
CLUSTER CATEGORIES OF TYPE A∞∞ AND

TRIANGULATIONS OF THE INFINITE STRIP

SHIPING LIU AND CHARLES PAQUETTE

Abstract. We call a 2-Calabi-Yau triangulated category a cluster category if

its cluster-tilting subcategories form a cluster structure as defined in [4]. In
this paper, we show that the canonical orbit category of the bounded derived

category of finite dimensional representations of a quiver without infinite paths

of type A∞ or A∞
∞ is a cluster category. Moreover, for a cluster category of

type A∞
∞, we give a geometrical description of its cluster structure in terms of

triangulations of an infinite strip with marked points in the plane.

Introduction

One of the most important developments of the representation theory of quivers is
its interaction with cluster algebras, introduced by Fomin and Zelevinsky in con-
nection with dual canonical bases and total positivity of semi-simple Lie groups; see
[8, 9]. The two theories are linked together through cluster categories, constructed
by Buan, Marsh, Reineke, Reiten and Todorov by taking the orbit category of the
bounded derived category of finite dimensional representations of a finite acyclic
quiver under the canonical auto-equivalence, that is the composite of the inverse
of the Auslander-Reiten translation and the shift functor; see [5]. Such a cluster
category is a categorification of the corresponding cluster algebra in such a way
that cluster-tilting objects correspond to clusters and exchange of indecomposable
summands of cluster-tilting objects correspond to mutations of cluster variables.
These cluster categories are said to be of finite rank since every cluster-tilting ob-
ject has only finitely many indecomposable summands. For cluster categories of
type An, Caldero, Chapoton and Schiffler gave a beautiful geometrical realization
in terms of triangulations of an (n+ 3)-gon; see [7].

Replacing cluster-tilting objects by cluster-tilting subcategories, Buan, Iyama,
Reiten and Scott introduced the notion of cluster structure in a 2-Calabi-Yau trian-
gulated category; see, for example, (1.5). In this connection, we define a 2-Calabi-
Yau triangulated category to be a cluster category if its cluster-tilting subcategories
form a cluster structure. The first example of a cluster category of infinite rank
was discovered by Holm and Jørgensen in [14], where they constructed a cluster
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category of type A∞ as the finite derived category of dg-modules over the polyno-
mial ring viewed as a dg-algebra and gave a geometrical realization of this cluster
category in terms of triangulations of an infinity-gon.

The purpose of this paper is two-fold. Firstly we shall construct, following the
canonical approach, cluster categories of types A∞ and A∞∞. Let Q be a locally
finite quiver with no infinite path. The category rep(Q) of finite dimensional rep-
resentations of Q is a hereditary abelian category such that Db(rep(Q)) has al-
most split triangles; see [3, (7.11)]. Thus, the canonical orbit category C (Q) of
Db(rep(Q)) as mentioned above is a 2-Calabi-Yau triangulated category; see [19],
and hence, it serves as a natural candidate for a cluster category of type Q. Indeed,
the Auslander-Reiten components of C (Q) consists of a connecting component of
shape ZQop, where Qop denotes the opposite quiver of Q, and some possible regu-
lar components of shape ZA∞; see (2.5). Moreover, the projective representations
in rep(Q) generate a cluster-tilting subcategory of C (Q); see (2.8). Therefore, in
order to show that C (Q) is a cluster category, it suffices to verify that the quiver
of every cluster-tilting subcategory of C (Q) has no oriented cycle of length one or
two; see [4, (II.1.6)]. We conjecture that this is always the case. However, we shall
prove it only in case Q is of type A∞ or A∞∞. In this case, all the Auslander-Reiten
components of Db(rep(Q)) are standard of shapes ZA∞ or ZA∞∞; see [24, (2.2)]. In
general, morphisms between objects in such components can be described in a pure
combinatorial way; see (2.5). This enables us to show in this case that C (Q) is a
cluster category; see (2.13), in which weakly cluster-tilting subcategories coincide
with maximal rigid ones if Q is of type A∞ or A∞∞; see (2.11).

Secondly, as an analogy to the above mentioned work by Caldero-Chapoton-
Schiffler and by Holm-Jørgensen, we shall give a geometrical realization of a cluster
category of type A∞∞. For this purpose, we study in Section 3 triangulations of an
infinite strip with marked points B∞ in the plane. We introduce the notion of a
compact triangulation; see (3.11) and give an easy criterion for a triangulation to
be compact; see (3.18). In Section 4, we shall parameterize the indecomposable
objects of C (Q) by the arcs in B∞ in such a way that rigid pairs of indecomposable
objects correspond to non-crossing pairs of arcs; see (4.3). In particular, weakly
cluster-tilting subcategories of C (Q) correspond to triangulations of B∞, and the
functorial finiteness of a weakly cluster-tilting subcategory will be characterized
by the compactness of the corresponding triangulation; see (4.7). This yields a
geometric description of the cluster-tilting subcategories of C (Q). Finally, we would
like to mention that triangulations of B∞ have already been considered in [15, 16]
as a geometrical model of a class of cluster categories constructed in a different
approach.

We conclude with some new developments of cluster algebras of infinite rank.
As a decategorification of Holm and Jørgensen’s cluster category, Grabowski and
Gratz constructed a cluster algebra of infinite rank as the coordinate ring of an
infinite Grassmannian; see [11]. Moreover, to each simple Lie algebra, Hernan-
dez and Leclerc associated some infinite quivers, from which they constructed a
cluster algebra of infinite rank in order to study the representation theory of the
corresponding untwisted quantum affine algebra; see [13]. We hope that our work
would motivate further study on cluster categories or cluster algebras associated
with infinite quivers.
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1. Preliminaries

Throughout this paper, k stands for an algebraically closed field. All categories
are k-linear with finite dimensional Hom-spaces over k. The standard duality for
the category of finite dimensional k-spaces will be denoted by D. We refer to [1,
Section 2] for the Auslander-Reiten theory of irreducible morphisms and almost
split sequences in an abelian category, and to [12, Section 4] for that of irreducible
morphisms and almost split triangles in a triangulated category.

Throughout this section, A stands for a Hom-finite Krull-Schmidt triangulated
k-category having almost split triangles. That is, every indecomposable object of
A is the starting term, as well as an ending term, of an almost split triangle. The
Auslander-Reiten quiver ΓA of A is a translation quiver, whose vertex set is chosen
to be a complete set of representatives of the isomorphism classes of indecomposable
objects in A and whose translation is given by the Auslander-Reiten translation τA .
If no confusion is possible, we shall write τ for τA . A path

M0
// M1

// · · · // Mn−1 // Mn

in ΓA is called sectional if there exists no i with 0 < i < n such that τMi+1 = Mi−1;
and almost sectional if there exists at most one i with 0 < i < n such that τMi+1 =
Mi−1. Let Γ be a connected component of ΓA. One considers the path category kΓ
and the mesh category k(Γ ), where k(Γ ) is the quotient category of kΓ modulo
the ideal generated by the mesh elements in kΓ ; see [26, (2.1)]. One says that Γ is
standard if k(Γ ) is equivalent to the full subcategory A(Γ ) of A generated by the
objects lying in Γ ; see [26, (2.3)].

Given a quiver ∆ = (∆0,∆1) without oriented cycles, where ∆0 is the vertex
set and ∆1 is the set of arrows, one constructs a stable translation quiver Z∆ in
a canonical way; see [26, Page 47]. In the sequel, we shall denote by N∆ and by
N−∆ the full subquivers of Z∆ generated respectively by the vertices (n, x) and by
the vertices (−n, x), where n ∈ N and x ∈ ∆0. Moreover, we shall say that ∆ is of
type A if the underlying graph of ∆ is An with n ≥ 1, or A∞, or A∞∞. In this case,
Z∆ will be simply written as ZA.

Let Γ be a connected component of ΓA of shape ZA. A monomial mesh relation
in Γ is a path τX → Y → X, where Y is the only immediate predecessor of X in
Γ . Given X ∈ Γ , we define the forward rectangle RX of X to be the full subquiver
of Γ generated by its successors Y such that no path X  Y contains a monomial
mesh relation. Dually, we define the backward rectangle RX of X in Γ . If Γ is of
shape ZA∞∞ then, by definition, RX is generated by the successors of X and RX

is generated by the predecessors of X. The following result is well known for the
An-case.

1.1. Proposition. Let Γ be a standard component of ΓA of shape ZA. If X,Y are
objects in Γ , then HomA(X,Y ) 6= 0 if and only if Y ∈ RX if and only if X ∈ RY ;
and in this case, HomA(X,Y ) is one-dimensional over k.

Proof. We may assume with loss of generality that A(Γ ) = k(Γ ). For u ∈ kΓ ,
we write ū for its image in k(Γ ). Let X,Y ∈ Γ . Clearly, Y ∈ RX if and only if
X ∈ RY . If p : X  Y and q : X  Y are two parallel paths in Γ , then it is easy to
see that p̄ = q̄. Thus, HomA(X,Y ) is at most one dimensional. It remains to prove
the first equivalence stated in the proposition. Suppose that Y 6∈ RX . Then either
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Y is not a successor of X in Γ , or else, Γ has a path p : X  Y which contains a
monomial mesh relation. In the first case, HomA(X,Y ) = 0. In the second case,
p̄ = 0, and by the previously stated remark, q̄ = 0 for every path q : X  Y . As a
consequence, HomA(X,Y ) = 0.

Suppose now that Y ∈ RX . Observe that all the paths from X to Y in Γ
have the same length, written as d(X,Y ). We need to show that HomA(X,Y ) 6= 0,
or equivalently, HomA(X,Y ) is one dimensional. This is evident if d(X,Y ) = 0.
Assume that d(X,Y ) > 0. Consider an almost split triangle

Z // U1 ⊕ U2
// Y // Z[1]

in A, where U1 ∈ RX and U2 being zero or an object in Γ . By the induction
hypothesis, HomA(X,U1) is one dimensional. Since X 6= Y , applying HomA(X,−)
to the almost split triangle yields an exact sequence

HomA(X,Z) // HomA(X,U1 ⊕ U2) // HomA(X,Y ) // 0.

If Z 6∈ RX , then HomA(X,Z) = 0 and HomA(X,Y ) ∼= HomA(X,U1 ⊕ U2) 6= 0.
Otherwise, by the definition of RX , we obtain U2 6= 0, and hence, U2 ∈ RX .
Since each of HomA(X,Z), HomA(X,U1) and HomA(X,U2) is one-dimensional,
we obtain HomA(X,Y ) 6= 0. The proof of the proposition is completed.

Let T be a full subcategory of A. Given X ∈ A, a morphism f : X → T with
T ∈ T is called a left T -approximation for X if every morphism g : X → M with
M ∈ T factors through f . Dually, one defines a right T -approximation for X.
One says that T is covariantly (respectively, contravariantly) finite in A if every
object in A admits a left (respectively, right) T -approximation; and functorially
finite in A if it is covariantly and contravariantly finite in A. We say that T is
covariantly (respectively, contravariantly) bounded in A provided that, for every
X ∈ A, HomA(X,M) = 0 (respectively, HomA(M,X) = 0) for all but finitely
many non-isomorphic indecomposable objects M of T . The following statement
follows easily from the Hom-finiteness of A.

1.2. Lemma. A covariantly (respectively, contravariantly ) bounded subcategory of
A is covariantly (respectively, contravariantly ) finite.

Recall that A is called 2-Calabi-Yau if, for each pair of objects (X,Y ), there
exists an isomorphism HomA(X,Y [1]) ∼= DHomA(Y,X[1]), which is natural in X
and in Y . In this case, the Auslander-Reiten translation τA coincides with the shift
functor of A; see [25, (I.2.3)]. We recall from [4] the following definition, where a
strictly additive subcategory of A is a full subcategory closed under isomorphisms,
finite direct sums, and taking summands.

1.3. Definition. Let A be a 2-Calabi-Yau triangulated category with a strictly
additive subcategory T . One says that T is weakly cluster-tilting provided, for
every X ∈ A, that HomA(T , X[1]) = 0 if and only if X ∈ T ; and cluster-tilting
provided that T is weakly cluster-tilting and functorially finite in A.

Let T be a strictly additive subcategory of A. In particular, T is Krull-Schmidt.
A morphism f : X → Y in T is called right almost split if it is not a retraction and
every non-retraction morphism g : M → Y in T factors through f ; right minimal if
every factorization f = fh implies that h is an automorphism; and a sink morphism
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in T if it is right minimal and right almost split in T . Dually, we define a left almost
split, left minimal or source morphism in T . The quiver QT of T is defined so that
its vertices form a complete set of representatives of the indecomposable objects of
T , and the number of arrows from a vertex X to a vertex Y is the k-dimension
of radT (X,Y )/rad2

T (X,Y ), where radT (X,Y ) denotes the k-space of morphisms
in the Jacobson radical of T . Moreover, given an indecomposable object M of
T , we shall denote by TM the full additive subcategory of T generated by the
indecomposable objects not isomorphic to M . Observe that TM is also strictly
additive in A.

1.4. Proposition. Let A be a Hom-finite 2-Calabi-Yau triangulated k-category.
If T is a cluster-tilting subcategory of A, then it has source morphisms and sink
morphisms ; and consequently, its quiver QT is locally finite.

Proof. Let T be a cluster-tilting subcategory of A. Suppose that M is an inde-
composable object of T . Then TM is functorially finite in A; see [18, (4.1)]. Let
f : X → M be a right TM -approximation for M . Then we can decompose f as
f = (g, 0) : X = Y ⊕ Z → M , where g : Y → M is right minimal; see [21, (1.2)].
Thus, g is a minimal right TM -approximation for M .

If rad(EndA(M)) = 0, then g is right almost split, and hence, a sink morphism
for M in T . Otherwise, choose a k-basis {h1, . . . , hm} of rad(EndA(M)) and set
h = (h1, · · · , hm) : Mm → M . Then every radical endomorphism of M factors
through h. As a consequence, u = (g, h) : Y ⊕Mm →M is right almost split in T .
Again, u = (v, 0) : N ⊕L→M , where v : N →M is right minimal. Note that v is
also right almost split, and hence, a sink morphism for M in T . Dually, M admits
a source morphism in T . The proof of the proposition is completed.

We shall reformulate the notion of a cluster structure in a 2-Calabi-Yau trian-
gulated category, which is originally introduced in [4, (II.1)].

1.5. Definition. Let A be a 2-Calabi-Yau triangulated k-category. A non-empty
collection C of strictly additive subcategories of A is called a cluster structure if,
for each subcategory T ∈ C and each indecomposable object M ∈ T , the following
conditions are verified.

(1) There exists a unique (up to isomorphism) indecomposable object M∗ of A,
with M∗ 6∼= M, such that the additive subcategory µ

M
(T ) of A generated by

TM and M∗ belongs to C.

(2) There exist two exact triangles in A as follows :

M
f // N

g // M∗ // M [1] and M∗
u // L

v // M // M∗[1],

where f, u are minimal left TM -approximations, and g, v are minimal right
TM -approximations in A.

(3) The quiver of T contains no oriented cycle of length one or two, from which
the quiver of µ

M
(T ) is obtained by the Fomin-Zelevinsky mutation at M as

described in [9, (1.1)].

The following notion is the main objective of study of this paper.

1.6. Definition. A 2-Calabi-Yau triangulated k-category is called a cluster cate-
gory if its cluster-tilting subcategories form a cluster structure.
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2. Cluster categories of types A∞ and A∞∞

As the main objective of this section, we shall show that the canonical orbit category
of the bounded derived category of finite dimensional representations of a quiver
without infinite paths of type A∞ or A∞∞ is a cluster category.

We start with representations of quivers. Let Q be a connected locally finite
quiver without infinite paths. By König’s Lemma; see [20], the number of paths
between every pair of vertices is finite. By definition, Q is strongly locally finite;
see [3, Section 1]. Since Q has no infinite path, the category rep(Q) of finite
dimensional k-linear representations of Q coincides with the category of finitely
presented k-linear representations of Q; see [3, (1.5)]. Thus, rep(Q) is a hereditary
abelian category having almost split sequences; see [3, (3.7)]. The vertex set of
the Auslander-Reiten quiver Γ rep(Q) of rep(Q) is chosen to contain the indecompo-
sable projective representations Px, the indecomposable injective representations
Ix and the simple representations Sx, with x ∈ Q0, as defined in [3, Section 1].
Its Auslander-Reiten translation is written as τ

Q
. It is known that Γ rep(Q) has

a preprojective component PQ which is standard of shape NQop and contains all
the Px with x ∈ Q0; and a preinjective component IQ which is standard of shape
N−Qop and contains all the Ix with x ∈ Q0. The other components of Γ rep(Q)

are called regular, which are of shape ZA∞; see [3, (4.16)] and [24, (2.2)]. Given
two connected components Γ ,Ω of Γ rep(Q), we shall write Homrep(Q)(Γ ,Ω) = 0 if

Homrep(Q)(X,Y ) = 0 for all X ∈ Γ and Y ∈ Ω ; and say that Γ ,Ω are orthogonal
if Homrep(Q)(Γ ,Ω) = 0 and Homrep(Q)(Ω ,Γ ) = 0.

2.1. Lemma. Let Q be a connected locally finite quiver with no infinite path. Then
Homrep(Q)(IQ,PQ) = 0. Moreover, if R is a regular component of Γ rep(Q), then

Homrep(Q)(IQ,R) = 0 and Homrep(Q)(R,PQ) = 0.

Proof. Let f : M → N be a non-zero morphism with M,N ∈ Γ rep(Q). Assume
that M is preinjective, that is, M = τ r

Q
Ix for some x ∈ Q0 and r ∈ N. If N is

not preinjective, then N = τ r
Q
L for some non-injective representation L ∈ Γ rep(Q).

Applying τ−
Q

yields a non-zero morphism g : Ix → L; see [24, (2.1)], contrary to

rep(Q) being hereditary. Dually, if N is preprojective, then so is M . The proof of
the lemma is completed.

In case Q is of infinite Dynkin type, that is, the underlying graph of Q is A∞,
A∞∞ or D∞, the morphisms are better understood. Recall that the support supp(M)
of a representation M is the set of vertices x ∈ Q0 for which M(x) 6= 0.

2.2. Lemma. Let Q be an infinite Dynkin quiver with no infinite path, and let X,Y
be representations lying in Γ rep(Q).

(1) If X 6= Y , then Hom rep(Q)(X,Y ) = 0 or Hom rep(Q)(Y,X) = 0.

(2) If Q is of type A∞ or A∞∞, then Hom rep(Q)(X,Y ) is at most one-dimensional.

Proof. Statement (1) follows from Lemma 2.1 and that every connected component
of Γ rep(Q) is standard without oriented cycles; see [3, (4.16)] and [24, (2.2)]. Assume

that Q is of type A∞ or A∞∞. Let ∆ be a finite connected full subquiver of Q,
containing the support of X ⊕ Y . Then ∆ is of type An for some n such that
Homrep(Q)(X,Y ) ∼= Homrep(∆)(X,Y ), which is at most one-dimensional; see [10,

(6.5)], and also, (1.1). The proof of the lemma is completed.
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Let Γ be a connected component of Γ rep(Q) of shape ZA∞, and let X ∈ Γ . One
says that X is quasi-simple if it has only one immediate predecessor in Γ . In ge-

neral, Γ has a unique sectional path X = Xn
// Xn−1 // · · · // X1, where

X1 is quasi-simple. One defines the quasi-length `(X) of X to be n.

Let Q be of type A∞∞. We shall describe the quasi-simple representations in
the regular component. To this end, we recall some terminology and notations. A
string in Q is a finite reduced walk w, to which one associates a string representation
M(w); see [3, Section 5]. Let ai, bi, i ∈ Z, be the source vertices and the sink vertices
of Q, respectively, such that there exist paths pi : ai  bi and qi : ai  bi−1, for
i ∈ Z. A vertex on a path is called a middle point if it is not an endpoint. Let QR
denote the union of the pi, i ∈ Z, and the trivial paths εa, where a is a middle point
of some qj with j ∈ Z. Dually, QL denotes the union of the qi, i ∈ Z, and the trivial
paths εb, where b is a middle point of some pj with j ∈ Z. It is known that Γ rep(Q)

has exactly two regular components RR and RL such that the quasi-simple objects
in RR are the string representations M(p) with p ∈ QR, and those in RL are the
string representations M(q) with q ∈ QL; see [24, (2.2)] and [3, (5.16), (5.22)].

2.3. Lemma. Let Q be a quiver of type A∞∞ with no infinite path. Then the two
regular components RR and RL of Γ rep(Q) are orthogonal.

Proof. Let f : M → N be a non-zero morphism with M ∈ RR and N ∈ RL.
We may assume that m = `(M) + `(N) is minimal with respect to the existence
of such a non-zero morphism. In view of the above description, the quasi-simple
representations have pairwise disjoint supports. Thus, we may assume with no loss
of generality that `(N) > 1. Then rep(Q) has a short exact sequence

0 // X
u // N

v // Y // 0,

where X,Y ∈ RL with `(X) = `(N) − 1 and `(Y ) = 1. By the minimality of m,
we have vf = 0, and hence, f = uw for some non-zero morphism w : M → X,
contrary to the minimality of m. The proof of the lemma is completed.

Let Γ be a connected component of Γ rep(Q) of shape ZA∞, with a quasi-simple
representation S. Observe that Γ has a unique infinite sectional path starting in S,
called the ray starting in S and denoted by (S→); and a unique infinite sectional
path ending in S, called the co-ray ending in S and denoted by (→S). Let W(S)
be the full subquiver of Γ generated by the representations X for which there exist
paths M  X  N , where M belongs to (→S) and N belongs to (S→). We call
W(S) the infinite wing with wing vertex S; compare [26, (3.3)].

2.4. Proposition. Let Q be a quiver of type A∞∞ with no infinite path, and let
X ∈ PQ. If R is a regular component of Γ rep(Q), then it has a unique quasi-simple

representation S such that, for every Y ∈ R, Hom rep(Q)(X,Y ) 6= 0 if and only

if Y ∈ W(S); and every morphism f : X → Y factors through a representation
belonging to the co-ray (→S).

Proof. We keep the notation introduced above and assume that R = RR. Applying
τ
Q

if necessary, we may assume that X = Px for some x ∈ Q0; see [24, (2.1)]. Since

Px 6∈ R, applying Homrep(Q)(Px,−) yields an additive function d on R; see, for
definition, [26, (A.1)], defined by d(Y ) = dimkHomrep(Q)(Px, Y ) for Y ∈ R. Set
S = M(p), where p is the unique path in QR in which x appears. Then d(S) = 1
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and d(τ iS) = 0 for all i 6= 0. Using the additivity of d, we see first that d(Y ) = 0
for all Y 6∈ W(S), and then d(Y ) = 1 for all Y ∈ W(S).

Suppose now that f : Px → Y is non-zero morphism with Y ∈ W(S). There
exists a unique sectional path p : Z  Y in R with Z belonging to (→S). Observe
that there exists a monomorphism g : Z → Y in rep(Q). Since Px is projective,
we obtain a monomorphism Hom(Px, g) : Hom(Px, Z)→ Hom(Px, Y ), which is an
isomorphism since d(Y ) = d(Z) = 1. Hence, f factors through g. The proof of the
proposition is completed.

Remark. The dual statement holds for preinjective representations.

Next, we consider the bounded derived category Db(rep(Q)) of rep(Q). We re-
gard rep(Q) as a full subcategory of Db(rep(Q)) in a canonical way. It is known
that Db(rep(Q)) is a Hom-finite Krull-Schmidt triangulated k-category having al-
most split triangles; see [3, (7.11)]. The vertices of its Auslander-Reiten quiver
ΓDb(rep(Q)) are chosen to be the shifts of the vertices of Γ rep(Q). The Auslander-

Reiten translation τ
D

is such that τ
D
X = τ

Q
X for X ∈ Γ rep(Q) non-projective, and

τ
D
Px = Ix[−1] for x ∈ Q0. Thus, τ

D
induces an auto-equivalence of Db(rep(Q)).

A regular component of Γ rep(Q) is a connected component of ΓDb(rep(Q)), while PQ
and IQ[−1] are glued together to form the connecting component CQ of ΓDb(rep(Q)),

which is of shape ZQop. The connected components of ΓDb(rep(Q)) are the shifts of

CQ and those of the regular components of Γ rep(Q); see [3, (7.9),(7.10)].

Finally, we consider the canonical auto-equivalence F = τ−1
D
◦ [1] of Db(rep(Q)).

By a well known result of Keller; see [19, Section 9], the canonical orbit category

C (Q) = Db(rep(Q))/F

is a Hom-finite Krull-Schmidt 2-Calabi-Yau triangulated k-category such that the
canonical projection π : Db(rep(Q))→ C (Q) is triangle-exact. We shall denote by
τC the Auslander-Reiten translation of C (Q). The connected components of the
Auslander-Reiten quiver ΓC (Q) of C (Q) are described in the following result.

2.5. Theorem. Let Q be an infinite connected quiver, which is locally finite and
contains no infinite path.

(1) The canonical projection π : Db(rep(Q)) → C (Q) sends Auslander-Reiten tri-
angles to Auslander-Reiten triangles.

(2) If Γ is a connected component of ΓDb(rep(Q)), then π(Γ ) is a connected compo-

nent of ΓC (Q) such that π(Γ ) ∼= Γ as translation quivers.

(3) The connected components of ΓC (Q) are the components π(Γ ), where Γ is either
the connecting component of ΓDb(rep(Q)) or a regular component of Γ rep(Q).

Proof. Observe that a rigorous definition of an orbit category of Db(rep(Q)) requires
an automorphism of Db(rep(Q)). In order to overcome this problem, we shall take
a skeleton D of Db(rep(Q)), containing the vertices of ΓDb(rep(Q)). Then D is a

Hom-finite Krull-Schmidt triangulated k-category such that the inclusion functor
D → Db(rep(Q)) is a triangle-equivalence and Γ D = ΓDb(rep(Q)). Observe that
the translation τ

D
of ΓDb(rep(Q)) induces an automorphism of D , which is denoted

again by τ
D

. Setting F = τ−1
D
◦ [1], we obtain a group G = {Fn | n ∈ Z} of

automorphisms of D . Observe that the action of G on D is free and locally bounded,
that is, no indecomposable object is fixed by any non-identity element of G; and
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HomD(X,F iY ) = 0 for all but finitely many integers i; see [2, (2.1)]. Now, the
image C of D under the canonical projection π : Db(rep(Q)) → C (Q) is a dense
full triangulated subcategory of C (Q). In particular, C is Hom-finite and Krull-
Schmidt. Restricting π : Db(rep(Q))→ C (Q), we obtain a triangle functor D → C ,
which is denoted again by π. For X ∈ D and n ∈ Z, we define

δn,X = (δn,i)i∈Z ∈ ⊕i∈Z HomD(FnX,F iX) = HomC (FnX,X),

where δn,i = 1IFnX if i = n; otherwise, δn,i = 0. It is easy to see that δn,X is
an isomorphism, which is natural in X, such that δn,X ◦ δm,FnX = δn+m,X , for
integers m,n. This yields functorial isomorphisms δn : π ◦ Fn → π, n ∈ Z, such
that δ = (δn)n∈Z is a G-stabilizer for π; see [2, (2.3)]. It is not hard to verify that

π
X,Y

: ⊕i∈Z HomD(X,F iY )→ Hom C (X,Y ) : (fi)i∈Z 7→
∑
i∈Z δi,Y ◦ π(fi)

is the identity map. Hence, π is a G-precovering; see [2, (2.5)]. Since D is evidently
Hom-finite and Krull-Schmidt, π : D → C a Galois G-covering; see [2, (2.8), (2.9)].
By Proposition 3.5 in [2], the exact functor π : D → C sends Auslander-Reiten
triangles to Auslander-Reiten triangles, and hence, Statement (1) holds.

Observe that ΓC (Q) = Γ C . Let Γ be a connected component of Γ D . By Theorem
4.7 stated in [2], π(Γ ) is a connected component of Γ C such that π restricts to Galois
GΓ -covering π

Γ
: Γ → π(Γ ), where GΓ = {Fn | Fn(Γ ) = Γ}. Since Q is infinite,

Fn(Γ ) 6= Γ for every n 6= 0. That is, GΓ is trivial, and hence, πΓ is an isomorphism
of translation quivers; see [2, (4.6)]. This establishes Statement (2).

Since π is dense, Γ C consists of the connected components π(Θ) with Θ ranging
over the connected components of Γ D . If Θ is such a component, then Θ = F n(Γ ),
where n ∈ Z and Γ is the connecting component of Γ D or a connected component
of Γ rep(Q). This yields π(Θ) = π(Γ ). The proof of the theorem is completed.

Remark. (1) If X ∈ Γ rep(Q) is non-projective, then τCX = τ
D
X = τ

Q
X.

(2) By abuse of language and notation, we shall identify the connecting compo-
nent CQ of ΓDb(rep(Q)) with π(CQ) and call it the connecting component of ΓC (Q),

and identify a regular component R of Γ rep(Q) with π(R) and call it a regular
component of ΓC (Q).

(3) The set F (Q) of objects of Db(rep(Q)) lying in CQ or a regular component of
Γ rep(Q) form a fundamental domain of C (Q). That is, every indecomposable object
of C (Q) is isomorphic to a unique object in F (Q). Observe that every object in
F (Q) lies in the τC -orbit of a preprojective or regular representation in Γ rep(Q).

We shall need the following description of the morphisms between objects in the
fundamental domain of C (Q).

2.6. Lemma. Let Q be a locally finite quiver with no infinite path, and let X,Y be
representations lying in Γ rep(Q).

(1) Hom C (Q)(X,Y ) ∼= HomDb(rep(Q))(X,Y )⊕DHomDb(rep(Q))(Y, τ
2
D
X).

(2) If X 6∈ IQ and Y ∈ IQ, then Hom C (Q)(X,Y [−1]) ∼= HomDb(rep(Q))(X, τ
−
D
Y ).

(3) If X ∈ IQ and Y 6∈ IQ, then Hom C (Q)(X[−1], Y ) ∼= DHomDb(rep(Q))(Y, τDX).

Proof. Since Db(rep(Q)) has almost split triangles, there exists a Serre duality

HomDb(rep(Q)(M,N [1]) ∼= DHomDb(rep(Q))(N, τDM)
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for all M,N ∈ Db(rep(Q)); see [25, (I.2.4)]. We shall prove only Statement (1),
since the other two statements can be shown in a similar fashion. Since rep(Q) is
hereditary, we deduce from the definition of F that

Hom C (Q)(X,Y ) = HomDb(rep(Q))(X,Y )⊕HomDb(rep(Q))(X,FY ).

Since FY = (τ−
D
Y )[1], we deduce from the Serre duality that

HomDb(rep(Q))(X,FY ) ∼= DHomDb(rep(Q))(τ
−
D
Y, τ

D
X) ∼= DHomDb(rep(Q))(Y, τ

2
D
X).

The proof of the lemma is completed.

The following consequence is useful for our future investigation.

2.7. Corollary. Let Q be a locally finite quiver with no infinite path, and let
X ∈ PQ and Y ∈ Γ rep(Q). If X = Px for some x ∈ Q0 or Y 6∈ PQ, then

HomC (Q)(X,Y ) ∼= Hom rep(Q)(X,Y ).

Proof. We claim that HomDb(rep(Q))(Y, τ
2
D
X) = 0. Indeed, since τ2

D
Px = τ

Q
Ix[−1],

this is evident in case X = Px. Assume that Y 6∈ PQ. Since X ∈ PQ, either
τ2
D
X ∈ IQ[−1] or τ2

D
X ∈ PQ. In the first case, the claim holds. In the second case,

Homrep(Q)(Y, τ
2
D
X) = 0 by Lemma 2.1. This establishes the claim. Now, the result

follows from Lemma 2.6(1). The proof of the corollary is completed.

The following result shows the existence of cluster-tilting subcategories in C (Q).

2.8. Proposition. Let Q be a locally finite quiver with no infinite path. The strictly
additive subcategory P of C (Q) generated by the representations Px with x ∈ Q0

is cluster-tilting.

Proof. Since C (Q) is 2-Calabi-Yau, the Auslander-Reiten translation τC for C (Q)
coincides with its shift functor. Given x, y ∈ Q0, we have τCPy = Iy[−1] and
τ−
D
Iy = Py[1]. In view of Lemma 2.6(2), we obtain

HomC (Q)(Px, Py[1]) = HomC (Q)(Px, Iy[−1])

∼= HomDb(rep(Q))(Px, τ
−
D
Iy)

= HomDb(rep(Q))(Px, Py[1]),
= 0.

Let X ∈ C (Q)\P. We may assume that X ∈ F (Q), the fundamental do-
main of C (Q). If X ∈ Γ rep(Q), then X[1] = τCX = τ

Q
X ∈ Γ rep(Q). Choosing

x ∈ supp(τ
Q
X), by Lemma 2.6(1), we obtain HomC (Q)(Px, X[1]) 6= 0. Otherwise,

X = Y [−1], for some Y ∈ IQ. Choosing y ∈ supp(Y ), in view of Lemma 2.6(1),
HomC (Q)(Py, X[1]) 6= 0. Thus, P is weakly cluster-tilting.

Let Z ∈ F (Q). We claim that HomC (Q)(Z,−) and HomC (Q)(−, Z) vanish on
all but finitely many indecomposable objects of P. Suppose first that Z ∈ Γ rep(Q).

Then τ2
D
Z = τ2

Q
Z if the latter is defined, and otherwise, τ2

D
Z ∈ IQ[−1]. Let x ∈ Q0

be such that supp(Px) intersects neither supp(Z) nor supp(τ2
Q
Z). By Corollary 2.7,

HomC (Q)(Px, Z) = 0, and by Lemma 2.6(1), HomC (Q)(Z,Px) = 0. Similarly, we
can establish the claim in case Z ∈ IQ[−1]. This shows that P is covariantly and
contravariantly bounded in C (Q). By Lemma 1.2, P is functorially finite in C (Q).
The proof of the proposition is completed.
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For the rest of this section, we shall concentrate on the infinite Dynkin case.

2.9. Proposition. Let Q be an infinite Dynkin quiver with no infinite path. The
connected components of Γ

C(Q)
consist of the connecting component of shape ZQop

and r regular components of shape ZA∞, where

(1) r = 0 if Q is of type A∞;

(2) r = 1 if Q is of type D∞;

(3) r = 2 if Q is of type A∞∞; and in this case, the two regular components are
orthogonal.

Proof. It is known that Γ rep(Q) has 0, 1, 2 regular components in case Q is of
type A∞, D∞, A∞∞, respectively; see [3, (5.16),(5.17),(5.22)]. All statements of the
proposition, except for the second part of Statement (3), follow from Theorem 2.5.
Suppose that Q is of type A∞∞. Let R,S be the two distinct regular components of
Γ rep(Q) which, by Proposition 2.3, are orthogonal in rep(Q). Let X ∈ R and Y ∈ S.

Since τ2
D
X = τ2

Q
X, we deduce from Lemma 2.6(1) that Hom C (Q)(X,Y ) = 0. The

proof of the proposition is completed.

An object X of C (Q) is called a brick if EndC (Q)(X) is one-dimensional over k;
and rigid if HomC (Q)(X,X[1]) = 0.

2.10. Corollary. Let Q be an infinite Dynkin quiver with no infinite path. Then
every indecomposable object of C (Q) is a rigid brick.

Proof. Let X be an indecomposable object of C (Q). Since τC is an auto-equivalence
of C (Q), we may assume that X, τCX ∈ Γ rep(Q). Let Γ be the connected com-

ponent of ΓDb(rep(Q)) containing X. Since Γ is standard with no oriented cy-

cle; see [24, (2.3)], HomDb(rep(Q))(X, τDX) = 0, HomDb(rep(Q))(X, τ
2
D
X) = 0, and

EndDb(rep(Q))(X) is one-dimensional. Thus, EndC (Q)(X) is one-dimensional by

Lemma 2.6(1). Moreover, we have

HomC (Q)(X,X[1]) ∼= HomC (Q)(X, τDX)
∼= HomDb(rep(Q))(X, τDX)⊕DHomDb(rep(Q))(τDX, τ

2
D
X)

= 0.

The proof of the corollary is completed.

More generally, a strictly additive subcategory T of C (Q) is called rigid if
HomC (Q)(X,Y [1]) = 0, for X,Y ∈ T ; and maximal rigid if it is rigid and maximal
with respect to the rigidity property. A weakly cluster-tilting subcategory of C (Q)
is clearly maximal rigid, and the converse is not true in general; see [6, (1.3)].

2.11. Lemma. Let Q be an infinite Dynkin quiver with no infinite path. If T is a
strictly additive subcategory of C (Q), then it is weakly cluster-tilting if and only if
it is maximal rigid in C (Q).

Proof. Let T be a strictly additive subcategory of C (Q), which is maximal rigid.
Let M ∈ C (Q) be indecomposable such that HomC (Q)(T ,M [1]) = 0. Since C (Q)
is 2-Calabi-Yau, HomC (Q)(M, T [1]) = 0. By Corollary 2.10, M is rigid in C (Q).
Hence, the strictly additive subcategory of C (Q) generated by M and T is rigid.
Since T is maximal rigid, M ∈ T . The proof of the lemma is completed.

The following result is essential for our investigation.
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2.12. Proposition. Let Q be a quiver with no infinite path of type A∞ or A∞∞. If

X,Y ∈ C (Q) are indecomposable, then HomC (Q)(X,Y ) is at most one dimensional.

Proof. Let X,Y ∈ F (Q). Since Γ C (Q) is stable and τC is an auto-equivalence of
C , we may assume that X,Y ∈ Γ rep(Q). In particular, X,Y are preprojective or
regular representations. If X,Y 6∈ PQ, then the result follows from Proposition 2.9.
If X ∈ PQ and Y 6∈ PQ, then the result follows from Corollary 2.7 and Lemma 2.2.
IfX 6∈ PQ and Y ∈ PQ, then the result follows from Lemmas 2.1 and 2.6(1). Finally,
assume that X,Y ∈ PQ. In particular, X,Y lie in the connecting component CQ
of ΓDb(rep(Q)), which is standard without oriented cycles; see [3, (7.9)] and [24,

(2.3)]. In particular, CQ contains no path X  Y or no path Y  τ2
D
X. Thus,

HomDb(rep(Q))(X,Y ) = 0 or HomDb(rep(Q))(Y, τ
2
Q
X) = 0. Now, the result follows

from Lemmas 2.2 and 2.6(1). The proof of the proposition is completed.

We are ready to present the main result of this section. We shall say that a pair
(X,Y ) of indecomposable objects of C (Q) is rigid if Hom C (Q)(X,Y [1]) = 0.

2.13. Theorem. Let Q be a quiver of type A∞ or A∞∞ with no infinite path. Then
C (Q) is a cluster category.

Proof. By Theorem II.1.6 in [4] and Lemmas 2.8 and 2.11, it suffices to show that the
quiver of every cluster-tilting subcategory of C (Q) has no oriented cycle of length
two. If this is not the case, then there exists a rigid pair (X,Y ) of distinct indecom-
posable objects of F (Q) such that Hom C (Q)(X,Y ) 6= 0 and Hom C (Q)(Y,X) 6= 0.

Since τC is an auto-equivalence of C (Q), we may assume that τ2
C
X, τ2

C
Y ∈ Γ rep(Q).

Then it follows from Lemma 2.6(1) that

Hom C (Q)(X,Y ) ∼= Hom rep(Q)(X,Y )⊕DHom rep(Q)(Y, τ
2
Q
X) (∗)

Suppose that Hom rep(Q)(X,Y ) 6= 0. By Lemma 2.2(1), Hom rep(Q)(Y,X) = 0.

Then, Hom rep(Q)(X, τ
2
Q
Y ) 6= 0. Since HomC (Q)(X, τQY ) = HomC (Q)(X,Y [1]) = 0,

we obtain Homrep(Q)(X, τQY ) = 0.

Let Γ be the connected component of ΓDb(rep(Q)) containing X. Then, Γ is stan-

dard of shape ZA∞ or ZA∞∞; see [24, (2.3)] and [3, (7.9)]. If Y ∈ Γ , by Proposition

1.1, both τ2
D
Y and Y lie in the forward rectangle RX of X. Being convex, RX also

contains τ
D
Y . Applying again Proposition 1.1, HomDb(rep(Q))(X, τDY ) 6= 0, a con-

tradiction. Therefore, Y lies in a connected component Ω of ΓDb(rep(Q)) different
from Γ . Then, Q is of type A∞∞ by Proposition 2.9. Since X,Y are preprojective
or regular representations, by Lemma 2.1, X ∈ PQ and Y is regular. This implies
that Ω is a regular component of Γ rep(Q). By Proposition 2.4, Ω has an infinite
wing W(S) such that, for each Z ∈ Ω , we have Homrep(Q)(X,Z) 6= 0 if and only if

Z ∈ W(S). In particular, Y, τ2
Q
Y ∈ W(S), and consequently, τ

Q
Y ∈ W(S). That

is, Hom rep(Q)(X, τQY ) 6= 0, a contradiction. Thus, Hom rep(Q)(X,Y ) = 0.

Similarly, we can show that Hom rep(Q)(Y,X) = 0. In view of the isomorphism

(∗), we obtain Hom rep(Q)(Y, τ
2
Q
X) 6= 0 and Hom rep(Q)(X, τ

2
Q
Y ) 6= 0. Since every

connected component of Γ rep(Q) is standard without oriented cycles, X and Y lie
in two different connected components of Γ rep(Q). Since X,Y are preprojective
or regular, by Lemma 2.1, both X and Y are regular. Then Q is of type A∞∞ by
Proposition 2.9 and this contradicts Proposition 2.3. The proof of the theorem is
completed.
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3. Triangulations of an infinite strip with marked points

The objective of this section is to study triangulations of an infinite strip with
marked points in the plane, which will serve as a geometric model for our cluster
categories of type A∞∞; compare [15, 16].

For the rest of this paper, we denote by B∞ the infinite strip in the plane of
the points (x, y) with 0 ≤ y ≤ 1. The points li = (i, 1), i ∈ Z, are called the
upper marked points; and ri = (−i, 0), i ∈ Z, the lower marked points. An upper
or lower marked point will be simply called a marked point. By a simple curve in
B∞ we mean a curve which does not cross itself and joins two (maybe identical)
marked points called endpoints. A simple curve is called internal if it intersects the
boundary of B∞ only at the endpoints. Two distinct simple curves in B∞ are said
to cross if they have a common point which is not an endpoint of any of the curves.

Let p, q be distinct marked points in B∞. There exists a unique isotopy class
of internal simple curves in B∞ joining p and q, which is called the segment of
endpoints p, q; and is written as [p, q] or [q, p]. A segment [p, q] is called an edge
if {p, q} = {li, li+1} or {p, q} = {ri, ri+1} for some i ∈ Z; and otherwise, an arc.
More explicitly, an arc in B∞ is a segment of the form [li, lj ] with |i− j| > 1 called
an upper arc, or [ri, rj ] with |i − j| > 1 called a lower arc, or [li, rj ] with i, j ∈ Z
called a connecting arc. We shall denote by arc(B∞) the set of arcs in B∞, which
is equipped with a translation τ as defined below.

3.1. Definition. (1) For a marked point p in B∞, we define its translate τp to be
li+1 if p = li; and ri+1 if p = ri.

(2) For an arc u = [p, q] in B∞, we define its translate τu to be the arc [τp, τq].

Remark. The translation τ is a permutation on the marked points and on the
arcs. Its inverse will be written as τ−.

One says that two arcs u, v cross, or (u, v) is a crossing pair, if every curve in u
crosses each of the curves in v. Clearly, an arc does not cross itself, two crossing
arcs do not share a common endpoint, and an upper arc does not cross any lower
arc. The following easy observation will be frequently used without a reference.

3.2. Lemma. Let (u, v) be a crossing pair of arcs in B∞.

(1) If u = [li, lj ] with i < j, then v = [lp, rq] with i < p < j; or v = [lp, lq] with
i < p < j < q or p < i < q < j.

(2) If u = [ri, rj ] with i > j, then v = [lp, rq] with i > q > j; or v = [rp, rq] with
i > p > j > q or p > i > q > j.

(3) If u = [li, rj ], then v = [lp, lq] with p < i < q; or v = [rp, rq] with p > j > q; or
v = [lp, rq] with i > p and j > q or i < p and j < q.

Remark. By Lemma 3.2, a pair of arcs (u, v) is crossing if and only if so is (τu, τv).
Moreover, an arc u crosses both τu and τ−u.

The connecting arcs in B∞ play a special role in our investigation.

3.3. Lemma. The set of connecting arcs in B∞ is partially ordered in such a way
that [li, rj ] ≤ [lr, rs] if and only if i ≤ r and j ≥ s. In particular, two connecting
arcs are comparable if and only if they do not cross.
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The following notion is our main objective of study in this section.

3.4. Definition. A maximal set T of pairwise non-crossing arcs in B∞ is called a
triangulation of B∞.

Example. The following picture shows a triangulation of B∞ :

· · · · · ·

l−6 l−5 l−4 l−3 l−2 l−1 l0 l1 l2 l3 l4 l5 l6 l7

r6 r5 r4 r3 r2 r1 r0 r−1 r−2 r−3 r−4 r−5 r−6 r−7

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

We shall study some properties of connecting arcs of a triangulation. Given a
triangulation T of B∞, we denote by C(T) the set of connecting arcs of T.

3.5. Lemma. Let T be a triangulation of B∞, and let p be an integer.

(1) If there exist infinitely many i < p such that [li, lji ] ∈ T for some ji ≥ p or

infinitely many j > −p such that [lij , rj ] ∈ T for some ij ≥ p, then no li with

i < p is an endpoint of an arc of C(T).
(2) If there exist infinitely many i > p such that [lji , li] ∈ T for some ji ≤ p or

infinitely many j < −p such that [lij , rj ] ∈ T for some ij ≤ p, then no li with

i > p is an endpoint of an arc of C(T).

Proof. We shall prove only Statement (1). Consider a connecting arc v = [lr, rs]
with r < p. If the first situation in Statement (1) occurs, then there exists some
integer i < r such that [li, lji ] ∈ T for some ji ≥ p. In this case, v crosses [li, lji ],
and hence, v /∈ T. If the second situation occurs, then there exists some j > s such
that [lij , rj ] ∈ T for some ij ≥ p. In this case, v crosses [lij , rj ], and hence, v /∈ T.
The proof of the lemma is completed.

Remark. A similar statement holds for lower marked points.

Let T be a triangulation of B∞. For each arc u in B∞, we shall denote by Tu
the set of arcs of T crossing u.

3.6. Lemma. Let T be a triangulation of B∞ containing connecting arcs, and let u
be an arc in B∞. If Tu is infinite, then some marked point in B∞ is an endpoint
of infinitely many arcs in Tu.

Proof. Assume that Tu is infinite. If u is not a connecting arc, then the lemma is
evident. Suppose that u is a connecting arc. Choose v ∈ C(T). Clearly, u 6= v.
If u, v do not cross, then they enclose a bounded region of B∞ having only finitely
many marked points. Then each arc in Tu has an endpoint in the enclosed region.
So the lemma holds in this case. If u, v crosses, then they enclose two bounded
regions of B∞, each having only finitely many marked points. Again, each arc in
Tu has an endpoint in one of these regions. The proof of the lemma is completed.

An upper marked point li in B∞ is said to be covered by an upper arc [lr, ls] if
r < i < s; and a lower marked point rj is covered by a lower arc [rp, rq] if p > j > q.
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3.7. Lemma. Let T be a triangulation of B∞. If C(T) is empty, then one of the
following situations occurs.

(1) Every upper marked point in B∞ is an endpoint of at most finitely many upper
arcs of T and covered by infinitely many upper arcs of T.

(2) Every lower marked point in B∞ is is an endpoint of at most finitely many
lower arcs of T and covered by infinitely many lower arcs of T.

Proof. Assume that neither of the two statements holds. We claim that some upper
marked point lp is not covered by any upper arc of T. If some upper marked point
ls is an endpoint of infinitely many upper arcs of T, since the arcs in T do not cross
each other, ls is not covered by any upper arc of T. Otherwise, since Statement (1)
does not hold, some upper marked point lt is covered only by a finite set S of upper
arcs of T. We may assume that S is non-empty. Let p be minimal for which lp is
an endpoint of an arc in S. Using again the fact that the arcs in T do not cross
each other, we see that lp is not covered by any upper arc of T. This establishes
our claim. Similarly, there exists a lower marked point rq which is not covered by
any lower arc of T. If C(T) = ∅, then [lp, rq] does not belong to T and does not
cross any of the arcs of T, a contradiction. The proof of the lemma is completed.

Let T be a triangulation of B∞. An upper marked point lp is called left T-
bounded if [li, lp], [lp, rj ] ∈ T for at most finitely many i < p and at most finitely
many j > −p ; and left T-unbounded if [li, lp], [lp, rj ] ∈ T for infinitely many
i < p and infinitely many j > −p. Moreover, lp is called right T-bounded if
[lp, li], [lp, rj ] ∈ T for at most finitely many i > p and at most finitely many
j < −p ; and right T-unbounded if [lp, li], [lp, rj ] ∈ T for infinitely many i > p and
infinitely many j < −p. In a similar manner, we shall define a lower marked point
to be left T-bounded, left T-unbounded, right T-bounded, and right T-unbounded.
Note that, in these definitions, not bounded does not mean unbounded.

3.8. Lemma. Let T be a triangulation of B∞ with [lp, rq] ∈ C(T).

(1) If lp is left (respectively, right) T-bounded, then some li with i < p (respectively,
i > p) is an endpoint of an arc of C(T) .

(2) If rq is left (respectively, right) T-bounded, then some rj with j > q (respectively,
j < q) is an endpoint of an arc of C(T).

Proof. We shall prove only the first part of Statement (1). Assume that no li with
i < p is an endpoint of any arc of C(T) and lp is left T-bounded. Then there exists
at most finitely many i < p − 1 such that [li, lp] ∈ T and we may suppose that q
is maximal such that u = [lp, rq] ∈ C(T). Define r = p− 1 if [li, lp] /∈ T for every
i < p − 1; and otherwise, let r < p − 1 be minimal such that [lr, lp] ∈ T. By the
first part of the assumption, v = [lr, rq] /∈ T. Hence, v crosses some arc w of T.

Since w does not cross u, it is not a lower arc. If w is a connecting arc, using again
the assumption, we obtain w = [lp, rm] with m > q, contrary to the maximality of
q. Hence, w = [ls, lt] with s < r < t ≤ p. If t = p, then r ≤ s by definition, a
contradiction. If t < p, then r < p− 1, and by definition, [lr, lp] ∈ T which crosses
w, a contradiction. The proof of the lemma is completed.

Let Σ be a set of arcs in B∞. We shall denote by τΣ the set of arcs of the form
τu with u ∈ Σ ; and by τ−Σ the set of arcs of the form τ−v with v ∈ Σ .



16 SHIPING LIU AND CHARLES PAQUETTE

3.9. Definition. A set Ω of arcs in B∞ is called compact if it admits a finite subset
Σ such that every arc in Ω crosses some arc of τΣ as well as some arc of τ−Σ .

Since every arc u crosses τu and τ−u, a finite subset of arc(B∞) is compact by
definition. A subset of a set is called co-finite if its complement is finite.

3.10. Lemma. Let Ω be a set of arcs in B∞. If Ω has a compact co-finite subset,
then Ω is compact.

Proof. Assume that Ω has a compact co-finite subset Θ , with Σ a finite subset of
Θ satisfying the condition stated in Definition 3.9. Let Λ be the union of Σ and the
complement of Θ in Ω , which is finite by the assumption. In particular, τΣ ⊆ τΛ
and τ−Σ ⊆ τ−Λ. Let u be an arc in B∞. If u ∈ Θ , then it crosses some arc of
τΣ and some arc of τ−Σ . Otherwise, u ∈ Λ, which crosses both τu and τ−u. The
proof of the lemma is completed.

The following notion is essential for describing the cluster-tilting subcategories
of a cluster category of type A∞∞ in the next section.

3.11. Definition. A triangulation T of B∞ is called compact if Tu is compact for
every arc u in B∞.

The rest of this section is devoted to finding a criterion for a triangulation of B∞
to be compact. We start with some properties of a compact triangulation.

3.12. Lemma. Let T be a compact triangulation of B∞, and let p, q be integers.

(1) If [li, lp] ∈ T for infinitely many i < p (respectively, i > p), then lp is left

(respectively, right) T-unbounded.

(2) If [rj , rq] ∈ T for infinitely many j > q (respectively, j < q), then rq is left

(respectively, right) T-unbounded.

Proof. We shall prove only the first part of Statement (1). Assume that [li, lp] ∈ T
for infinitely many i < p. We shall need to show that [lp, rj ] ∈ T for infinitely
many j > −p. Suppose that this is not the case. Then, there exists an integer q
such that [lp, rj ] /∈ T for all j > q. Consider the connecting arc u = [lp−1, rq].
By the assumption, [li, lp] ∈ Tu for infinitely many i < p− 1. Being compact, Tu
has a finite subset Σ satisfying the condition stated in Definition 3.9. Observe that
there exists an integer t < p − 1 such that [lj , lp] 6∈ Σ for all j < t. Moreover,
w = [lr, lp] ∈ Tu for some r < t.

We claim that w does not cross τ−v for any v ∈ Σ . Indeed, this is trivial if v
is a lower arc in Σ . Assume that v is a connecting arc in Σ . Then v = [lm, rn]
with m > p − 1 and n > q, or else, m < p − 1 and n < q. Since v does not cross
any of the infinitely many arcs [li, lp] of Tu with i < p− 1, we see that m > p− 1
and n > q. By the assumption on q, we obtain m > p. Since w = [lr, lp] with
p ≤ m− 1, it does not cross τ−v = [lm−1, rn−1].

Suppose now that v is an upper arc in Σ . Then v = [lm, ln] with m < p−1 < n.
Since v does not cross any of the infinitely many arcs [li, lp] ∈ Tu with i < p, we
have n = p, that is, v = [lm, lp] with m < p−1. By the assumption on t, we obtain
t ≤ m. Since w = [lr, lp] with r ≤ m−1, it does not cross τ−v = [lm−1, lp−1]. This
establishes our claim, a contradiction. The proof of the lemma is completed.
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Let T be a triangulation of B∞. It follows from Lemma 3.3 that C(T) is well
ordered whenever it is not empty.

3.13. Proposition. Let T be a triangulation of B∞. If T is compact, then C(T)
is a double-infinite chain.

Proof. Let T be compact. Suppose that C(T) is empty. By Lemma 3.7, we may
assume that every upper marked point is an endpoint of at most finitely many
upper arcs of T and covered by infinitely many upper arcs of T. Consider the arc
u0 = [l0, r0]. Since every upper arc covering l0 crosses u0, the set U(Tu0) of upper
arcs of Tu0

is infinite. Being compact, Tu0
has a finite subset Σ satisfying the

condition stated in Definition 3.9. There exist r0, s0 such that no li with i < r0 or
i > s0 is an endpoint of any arc of Σ . Since each upper marked point is an endpoint
of at most finitely many arcs of U(Tu0), the infinite set U(Tu0) contains an arc
u1 = [lr1 , ls1 ] with r1 < r0 − 1 and s1 > s0 + 1. Let v ∈ Σ . By the assumption on
r0, s0, either v = [lr, ls] with r0 ≤ r < s ≤ s0 or v is a lower arc. In either case, u1
does not cross τ−v or τv, a contradiction. This shows that C(T) 6= ∅.

By Lemma 3.3, C(T) is well ordered. Suppose that C(T) has a minimal element
[lp, rq]. Since arc(T) contains no crossing pair, we deduce from the minimality of
[lp, rq] that no li with i < p is an endpoint of an arc of C(T). By Lemma 3.8(1), lp
is not left T-bounded, and by Lemma 3.12(1), lp is left T-unbounded. In particular,
[lp, rj ] ∈ T for some j > q, contrary to the minimality of [lp, rq]. Similarly, one can
show that C(T) has no maximal element. Since every interval in C(T) is evidently
finite, C(T) is a double infinite chain. The proof of the proposition is completed.

Let T be a triangulation of B∞. A marked point p in B∞ is called a left T-
fountain base if p is left T-unbounded but right T-bounded. In this case, if p = lp,
then the set of arcs in T of the form [li, lp] with i < p − 1 or [lp, rj ] with j > −p
is called a left fountain of T at p; and if p = rq, then the set of arcs in T of the
form [ri, rq] with i > q + 1 or [lj , rq] with j < −q is called a left fountain of T at
p. In a dual fashion, we define a right T-fountain base and a right fountain of T
at a right fountain base. Further, a marked point p is called a full T-fountain base
if p is left and right T-unbounded; and in this case, the set of arcs of T having p
as an endpoint is called a full fountain of T at p. For brevity, a left, right or full
T-fountain base p will be simply called a T-fountain base; and the left, right or full
fountain at p will be simply called the fountain at p and denoted by FT(p).

3.14. Lemma. Let T be a triangulation of B∞, containing at least one fountain.

(1) If p is a full T-fountain base, then it is the unique T-fountain base and it is an
endpoint of all connecting arcs of T.

(2) If p, q are two distinct T-fountain bases, then they are the only T-fountain
bases with one being a left T-fountain base and the other one being a right
T-fountain base.

Proof. Assume that some upper marked point lp is left T-unbounded. We claim
that lp is the only left T-unbounded marked point in B∞ and none of the li with
i < p is an endpoint of some connecting arc of T. Indeed, the second part of the
claim follows from Lemma 3.5(1). As a consequence, the li with i < p and the rj
with j ∈ Z are not left T-unbounded. Since p is a T-fountain base, T contains a
connecting arc [lp, rq]. Since arc(T) contains no crossing pair, [li, lj ] with i < p < j
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does not belong to T. In particular, no lj with j > p is left T-unbounded. This
establishes our claim.

Suppose now that p is a full T-fountain base. We shall consider only the case
where p is an upper marked point, say p = lp. By our claim and its dual, p is
the only T-fountain base. Moreover, no li with i 6= p is an end-point of some
connecting arc of T. Thus, p is an endpoint of all connecting arcs of T. This
establishes Statement (1). Finally, Statement (2) follows from the first part of the
claim and its dual. The proof of the lemma is completed.

3.15. Lemma. Let T be a triangulation of B∞, and let v be an arc in B∞. If v
crosses infinitely many arcs of a full fountain of T, then Tv is compact.

Proof. Assume that v crosses infinitely many arcs of a full fountain FT(p) of T. We
shall consider only the case where p is an upper marked point, say p = lp for some
p ∈ Z. Then, v is evidently not a lower arc.

Suppose that v is an upper arc. Then v = [lr, ls] with r < p < s. Let i0 with
i0 < r be maximal such that v1 = [li0 , lp] ∈ T, and let j0 with j0 > s be minimal
such that v2 = [lp, lj0 ] ∈ T. We claim that Tv ∩ FT(p) is co-finite in Tv. Indeed,
let u be an arc in Tv but not in FT(lp). Then u is not a lower arc, and by Lemma
3.14(1), it is an upper arc. Since u does not cross v1 or v2, we see that u = [li, lj ]
with i0 ≤ i < r < j < p or p < i < s < j ≤ j0. Therefore, our claim holds.
In order to prove that Tv is compact, by Lemma 3.10, it suffices to show that
Tv ∩ FT(lp) is compact. Note that v1, v2 ∈ Tv ∩ FT(lp) with τv1 = [li0+1, lp+1] and
τ−v2 = [lp−1, lj0−1]. Let w ∈ Tv ∩ FT(lp). If w is an upper arc, then we deduce
from the maximality of i0 and the minimality of j0 that w = [lm, lp] with m ≤ i0 or
w = [lp, ln] with j0 ≤ n. In the first situation, since m < i0 + 1 < r+ 1 ≤ p < p+ 1
and m < r ≤ p− 1 < p < s ≤ j0 − 1, we see that w crosses both τv1 and τ−v2. In
the second situation, since i0 + 1 ≤ r < p < p+ 1 ≤ s < n and p < s ≤ j0 − 1 < n,
we see that w crosses both τv1 and τ−v2. Hence, Tv ∩ FT(lp) is indeed compact.
In a similar way, one can deal with the case where v is a connecting arc. The proof
of the lemma is completed.

Let T be a triangulation of B∞. For a marked point p, we shall denote by ET(p)
the set of arcs of T having p as an endpoint. If p is a T-fountain base, then the
T-fountain FT(p) is by definition a co-finite subset of ET(p).

3.16. Lemma. Let T be a triangulation of B∞ with p a left or right T-fountain
base, and let v be an arc in B∞. If v crosses infinitely many arcs of FT(p), then
Tv ∩ FT(p) is compact and co-finite in ET(p).

Proof. We shall consider only the case where p is a left T-fountain base and p = lp
for some p ∈ Z. Assume that v crosses infinitely many arcs of FT(p). Then v is
not a lower arc, since every lower arc crosses at most finitely many arcs of FT(lp).
Since lp is right T-bounded, one of the endpoints of v is lr with r < p. That is,
v = [lr, ls] with r < p < s or v = [lr, rs] with r < p and s ∈ Z.

Let w ∈ FT(p), which does not cross v. If v = [lr, ls], then w = [lj , lp] with
r ≤ j < p−1. If v = [lr, rs], then w = [lj , lp] with r ≤ j < p−1 or w = [lp, rt] with
−p < t ≤ s. Thus, Tv ∩ FT(p) is co-finite in FT(p), and then, co-finite in ET(p).

We shall show that Tv ∩ FT(p) is compact. Since lp is left T-unbounded, there
exists a maximal m (< r) such that v1 = [lm, lp] ∈ T. Clearly, v1 ∈ Tv∩FT(lp). Let
u ∈ Tv ∩ FT(lp). If u is a connecting arc, then u = [lp, rt] for some t > −p, which
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crosses τv1 = [lm+1, lp+1]. Otherwise, u = [lt, lp] with t < r. By the maximality of
m, we obtain t ≤ m, Therefore, u crosses τv1 = [lm+1, lp+1].

Next, in case v = [lr, ls], let n > −p be minimal such that [lp, rn] ∈ T; and
in case v = [lr, rs], let n > max{−p, s} be minimal such that [lp, rn] ∈ T. In
either case, set v2 = [lp, rn]. Clearly v2 ∈ Tv ∩ FT(lp). Let u ∈ Tv ∩ FT(lp). If u
is an upper arc, then u = [lt, lp] with t < r, which crosses τ−v2 = [lp−1, rn−1].
Otherwise, u = [lp, rt], where t > −p, and t > s in case v = [lr, rs]. By the
minimality of n, we obtain t ≥ n. Hence, u crosses τ−v2 = [lp−1, rn−1]. This shows
that Tv ∩ FT(p) is compact. The proof of the lemma is completed.

Let T be a triangulation of B∞. A marked point in B∞ is said to be T-bounded
if it is both left and right T-bounded, or equivalently, it is an endpoint of at most
finitely many arcs of T.

3.17. Lemma. Let T be a triangulation of B∞ such that every marked point in B∞
is either T-bounded or an endpoint of infinitely many connecting arcs of T. Then
every marked point in B∞ is either T-bounded or a T-fountain base.

Proof. Let p be a marked point, which is an endpoint of infinitely many arcs in
C(T). It suffices to show that p is a T-fountain base. Let Cp(T) denote the arcs
of C(T) having p as an endpoint. We shall consider only the case where p = lp for
some p ∈ Z. Being infinite and well-ordered, Cp(T) has no minimal element or no
maximal element. We may assume that the first case occurs.

We claim that p is left T-unbounded. Indeed, having no minimal element,
[lp, rj ] ∈ Cp(T) for infinitely many j > −p. Since arc(T) contains no crossing
pair, no li with i < p is an endpoint of a connecting arc of T. By the assumption
stated in the lemma, li with i < p is T-bounded. Suppose that the claim is false.
Then [li, lp] ∈ T for at most finitely many i < p. Define s = p − 1 if [lj , lp] 6∈ T
for every j < p− 1; and otherwise, let s < p− 1 be minimal such that [ls, lp] ∈ T.
Since ls is an endpoint of at most finitely many arcs of T, we may define t = s− 1
if [li, ls] /∈ T for every i < s− 1; and otherwise, let t < s− 1 be minimal such that
[lt, ls] ∈ T. Consider the upper arc v = [lt, lp] 6∈ T. Observe that v does not cross
any arc in C(T). Therefore, v crosses some upper arc u of T. Since u does not
cross any arc of Cp(T), we obtain u = [lt1 , ls1 ] with t1 < t < s1 < p. If s < s1, then
s < p−1, and hence, [ls, lp] lies in T and crosses u, a contradiction. If s1 < s, then
t < s− 1, and hence, [lt, ls] ∈ T which crosses u, a contradiction. Thus, s1 = s, a
contradiction to the definition of t. This establishes our claim.

If Cp(T) has no maximal element, a dual argument shows that p is right T-
unbounded, and hence, it is a full T-fountain base. Assume that Cp(T) has a
maximal element u0 = [lp, rq]. If p is right T-bounded, then lp is a left T-fountain
base. Otherwise, we deduce from the maximality of u0 that [lp, lj ] ∈ T for infinitely
many j > p. Since arc(T) contains no crossing pair, u0 is the only connecting arc of
T having rq as an endpoint, and no rj with j < q is an endpoint of any connecting
arc of T. By the assumption stated in the lemma, rq is T-bounded, a contradiction
to the second part of Lemma 3.8(2). The proof of the lemma is completed.

We are ready to obtain the criterion for a triangulation to be compact.

3.18. Theorem. A triangulation T of B∞ is compact if and only if it contains
infinitely many connecting arcs, and every marked point in B∞ is either T-bounded
or an endpoint of infinitely many connecting arcs of T.



20 SHIPING LIU AND CHARLES PAQUETTE

Proof. By Lemma 3.12 and Proposition 3.13, we need only to prove the sufficiency.
Let T be a triangulation of B∞ such that C(T) is non-empty and every marked
point in B∞ is either T-bounded or an endpoint of infinitely many arcs of C(T).

Fix an arc v in B∞. We need to show that Tv is compact. For this purpose, we
may assume that Tv is infinite. By Lemma 3.6, some marked point is an endpoint
of infinitely many arcs of Tv; and by Lemma 3.17, such a marked point is a T-
fountain base. In view of Lemma 3.14, the number t of such T-fountain bases is at
most two. Let pi, with i ∈ {1, t}, be the T-fountain bases such that Tv ∩ FT(pi)
is infinite. By Lemma 3.15, we may assume that each pi with i ∈ {1, t} is a left
or right T-fountain base; and by Lemma 3.16, each Tv ∩ FT(pi) with i ∈ {1, t} is
compact and co-finite in ET(pi). It is then easy to see that ∪1≤i≤t Tv ∩ FT(pi) is

compact. By Lemma 3.10, it suffices to show the claim that ∪1≤i≤t Tv ∩ FT(pi) is

co-finite in Tv. Indeed, given any marked point q in B∞, we set

Ω(q) =

{
ET(q)\ (Tv ∩ FT(q)) , if q ∈ {p1, pt};
Tv ∩ ET(q), if q 6∈ {p1, pt},

which is finite by Lemma 3.16 and the definition of {p1, pt}. Suppose that v is
an upper arc, say v = [lr, ls] with r < s − 1. Let u be an arc in Tv but not
in FT(p1) ∪ FT(pt). Since u crosses [lr, ls], there exists some r < i < s such that

u ∈ ET(li), and by definition, u ∈ Ω(li). That is, u ∈ ∪r<i<s Ω(li). Thus, the
claim holds. Similarly, the claim holds in case v is a lower arc.

Suppose that v is a connecting arc, say v = [lr, rs]. We consider only the case
where p1 is an upper marked point and a left T-fountain base. Then p1 = lp1 for
some p1 > r, and hence, FT(p1) contains a connecting arc w = [lp1 , rq] with q > s.
Let u be an arc in Tv but not in ∪1≤i≤t FT(pi). If u is an upper arc then, since

it does not cross w, we obtain u = [li, lj ] with i < r < j ≤ p1. Then, u ∈ Ω(lj)
for some r < j ≤ p1. If u is a connecting arc, we deduce from Lemma 3.5(1) that
u = [li, rj ] with i ≥ p1 and q ≥ j > s, and hence, u ∈ Ω(rj) for some q ≥ j > s.
If u is a lower arc, we obtain u = [rj , ri] with q ≥ j > s, and hence, u ∈ Ω(rj) for
some q ≥ j > s. This establishes the claim. The proof of the theorem is completed.

Example. The following shows a compact triangulation of B∞ with two fountains.

· · · · · ·

· · · · · ·

l−3 l−2 l−1 l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 r−1 r−2 r−3

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

4. Geometric Realization of cluster categories of type A∞∞

The objective of this section is to study the cluster structure of a cluster category
of type A∞∞ in terms of the triangulations of the infinite strip with marked points
B∞, as introduced in the previous section.
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We start with some algebraic considerations. Let Q denote a quiver of type A∞∞
with no infinite path, whose vertices are the integers and whose arrows are of the
form n → (n + 1) or n ← (n + 1). Let ai, bi, i ∈ Z, be the sources and the sinks,
respectively, in Q such that bi−1 < ai < bi. Letting pi : ai  bi and qi : ai  bi−1,
i ∈ Z, be the maximal paths, we can picture Q as follows:

a−1
q−1

xx
p−1

%%

a0
p0

##
q0

zz

a1
q1

{{
p1

%%
· · · b−2 b−1 b0 b1 · · ·

By Proposition 2.9, the Auslander-Reiten quiver ΓC (Q) of C (Q) consists of three

connected components, namely, the connecting component CQ and two regular com-
ponents RR and RL. The objects in these components form the fundamental do-
main F (Q) of C (Q). We shall describe the morphisms from objects in CQ to those
in RR or RL. For this purpose, we need some notation. Observe that CQ is of
shape ZA∞∞ containing a section; see, for definition, [23, (2.1)], as follows:

...

Pa1

Pb0

&&

88

Pa0

Pb−1

%%

99

Pa−1

...

We denote by R0 the double infinite sectional path in CQ containing the path
Pb0  Pa0 , which corresponds to the path p0 : a0  b0 in Q; and by L0 the double
infinite sectional path containing the path Pb−1

 Pa0 , which corresponds to the

path q0 : a0  b−1. Put Ri = τ i
C
R0 and Li = τ i

C
L0, for each i ∈ Z. Then each object

in CQ lies in a unique Ri with i ∈ Z and in a unique Lj with j ∈ Z. Recall also that
RR,RL are orthogonal of shape ZA∞ with the string representation M(p0) being
a quasi-simple object in RR and M(q0) being a quasi-simple object in RL.

4.1. Proposition. Let M be an object in CQ. If i ∈ Z, then

(1) M ∈ Ri if and only if HomC (Q)(M, τ i
C
M(p0)) 6= 0; and in this case, for each

Y ∈ RR, one has Hom C (Q)(M,Y ) 6= 0 if and only if Y ∈ W(τ i
C
M(p0));

(2) M ∈ Li if and only if HomC (Q)(M, τ i
C
M(q0)) 6= 0; and in this case, for each

Y ∈ RL, one has Hom C (Q)(M,Y ) 6= 0 if and only if Y ∈ W(τ i
C
M(q0)).

Proof. We prove Statement (1) for i = 0. Put d(M) = dimkHomC (Q)(M,M(p0)).

Then, by Proposition 2.12, d(M) = 0 or 1; and d(M) = dimkHomrep(Q)(M,M(p0))

in case M ∈ PQ; see (2.7). In particular, for x ∈ Q0, we have d(Px) = 1 if and
only if x appears on p0 : a0  b0. Let b be the immediate predecessor of b0 in
q1 : a1  b0. Then, CQ has an arrow Pb0 → Pb with Pb ∈ R−1.
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Let M be the immediate successor of Pb0 in R0. Since M(p0) 6∼= Pb0 in rep(Q),
applying Homrep(Q)(−,M(p0)) to the almost split sequence in rep(Q) starting with

Pb0 yields a short exact sequence. Thus, d(Pb0) + d(τ−
C
Pb0) = d(M) + d(Pb). Since

d(Pb0) = 1 and d(Pb) = 0, we obtain d(M) = 1 and d(τ−
C
Pb0) = 0. By induction,

we can show that d(M) = 1 and d(τ−
C
M) = 0 if M is a successor of Pb0 in R0.

Assume that M is the immediate predecessor of P b0 in R0. Let N be the imme-
diate predecessor of Pb in R−1. Since HomC (Q)(Pb,M(p0)) = 0 and M(p0) 6∼= M
in C (Q), applying HomC (Q)(−,M(p0)) to the almost split triangle in C (Q) start-
ing with M , we obtain HomC (Q)(N ⊕ P b0 ,M(p0)) ∼= HomC (Q)(M,M(p0)). Thus,

d(M) = d(P b0) + d(N) > 0. Therefore d(M) = 1, and hence, d(N) = 0. By
induction, we have d(M) = 1 and d(τ−

C
M) = 0 if M is a predecessor of Pb0 in R0.

Suppose that d(X) = 1 for some X ∈ Rj with j 6= 0. Write X = τ j
C
Y for some

Y ∈ R0. This yields HomC (Q)(Y, τ
−j

C
M(p0)) 6= 0 and HomC (Q)(Y,M(p0)) 6= 0.

Observe that M(p0) and τ−j
C
M(p0) = τ−j

Q
M(p0) are distinct quasi-simple objects

in RR. By Proposition 2.4, Y /∈ PQ. Thus, Y = Z[−1] with Z ∈ IQ. By Lemma
2.6(3), we obtain Homrep(Q)(M(p0), τ

Q
Z) 6= 0 and Homrep(Q)(τ

−jM(p0), τ
Q
Z) 6= 0,

which contradicts the dual of Proposition 2.4.
LetM ∈ R0 and Y ∈ RR. IfM ∈ PQ, then Hom C (Q)(M,Y ) = Homrep(Q)(M,Y )

with Homrep(Q)(M,M(p0)) 6= 0. By Lemma 2.6, Hom C (Q)(M,Y ) 6= 0 if and only
if Y ∈ W(M(p0)). If M = N [−1] with N ∈ IQ, then Homrep(Q)(M(p0), τ

Q
N) 6= 0

and Hom C (Q)(M,Y ) ∼= DHomrep(Q)(Y, τQN). Thus, Hom C (Q)(M,Y ) 6= 0 if and

only if Y ∈ W(M(p0)) by the dual of Lemma 2.6. The proof is completed.

Now, we shall parameterize the indecomposable objects of C (Q) by the arcs in
B∞, that is, we shall define a bijection ϕ : F (Q) → arc(B∞). Recall that F (Q)
consists of the objects in CQ, RR and RL. For each X ∈ CQ, there exists a unique
pair (i, j) of integers such that X = Li ∩ Rj , and we set ϕ(X) = [li, rj ]. This
defines a bijection from the objects in CQ onto the connecting arcs in B∞.

Next, consider the quasi-simple object SL = τ−
C
M(q0) in RL. For i ∈ Z, denote

by L+
i the ray in RL starting with τ i

C
SL, and by L−i the coray ending with τ i

C
SL.

For each X ∈ RL, there exists a unique pair of integers (i, j) with i ≤ j such that
X = L−i ∩ L

+
j , and we set ϕ(X) = [li−1, lj+1]. This defines a bijection from the

objects in RL onto the upper arcs in B∞. In this way, the quasi-simple objects in
RL are those mapped by ϕ to [li, lj ] with |i− j| = 2.

Finally, consider the quasi-simple object SR = τ−
C
M(p0) in RR. For i ∈ Z,

denote by R+
i the ray in RR starting with τ i

C
SR; and by R−i the coray ending with

τ i
C
SR. For each object X ∈ RR, there exists a unique pair (i, j) of integers with

i ≥ j such that Y = R+
i ∩ R

−
j , and we set ϕ

R
(X) = [ri+1, rj−1] ∈ arc(B∞). This

yields a bijection from the objects in RR onto the lower arcs in B∞. Observe that
the quasi-simple objects in RR are those mapped by ϕ to [ri, rj ] with |i − j| = 2.
This concludes the definition of our bijection ϕ. To simplify the notation, for
X ∈ F (Q) and u ∈ arc(B∞), we shall write a

X
= ϕ(X) and Mu = ϕ−1(u).

The following easy observation describes the Auslander-Reiten translation and
the arrows of ΓC (Q) in terms of the arcs in B∞. Recall that arc(B∞) is equipped
with a translation τ as defined in Definition 3.1.

4.2. Lemma. Let u, v be distinct arcs in B∞, and let X be an object in F (Q).
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(1) We have τCMu = Mτu, τ
−
C
Mu = Mτ−u; and τa

X
= aτ

C
X , τ

−a
X

= aτ−
C
X .

(2) If u = [li, rj ], then there exists an arrow Mu → Mv in ΓC (Q) if and only if
v = [li, rj−1] or v = [li−1, rj ].

(3) If u = [li, lj ] with i ≤ j − 2, then there exists an arrow Mu → Mv in ΓC (Q) if
and only if v = [li, lj−1] with i < j − 2 or v = [li−1, lj ].

(4) If u = [ri, rj ] with i ≥ j + 2, then there exists an arrow Mu →Mv in ΓC (Q) if
and only if v = [ri−1, rj ] with i > j + 2 or v = [ri, rj−1].

The following result says that rigid pairs of indecomposable objects of C (Q)
correspond to non-crossing pairs of arcs in B∞.

4.3. Theorem. Let u, v be arcs in B∞. If Mu,Mv are the corresponding objects in
F (Q), then (u, v) is a crossing pair if and only if Hom C (Q)(Mu,Mv[1]) 6= 0.

Proof. By Corollary 2.10, we may assume that u 6= v. If one of u, v is an upper arc
and the other one is a lower arc, then u, v do not cross. On the other hand, one of
Mu,Mv lies in RL and the other lies in RR. The result follows from Proposition
2.9(3) in this case.

Consider the case where u, v are connecting arcs. Then Mu,Mv ∈ CQ. There
exists no loss of generality in assuming that Mu and τCMv = Mτv belong to PQ.
Recall that CQ is a standard component of ΓDb(rep(Q)) of shape ZA∞∞; see [24, (2.3)]

and [3, (7.9)]. Suppose first that (u, v) is crossing. We may assume that u = [lp, rq]
and v = [li, rj ] with i < p and j < q. By Lemma 4.2(1), CQ contains a path

Mu = M[lp,rq ] −→M[lp,rq−1] −→ · · · −→M[lp,rj+1] −→M[lp−1,rj+1]

−→M[lp−2,rj+1] −→ · · · −→M[li+1,rj+1] = Mτv,

lying in the forward rectangle of Mu. Then, HomDb(rep(Q))(Mu,Mτv) 6= 0 by Propo-
sition 1.1, and consequently, HomC (Q)(Mu,Mτv) 6= 0.

Suppose conversely that HomC (Q)(Mu,Mτv) 6= 0. Since Mu,Mτv are assumed
to be representations, by Lemma 2.6(1), either HomDb(rep(Q))(Mu,Mτv) 6= 0 or

HomDb(rep(Q))(Mτv, τ
2
D
Mu) 6= 0. Since CQ is standard in Db(rep(Q)), we obtain

a path Mu  Mτv or Mv  Mτu, that is, a path M[lp,rq ]  M[li+1,rj+1] or

M[li,rj ]  M[lp+1,rq+1] in CQ. By Lemma 4.2(1), p ≤ i+ 1 and q ≤ j+ 1 in the first

case, and i ≤ p+ 1 and j ≤ q+ 1 in the second case. Thus, (u, v) is a crossing pair.
Consider now the case where v, u are upper arcs, say u = [lp, lq] and v = [li, lj ]

with p ≤ q − 2 and i ≤ j − 2. Then Mu,Mv ∈ RL. Recall that RL is a standard
component of ΓDb(rep(Q)) of shape ZA∞; see [24, (2.3)] and [3, (7.9)]. Assume that

u crosses v, say i < p < j < q. By Lemma 4.2(3), RL contains a path

Mu = M[lp,lq ] −→M[lp,lq−1] −→ · · · −→M[lp,lj+2] −→M[lp,lj+1]

−→M[lp−1,lj+1] −→M[lp−2,lj+1] −→ · · · −→M[li+1,lj+1] = Mτv,

lying in the forward rectangle of Mu. By Proposition 1.1, Homrep(Q)(Mu,Mτv) 6= 0,
and consequently, HomC (Q)(Mu,Mτv) 6= 0.

Conversely, assume that HomC (Q)(Mu,Mv[1]) = HomC (Q)(Mu,Mτv) 6= 0. By

Lemma 2.6(1), HomDb(rep(Q))(Mu,Mτv) 6= 0 or HomDb(rep(Q))(Mτv, τ
2
D
Mu) 6= 0.

Suppose that the first case occurs. By Proposition 1.1, Mτv lies in the forward rec-
tangle ofMu. Hence,RL has an almost sectional pathMu = M[lp,lq ]  M[li+1,lj+1],

the composite of two paths M[lp,lq ]  M[lp,lj+1] and M[lp,lj+1]  M[li+1,lj+1]. This
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gives rise to i < p < j < q. If the second case occurs, then p < i < q < j. Thus,
(u, v) is a crossing pair. Similarly, we can treat the case where u, v are lower arcs.

Consider next the case where u = [lp, lq] with p ≤ q − 2 and v = [li, rj ].
By definition, we obtain Mu = L−p+1 ∩ L

+
q−1 ∈ RL and Mv = Li ∩ Rj ∈ CQ.

Since τC is an automorphism of C (Q), we may assume that Mv ∈ PQ. Since
Mu[1] = τCMu ∈ RL, by Corollary 2.7, HomC (Q)(Mv,Mu[1]) 6= 0 if and only if
HomDb(rep(Q))(Mv, τCMu) 6= 0. Since τCMu = Mτu = M[lp+1,lq+1], by Proposition

4.1(2), the latter condition is equivalent to M[lp+1,lq+1] ∈ W(τ i
C
M(q0)). Since

τ i
C
M(q0) = τ i+1

C
SL = L+

i+1 ∩ L
−
i+1 and M[lp+1,lq+1] = L−p+2 ∩ L+

q , we see that

M[lp+1,lq+1] ∈ W(τ i
C
M(q0)) if and only if i + 1 ≥ p + 2 and q ≥ i + 1, that is,

p < i < q. This last condition is evidently equivalent to u, v crossing. The case
where u is a lower arc and v is a connecting arc can be treated in a similar manner.
The proof of the theorem is completed.

The following statement is an alternative interpretation of Theorem 4.3.

4.4. Corollary. Let X,Y be objects in F (Q). Then Hom C (Q)(X,Y ) 6= 0 if and

only if (a
Y
, τa

X
) is a crossing pair if and only if (a

X
, τ−a

Y
) is crossing.

Proof. The second equivalence is evident. Since C (Q) is 2-Calabi-Yau, we have

HomC (Q)(Y, τCX[1]) = HomC (Q)(Y,X[2]) ∼= DHomC (Q)(X,Y ).

By definition, Z = Ma
Z

for every object Z ∈ F (Q). By Theorem 4.3, a
Y

crosses

aτ
C
X = τa

X
if and only if HomC (Q)(Y, τCX[1]) 6= 0, that is, Hom C (Q)(X,Y ) 6= 0.

The proof of the corollary is completed.

Given a strictly additive subcategory T of C (Q), we shall write arc(T ) for the
set of arcs a

T
with T ∈ T ∩F (Q). As an immediate consequence of Theorem 4.3

and Lemma 2.11, we obtain the following result.

4.5. Theorem. Let T be a strictly additive subcategory of C (Q). Then T is weakly
cluster-tilting if and only if arc(T ) is a triangulation of B∞.

Our main objective is to determine the triangulations of B∞ which correspond
to cluster-tilting subcategories of C (Q). For this purpose, the following technical
result is needed.

4.6. Lemma. Let f : M → N and g : N → L be non-zero morphisms between
indecomposable objects in C (Q). If HomC (Q)(M,N [1]) = 0, then HomC (Q)(M,L)
is generated by gf over k.

Proof. Suppose that {M,N} is a rigid pair and that HomC (Q)(M,L) 6= 0. By
Proposition 2.12, it suffices to show that gf 6= 0. Since τC ia an auto-equivalence,
we may assume that τ i

C
M, τ i

C
N, τ i

C
L ∈ Γ rep(Q), for −1 ≤ i ≤ 1. Let ∆ be a

connected finite full subquiver of Q which supports all these representations and is
closed under taking successors. Then, τ i

∆
(X) = τ i

Q
(X) for −1 ≤ i ≤ 1. Since every

projective representation in rep(∆) is projective in rep(Q), moreover, Db(rep(∆))
is a full triangulated subcategory of Db(rep(Q)); see [2, (1.11)]. Let F∆ = τ− ◦ [1],
where τ is the Auslander-Reiten translation of Db(rep(∆)). For X,Y ∈ {M,N,L},
we have FY = F

∆
Y , and as seen in the proof of Lemma 2.6,
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HomC (Q)(X,Y ) = HomDb(rep(Q))(X,Y )⊕HomDb(rep(Q))(X,FY )
∼= HomDb(rep(∆))(X,Y )⊕HomDb(rep(∆))(X,F∆Y ).

Since ∆ is of type An for some n > 0, it is well known that ΓDb(rep(∆)) is stan-
dard of shape ZAn; see [12, (5.5)]. By the assumption, there exists an object
N1 ∈ {N,F∆

N} and objects L1, L2 ∈ {L,F∆
L} such that N1, L1 lies in the forward

rectangle of M , and L2 lies in the forward rectangle of N1, in ΓDb(rep(∆)).

Observing that τN1
∼= τCN in C (Q), by the rigidity of (M,N) in C (Q), we

obtain HomDb(rep(∆))(M, τN1) = 0. Thus, ΓDb(rep(∆)) contains a sectional path

M  N1, which is contained in a maximal sectional path M  N1  S, where
S has only one immediate predecessor in ΓDb(rep(∆)). Then, M,N1, L1, L2 all lie

in the wing W(S) with wing vertex S; see, for definition, [26, (3.3)]. It is easy to
see that every wing in ΓDb(rep(∆)) meets each F

∆
-orbit exactly once. In particular,

L2 = L1 lies in the forward rectangle of M . In this case, the composite of any path
from M to N1 and any path from N1 to L2 in ΓDb(rep(∆)) contains no monomial
mesh relation. In particular, gf 6= 0. The proof of the lemma is completed.

We are ready to obtain the main result of this section, which characterizes the
cluster-tilting subcategories of C (Q) in terms of the triangulations of B∞.

4.7. Theorem. Let Q be a quiver of type A∞∞ with no infinite path, and let T be a
strictly additive subcategory of C (Q). The following statements are equivalent.

(1) The subcategory T is cluster-tilting.
(2) The set arc(T ) is a compact triangulation of B∞.
(3) The set arc(T ) is a triangulation containing infinitely many connecting arcs,

and every marked point in B∞ is arc(T )-bounded or an arc(T )-fountain base.

In this case, moreover, arc(T ) has at most two fountains, and if it has two, then
one of them is a left fountain and the other one is a right fountain.

Proof. In view of Theorem 3.18 and Lemmas 3.14 and 3.17, it suffices to show the
equivalence of Statements (1) and (2). By Theorem 4.5, it amounts to show that
T is functorially finite in C (Q) if and only if arc(T ) is compact in case T is weakly
cluster-tilting. Let this be the case.

Assume first that arc(T ) is compact. Let X be an indecomposable object of
C (Q). Denote by Ω the set of arcs of arc(T ) crossing τ−a

X
, which is compact

by the assumption. Let Σ be a finite subset of Ω satisfying the condition stated
in Definition 3.9. For each v ∈ Σ , since a

Mv
= v crosses τ−a

X
, we may find

a nonzero morphism fv : Mv → X in C (Q) by Corollary 4.4. We claim that
f = ⊕v∈Σ fv : ⊕v∈Σ Mv → X is a right T -approximation for X. Indeed, let T ∈ T
be indecomposable with HomC (Q)(T,X) 6= 0. By Corollary 4.4, a

T
crosses τ−a

X
,

that is, a
T
∈ Ω . Then, there exists w ∈ Σ such that a

T
crosses τ−w = τ−a

Mw
. By

Corollary 4.4, we can find a non-zero morphism gw : T → Mw in C (Q). Consider
the chosen nonzero morphism fw : Mw → X. By Lemma 4.6, every morphism
g : T → X is a multiple of fwgw. In particular, g factors through f . This establishes
our claim. Therefore, T is contravariantly finite in C (Q). Using the dual of Lemma
4.6 and the compactness of the set of arcs of arc(T ) crossing τa

X
, we may show

that T is covariantly finite in C (Q).
Suppose conversely that T is functorially finite in C (Q). Let u ∈ arc(B∞).

By the assumption, Mτu admits a minimal right T -approximation f : T → Mτu.
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We may write T = ⊕w∈Σ−Mw, where Σ− is a finite subset of arc(T ). For each
w ∈ Σ−, restricting f to Mw yields a non-zero morphism fw : Mw → Mτu. By
Corollary 4.4, a

Mw
= w crosses τ−a

Mτu
= u. This shows that Σ− ⊆ arc(T )u .

Now, for each v ∈ arc(T )u, since a
Mv

= v crosses τ−a
Mτu

= u, we deduce from

Corollary 4.4 that there exists a nonzero morphism g : Mv →Mτu. Then g factors
through f : ⊕w∈Σ−Mw → Mτu. In particular, HomC (Q)(Mv,Mv1) 6= 0 for some

v1 ∈ Σ−. By Corollary 4.4, v crosses τ−v1. Similarly, considering a minimal left
T -approximation for Mτ−u, we obtain a finite subset Σ+ of arc(T )u such that each
arc v of arc(T )u crosses some arc of Σ+. Then Σ = Σ− ∪ Σ+ is a finite subset of
arc(T )u satisfying the condition stated in Definition 3.9. Thus, arc(T )u is compact.
This shows that arc(T ) is compact. The proof of the theorem is completed.

Example. The following picture shows a compact triangulation of B∞ with two
fountains, which corresponds to a cluster-tilting subcategory of C (Q).

· · · · · ·

· · · · · ·

l−3 l−2 l−1 l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 r−1 r−2 r−3

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

We would like to conclude the paper with a final remark. Let T be a cluster-
tilting subcategory of C (Q) with an indecomposable object M . We know that there
exists a unique (up to isomorphism) indecomposable object M∗ in C (Q) but not
in T such that the additive subcategory generated by TM and M∗ is cluster-tilting.
On the geometric side, arc(T ) is a compact triangulation of B∞ and a

M
is a side of

exactly two triangles, that is, a
M

is a diagonal of a quadrilateral formed by some
arcs in arc(T ) and some edges in B∞. It is easy to see that the other diagonal u of
the quadrilateral together with the arcs in arc(T )\{a

M
} form a triangulation of B∞

satisfying the condition stated in Theorem 4.7(3). By the uniqueness, we obtain
a
M∗ = u. In other words, mutation corresponds to arc flipping.
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Québec, Canada

E-mail address: shiping.liu@usherbrooke.ca

Charles Paquette, Department of Mathematics, University of Connecticut, Storrs,

CT 06269-3009, USA
E-mail address: charles.paquette@usherbrooke.ca


