture, says that $\operatorname{cd}(A)= \pm 1$ if A is of finite global dimension; see [12].

We first relate $\operatorname{cd}(A)$ and $\operatorname{cd}(A / I)$ with I a projective ideal. The following proposition generalizes the results stated in $[21,(1.4)]$ and $[4,(1.3)]$. We refer to [5, 17, 23] for more similar matrix reductions. For convenience, we define $\operatorname{cd}(0)=1$.
2.1. Proposition. Let I be a projective ideal of A, and let e be an idempotent which generates the idempotent part of I. Then

$$
\operatorname{cd}(A)=\operatorname{cd}(e A e) \operatorname{cd}(A / I)
$$

Proof. Since the right Cartan matrices and the left Cartan matrices of A have the same determinant, we need only to consider the case where I is right projective such that $B=A / I$ is nonzero. For $x \in A$, we write $\bar{x}=x+I \in B$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basic set of primitive idempotents of A. For a module M in mod- A, we denote by $c_{i}(M)$ the multiplicity of $e_{i} A / e_{i} \operatorname{rad} A$ as a composition
factor of M. Then $C(A)=\left(c_{i}\left(e_{j} A\right)\right)_{n \times n}$ is a right Cartan matrix of A. For every $e_{i} \notin I$, we have $e_{i} A / e_{i} \operatorname{rad} A \cong \bar{e}_{i} B / \bar{e}_{i} \operatorname{rad} B$ as A-modules. As a consequence, for every B-module N, the multiplicity $d_{i}(N)$ of $\bar{e}_{i} B / \bar{e}_{i} \operatorname{rad} B$ as a composition factor of N coincides with $c_{i}(N)$. Moreover, the nonzero classes of $\bar{e}_{1}, \ldots, \bar{e}_{n}$ form a basic set of primitive idempotents of B.
(1) Suppose first that $e=0$, that is, $I \subseteq \operatorname{rad} A$. Then $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ is a basic set of primitive idempotents of B and $C(B)=\left(d_{i}\left(\bar{e}_{j} B\right)\right)_{n \times n}$ is a right Cartan matrix of B. We may assume, without loss of generality, that

$$
\ell \ell\left(e_{1} A_{A}\right) \leq \ell \ell\left(e_{2} A_{A}\right) \leq \cdots \leq \ell \ell\left(e_{n} A_{A}\right)
$$

Since $e_{j} I$ is projective with $\ell \ell\left(e_{j} I_{A}\right)<\ell \ell\left(e_{j} A_{A}\right)$, we have $e_{1} I=0$ and

$$
e_{j} I \cong\left(e_{1} A\right)^{r_{j 1}} \oplus \cdots \oplus\left(e_{j-1} A\right)^{r_{j, j-1}}, r_{j i} \geq 0, j=2, \ldots, n
$$

Since $\bar{e}_{j} B \cong e_{j} A / e_{j} I$ as right A-modules, we deduce that $d_{i}\left(\bar{e}_{1} B\right)=c_{i}\left(e_{1} A\right)$ for $i=1, \ldots, n$, and

$$
d_{i}\left(\bar{e}_{j} B\right)=c_{i}\left(e_{j} A\right)-\sum_{s=1}^{j-1} r_{j s} c_{i}\left(e_{s} A\right), \quad i=1, \ldots, n ; j=2, \ldots, n .
$$

This shows that the first column of $C(B)$ coincides with that of $C(A)$. More importantly, $C(B)$ can be obtained from $C(A)$ by some elementary column operations. As a consequence, $\operatorname{det} C(A)=\operatorname{det} C(B)$, that is, $\operatorname{cd}(A)=\operatorname{cd}(e A e) \operatorname{cd}(B)$ since $\operatorname{cd}(e A e)=1$ in this case.
(2) Suppose now that $I=A e A$ is nonzero. We may assume, without loss of generality, that $\left\{e_{1}, \ldots, e_{m}\right\}$ with $1 \leq m<n$ is a basic set of primitive idempotents of $e A e$. It is easy to see that $I=A\left(e_{1}+\cdots+e_{m}\right) A$ and that $C(e A e)=\left(c_{i}\left(e_{j} A\right)\right)_{m \times m}$ is a right Cartan matrix of $e A e$. Now $\left\{\bar{e}_{m+1}, \ldots, \bar{e}_{n}\right\}$ is a basic set of primitive idempotents of B, and $C(B)=\left(d_{i}\left(\bar{e}_{j} B\right)\right)_{m<i, j \leq n}$ is a right Cartan matrix of B. Fix an integer j with $m<j \leq n$. Since $e_{j} I=e_{j} A\left(e_{1}+\cdots+e_{m}\right) A$, we have $e_{j} I \cong\left(e_{1} A\right)^{t_{j 1}} \oplus \cdots \oplus\left(e_{m} A\right)^{t_{j m}}, \quad t_{j i} \geq 0$. Therefore,

$$
c_{i}\left(e_{j} A / e_{j} I\right)=c_{i}\left(e_{j} A\right)-\sum_{s=1}^{m} t_{j s} c_{i}\left(e_{s} A\right), i=1, \ldots, n .
$$

Since $c_{i}\left(e_{j} A / e_{j} I\right)=0$ for $1 \leq i \leq m$, we get

$$
c_{i}\left(e_{j} A\right)-\sum_{s=1}^{m} t_{j s} c_{i}\left(e_{s} A\right)=0, \quad i=1, \ldots, m
$$

and

$$
c_{i}\left(e_{j} A\right)-\sum_{s=1}^{m} t_{j s} c_{i}\left(e_{s} A\right)=d_{i}\left(\bar{e}_{j} B\right), \quad i=m+1, \ldots, n .
$$

This shows that $C(A)$ can be reduced by some elementary column operations to a matrix of the form

$$
\left(\begin{array}{cc}
C(e A e) & 0 \\
* & C(B)
\end{array}\right)
$$

As a consequence, $\operatorname{det} C(A)=\operatorname{det} C(e A e) \operatorname{det} C(B)$.
(3) In general, by Lemma 1.1, $A e A$ is a right projective ideal of A and $I / A e A$ is a nilpotent right projective ideal of $A / A e A$ such that $(A / A e A) /(I / A e A) \cong B$. Thus $\operatorname{cd}(A / A e A)=\operatorname{cd}(B)$ as shown in (1), and $\operatorname{cd}(A)=\operatorname{cd}(e A e) \operatorname{cd}(A / A e A)$ as seen in (2). This completes the proof of the proposition.

We shall now give two consequences of the above result. The first one generalizes some key results stated in [24].
2.2. Corollary. Let e be an idempotent of A. If $e \operatorname{rad} A$ or $\operatorname{rad} A e$ is projective, then
(1) $\operatorname{cd}(A)=\operatorname{cd}((1-e) A(1-e))$, and
(2) $\operatorname{gdim}((1-e) A(1-e)) \leq \operatorname{gdim}(A) \leq \operatorname{gdim}((1-e) A(1-e))+3$.

Proof. We need only to consider the case where e and $1-e$ are nonzero such that $e \operatorname{rad} A$ is projective. Write $e=e_{1}+\cdots+e_{r}, 1-e=e_{r+1}+\cdots+e_{n}$, where e_{1}, \ldots, e_{n} are pairwise orthogonal primitive idempotents. If $e_{r} A$ is isomorphic to a direct summand of $(1-e) A$, then $f=e_{1}+\cdots+e_{r-1}$ is such that $f \operatorname{rad} A$ is projective and $(1-e) A(1-e)$ is Morita equivalent to $(1-f) A(1-f)$. Thus we may assume that none of the $e_{i} A$ with $1 \leq i \leq r$ is isomorphic to a direct summand of $(1-e) A$. Then $e A(1-e) A=e(\operatorname{rad} A)(1-e) A$. We first claim that the ideal $A(1-e) A$ is right projective. That is, $e_{i} A(1-e) A$ is projective for all $1 \leq i \leq n$. This is evident for $r<i \leq n$. It remains to show, for $1 \leq i \leq r$, that $e_{i} A(1-e) A$, or equivalently, $e_{i}(\operatorname{rad} A)(1-e) A$ is projective. For doing so, assume that

$$
\ell \ell\left(e_{1} A_{A}\right) \geq \cdots \geq \ell \ell\left(e_{r-1} A_{A}\right) \geq \ell \ell\left(e_{r} A_{A}\right)
$$

Since $e_{r} \operatorname{rad} A$ is projective with $\ell \ell\left(e_{r} \operatorname{rad} A_{A}\right)<\ell \ell\left(e_{r} A_{A}\right)$, it follows from the above inequalities that none of the $e_{i} A$ with $1 \leq i \leq r$ is isomorphic to a direct summand of $e_{r} \operatorname{rad} A$. Thus $e_{r} \operatorname{rad} A \cong \bigoplus_{i=r+1}^{n}\left(e_{i} A\right)^{n_{r i}}$ with $n_{r i} \geq 0$. This gives rise to $e_{r}(\operatorname{rad} A)(1-e) A=e_{r} \operatorname{rad} A$, which is a projective module. Let s be an integer with $1 \leq s<r$ such that the $e_{i}(\operatorname{rad} A)(1-e) A$ is projective for all $s<i \leq r$. As we argued above, $e_{s} \operatorname{rad} A \cong \bigoplus_{i=s+1}^{n}\left(e_{i} A\right)^{n_{s i}}$ with $n_{s i} \geq 0$. Therefore,

$$
e_{s}(\operatorname{rad} A)(1-e) A \cong \bigoplus_{i=s+1}^{n}\left(e_{i} A(1-e) A\right)^{n_{s i}}
$$

which is projective by the induction hypothesis. This proves our claim. Furthermore, we have $e \operatorname{rad} A \cap A(1-e) A \subseteq e A(1-e) A \subseteq e(\operatorname{rad} A)(1-e) A$, and hence $e \operatorname{rad} A \cap A(1-e) A=e \operatorname{rad} A \cdot A(1-e) A$. Therefore,

$$
\begin{aligned}
\operatorname{rad}(A / A(1-e) A) & =(e \operatorname{rad} A+A(1-e) A) / A(1-e) A \\
& \cong e \operatorname{rad} A /(e \operatorname{rad} A \cap A(1-e) A) \\
& \cong e \operatorname{rad} A /(e \operatorname{rad} A \cdot A(1-e) A)
\end{aligned}
$$

where the last module is projective over $A / A(1-e) A$, since $e \operatorname{rad} A$ is projective over A. This implies that $A / A(1-e) A$ is hereditary, and consequently, $\operatorname{gdim}(A / A(1-e) A) \leq 1$ and $\operatorname{cd}(A / A(1-e) A)=1$. Now the result follows immediately from Propositions $1.3(2)$ and 2.1. The proof of the corollary is completed.

We observe that the second inequality in Corollary 2.2(2) appears already in [6, Lemma 4] with the hypothesis that A be left serial and e be primitive. As another consequence of Proposition 2.1, the following result establishes immediately the Cartan determinant conjecture for quasi-stratified algebras.

2.3. Corollary. If A is quasi-stratified, then $\operatorname{cd}(A)$ is positive.

Proof. Assume that

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

is a quasi-stratification of A. Let e be a pseudo-primitive idempotent which generates the idempotent part of I_{1}. Note that $\operatorname{cd}(e A e)>0$. If $r=1$ then, by Lemma $1.10, e$ is primitive such that A is Morita equivalent to $e A e$. Thus $\operatorname{cd}(A)=\operatorname{cd}(e A e)>0$. Assume now that $r>1$. Then A / I_{1} admits a quasistratification of length $r-1$, and by the induction hypothesis, $\operatorname{cd}\left(A / I_{1}\right)>0$. By Proposition 2.1, we have $\operatorname{cd}(A)=\operatorname{cd}(e A e) \operatorname{cd}\left(A / I_{1}\right)>0$. This completes the proof of the corollary.
2.4. Lemma. Let I be a quasi-stratifying ideal of A. Then A is of finite global dimension if and only if I is quasi-heredity and A / I is of finite global dimension.

Proof. We may assume that I_{A} is projective. Let e be a pseudo-primitive idempotent which generates the idempotent part of I. By Corollary 1.4, A is of finite global dimension if and only if $e A e$ and A / I are of finite global dimension. Being null or local, $e A e$ is of finite global dimension if and only if $e \operatorname{rad} A e=0$, that is, I is quasi-heredity. This completes the proof of the lemma.

We are now ready to get the main result of this section, which includes Wick's result on standardly stratified algebras; see [21, (1.7)].
2.5. Theorem. Let A be a quasi-stratified artin algebra. The following conditions are equivalent:
(1) $\operatorname{cd}(A)=1$.
(2) A is of finite global dimension.
(3) A is ultimate-hereditary.

Proof. Let

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

be a quasi-stratification of length r. We shall proceed by induction on r. Let e be a pseudo-primitive idempotent which generates the idempotent part of
I_{1}. If $r=1$, then e is primitive. By Lemma $1.10, A$ is Morita equivalent to $e A e$ and each of the three conditions stated in the theorem is equivalent to A being hereditary. Assume now that $r>1$. Then A / I_{1} admits a quasistratification of length $r-1$. Moreover, it follows from Proposition 2.1 that $\operatorname{cd}(A)=\operatorname{cd}(e A e) \operatorname{cd}\left(A / I_{1}\right)$. Note that $\operatorname{cd}(e A e)=1+c$, where c is the composition length of $e \operatorname{rad} A e$ as a right module over $e A e$.

Now $\operatorname{cd}(A)=1$ if and only if $e \operatorname{rad} A e=0$ and $\operatorname{cd}\left(A / I_{1}\right)=1$. Since e is pseudo-primitive, $e \operatorname{rad} A e=0$ if and only if $\operatorname{gdim}(e A e)<\infty$. Moreover, by the induction hypothesis, $\operatorname{cd}\left(A / I_{1}\right)=1$ if and only if $\operatorname{gdim}\left(A / I_{1}\right)<\infty$. According to Corollary 1.4, we have the equivalence of (1) and (2).

If $\operatorname{gdim}(A)<\infty$, then by Lemma 2.4, I_{1} is quasi-heredity and A / I_{1} is finite global dimension. Applying the induction hypothesis, we infer that A / I_{1} is ultimate-hereditary. Hence A is ultimate-hereditary by definition. This shows that (2) implies (3). Moreover, it follows from Proposition 1.11 that (3) implies (2). The proof of the theorem is now completed.

3. Self-extensions of simple modules

The objective of this section is to establish the no loop conjecture for quasistratified algebras, and the strong no loop conjecture for algebras which are quasi-stratified on one side. It is well known that if I is an idempotent projective ideal, then the extension groups of modules annihilated by I are preserved when one passes from A to A / I; see, for example, [11, Statement 4]. Unfortunately, this is no longer the case if I is not idempotent. Nevertheless, we have the following result.
3.1. Lemma. Let I be a right projective ideal of A. If S is a simple right A/I-module, then

$$
\operatorname{Ext}_{A}^{1}(S, S) \cong \operatorname{Ext}_{A / I}^{1}(S, S)
$$

Proof. Let S be a simple right A-module with $S I=0$. First, we consider the case where I is nilpotent. Let

be in $\operatorname{Ext}_{A}^{1}(S, S)$. We shall show that $E I=0$. Indeed, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a complete set of pairwise orthogonal primitive idempotents of A. We may assume that there exists some $1 \leq r \leq n$ such that $S e_{i}=S$ if and only if $1 \leq i \leq r$. Then $e_{i} A \cong e_{1} A$ if and only if $1 \leq i \leq r$. In particular, $E e_{j}=0$ for all $r<j \leq n$. Let s be an integer with $1 \leq s \leq r$. Note that $e_{s} I$ is a projective right A-module since I_{A} is projective. Moreover, $\ell \ell\left(e_{s} I_{A}\right)<\ell \ell\left(e_{s} A_{A}\right)$ since $I \subseteq \operatorname{rad} A$. Thus $e_{i} A$ is not isomorphic to a direct summand of $e_{s} I$, for all $1 \leq i \leq r$. As a consequence, $e_{s} I \subseteq \sum_{r<j \leq n} A e_{j} A$, and hence $E e_{s} I=0$. This
shows that $E I=0$, that is, $\eta \in \operatorname{Ext}_{A / I}^{1}(S, S)$. Hence the result is established in case I is nilpotent.

In general, let t be the idempotency of I. By Lemma $1.1, J=I^{t}$ is an idempotent right projective ideal of A. Note that S is a simple A / J-module since $S J \subseteq S I=0$. Therefore, $\operatorname{Ext}_{A}^{1}(S, S) \cong \operatorname{Ext}_{A / J}{ }^{1}(S, S)$. Moreover, I / J is a nilpotent right projective ideal of A / J such that $(A / J) /(I / J) \cong A / I$. It follows from our previous consideration that $\operatorname{Ext}_{A / J}^{1}(S, S) \cong \operatorname{Ext}_{A / I}^{1}(S, S)$. The proof of the lemma is completed.

The next lemma follows easily from $[1,(2.4)]$. However, we present a different argument here.
3.2. Lemma. Let S be a simple right A-module of finite projective dimension, supported by a primitive idempotent e. If $A e A$ is right projective, then $\operatorname{Ext}_{A}^{1}(S, S)=0$.

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ with $e_{1}=e$ be a basic set of primitive idempotents of A. For all $1 \leq j \leq n$, let c_{j} be the multiplicity of S as a composition factor of $e_{j} A$, which is equal to the composition length of $e_{j} A e$ as a right module over $e A e$. Let

$$
0 \rightarrow P_{m} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow S \rightarrow 0
$$

be a finite projective resolution of S. Write $P_{i}=\left(e_{1} A\right)^{r_{i 1}} \oplus \cdots \oplus\left(e_{n} A\right)^{r_{i n}}$ with $r_{i j} \geq 0$, for $i=0,1, \ldots, m$. It is well known that

$$
1=\sum_{i=0}^{m}(-1)^{i}\left(r_{i 1} c_{1}+\cdots+r_{i n} c_{n}\right) .
$$

Assume that $A e A$ is right projective. Then, for all $1 \leq j \leq n$, we have $e_{j} A e A \cong(e A)^{s_{j}}$ with $s_{j} \geq 0$. Hence $e_{j} A e \cong(e A e)^{s_{j}}$ as right $e A e$-modules, and consequently, $c_{j}=s_{j} c_{1}$ for all $1 \leq j \leq n$. This gives rise to

$$
c_{1} \sum_{i=1}^{m}(-1)^{i}\left(r_{i 1} s_{1}+\cdots+r_{i n} s_{n}\right)=1 .
$$

Thus $c_{1}=1$, and hence $e \operatorname{rad} A e=0$. In particular, $\operatorname{Ext}_{A}^{1}(S, S)=0$. The proof of the lemma is completed.

The following result can be considered as a weaker version of the strong no loop conjecture for quasi-stratified algebras.
3.3. Proposition. Let A be a quasi-stratified algebra. If S is a simple (left or right) A-module with projective and injective dimensions finite, then $\operatorname{Ext}_{A}^{1}(S, S)=0$.

Proof. Let S be a simple right A-module with projective and injective dimensions finite. Then $D S$ is a simple left A-module with projective and injective dimensions finite. Let

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

be a quasi-stratification of A, and let e be a pseudo-primitive idempotent which generates the idempotent part of I_{1}. We shall proceed by induction on r. If $r=1$, then e is primitive. By Lemma 1.10, A is Morita equivalent to $e A e$. With the simple module having finite projective dimension, $e A e$ is hereditary, and so is A. Thus $\operatorname{Ext}_{A}^{1}(S, S)=0$.

Assume now that $r>1$. Then A / I_{1} admits a quasi-stratification of length $r-1$. Let us consider the case where I_{1} is left projective. If $S I_{1}=0$, then $D S$ is a simple left module over A / I_{1}. It follows from Lemma 3.1 and the induction hypothesis that $\operatorname{Ext}_{A}^{1}(D S, D S) \cong \operatorname{Ext}_{A / I_{1}}^{1}(D S, D S)=0$. If $S I_{1} \neq 0$, then $S=S I_{1}=S e A$, and hence $D S$ is the simple left A-module supported by e. Since $A e A$ is left projective by Lemma 1.1, $\operatorname{Ext}_{A}^{1}(D S, D S)=0$ by Lemma 3.2. Therefore, $\operatorname{Ext}_{A}^{1}(S, S)=0$ in both cases. The proof of the proposition is completed.

As an immediate consequence, we have the following result which excludes loops in the ordinary quiver of an ultimate-hereditary algebra.
3.4. Theorem. Let A be a quasi-stratified algebra. If A is of finite global dimension, then $\operatorname{Ext}_{A}^{1}(S, S)=0$ for all simple (left or right) A-modules S.

Proof. If A is of finite global dimension, then every simple A-module has finite projective and injective dimensions. By Proposition 3.3, $\operatorname{Ext}_{A}^{1}(S, S)=0$ for every simple A-module S. This completes the proof of the theorem.

Unfortunately, we need to put some restriction on a quasi-stratification in order to establish the strong no loop conjecture.
3.5. Definition. We say that A is quasi-stratified on the right (respectively, left) if A admits a quasi-stratification

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

such that I_{i+1} / I_{i} is a right (respectively, left) quasi-stratifying ideal of A / I_{i}, for all $0 \leq i<r$. Such a quasi-stratification is called a right (respectively, left) quasi-stratification of A.

It follows from the definition that a right standardly stratified algebra is quasi-stratified on the right.
3.6. Theorem. Let A be an artin algebra which is quasi-stratified on the right. If S is a simple right A-module of finite projective dimension, then $\operatorname{Ext}_{A}^{1}(S, S)=0$.

Proof. Let S be a simple right A-module of finite projective dimension. Assume that

$$
0=I_{0} \subset I_{1} \subset \cdots \subset I_{r-1} \subset I_{r}=A
$$

is a right quasi-stratification of A. If $r=1$ then, as we have seen in the proof of Proposition 3.3, A is hereditary. Thus $\operatorname{Ext}_{A}^{1}(S, S)=0$. Suppose now
that $r>1$. If $S I_{1}=0$, then S is a simple right A / I_{1}-module, which is of finite projective dimension by Lemma 1.2(2). It follows from the induction hypothesis that $\operatorname{Ext}_{A / I_{1}}^{1}(S, S)=0$. Thus $\operatorname{Ext}_{A}^{1}(S, S)=0$, by Proposition 3.1. Otherwise, the idempotent part of I_{1} is generated by a primitive idempotent e. Note that $S=S I_{1}=S e A$. Since $A e A$ is right projective by Lemma 1.1, it follows from Lemma 3.2 that $\operatorname{Ext}_{A}^{1}(S, S)=0$. This completes the proof of the theorem.

Acknowledgements. Both authors gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada.

References

[1] I. Ágoston, D. Happel, E. Lukács, and L. Unger, "Finitistic dimension of standardly stratified algebras", Comm. Algebra 28 (2000) 2745 2752.
[2] M. Auslander, I. Reiten, and S. O. Smalø, "Representation Theory of Artin Algebras", Cambridge Studies in Advanced Mathematics $\mathbf{3 6}$ (Cambridge University Press, Cambridge, 1995).
[3] Th. Belzner, W. D. Burgess, K. R. Fuller, and R. Schulz, "Examples of ungradable algebras", Proc. Amer. Math. Soc. 114 (1992) 1 4.
[4] W. D. Burgess and K. R. Fuller, "On quasi-hereditary rings", Proc. Amer. Math. Soc. 106 (1989) 321-328.
[5] W. D. Burgess and K. R. Fuller, "The Cartan determinant and generalizations of quasihereditary rings", Proc. Edinburgh Math. Soc. 41 (1998) 23-32.
[6] W. D. Burgess, K.R. Fuller, E. R. Voss, and B. ZimmermannHuisgen, "The Cartan matrix as an indicator of finite global dimension for Artinian rings", Proc. Amer. Math. Soc. 95 (1985) 157-165.
[7] W. D. Burgess and M. Saorín, "Homological aspects of semigroup gradings on rings and algebras", Canad. J. Math. 51 (1999) 488-505.
[8] E. Cline, B. Parshall, and L. Scott, "Finite-dimensional algebras and highest weight categories", J. Reine Angew. Math. 391 85- 99 (1988).
[9] E. Cline, B. Parshall, and L. Scott, "Stratifying endomorphism algebras", Memoirs Amer.Math. Soc. 124 (1996).
[10] V. Dlab, "Quasi-hereditary algebras revisisted", An. St. Univ. Ovidius Constantza 4 (1996) 43-54.
[11] V. Dlab and C. M. Ringel, "Quasi-hereditary algebras", Illinois J. Math. 33 (1989) 280-291.
[12] S. Eilenberg, "Algebras of cohomologically finite dimension", Comm. Math. Helv. 28 (1954) 310-319.
[13] K. R. Fuller, "The cartan determinant and global dimension of artinian rings", Contemp. Math. 124 (1992) 51-72.
[14] K. R. Fuller and B. Zimmermann-Huisgen, "On the generalized Nakayama conjecture and the Cartan determinant problem", Trans. Amer. Math. Soc. 294 (1986) 679-691.
[15] E. L. Green, W. H. Gustafson, and D. Zacharia, "Artin rings of global dimension two", J. Algebra, 92 (1985) 375-379.
[16] E. L. Green, \varnothing. Solberg and D. Zacharia, "Minimal projective resolutions", Trans. Amer. Math. Soc. 353 (2001) 2915-2939.
[17] M. Hoshino and Y. Yukimoto, "A generalization of heredity ideals", Tsukuba J. Math. 14 (1990) 423-433.
[18] K. Iqusa, "Notes on the no loop conjecture", J. Pure Appl. Algebra, 69 (1990) 161-176.
[19] H. Lenzing, "Nilpotente elemente in ringen von endlicher globaler dimension", Math. Z. 108 (1969) 313-324.
[20] S. Liu and J.-P. Morin, "The strong no loop conjecture for special biserial algebras", Proc. Amer. Math. Soc. 132 (2004) 3513-3523.
[21] D. D. Wick, "A generalization of quasi-hereditary rings", Comm. Algebra 24 (1996) 1217-1227.
[22] G. Wilson, "The Cartan map on categories of graded modules", J. Algebra 85 (1983) 390-398.
[23] K. Yamagata, "A reduction formula for the Cartan determinant problem for algberas", Arch. Math. 61 (1993) 27-34.
[24] D. Zacharia, "On the Cartan matrix of an artin algebra of global dimension two", J. Algebra 82 (1983) 353-357.

