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Abstract. We extend the Galois covering theory introduced by Bongartz-
Gabriel for skeletal linear categories to general linear categories. We show

that a Galois covering between Krull-Schmidt categories preserves irreducible
morphisms and almost splits sequences. Specializing to derived categories, we
study when a Galois covering between locally bounded linear categories induces
a Galois covering between the bounded derived categories of finite dimensional

modules. As an application, we show that each locally bounded linear category
with radical squared zero admits a gradable Galois covering, which induces a
Galois covering between the bounded derived categories of finite dimensional
modules, and a Galois covering between the Auslander-Reiten quivers of these

bounded derived categories. In a future paper, this will enable us to obtain
a complete description of the bounded derived category of finite dimensional
modules over a finite dimensional algebra with radical squared zero.

Introduction

The covering technique has been playing an important role in the representation
theory of finite dimensional algebras; see, for example, [6, 8, 9, 16]. In this connec-
tion, algebras are regarded as locally bounded linear categories; see [6]. To each
Galois covering between such categories, Bongartz-Gabriel associated a push-down
functor between their module categories, which induces a Galois covering between
the Auslander-Reiten quivers in the locally representation-finite case; see [6, 8].
This technique was extended later by Asashiba by studying the induced push-down
functor between the bounded homotopy categories of finitely generated projective
modules; see [1]. Now, the push-down functor also induces an exact functor between
the bounded derived categories of finite dimensional modules. It is then natural
to ask when this derived push-down functor is a Galois covering. Unfortunately,
this question is somehow problematic, since Gabriel’s notion of a Galois covering
is only for skeletal linear categories. To overcome this difficulty, Asashiba intro-
duced the notion of a precovering and called a dense precovering a covering; see [2].
Strengthening this notion of a covering, we obtain the notion of a Galois covering for
general linear categories. As an interesting example, the bounded derived category
of finite dimensional representations of a finite acyclic quiver is a Galois covering
of the corresponding cluster category introduced in [7]. One of the nice properties
of such a Galois covering is that it preserves the Auslander-Reiten theory in case
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the categories are Krull-Schmidt. Most importantly, this provides a useful tool for
studying the bounded derived category of finite dimensional modules over a locally
bounded linear category. To give more details, we outline the content section by
section.

In Section 1, we shall deal with the problem as to when the derived category of
an abelian category has arbitrary direct sums. For this purpose, we introduce the
notion of essential direct sums and show that if an abelain category has essential
direct sums, then its derived category has direct sums. In particular, the derived
category of all modules over a locally bounded linear category has direct sums.

In Section 2, based on Asashiba’s notion of a precovering, we first define the
notion of a Galois covering for general linear categories, and then search for condi-
tions for a precovering to be a Galois covering. Moreover, we introduce the notion
of a graded adjoint pair between linear categories, and show that restricting such
an adjoint pair to appropriate subcategories yields precoverings.

In Sections 3, we show that a Galois covering between two Krull-Schmidt cate-
gories preserves irreducible morphisms and almost split sequences. In particular,
one of these categories has almost split sequences if and only the other one does.

In Section 4, we introduce the notion of a Galois covering for valued trans-
lation quivers, and show that a Galois covering between Hom-finite Krull-Schmidt
categories induces a Galois covering of their Auslander-Reiten quivers.

In Sections 5, we shall strengthen Milicic’s result that an adjoint pair of exact
functors between abelian categories induces an adjoint pair between their derived
categories; see [14], by showing that a graded adjoint pair between abelian categories
having essential direct sums induces a graded adjoint pair between their derived
categories.

In Section 6, we apply our results to study the derived push-down functor asso-
ciated to a Galois covering between locally bounded linear categories. By showing
that the push-down functor and the pull-up functor between the module categories
form a graded adjoint pair, we obtain a graded adjoint pair formed by the derived
push-down functor and the derived pull-up functor. Restricting the derived push-
down functor, we obtain a precovering between the bounded derived categories of
finite dimensional modules, and in case the group is torsion-free, it is a Galois
covering if and only if it is dense.

In Section 7, specializing to locally bounded linear categories with radical squared
zero, we prove that such a linear category admits a gradable Galois covering, which
induces a Galois covering between the bounded derived categories of finite dimen-
sional modules, and a Galois covering between the Auslander-Reiten quivers of
these derived categories.

1. Preliminaries

Throughout this paper, all categories are skeletally small, and morphisms are
composed from the right to the left. Let R be a commutative ring. An R-linear
category is a category in which the morphism sets are R-modules such that the com-
position of morphisms is R-bilinear. All functors between R-linear categories are
assumed to be R-linear. An R-linear category is called Hom-finite if the morphism
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modules are of finite R-length, additive if it has finite direct sums, and skeletal if
the endomorphisms algebras are local and the isomorphisms are automorphisms. In
the sequel, a linear category refers to a Z-linear category and an additive category
refers to an additive Z-linear category. Moreover, a Krull-Schmidt category is an
additive category in which every non-zero object is a finite direct sum of objects
with a local endomorphism algebra.

Throughout this section, A stands for an additive category, whose object class is
written as A0. We shall say that A has direct sums provided that any set-indexed
family of objects in A has a direct sum. For brevity, we assume that any family of
objects in A is always set-indexed. Let Xi, i ∈ I, be objects in A such that ⊕i∈I Xi

exists with canonical injections qj : Xj → ⊕i∈I Xi, j ∈ I. By definition, A has
unique morphisms pj : ⊕i∈I Xi → Xj , j ∈ I, called pseudo-projections, such that

(∗) piqj =

{
1
Xi
, if i = j;

0, if i ̸= j,

for all i, j ∈ I. An object M ∈ A is called essential in ⊕i∈IXi provided, for any
morphism f :M → ⊕i∈I Xi, that f = 0 if and only if pjf = 0 for all j ∈ I. If every
object in A is essential in ⊕i∈I Xi, then ⊕i∈IXi is called an essential direct sum.
By saying that A has essential direct sums, we mean that each family of objects
in A has an essential direct sum. Suppose that the product Πi∈I Xi exists with
canonical projections πj : Πi∈I Xi → Xj , j ∈ J . Then A has a canonical morphism
µ : ⊕i∈I Xi → Πi∈I Xi, which makes the diagram

⊕i∈I Xi
µ //

pj
%%KK

KKK
KKK

KKK
Πi∈IXi

πj

��
Xj

commute, for every j ∈ I. The following observation explains the essentialness of a
direct sum.

1.1. Lemma. Let A be a linear category with objects Xi, i ∈ I. If both ⊕i∈I Xi

and Πi∈I Xi exist in A, then ⊕i∈I Xi is essential in A if and only if the canonical

morphism µ : ⊕i∈I Xi → Πi∈I Xi is a monomorphism.

Proof. Suppose that both ⊕i∈I Xi and Πi∈I Xi exist in A, with canonical injec-
tions qj : Xj → ⊕i∈I Xi, pseudo-projections pj : ⊕i∈I Xi → Xj , and canonical
projections πj : Πi∈I Xi → Xj , j ∈ I. Assume first that µ : ⊕i∈I Xi → Πi∈I Xi

is a monomorphism. If f : M → ⊕i∈I Xi is such that pjf = 0 for all j ∈ I, then

πjµf = 0 for all j ∈ I. Thus µf = 0, and hence f = 0. That is, ⊕i∈I Xi is essential.
Assume conversely that ⊕i∈I Xi is essential. If g : N → ⊕i∈I Xi is such that

µg = 0, then pjg = πjµg = 0 for all j ∈ I, and hence g = 0. That is, µ is a
monomorphism. The proof of the lemma is completed.

Remark. (1) If I is finite, then µ : ⊕i∈I Xi → Πi∈I Xi is an isomorphism. There-
fore, finite direct sums are always essential.

(2) Let S be a ring. The category ModS of all left S-modules has direct sums and
products, and each direct sum embeds canonically in the corresponding product.
By Lemma 1.1, ModS has essential direct sums.
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1.2. Lemma. Let A,B be linear categories, and let F (A,B) be the category of linear
functors F : A → B. If B has (essential) direct sums, then so does F (A,B).
Proof. It is evident that F (A,B) is a linear category. Suppose that B has direct
sums. Consider a family of linear functors Fi : A → B, i ∈ I. For each a ∈ A0, let
⊕i∈IFi(a) be the direct sum of Fi(a), i ∈ I, in B with canonical injections qj(a) :
Fj(a) → ⊕i∈IFi(a) and pseudo-projections pj : ⊕i∈IFi(a) → Fj(a), j ∈ I. There
exists a unique linear functor F : A → B such that F (a) = ⊕i∈I Fi(a) for a ∈ A0.
It is easy to see that F is the direct sum of Fi, i ∈ I, with canonical injections
qj = (qj(a))a∈A0 and pseudo-projections pj = (pj(a))a∈A0 , j ∈ I. Moreover, if
⊕i∈IFi(a) is an essential direct sum for every a ∈ A0, then F is an essential direct
sum of the Fi. The proof of the lemma is completed.

Let Xi, i ∈ I, be objects in A such that ⊕i∈I Xi exists with canonical injections
qj : Xj → ⊕i∈I Xi, j ∈ I. For eachM ∈ A0, the category of abelian groups has a di-
rect sum ⊕i∈I A(M,Xi) with canonical injections uj : A(M,Xj) → ⊕i∈IA(M,Xi).
Considering the maps A(M, qj) : A(M,Xj) → A(M,⊕i∈I Xi), j ∈ I, we get a
canonical morphism ν

M
: ⊕i∈I A(M,Xi) → A(M,⊕i∈I Xi) such, for every j ∈ I,

that the following diagram commutes :

A(M,Xj)
uj //

A(M, qj) ))SSS
SSSS

SSSS
SSS

⊕i∈I A(M,Xi)

ν
M

��
A(M,⊕i∈I Xi).

In view of the equations stated in (∗), we see that ν
M

is a monomorphism. It is
important to find conditions for ν

M
to be an isomorphism.

1.3. Proposition. Let A be a linear category with a direct sum ⊕i∈I Xi. If M is
essential in ⊕i∈I Xi with A(M,Xi) = 0 for all but finitely many i ∈ I, then the

canonical morphism ν
M

: ⊕i∈I A(M,Xi) // A(M,⊕i∈I Xi) is an isomorphism.

Proof. Assume that M is essential in ⊕i∈J Xi and J ⊆ I is finite such that
A(M,Xi) = 0 for i ∈ I\J . Let qj : Xj → ⊕i∈IXi be the canonical injections and
pj : ⊕i∈I Xi → Xj the pseudo-projections. Given any morphism f : M → ⊕i∈IXi

in A, we see that g =
∑

j∈J pjf is in ⊕i∈I A(M,Xi). Consider the morphism

h = ν
M
(g) =

∑
j∈J qjpjf. If i ∈ J , then pih =

∑
j∈Jpiqjpjf = pif. Otherwise,

pih =
∑

j∈J piqjpjf = 0 = pif. Thus, f = h = ν
M
(g). This shows that ν

M
is an

epimorphism. The proof of the proposition is completed.

Assume now that A is a full additive subcategory of an abelian category A. A
complex (X., d.X ), or simply X., over A is a double infinite chain

· · · // Xn
dn
X // Xn+1

dn+1
X // // Xn+2 // · · · , n ∈ Z

of morphisms in A such that dn+1
X dnX = 0 for all n, where Xn is the component of

degree n of X., and dnX is the differential of degree n. Such a complex X. is called
bounded-above if Xn = 0 for all but finitely many positive integers n, bounded if
Xn = 0 for all but finitely many integers n, and a stalk complex concentrated in
degree s if Xn = 0 for all integers n ̸= s. The n-th cohomology of a complex X.

is Hn(X.) = Ker(dnX)/Im(dn−1
X ) ∈ A. One says that X. has bounded cohomology if

Hn(X.) = 0 for all but finitely many integers n and that X. is acyclic if Hn(X.) = 0
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for all integers n. A morphism of complexes f . : X. → Y . consists of morphisms
fn : Xn → Y n, n ∈ Z, such that fndnY = dnXf

n+1 for all n ∈ Z. Such a morphism f .

is a quasi-isomorphism if fn induces an isomorphism Hn(f .) : Hn(X.) → Hn(Y .)
for every n ∈ Z; and null-homotopic if there exist hn : Xn → Y n−1, n ∈ Z, such
that fn = dnXh

n+1 + hndnY , for all n ∈ Z.

The complexes over A form an additive category C(A). For X. ∈ C(A) and
s ∈ Z, the shift of X. by s is the complex X.[s] of which the component of degree n
is Xn+s and the differential of degree n is (−1)sdn+s

X . The automorphism of C(A)
sending X. to X.[1] is called the shift functor of C(A). The full subcategories of
C(A) generated by the bounded-above complexes and by the bounded complexes
will be denoted by C−(A) and Cb(A), respectively. Moreover, C−, b(A) denotes the
full subcategory of C−(A) generated by the complexes of bounded cohomologies.

Fix ∗ ∈ {∅,−, b, {−, b}}. The homotopy category K∗(A) is the quotient category
of C∗(A) modulo the ideal of null-homotopic morphisms. This is a triangulated
category whose translation functor is the shift by one and whose exact triangles
are induced from the mapping cones. Let P ∗

A
: C∗(A) → K∗(A) be the canonical

projection functor. For a morphism f .∈ C(A), we shall write f̄ .= P ∗
A
(f .) ∈ K∗(A).

The quasi-isomorphisms in K∗(A) are the images of the quasi-isomorphisms in
C∗(A) under P ∗

A
, which form a multiplicative system. The derived category D∗(A)

of A is the localization of K∗(A) with respect to the quasi-isomorphisms, which is
also a triangulated category with the exact triangles induced from those of K∗(A).
The morphisms in D∗(A) are the equivalence classes f̄ ./s̄. of the diagrams

X. Y .
s̄
.

oo f̄
.
// Z.

in K∗(A) with s̄. a quasi-isomorphism. We have an exact functor of triangulated
categories, called the localization functor, L∗

A
: K∗(A) → D∗(A), sending f̄ . to f̄ ./1.

For a morphisms f . in C∗(A), we shall write f̃ .= L∗
A
(P ∗

A
(f .)) ∈ D∗(A).

Next, we shall study the existence of direct sums in complex categories, homotopy
categories and derived categories.

1.4. Lemma. Let A be a full additive subcategory of an abelian category. If A has
direct sums, then so do C(A) and K(A). Moreover, if A has essential direct sums,
then so does C(A).

Proof. Suppose that A has direct sums. Let X.i , i ∈ I, be complexes over A. For
n ∈ Z, let Xn be the direct sum in A of the Xn

i , i ∈ I, with canonical injections
qni : Xn

i → Xn and pseudo-projections pni : Xn → Xn
i , and set dn

X
= ⊕i∈I d

n
Xi
.

This yields a complex (X., d.
X
) over A, which is clearly the direct sum in C(A) of

the X.i with canonical injections q.i = (qni )n∈Z : X.i → X. and pseudo-projections
p.i = (pni )n∈Z : X. → X.i, i ∈ I. Moreover, one sees easily that this direct sum is
essential in C(A) if all the direct sums ⊕i∈IX

n
i , n ∈ Z, are essential in A.

Next, we claim that X. is the direct sum of the X.i, i ∈ I, in K(A) with canonical
injections q̄.i and pseudo-projections p̄.i . It suffices to show the following fact: if
f . : X. → Y . is a morphism in C(A) such that f .q.i is null-homotopic for every
i ∈ I, then f . is null-homotopic. Indeed, let hni : Xn

i → Y n−1 be such that
fnqni = dn−1

Y
hni + hn+1

i dn
Xi
, for i ∈ I and n ∈ Z. Then, for each n ∈ Z, there

exists some un : Xn → Y n−1 such that hni = unqni , for every i ∈ I. This yields



6 RAYMUNDO BAUTISTA AND SHIPING LIU

fnqni = dn−1
Y

unqni +u
n+1qn+1

i dn
Xi

= (dn−1
Y

un+un+1dn
X
)qni , for i ∈ I and n ∈ Z. As a

consequence, fn = dn−1
Y

un+un+1dn
X
, for every n ∈ Z, that is, f . is null-homotopic.

The proof of the lemma is completed.

In general, the direct sums in K(A) are not necessarily essential even if those in
A are essential. Nevertheless, we have the following partial result.

1.5. Lemma. Let A be a full additive subcategory having essential direct sums of an
abelian category, and let M., X.i , i ∈ I, be complexes over A. If C(A)(M., X.i ) = 0
for all but finitely many i ∈ I, then M. is essential in the direct sum of the X.i ,
i ∈ I, in K(A).

Proof. Assume that J is a finite subset of I such that C(A)(M ., X.i) = 0 for
i ∈ I\J . Let X. be the direct sum of the X.i, i ∈ I, in C(A) with pseudo-projections
p.i : X. → X.i. Then Xn is the direct sum of the Xn

i , i ∈ I, in A with pseudo-
projections pni : Xn → Xn

i , for every n ∈ Z. By Lemma 1.4, X. is the direct sum
of the X.i, i ∈ I, in K(A) with pseudo-projections p̄.i : X.→ X.i.

Let f̄ . : M . → X. be a morphism in K(A) such that p̄.i f̄
. = 0̄, that is, p.i f

.

is null-homotopic, for all i ∈ I. Let hni : Mn → Xn−1
i be morphisms such that

pni f
n = dn−1

Xi
hni + hn+1

i dn
M
, for i ∈ I and n ∈ Z. Setting hn =

∑
j∈J q

n−1
j hnj ,

we obtain pni f
n = pni (d

n−1
X

hn + hn+1dn
M
), for i ∈ I and n ∈ Z. Since the direct

sums in A are essential, fn = dn−1
X

hn + hn+1dn
M
, for n ∈ Z. This shows that f . is

null-homotopic, that is, f̄ .= 0̄. The proof of the lemma is completed.

For the existence of direct sums in derived categories, we shall deal only with
derived categories of abelian categories. Let us start with an easy observation.

1.6. Lemma. Let A be an abelian category with a family of short exact sequences

0 // Li
fi // Mi

gi // Ni
// 0, i ∈ I. If A has essential direct sums, then it has

a short exact sequence as follows :

0 // ⊕i∈ILi
⊕fi // ⊕i∈IMi

⊕gi // ⊕i∈INi
// 0.

Proof. Let 0 // L
f // M

g // N // 0 denote the sequence stated in the
lemma. Using the universal properties of direct sums, one sees that g is the cokernel
of f . Let qi : Li → L and ui :Mi →M be the canonical injections, and pi : L→ Li

and vi : M → Mi the pseudo-projections. Fix i ∈ I. Then vifqi = viuifi = fi.
For any j ∈ I, if j = i, then (vif − fipi)qj = vifqi − fipiqi = 0; and otherwise,
(vif − fipi)qj = vifqj = viujfj = 0. Thus, vif − fipi = 0.

Suppose that L is an essential direct sum of the Li. Let h : X → M be such
that fh = 0. Then fipih = vifh = 0, and since fi is a monomorphism, pih = 0
for all i ∈ I. Since X is essential in L, we obtain h = 0. This proves that f is a
monomorphism. Since A is abelian, f is the kernel of its cokernel, that is g. The
proof of the lemma is completed.

1.7. Corollary. Let A be an abelian category, having essential direct sums. If
s.i : X.i → Y .i , i ∈ I, are quasi-isomorphisms in C(A), then the canonical morphism
⊕i∈Is

.
i : ⊕i∈I X

.
i → ⊕i∈I Y

.
i is a quasi-isomorphism.
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Proof. Let s.i : X.i → Y .i , i ∈ I, be quasi-isomorphisms in C(A). We write
X. = ⊕i∈I X

.
i, Y

. = ⊕i∈I Y
.
i and s.= ⊕i∈I s

.
i . In view of Lemma 1.6, we see that

Im(dn
X
) = ⊕i∈I Im(dn

Xi
) and Ker(dn−1

X
) = ⊕i∈I Ker(dn

Xi
), for all n ∈ Z. This in turn

implies that Hn(s.) = ⊕i∈I H
n(s.i ), and consequently, Hn(s.) is an isomorphism.

The proof of the corollary is completed.

We are ready to state the main result of this section; compare [13, (3.5.1)].

1.8. Theorem. Let A be an abelian category. If A has essential direct sums, then
D(A) has direct sums.

Proof. Suppose that A has essential direct sums. Let X.i , i ∈ I, be complexes over
A. By Lemma 1.4, C(A) has an essential direct sum X. of the X.i with canonical
injections q.i : X.i → X.. We shall show that X. is the direct sum of the X.i in
D(A) with canonical injections q̃.i : X.i → X..

Let θ.i : X.
i → Y ., i ∈ I, be morphisms in D(A). Write θ.i = f̄ .i /s̄

.
i, where

s.i : Z .
i → X.

i is a quasi-isomorphism and f .i : Z.i → Y . is a morphism in C(A).
Let Z. be the direct sum in C(A) of the Z.i with canonical injections u.i : Z.i → Z..
By Corollary 1.7, s.= ⊕i∈I s

.
i : Z.→ X. is a quasi-isomorphism. Moreover, there

exists a morphism f . : Z.→ Y . in C(A) such that f .i = f .u.i , for all i ∈ I. Set
η.= f̄ ./s̄. : X.→ Y .. For any i ∈ I, since s.u.i = q.i s

.
i , we obtain

η
.
q̃
.
i = f̄

.
ū
.
i /s̄

.
i = f̄

.
i /s̄

.
i = θ

.
i.

For proving the uniqueness of η., it suffices to show that η. = 0̃ in case θ.i = 0̃,

for all i ∈ I. Indeed, in this case, C(A) has quasi-isomorphisms r.i : Li → Zi,
i ∈ I, such that f̄ .i r̄

.
i = 0̄, for every i ∈ I. Let L. = ⊕i∈I L

.
i ∈ C(A) with canonical

injections v.i : L.i → L.. By Corollary 1.7, r.= ⊕i∈I r
.
i is a quasi-isomorphism,

such that r.v.i = u.i r
.
i . This yields f̄ . r̄. v̄.i = f̄ .ū.i r̄

.
i = f̄ .i r̄

.
i = 0̄, for all i ∈ I.

By Lemma 1.4, L. is a direct sum in K(A) of the L.i with canonical injections v̄.i.
Hence, f̄ .r̄.= 0̄, and thus, η.= f̄ ./s̄.= 0̃. The proof of the theorem is completed.

For later application, we study some useful properties of bounded-above com-
plexes of projective objects.

1.9. Lemma. Let A be an abelian category, and let X., Y ., P . be complexes over A,
where P . is bounded-above of projective objects.

(1) The localization functor L
A
: K(A) → D(A) induces an isomorphism

LP.,X. : K(A)(P
.
, X

.
) → D(A)(P

.
, X

.
) : f̄ 7→ f̃.

(2) If s̄. : X. → Y . is a quasi-isomorphism and f̄ . : P . → Y . is a morphism in
K(A), then f̄ .= s̄.ḡ., for some morphism ḡ. : P .→ X. in K(A).

Proof. Statement (1) is well known; see, for example, [17, (10.4.7)]. Let s̄. : X.→ Y .

be a quasi-isomorphism and f̄ . : P . → Y . a morphism in K(A). Observing that

(s̃.)−1f̃ . ∈ D(A)(P ., X.), we get some morphism g. : P .→ X. in C(A) such that

(s̃.)−1f̃ . = g̃., that is, f̃ . = s̃.g̃.. Since LP .,X. is an injective map, f̄ . = s̄.ḡ.. The
proof of the lemma is completed.

1.10. Proposition. Let A be an abelian category having essential direct sums, and
let P ., X.i , i ∈ I, be complexes over A, where P . is bounded-above of projective
objects. If C(A)(P ., X.i) = 0 for all but finitely many i ∈ I, then P . is essential in

the direct sum of the X.i , i ∈ I, in D(A).
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Proof. Let X. be the direct sum of the X.i, i ∈ I, in C(A) with pseudo-projections
p.i : X. → X.i . By Lemma 1.4 and Theorem 1.8, X. is the direct sum of the X.i,
i ∈ I, in K(A) and in D(A) with pseudo-projections p̄.i : X. → X.i , i ∈ I and
p̃.i : X.→ X.i , respectively.

Assume that J is a finite subset of I such that C(A)(P ., X.i) = 0 for i ∈ I\J . In
particular, K(A)(P ., X.i) = 0 for i ∈ I\J . By Lemma 1.9(1), D(A)(P ., X.i) = 0, for
i ∈ I\J . Let θ. : P .→ X. be a morphism in D(A) such that p̃.i θ

.= 0, for all i ∈ I.
By Lemma 1.9(1), θ. = g̃. for some morphism g. : M .→ X. in C(A). This yields
p̃.i g̃

.= 0, and by Lemma 1.9(1), p̄.i ḡ
.= 0 for all i ∈ I. Since P . is essential in the

direct sum ⊕i∈I X
.
i in K(A); see (1.5), we obtain ḡ.= 0. Hence, θ.= 0. The proof

of the proposition is completed.

Let C be a full abelian subcategory of A. We shall say that C has enough
A-projective objects provided that, for any X ∈ C0, there exists an epimorphism
ε : P → X in C with P being projective in A. The following result is useful.

1.11. Lemma. Let A be an abelian category, and let C be a full abelian subcategory
of A. If C has enough A-projective objects, then Db(C) can be regarded as a full
triangulated subcategory of D(A).

Proof. Assume that C has enough A-projective objects. It is well known that Db(C)
can be regarded as a full triangulated subcategory ofD−(C); see [10, (6.15)]. Hence,
it suffices to show that D−(C) can be regarded as a full triangulated subcategory
of D(A). Indeed, K−(C) is a full triangulated subcategory of K(A). The inclusion
functor j : K−(C) → K(A) induces an exact functor of triangulated categories
jD : D−(C) → D(A) such that LA ◦ j = jD ◦ L, where L : K−(C) → D−(C) is the
localization functor. We need only to show that jD is fully faithful.

Fix X., Y . ∈ C−(C). Since C has enough A-projective objects, K−(C) has a
quasi-isomorphism s̄. : P .→ X., where P . is bounded-above of projective objects
in A; see [10, (7.5)]. Let θ. : X. → Y . be a morphism in D(A). Write θ. = f̄ ./r̄.,
where r̄. : M .→ X. is a quasi-isomorphism in K(A). By Lemma 1.9(2), s̄.= ḡ. r̄.

for some ḡ. : P .→M . in K(A), and hence, θ.= (f̄ .ḡ.)/s̄.= jD(L(f̄ .ḡ.)L(s̄.)−1).

Now, let η. : X. → Y . be in D−(C) with jD(η.) = 0. Write η. = L(h̄.)L(t̄.)−1,

where t̄. : N. → X. is a quasi-isomorphism in K−(C). Then h̄./t̄. is null in D(A).
Hence, K(A) has a quasi-morphism ū. : U.→ N. such that h̄.ū. = 0̄. By Lemma
1.9(2),K−(C) has a morphism v̄. : P .→ N. such that s̄.= t̄.v̄.. Since s̄., t̄.are quasi-
isomorphisms in K−(C), so is v̄.. Using Lemma 1.9(2) again, we obtain a morphism
w̄. : P . → U. in K(A) such that v̄. = ū.w̄.. This yields h̄

.
v̄. = h̄.ū.w̄. = 0.

Therefore, η. = 0. The proof of the lemma is completed.

2. Galois covering of linear categories

The main objective of this section is to extend Gabriel’s notion of a Galois co-
vering for skeletal linear categories to general linear categories. Throughout this
section, let A be a linear category equipped with an action of a group G, that is,
there exists a group homomorphism ρ from G into Aut(A), the group of automor-
phisms of A.

2.1. Definition. Let A be a linear category with G a group acting on A. The
G-action on A is called
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(1) free provided that g ·X ̸∼= X, for any indecomposable X ∈ A and any non-
identity g ∈ G;

(2) locally bounded provided, for any indecomposableX,Y ∈A, that A(X, g·Y ) = 0
for all but finitely many g ∈ G;

(3) directed provided, for any indecomposable X,Y ∈ A, that A(X, g · Y ) = 0 or
A(g · Y, X) = 0 for all but at most one g ∈ G;

(4) admissible provided that it is both free and locally bounded.

A group is called torsion-free if every non-identity element is of infinite order.

2.2. Lemma. Let A be a linear category with G a torsion-free group acting on A.
If the G-action on A is locally bounded, then it is free.

Proof. Let X ∈ A0 be indecomposable such that there exists an isomorphism
u : X → g ·X, for some g ∈ G. Then

(gi ·u) ◦ · · · ◦ (g ·u) ◦ u : X → gi+1 ·X

is an isomorphism, for every i ≥ 1. If the G-action is locally bounded, then g is of
finite order, and hence, g is the identity of G. The proof of the lemma is completed.

Let F : A → B be a functor between linear categories. By abuse of notation,
we identify g ∈ G with ρ(g) ∈ Aut(A), where ρ is the homomorphism from G into
Aut(A). In this way, F ◦ g : A → B is an additive functor. Recall that a functorial
(iso)morphism δg : F ◦g → F consists of (iso)morphisms δg,X : (F ◦g)(X) → F (X)
with X ∈ B0, which are natural in X.

The following definition is due to Asashiba originally under the name of inva-
riance adjuster; see [2, (1.1)].

2.3. Definition. Let A,B be linear categories with G a group acting on A. A
functor F : A → B is called G-stable provided there exist functorial isomorphisms
δg : F ◦ g → F , g ∈ G, such that

δh,X ◦ δg, h·X = δgh,X ,

for any g, h ∈ G and X ∈ A0. In this case, we call δ = (δg)g∈G a G-stabilizer for F .

Remark. (1) By definition, δ−1
g,X = δg−1,g·X for g ∈ G and X ∈ A0; and δe = 1F ,

where e is the identity of G.

(2) If X = Y ⊕ Z, then

δg,X =

(
δg,Y 0
0 δg,Z

)
.

(3) The G-stabilizer δ for F is called trivial if δg = 1F , for every g ∈ G. In this
case, we shall say that F is G-invariant.

2.4. Lemma. Let A,B be linear categories with G a group acting on A, and let
F : A → B be a functor with a G-stabilizer δ. If u : X → g ·Y and v : Y → h ·Z,
where g, h ∈ G, are morphisms in A, then

(δh,Z ◦ F (v)) ◦ (δg,Y ◦ F (u)) = δgh,Z ◦ F ((g ·v) ◦ u).
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Proof. Let u : X → g ·Y and v : Y → h ·Z, with g, h ∈ G, be morphisms in A.
Applying F yields a diagram

F (X)
F (u) // F (g ·Y )

δg,Y

��

F (g·v) // F (g ·(h·Z))

δg,h·Z

��

F ((gh)·Z)

δgh,Z

��
F (Y )

F (v) // F (h·Z)
δh,Z // F (Z),

where the left square is commutative since δg,Y is natural in Y , and the right square
is commutative by Definition 2.3. The proof of the lemma is completed.

The following definition is also due to Asashiba; see [2, (1.7)].

2.5. Definition. Let A,B be linear categories with G a group acting on A. A
functor F : A → B is called a G-precovering provided that F has a G-stabilizer δ
such that, for any X,Y ∈ A0, the following two maps are isomorphisms :

FX,Y : ⊕g∈G A(X, g ·Y ) → B(F (X), F (Y )) : (ug)g∈G 7→
∑

g∈G δg,Y ◦ F (ug).

FX,Y : ⊕g∈G A(g ·X,Y ) → B(F (X), F (Y )) : (vg)g∈G 7→
∑

g∈G F (vg) ◦ δ
−1
g,X .

Remark. In the above definition, as observed by Asashiba, it is sufficient to require
all FX,Y be isomorphisms, or all FX,Y be isomorphisms; see [2, (1.6)].

In the following two results, we collect some properties of a precovering functor.

2.6. Lemma. Let A,B be linear categories with G a group acting on A, and let
F : A → B be a G-precovering with a G-stabilizer δ.

(1) For any X,Y ∈ A0, we have the following decompositions

B(F (X), F (Y )) = ⊕g∈G δg,Y ◦ F (A(X, g ·Y )) = ⊕g∈G F (A(g ·X,Y )) ◦ δ−1
g,X .

(2) The functor F is faithful, and in particular, it sends decomposable objects to
decomposable ones.

Proof. Fix X,Y ∈ A0. By definition, we have an isomorphism

FX,Y : ⊕g∈G A(X, g ·Y ) → B(F (X), F (Y )) : (ug)g∈G 7→
∑

g∈G δg,Y ◦ F (ug).

This yields immediately the first decomposition stated in Statement (1). Simi-
larly, the second decomposition follows from the defining isomorphisms FX,Y stated
in Definition 2.5. Furthermore, since δe,Y = 1F (Y ), where e is the identity of G, the
isomorphism FX,Y restricts to a monomorphism

Fe : A(X,Y ) → B(F (X), F (Y )) : u 7→ F (u).

The proof of the lemma is completed.

2.7. Lemma. Let A,B be linear categories with G a group acting on A, and let
F : A → B be a G-precovering. Consider a morphism u : X → Y in A.

(1) If v : X → Z or v : Z → Y is a morphism in A, then v factorizes through u if
and only if F (v) factorizes through F (u).

(2) The morphism u is a section, retraction, or isomorphism if and only if F (u) is
a section, retraction, or isomorphism, respectively.
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Proof. (1) Let δ be the G-stabilizer for F . Assume first that v ∈ A(X,Z). If v
factorizes through u, then F (v) evidently factorizes through F (u). Suppose con-
versely that F (v) = w ◦ F (u) for some w : F (Y ) → F (Z) in B. By Lemma 2.6(1),
we may write w =

∑n
i=1 δgi,Z ◦ F (wi), where g1, . . . , gn ∈ G are distinct, and

wi ∈ A(Y, gi ·Z). This gives rise to

F (v) =
∑n

i=1 δgi,Z ◦ F (wi) ◦ F (u) =
∑n

i=1 δgi,Z ◦ F (wi ◦ u).
In view of Lemma 2.6(1), there exists some 1 ≤ s ≤ n such that gs = e, the

identity of G, and F (v) = F (ws ◦u). Since F is faithful by Lemma 2.6(2), v = wsu.
In case v ∈ A(Z, Y ), we can establish Statement (1) in a dual manner.

(2) Specializing Statement (1) to the case where v = 1X or v = 1Y , we obtain
the first two parts of Statement(2), and which in turn imply the third part. The
proof of the lemma is completed.

A functor F : A → B between linear categories is called almost dense if each
indecomposable object in B is isomorphic to an object lying in the image of F .

2.8. Definition. Let A,B be linear categories with G a group acting admissibly
on A. A G-precovering F : A → B is called a Galois G-covering provided that the
following conditions are verified.

(1) The functor F is almost dense.
(2) If X ∈ A is indecomposable, then F (X) is indecomposable.
(3) If X,Y ∈ A are indecomposable with F (X) ∼= F (Y ), then there exists some

g ∈ G such that Y = g ·X.

Remark. (1) In case A,B are Krull-Schmidt, a Galois G-covering F : A → B is a
dense functor, and consequently, F is an equivalence if and only if G is trivial.

(2) If A,B are skeletal linear categories over a field, then a Galois covering
F : A → B in Gabriel’s sense; see [8, (3.1)] is simply a G-invariant Galois G-
covering.

The next two results will be useful for determining when a precovering is a Galois
covering.

2.9. Lemma. Let A,B be linear categories with G a group acting admissibly on A,
and let F : A → B be a G-precovering. Consider an object X in A such that
EndA(X) is local with a nilpotent radical.

(1) EndB(F (X)) is local with a nilpotent radical.

(2) If Y ∈ A with F (Y ) ∼= F (X), then Y ∼= g ·X for some g ∈ G.

Proof. Let δ be the G-stabilizer for F . By Definition 2.5, we have an isomorphism

FX : ⊕g∈G A(X, g ·X) → EndB(F (X)) : (ug)g∈G 7→
∑

g∈G δg,Y ◦ F (ug).
(1) Let e denote the identity of G. Consider the additive subgroup

J = F (rad (EndA(X))) +
∑

e ̸=g∈G δg,X ◦ F (A(X, g ·X))

of EndB(F (X)). By hypothesis, EndA(g ·X) is local, for every g ∈ G. Since the
G-action on A is free, any morphism u : X → g · X with g ̸= e is not invertible.
Let u : X → g ·X and v : X → h ·X, with g, h ∈ G, be morphisms in A. If u or v
is not invertible, then (g · v) ◦ u : X → (gh) ·X is not invertible. In view of Lemma
2.4, we see that

δh,X ◦ F (v) ◦ δg,X ◦ F (u) = δgh,X ◦ F ((g ·v) ◦ u) ∈ J.



12 RAYMUNDO BAUTISTA AND SHIPING LIU

This implies that J is a two-sided ideal in EndB(F (X)). As a consequence, the
isomorphism FX induces a surjective algebra homomorphism

FX : EndA(X)/rad(EndA(X)) → EndB(F (X))/J.

Since EndA(X)/rad(EndA(X)) is a division algebra, FX is an isomorphism. In
particular, EndB(F (X))/J is a division algebra.

Since the G-action on A is locally bounded, there exists a finite subset G0 of
G, say of n elements, such that A(X, g ·X) = 0 for all g ∈ G\G0. Moreover, by

hypothesis, radd(EndA(X)) = 0, for some d > 0. Then, radd(EndA(g ·X)) = 0, for
every g ∈ G. Setm = nd+1. We claim that um · · ·u2u1 = 0, for u1, u2, . . . , um ∈ J .
Indeed, with no loss of generality, we may assume that ui = δgi,X ◦ F (vi), where
gi ∈ G and vi : X → gi ·X is a non-invertible morphism, i = 1, . . . ,m. Put h0 = e,
and hi = g1 · · · gi and wi = hi−1 · vi, for i = 1, . . . ,m. Consider the sequence

X
w1 // h1 ·X

w2 // h2 ·X // · · · // hm−1 ·X
wm // hm ·X

of non-invertible morphisms. If hi ̸∈ G0 for some 1 ≤ i ≤ m, then wm · · ·w2w1 = 0.
Otherwise, since m > nd, there exists some t with 1 ≤ t ≤ n such that the
number of indices j with 1 ≤ j ≤ m for which hj = ht is greater than d. Since

radd(EndA(ht ·X)) = 0, we have wm · · ·w2w1 = 0. By Lemma 2.4, we have

um · · ·u2u1 = δhm,X ◦ F (wm · · ·w2w1) = 0.

This proves our claim, and hence, Jm = 0. In particular, J ⊆ rad(EndB(F (X))).
Since EndB(F (X))/J is a division algebra, we obtain J = rad(EndB(F (X))). That
is, EndB(F (X)) is local with a nilpotent radical.

(2) Let Y ∈ A be such that F (X) ∼= F (Y ). By Statement (1), EndB(F (Y )) is
local. Since F is faithful by Lemma 2.6(2), EndA(Y ) has no proper idempotent.
Let now u : F (X) → F (Y ) and v : F (Y ) → F (X) be morphisms in B such that

vu = 1F (X). By Lemma 2.6(1), we may write u =
∑r

i=1 δgi,Y ◦ F (ui), where

g1, . . . , gr ∈ G are distinct and ui ∈ A(X, gi·Y ); and v =
∑s

j=1 δhj ,X ◦F (vi), where
h1, . . . , hs ∈ G are distinct and vj ∈ A(Y, hj ·X). Applying Lemma 2.4, we obtain

1F (X) =
∑

1≤i≤r;1≤j≤s
δgihj ◦ F ((gi ·vj) ◦ ui).

By Lemma 2.6(1), 1F (X) =
∑

i,j;gihj=e F ((gi ·vj) ◦ ui). Since F is faithful by

Lemma 2.6(2), 1X =
∑

i,j;gihj=e (gi · vj) ◦ ui. Since EndA(X) is local, there exist

i, j such that hj = g−1
i and (gi · vj) ◦ ui is invertible. Since EndA(Y ) has no

proper idempotent, ui : X → gi · Y is an isomorphism. The proof of the lemma is
completed.

An object X ∈ A is called properly indecomposable if EndA(X) has no proper
idempotent. Observe that if all idempotents in A split, then every indecomposable
object in A is properly indecomposable.

2.10. Lemma. Let F : A → B be a G-precovering between linear categories, where
G is a group acting on A with a directed and locally bounded action. Let X be a
properly indecomposable object in A.
(1) The image F (X) is properly indecomposable.

(2) If Y ∈ A with F (Y ) ∼= F (X), then Y ∼= g ·X for some g ∈ G.
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Proof. Let δ be the G-stabilizer for F . By Lemma 2.6(1), we have

(∗) EndB(F (X)) = ⊕g∈G δg,X ◦ F (A(X, g ·X)).

Denote by e the identity of G. We claim that

I =
∑

e ̸=g∈G δg,X ◦ F (A(X, g ·X))

is a two-sided ideal in EndB(F (X)). That is, if u ∈ I and v ∈ EndB(F (X)), then
uv, vu ∈ I. Indeed, with no loss of generality, we may assume that u = δg,X ◦F (ug)
with e ̸= g ∈ G and ug ∈ A(X, g · X), and v = δh,X ◦ F (vh) with h ∈ G and
vh ∈ A(X,h · X). By Lemma 2.4, uv = δhg,X ◦ F ((h ·ug) ◦ vh). If hg ̸= e, then
uv ∈ I by definition. Otherwise, h ̸= e. Since the G-action on A is directed, using
the fact that A(X, e·X) ̸= 0 and A(e·X,X) ̸= 0, we see that the composition map

(∗∗) A(h·X,X)⊗ Z A(X,h·X) // EndA(X)

vanishes. In particular, (h ·ug) ◦ vh = 0, and consequently, uv ∈ I. Similarly, we
can show that vu ∈ I. This proves our claim.

Next, since the G-action on A is locally bounded, there exists a finite subset G0

of G, say of n elements, such that A(X, g·X) = 0, for any g ∈ G\G0. Set m = n+1.
We shall show that um · · ·u2u1 = 0, for any u1, u2, . . . , um ∈ I. Indeed, with no
loss of generality, we may assume that ui = δgi,X ◦ F (vi) with e ̸= gi ∈ G and
vi ∈ A(X, gi ·X), for i = 1, . . . ,m. Write h0 = e, hi = g1 · · · gi and wi = hi−1 · vi,
for i = 1, . . . ,m. Consider the sequence

X
w1 // h1 ·X

w2 // h2 ·X // · · · // hm−1 ·X
wm // hm ·X.

If hi ̸∈ G0 for some 1 ≤ i ≤ m, then wm · · ·w2w1 = 0. By Lemma 2.4,

um · · ·u2u1 = δhm,X ◦ F (wm · · ·w2w1) = 0.

Otherwise, since m > n, there exist r, s with 1 ≤ r < s ≤ m such that hr = hs. As
a consequence, gr+1 · · · gs = e, and in particular, r+1 < s. Since gr+1 ̸= e, in view
of the vanishing map (∗∗) for h = gr+1, we see that

((gr+1 · · · gs−1)·vs) ◦ · · · ◦ (gr+1 ·vr+2) ◦ vr+1 = 0.

By Lemma 2.4, us · · ·ur+1 = 0, and consequently, um · · ·u2u1 = 0. This shows that
I is a nilpotent.

(1) Let f ∈ EndB(F (X)) be an idempotent. In view of the direct decomposition
(∗), we may uniquely write f = u − v with u ∈ F (A(X, X)) and v ∈ I. Since
f = f2 = u2− (uv+ vu− v2) with u2 ∈ F (A(X, X)) and uv+ vu− v2 ∈ I, we infer
that u = u2 and v = uv+ vu− v2. Write u = F (u0) for some u0 ∈ EndA(X). Since
F is faithful by Lemma 2.6(2), u20 = u0, and since X is properly indecomposable,
u0 = 0 or u0 = 1X . As a consequence, u = 0 or u = 1F (X). In the first case, since

−v is nilpotent, f = 0. In the second case, v = v+ v− v2, and hence v = v2. Since
v is nilpotent, v = 0, and hence, f = 1F (X). This establishes Statement (1).

(2) Let Y ∈ A be such that F (X) ∼= F (Y ). By Statement (1), F (Y ) is properly
indecomposable, and by Lemma 2.6(2), so is Y . Let u : F (X) → F (Y ) and
v : F (Y ) → F (X) be morphisms such that vu = 1F (X). In view of the direct

decomposition (∗), we write uniquely u =
∑r

i=1 δgi,Y ◦ F (ui) with g1, . . . , gr ∈ G

distinct and ui ∈ A(X, gi ·Y ), and v =
∑s

j=1 δhj ,X ◦ F (vi) with h1, . . . , hs ∈ G

distinct and vj ∈ A(Y, hj ·X). Then, 1F (X) = vu =
∑

i,j δgihj ◦ F ((gi ·vj) ◦ ui); see
(2.4), and hence, 1F (X) =

∑
i,j;gihj=e F ((gi ·vj) ◦ ui). Since F is faithful; see (2.6),
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1X =
∑

i,j;gihj=e (gi ·vj) ◦ ui. Since the G-action on A is directed and the gi are

pairwise distinct, we may assume that (gi ·vj) ◦ ui = 0 for all i, j with 1 < i ≤ r
and hjgi = e. Since the hj are pairwise distinct, we may assume that g1h1 = e and
g1hj ̸= e for all 1 < j ≤ s. This implies that 1X = (g1 ·v1) ◦ u1. Since EndA(Y ) has
no proper idempotent, u1 ◦ (g1 ·v1) = 1Y , and hence, X ∼= g1 ·Y . The proof of the
lemma is completed.

For the rest of this section, we assume that A has direct sums. By Lemma
1.2, the category of linear endofunctors of A also has direct sums. Regarding
each g ∈ G as an automorphism of A, we obtain a direct sum G = ⊕g∈G g with
canonical injections jg : g → G, g ∈ G. More explicitly, for each X ∈ A, we have
G(X) = ⊕g∈G g ·X with canonical injections jg,X : g ·X → G(X), with g ∈ G.

2.11. Definition. Let A,B be linear categories such that A has direct sums and
admits an action of a group G. Let F : A → B and E : B → A be functors such
that (F,E) is an adjoint pair with adjoint isomorphism ϕ. We say that (E,F ) is
G-graded provided that the following conditions are verified.

(1) There exists a functorial isomorphism γ : ⊕g∈G g → E ◦ F .
(2) There exists a G-stabilizer δ for F such that

ϕX,F (Y )(γY
◦ j

g,Y
◦ u) = δg,Y ◦ F (u),

for any X,Y ∈ A0; g ∈ G and u ∈ A(X, g ·Y ).

A full subcategory C of A is called stable under the G-action on A, or simply, a
G-subcategory of A, provided, for any X ∈ C0 and g ∈ G, that g ·X ∈ C. In this
case, the G-action on A restricts to a G-action on C. This restricted G-action is
called A-essential provided, for any X,Y ∈ C0, that X is essential in the direct sum
G(Y ) = ⊕g∈G g ·Y ∈ A.

2.12. Theorem. Let A,B be linear categories such that A has direct sums and
admits an action of a group G. Let F : A → B and E : B → A be functors forming
a G-graded adjoint pair (F,E). Let C be a G-subcategory of A with a locally bounded
and A-essential G-action, and D a full subcategory of B. If F sends C into D, then
it restricts to a G-precovering F ′ : C → D.

Proof. By Definition 2.11, F has a G-stabilizer δ, which restricts to a G-stabilizer
δ′ for the restriction F ′ : C → D. Consider the direct sum G = ⊕g∈G g, where g is
regarded as an automorphism of A, with canonical injections jg : g → G, g ∈ G.

LetX,Y ∈ C0. By the assumption, A(X, g·Y ) = 0 for all but finitely many g ∈ G
and X is essential in ⊕g∈G g ·Y . By Proposition 1.3, there exists an isomorphism

ν
X
: ⊕g∈G A(X, g ·Y ) // A(X,G(Y ))

such that νX (ug) = jg,Y ◦ ug, for any ug ∈ A(X, g · Y ). By Definition 2.11(1), there

exists a functorial isomorphism γ : G → E ◦ F , which yields an isomorphism

A(X, γY ) : A(X,G(Y )) // A(X,E(F (Y ))).

Moreover, the adjoint isomorphism ϕ yields an isomorphism:

ϕX,F (Y ) : A(X,E(F (Y ))) // B(F (X), F (Y )).
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Composing the above three isomorphisms yields an isomorphism

FX,Y : ⊕g∈G A(X, g ·Y ) // B(F (X), F (Y )).

By Definition 2.11(2), for any g ∈ G and ug ∈ A(X, g · Y ), we have

F
X,Y

(ug) = ϕX,F (Y )(γY
◦ j

g,Y
◦ ug) = δg,X ◦ F (ug) = δg,X ◦ F ′(ug).

That is, F ′ is a G-precovering. The proof of the theorem is completed.

3. Auslander-Reiten theory under a Galois covering

The main objective of this section is to show that a Galois covering between
Krull-Schmidt categories preserves irreducible morphisms and almost split sequences.
Throughout this section, let A be a Krull-Schmidt category equipped with an ad-
missible action of a group G. Recall that the radical rad(A) of A is the ideal
generated by the non-invertible morphisms between indecomposable objects. A
morphism in A is called radical if it lies in rad(A).

3.1. Lemma. Let A,B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F : A → B be a Galois G-covering. If u is a morphism in A, then it
is radical if and only if F (u) is radical.

Proof. Let u : X → Y be a morphism in A. Write X = X1 ⊕ · · · ⊕ Xn and
Y = Y1 ⊕ · · · ⊕ Ym, with Xi, Yj being indecomposable. Then, u = (uij)n×m

with uij ∈ A(Xj , Yi). Since F is linear, we have F (X) = F (X1)⊕ · · · ⊕F (Xn) and
F (Y ) = F (Y1)⊕· · ·⊕F (Ym), where F (Xi), F (Yj) are indecomposable by Definition
2.8(2), and F (u) = (F (uij))m×n with F (uij) ∈ B(F (Xj), F (Yi)).

Now, u is radical if and only if uij is not invertible for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. By Lemma 2.7(2), this is equivalent to F (urs) being not invertible, for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n, that is, F (u) is radical. The proof of the lemma is
completed.

For each integer n > 1, the n-th radical radn(A) of A is the ideal generated by
the composites of n radical morphisms between indecomposable objects.

3.2. Lemma. Let A,B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F : A → B be a Galois G-covering with a G-stabilizer δ. For some
X,Y ∈ A, consider

u =
∑

g∈G δg,Y ◦ F (ug) ∈ B(F (X), F (Y )),

where ug ∈ A(X, g · Y ) such that ug = 0 for all but finitely many g ∈ G. If m is a
positive integer, then u ∈ radm(B) if and only if ug ∈ radm(A), for all g ∈ G.

Proof. We shall need only to prove the necessity, since the sufficiency follows easily
from Lemma 3.1. Assume that u ∈ radm(B)(F (X), F (Y )) for some integer m > 0.
Let G0 = {g1, . . . , gn} be a subset of G such that ug = 0, for all g ∈ G\G0.
Writing ugi = ui, we obtain u =

∑n
i=1 δgi,Y ◦ F (ui). In order to prove that

ui ∈ radm(A)(X, gi · Y ), for i = 1, . . . , n, there exists no loss of generality in
assuming that X is indecomposable.

Let m = 1. Suppose on the contrary that some of the ui, say u1, is not radical.
Since X is indecomposable, p1 ◦u1 = 1X for some p1 ∈ A(g1·Y,X). Observing that

δ−1
g1,Y

◦ δgj ,Y = δg−1
1 , g1·Y ◦ δgj , g−1

1 (g1·Y ) = δgjg−1
1 , g1·Y , for j = 2, . . . , n,
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we obtain

F (p1) ◦ δ−1
g1,Y

◦ u = F (p1) ◦ F (u1) +
∑r

j=2 F (p1) ◦ δ
−1
g1,Y

◦ δgj ,Y ◦ F (uj)
= F (1X) +

∑r
j=2 F (p1) ◦ δgjg−1

1 , g1·Y ◦ F (uj)

= 1F (X) +
∑r

j=2 δgjg−1
1 ,X ◦ F ((gjg−1

1 · p1) ◦ uj)

For any j > 1, since the G-action on A is free, (gjg
−1
1 ·p1) ◦ uj : X → gjg

−1
1 ·X is

radical, and so is δgjg−1
1 ,X ◦ F ((gjg−1

1 ·p1) ◦ uj) by Lemma 3.1. As a consequence,

F (p1) ◦ δ−1
g1,Y

◦ u is an automorphism of F (X), which is absurd.

Assume that m > 1 and the necessity holds for m − 1. Write u = vw, where
v ∈ rad(B)(M,F (Y )) and w ∈ radm−1(B)(F (X),M). Since F is dense, we may
assume that M = F (N) for some N ∈ A0. By Lemma 2.6(1), we have

B(F (X), F (N)) = ⊕g∈G δg,N ◦ F (A(X, g ·N))
and

B(F (N), F (Y )) = ⊕g∈G F (A(g ·N,Y )) ◦ δ−1
g,N .

Adding some zero summands for each of u, v, w, if necessary, we may assume that
w =

∑n
i=1 δgi,N◦F (wi) for some wi : X → gi·N , and v =

∑n
i=1 F (vi)◦δ

−1
gi,N

for some

vi : gi ·N → Y . By the induction hypothesis and its dual, wi ∈ radm−1(A)(X, gi ·N)
and vi ∈ rad(A)(gi ·N,Y ), for i = 1, . . . , n. This yields∑n

i=1 δgi,Y ◦ F (ui) =
∑

1≤r,s≤n F (vr) ◦ δ
−1
gr,N

◦ δgs,N ◦ F (ws)

=
∑

1≤r,s≤n F (vr) ◦ δgsg−1
r , gr·N ◦ F (ws)

=
∑

1≤r,s≤n δgsg−1
r ,Y ◦ F ((gsg−1

r · vr) ◦ ws).

For each integer i with 1 ≤ i ≤ n, set Ωi = {(r, s) | 1 ≤ r, s ≤ n; grg
−1
s = gi}.

Since B(F (X), F (Y )) = ⊕g∈G δg,Y ◦ F (A(X, g · Y )), we deduce that

δgi,Y ◦ F (ui) =
∑

(r,s)∈Ωi
δgi,Y ◦ F ((gi · vr) ◦ ws).

Since δgi,Y is an isomorphism and F is faithful, we conclude that

ui =
∑

(r,s)∈Ωi
(gi · vr) ◦ ws ∈ radm(A)(X, gi ·Y ), i = 1, . . . , n.

The proof of the lemma is completed.

If M ∈ A is indecomposable, then we call D
M
= EndA(M)/rad(EndA(M)) the

automorphism field of M . Let f : X → Y be a morphism in A. Recall that f is
irreducible if f is neither a section nor a retraction, and every factorization f = gh
implies that g is a section or h is a retraction. If X,Y are indecomposable, then

irr(X,Y ) = rad(A)(X,Y )/rad2(A)(X,Y )

is a DX -DY -bimodule such that f is irreducible if and only if f is radical with a
non-zero image in irr(X,Y ); see [5].

3.3. Proposition. Let A,B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F : A → B be a Galois G-covering. If u : X → Y is a
morphism in A with X or Y indecomposable, then u is irreducible in A if and only
if F (u) is irreducible in B.
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Proof. Let u : X → Y be a morphism in A. We shall consider only the case
where X is indecomposable. Suppose that F (u) is irreducible. If v : X → M and
w :M → Y are morphisms in A such that u = vw, then F (v) is a section or F (w)
is a retraction. By Lemma 2.7(2), v is a section or w is a retraction. That is, u is
irreducible in A.

For proving the necessity, suppose that u is irreducible in A. Since F is dense,
we may assume that F (Y ) = F (Y1)

n1 ⊕ · · · ⊕F (Yr)
nr , where ni > 0 and the Yi are

indecomposable objects in A such that the F (Yi) are indecomposable and pairwise
non-isomorphic. Consider first the case where r = 1. By Definition 2.8(3), we may
assume that Y = (g1 · Y1)m1 ⊕ · · · ⊕ (gs · Y1)ms , where g1, . . . , gs ∈ G are distinct
and m1, . . . ,ms > 0 with m1 + · · · +ms = n1. For each 1 ≤ i ≤ s, denote by Di

the automorphism field of gi ·Y1. Since X is indecomposable, u is radical. Thus,

u = (u11, · · · , u1,m1 , · · · , us1, · · · , us,ms)
T ,

where ui1, . . . , ui,mi
∈ rad(A)(X, gi·Y1), with 1 ≤ i ≤ s, areDi-linearly independent

modulo rad2(A)(X, gi ·Y1); see [5, (3.5)]. Consider the isomorphism

w = diag{
m1︷ ︸︸ ︷

δg1,Y1 , · · · , δg1,Y1 , · · · ,
ms︷ ︸︸ ︷

δgs,Y1 , · · · , δgs,Y1},
and set

v = w ◦ F (u) = (v11, · · · , v1,m1 , · · · , vs1, · · · , vs,ms)
T : F (X) // F (Y1)n1 ,

where vij = δgi,Y ◦ F (uij), for j = 1, . . . ,mi ; i = 1, . . . , s.

We claim that if aij ∈ EndB(F (Y1)) are such that∑s
i=1

∑mi

j=1 aij ◦ vij ∈ rad2(B)(F (X), F (Y1)),

then all the aij are radical. Indeed, EndB(F (Y1)) = ⊕g∈G δg,Y1 ◦F (A(Y1, g·Y1)) by
Lemma 2.6(1). If g ∈ G is non-identity, then A(Y1, g ·Y1) = rad(A)(Y1, g ·Y1), and
by Lemma 3.1, δg,Y1 ◦ F (A(Y1, g ·Y1)) ⊆ rad(B)(F (Y1), F (Y1)). Therefore, we may
assume that aij = F (bij) with bij ∈ EndA(Y1), for all i, j. This yields∑s

i=1

∑mi

j=1 aij ◦ vij =
∑s

i=1

∑mi

j=1 F (bij) ◦ δgi,Y ◦ F (uij)
=

∑s
i=1

∑mi

j=1 δgi,Y ◦ F ((gi · bij) ◦ uij)

=
∑s

i=1 δgi,Y1 ◦ F
(∑mi

j=1 (gi · bij) ◦ uij
)
.

By Lemma 3.2,
∑mi

j=1 (gi · bij) ◦ uij ∈ rad2(A)(X, gi · Y1), for i = 1, . . . , s. Since

ui1, . . . , ui,mi are Di-linearly independent modulo rad2(A)(X, gi ·Y1), we deduce
that gi · bij ∈ rad(A)(gi ·Y1, gi ·Y1), and thus, bij ∈ rad(A)(Y1, Y1). By Lemma
3.1, aij = F (bij) ∈ rad(B)(F (Y1), F (Y1)), for j = 1, . . . ,mi ; i = 1, . . . , s. This
establishes our claim. As a consequence, v is irreducible in B; see [5, (3.5)], and so
is F (u) since w is an isomorphism.

Suppose now that r > 1 and the necessity holds for r−1. Write Y =M⊕N such
that F (M) = F (Y1)

n1 ⊕ · · · ⊕ F (Yr−1)
nr−1 and F (N) = F (Yr)

nr . Then, we have

u = (v, w)T : X → M ⊕ N and F (u) = (F (v), F (w))T : F (X) → F (M) ⊕ F (N).
Since v, w are irreducible in A; see [5, (3.2)], F (v), F (w) are irreducible in B by the
induction hypothesis. Since F (M), F (N) have no common indecomposable direct
summand, F (u) is irreducible; see [5]. The proof of the proposition is completed.

As the converse of the previous result, we have the following statement.
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3.4. Proposition. Let A,B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F : A → B be a Galois G-covering. Consider an inde-
composable object X in A. If B has an irreducible morphism v : F (X) → Z or
v : Z → F (X), then A has an irreducible morphism u : X → Y or u : Y → X,
respectively, such that F (Y ) ∼= Z.

Proof. We shall consider only the case where there exists an irreducible morphism
v : F (X) → Z in B. Write Z = Zn1

1 ⊕ · · · ⊕ Znr
r , where the ni are positive integers

and the Zi are pairwise non-isomorphic indecomposable objects in B. Since F is
dense, we may assume that Zi = F (Yi) with Yi some indecomposable object in A,
for i = 1, . . . , r.

Suppose that r = 1. Let D be the automorphism field of F (Y1). Since F (X)
is indecomposable, v = (v1, . . . , vn1)

T , where v1, . . . , vn1 ∈ rad(B)(F (X), F (Y1))
are D-linearly independent modulo rad2(B)(F (X), F (Y1)); see [5, (3.4)]. Applying
Lemma 3.2, we obtain

rad(B)(F (X), F (Y1)) = ⊕g∈G δg,Y1 ◦ F (rad(A)(X, g · Y1)).

Therefore, v1 =
∑m

j=1 δh1j ,Y1 ◦F (v1j), with h1j ∈ G and v1j ∈ rad(A)(X,h1j·Y1).
Observe that one of the δh1j ,Y1 ◦F (v1j), say δh11,Y1 ◦F (v11), is not a D-linear com-

bination of v2, . . . , vn modulo rad2(B)(F (X), F (Y1)). Setting v
′
1 = δh11,Y1 ◦ F (v11),

we see that v′1, v2, . . . , vn are D-linearly independent modulo rad2(B)(F (X), F (Y1)).
Repeating this process, we may assume that vi = δhi,Y1 ◦ F (ui) with hi ∈ G and
ui ∈ rad(A)(X,hi ·Y1), for i = 1, . . . , n1. Up to permutation, we may assume that

{h1, . . . , hn1} = {
m1︷ ︸︸ ︷

g1, · · · , g1 , · · · ,
ms︷ ︸︸ ︷

gs, · · · , gs},

where g1, . . . , gs ∈ G are distinct and m1, . . . ,ms > 0.

We claim that if
∑m1

i=1 wi ◦ ui ∈ rad2(A)(X, g1 ·Y1) with wi ∈ EndA(g1 ·Y1), then
all the wi are radical. Indeed, observing vi = δhi,Y1 ◦ F (ui) = δg1,Y1 ◦ F (ui) and
applying Lemma 2.4, we obtain∑m1

i=1 F (g
−1
1 ·wi) ◦ vi =

∑m1

i=1 F (g
−1
1 ·wi) ◦ δg1,Y1 ◦ F (ui)

=
∑m1

i=1 δg1,Y1 ◦ F (wi ◦ ui)
= δg1,Y1 ◦ F (

∑m1

i=1 wi ◦ ui)

which, by Lemma 3.1, lies in rad2(B)(F (X), F (Y1)). Since the vi are D-linearly in-
dependent modulo rad2(B)(F (X), F (Y1)), we have F (g

−1
1 ·wi) ∈ rad(EndB(F (Y1)),

and g−1
1 ·wi ∈ rad(EndB(Y1)) by Lemma 3.2, that is, wi ∈ rad(EndB(g1 ·Y1)), for

i = 1, . . . ,m1. This proves our claim, and consequently, (u1, · · · , um1)
T is irre-

ducible in A; see [5, (3.4)]. Similarly, (umj−1+1, · · · , umj−1+mj )
T is irreducible, for

j = 2, . . . , s. Since g1 ·Y1, . . . , gs ·Y1 are pairwise non-isomorphic,

u = (u1, . . . , un1)
T : X → ⊕n1

i=1 hi ·Y1
is irreducible in A such that F (⊕n1

i=1 hi ·Y1) ∼= F (Y1)
n1 .

Suppose now that r > 1 and the proposition holds for r−1. Set Z1 = F (Y1)
n1 and

Z2 = F (Y2)
n2⊕· · ·⊕F (Yr)nr . Then Z = Z1⊕Z2 and v = (w1, w2)

T : X → Z1⊕Z2,

where wi : Z → Zi is irreducible, for i = 1, 2. By the induction hypothesis, A has
irreducible morphisms fi : X → Mi with F (Mi) ∼= Zi, i = 1, 2. Since Z1 and Z2

have no common indecomposable direct summand, neither do M1 and M2. As a
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consequence, f = (f1, f2) : X → M1 ⊕M2 is irreducible in A; see [5, (3.2)], such
that F (M1 ⊕M2) ∼= Z. The proof of the proposition is completed.

Let f : X → Y be a morphism in A. Recall that f is left minimal if every
factorization f = hf implies that h is an automorphism of X; and left almost
split if f is not a section and every non-section morphism g : X → Y factors
through f ; and a source morphism if f is left minimal and left almost split. In dual
situations, one says that f is right minimal, right almost split, and a sink morphism,
respectively. Observe that X or Y is indecomposable in case f is left almost or
right almost, respectively; see [3], and also [15].

3.5. Proposition. Let A,B be Krull-Schmidt categories with G a group acting
admissibly on A, and let F : A → B be a Galois G-covering. If u : X → Y is a
morphism in A, then u is a source morphism or sink morphism if and only if F (u)
is a source morphism or sink morphism in B, respectively.
Proof. Let u : X → Y be a morphism in A. We shall prove only the first part of the
proposition. Assume that F (u) is a source morphism in B. By Lemma 2.7(2), u is
not a section. Let v : X → L be a non-section morphism in A. By Lemma 2.7(2),
F (v) is not a section morphism in B, and hence, F (v) factorizes through F (u). By
Lemma 2.7(1), v factorizes through u. If w : Y → Y is such that u = wu, then
F (u) = F (w)F (u). Therefore, F (w) is an automorphism of F (Y ), and by Lemma
2.7(2), w is an automorphism of Y . That is, u is a source morphism in A.

Conversely, suppose that u is a source morphism in A. In particular, X is
indecomposable. By Lemma 2.7(2), F (u) is not a section. Let v : F (X) → M be
a non-section morphism in B. Since F is dense, we may assume that M = F (N)
with N ∈ A. Let δ be the G-stabilizer for F . Then, v =

∑n
i=1 δgi,N ◦ F (vi), where

g1, . . . , gn ∈ G are distinct and vi ∈ A(X, gi ·N). Since F (X) is indecomposable by
Definition 2.8(2), v is radical. Then, vi is radical by Lemma 3.2, and hence, vi = uui
for some ui ∈ A(X, gi·N), i = 1, . . . , n. This yields v = (

∑n
i=1 δgi,N ◦F (vi)) ◦F (u).

Furthermore, if u ̸= 0, then u is irreducible, and so is F (u) by Proposition 3.3.
Since B is Krull-Schmidt, F (u) is left minimal. If u = 0, then Y = 0; see [12, (1.1)],
and consequently, F (u) is left minimal. This shows that F (u) is a source morphism
in B. The proof of the proposition is completed.

Finally, we shall study the behavior of almost split sequences under a Galois
covering. A short sequence in A is a sequence of two morphisms

η : X
u // Y

v // Z,

which is called pseudo-exact if u is a pseudo-kernel of v, while v is a pseudo-cokernel
of u. Moreover, η is called an almost split sequence if it is pseudo-exact such that
Y is non-zero, u is a source morphism, and v is a sink morphism; see [12].

3.6. Lemma. Let A,B be Krull-Schmidt categories with G a group acting admissibly
on A, and let F : A → B be a Galois G-covering. If η is a short sequence in A,
then it is pseudo-exact if and only if F (η) is pseudo-exact.

Proof. Consider a short sequence η : X
u // Y

v // Z in A. Suppose first that

F (η) : F (X)
F (u) // F (Y )

F (v) // F (Z)
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is pseudo-exact. Since F is faithful by Lemma 2.6(2), vu = 0. Let w : Y → W
be a morphism in A such that wu = 0. Since F (w) ◦ F (u) = 0, we see that F (w)
factorizes through F (v). By Lemma 2.7(1), w factorizes through v. That is, v is a
pseudo-cokernel of u. Dually, one can show that u is a pseudo-kernel of v.

Suppose conversely that η is pseudo-exact. In particular, F (v)F (u) = 0. Let
w : F (Y ) →M be a morphism in B such that wF (u) = 0. Since F is dense, we may
assume thatM = F (L) for some L ∈ A. By Lemma 2.6(1), w =

∑n
i=1 δgi,L◦F (wi),

where g1, . . . , gn ∈ G are distinct and wi ∈ A(Y, gi ·L). This gives rise to

0 = wF (u) =
∑n

i=1 δgi,L ◦ F (wi)F (u) =
∑n

i=1 δgi,L ◦ F (wiu).

Then, for any 1 ≤ i ≤ n, we have δgi,L ◦ F (wiu) = 0, and hence, wiu = 0 since F
is faithful. Therefore, wi = viv for some vi ∈ A(Z, gi ·L), i = 1, . . . , n. This yields
w = (

∑n
i=1δgi,L ◦ F (vi))F (v). That is, F (v) is a pseudo-cokernel of F (u). Dually,

one can show that F (u) is a pseudo-kernel of F (v). The proof of the lemma is
completed.

Remark. The above result says particularly that a Galois covering between Krull-
Schmidt abelian categories is an exact functor.

We are now ready to obtain the main result of this section.

3.7. Theorem. Let A,B be Krull-Schmidt categories with G a group acting admis-
sibly on A, and let F : A → B be a Galois G-covering.

(1) A short sequence η in A is almost split if and only if F (η) is almost split.

(2) An object X in A is the starting term or the ending term of an almost split
sequence if and only if F (X) is the starting term or the ending term of an
almost split sequence, respectively.

Proof. Consider a short sequence η : X // Y // Z in A. Since F is faithful by

Lemma 2.6(2), Y ̸= 0 if and only if, F (Y ) ̸= 0. Now, it follows from Proposition
3.5 and Lemma 3.6 that η is almost split if and only if F (η) is almost split. This
establishes Statement (1).

Next, the necessity of Statement (2) follows immediately from Statement (1).
Let X ∈ A0 be such that B has an almost split sequence

F (X)
f // M

g // N.

Note that f is irreducible in B because M ̸= 0. By Proposition 3.4, A has an
irreducible morphism u : X → Y with F (Y ) ∼= M . By Proposition 3.3, F (u) is
irreducible in B. Therefore, F (u) = fw for some retraction w : M → F (Y ). Since
B is Krull-Schmidt, w is an isomorphism. Setting v = gw−1, we see that

F (X)
F (u) // F (Y )

v // N

is an almost split sequence in B. Since F is dense, we may assume that N = F (Z)
for some indecomposable Z ∈ A0. By Lemma 2.6(1), v =

∑n
i=1 δgi,Z ◦F (wi), where

g1, . . . , gn ∈ G are distinct and wi ∈ A(Y, gi ·Z). This yields∑n
i=1 δgi,Z ◦ F (wiu) = vF (u) = 0.

Then, (δgi,Z ◦F (wi))F (u) = 0, and thus, δgi,Z ◦F (wi) = aiv with ai ∈ EndB(F (Z)),

for i = 1, . . . , n. This gives rise to v = v(
∑n

i=1 ai). Since EndB(F (Z)) is local, we
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may assume that a1 is an automorphism. Thus, B has an almost split sequence

F (X)
F (u) // F (Y )

δg1,Z◦F (w1) // F (Z),

and consequently, B has an almost split sequence

F (X)
F (u) // F (Y )

F (w1)// F (g1 ·Z).

By Statement (1), X
u // Y

w1 // g1 ·Z is an almost split sequence in A. This

proves the first part of the sufficiency, and the second part follows dually. The
proof of the theorem is completed.

Remark. The above theorem says in particular that if F : A → B is a Galois
covering, then A has (left, right) almost split sequences if and only if B has (left,
right) almost split sequences.

4. Galois coverings for Auslander-Reiten quivers

The classical notion of a Galois covering for translation quivers works only in
the unvalued context; see [6, 16]. In this section, we extend this to the valued con-
text, and show that a Galois covering between Hom-finite Krull-Schmidt categories
induces a Galois covering between their Auslander-Reiten quivers.

We start with a brief recall on some combinatorial background. LetQ = (Q0, Q1)
be a quiver, where Q0 is the set of vertices and Q1 is the set of arrows. If α : x→ y
is in Q1, then we shall write x = s(α) and y = e(α). For a ∈ Q0, denote by x+

the set of arrows α with s(α) = x, and by x− the set of arrows β with e(β) = x.
One says that Q is locally finite if x+ and x− are both finite for every x ∈ Q0. A
sequence ρ = αn · · ·α1 with n > 0 and αi ∈ Q1 such that s(αi+1) = e(αi) for all
1 ≤ i < n is called a path of length n. To each x ∈ Q0, one associates a trivial
path εx with s(εx) = e(εx) = x which, by convention, is of length 0. For x, y ∈ Q0,
denote by Q1(x, y) the set of arrows from x to y; by Q≤1(x, y) the set of paths
of length ≤ 1 from x to y, and by Q(x, y) the set of all paths from x to y. For
each α : x → y in Q1, one introduces a formal inverse α−1 with s(α−1) = y and
e(α−1) = x. A sequence w = cn · · · c2c1, where the ci are trivial paths, arrows
or the inverses of arrows in Q such that s(ci+1) = e(ci) for 1 ≤ i < n, is called
a walk. In this case, we write s(w) = s(c1) and e(w) = e(cn). The set of walks
in Q will be denoted by W (Q). A walk w in Q is called closed if s(w) = e(w);
reduced if w is either a trivial path, or w = cn · · · c1 with ci ∈ Q1 or c−1

i ∈ Q1

such that ci+1 ̸= c−1
i for all 1 ≤ i < n; and a cycle if w is non-trivial, reduced and

closed. A quiver-morphism φ : Q → Q′ consists of two maps φ0 : Q0 → Q′
0 and

φ1 : Q1 → Q′
1 such that φ1(Q1(x, y)) ⊆ Q′

1(φ0(x), φ0(y)) for all x, y ∈ Q0. Such a

morphism induces a map from W (Q) to W (Q′), which will be denoted again by φ.
Observe that a quiver-morphism φ : Q → Q′ is an isomorphism if both φ0 and φ1

are bijective.

Suppose that G is a group acting on Q, that is, there exists a homomorphism
from G into the group of automorphisms of Q. One says that the G-action on Q is
free provided that g ·x ̸= x, for any x ∈ Q0 and any non-identity g ∈ G. As usual,
we shall regard g ∈ G as an automorphism of Q. The following definition is well
known; see, for example, [8, 9].
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4.1. Definition. Let Q be a quiver with a free action of a group G. A quiver-
morphism φ : Q → Q′ is called a Galois G-covering provided that the following
conditions are satisfied.

(1) The map φ0 is surjective.
(2) If g ∈ G, then φ ◦ g = g.
(3) If x, y ∈ Q0 with φ0(x) = φ0(y), then y = g · x for some g ∈ G.
(4) If x ∈ Q0, then φ1 induces two bijections x+ → φ0(x)

+ and x− → φ0(x)
−.

Remark. (1) A quiver-morphism φ : Q → Q′ satisfying the above conditions (1)
and (4) is called a quiver-covering.

(2) It is easy to see that a Galois G-covering φ : Q → Q′ of quivers is an
isomorphism, if and only if, φ0 : Q0 → Q′

0 is an injection, if and only if G is trivial.

Next, a valued quiver is a pair (∆, v), where ∆ is a quiver without multiple arrows
and v is a valuation on the arrows, that is, each arrow x→ y is endowed with a pair
(vxy, v

′
xy) of positive integers. The valuation (vxy, v

′
xy) of an arrow x→ y is called

symmetric if vxy = v′xy. More generally, we say that ∆ is symmetrically valued if
all the arrows have a symmetric valuation.

4.2.Definition. A valued-quiver-morphism φ: (∆, v)→ (Ω , u) is a quiver-morphism
φ : ∆ → Ω such that vxy ≤ uφ(x),φ(y) and v

′
xy ≤ u′φ(x),φ(y), for any x→ y in ∆1.

Remark. A valued-quiver-morphism φ : (∆, v) → (Ω , u) is an isomorphism if
and only if φ : ∆ → Ω is a quiver-isomorphism such that vxy = uφ(x),φ(y) and
v′xy = u′φ(x),φ(y), for any arrow x→ y in ∆.

Sometimes, it will be convenient to identify a non-valued quiver Q with a sym-
metrically valued quiver ∆(Q) defined as follows: the vertices are those of Q, and
there exists an unique arrow x→ y in ∆(Q) with valuation (dxy, dxy) if and only if
there exist dxy arrows from x to y in Q.

4.3. Definition. Let (∆, v) be a valued quiver with a free action of a group G. A
valued-quiver-morphism φ : (∆, v) → (Ω , u) is called a Galois G-covering provided
that the following conditions are verified.
(1) The map φ0 : ∆0 → Ω0 is surjective.
(2) If g ∈ G, then φ ◦ g = φ.
(3) If x, y ∈ ∆0 with φ(x) = φ(y), then y = g · x for some g ∈ G.
(4) If x ∈ ∆0 with a ∈ φ(x)+ and b ∈ φ(x)−, then

uφ(x),a =
∑

y∈x+∩φ−(a) vx,y and u′b,φ(x) =
∑

z∈x−∩φ−(b) v
′
z,x.

Remark. (1) We deduce from Definition 4.3(4) that φ induces, for any x ∈ ∆0,
two surjections x+ → (φ(x))+ and x− → (φ(x))−; compare Definition 4.1(4). In
particular, the map φ1 : ∆1 → Ω1 is surjective.

(2) A Galois G-covering φ : (∆, v) → (Ω , u) of valued quivers is an isomorphism
if and only if φ0 : ∆0 → Ω0 is an injection, if and only if G is trivial.

(3) Given non-valued quivers Q and Q′, each quiver-morphism φ : Q → Q′

induces a valued-quiver-morphism ∆(φ) : ∆(Q) → ∆(Q′) in such a way that φ is a
Galois covering of quivers if and only if ∆(φ) is a Galois covering of valued quivers.

Example. Let A2,3 be the valued quiver consisting of two vertices a, b, and one
arrow a→ b with valuation (2, 3). It is easy to see that A2,3 admits a Galois covering
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A∞
∞, consisting of the vertices ai, bi, i ∈ Z, and arrows ai → bi with valuation (1, 1)

and arrows ai → bi+1 with valuation (1, 2), i ∈ Z.

Let ∆ be a valued quiver with an action of a group G, and let C be a connected
component of ∆. If g ∈ G, then g · C is a connected component of ∆, and conse-
quently, either g · C = C or C ∩ g · C = ∅. The elements g ∈ G such that g · C = C
form a subgroup of G, which is written as GC . Clearly, the G-action on ∆ restricts
to a GC-action on C.

4.4. Lemma. Let φ : (∆, v) → (Ω , u) be a Galois G-covering of valued quivers,
where G is a group acting freely on (∆, v). If C is a connected component of ∆,
then φ(C) is a connected component of Ω such that φ restricts to a Galois GC-
covering φC : (C, v) → (φ(C), u).
Proof. First of all, the GC-action on C is free such that φC ◦ g = φC for all g ∈ GC .
Moreover, since φ satisfies Condition (4) stated in Definition 4.3, so does φC .

Now, since C is connected, φ(C) is a connected full subquiver of Ω . Let x be a
vertex in φ(∆), and let y ∈ Ω0 for which there exists a walk w with s(w) = x and
e(w) = y. Write x = φ(a) with a ∈ ∆0. Since φ1 : ∆1 → Ω1 is surjective, ∆ has
a walk w′ from some vertex b to a such that φ(w′) = w. In particular, y = φ(b).
Since C is a connected component of ∆, we have y ∈ φ(C). This shows that φ(C) is
a connected component of Ω and the action of φC on the vertices is surjective.

Next, let y, z ∈ C0 with φC (y) = φC (z), that is, φ(y) = φ(z). By Definition
4.1(2), z = g · y for some g ∈ G. Since z ∈ C ∩ g · C, we have C = g · C, that is,
g ∈ GC . Thus, φC satisfies Condition (3) stated in Definition 4.1, and hence, is a
Galois GC-covering. The proof of the lemma is completed.

Finally, a valued translation quiver is a triple (Γ , v, τ), where (Γ , v) is a valued
quiver and τ is a translation, that is a bijection from one subset of Γ 0 to another
one such that, for any x ∈ Γ 0 with τx defined, we have x+ = (τx)− ̸= ∅ and
(vτx,y, v

′
τx,y) = (v′yx, vyx) for every y ∈ x+. In this case, x ∈ Γ 0 is called projective

or injective if τx or τ−x is not defined, respectively. Note that valued translation
quivers considered here are not necessarily locally finite and may contain loops;
compare [11, Section 2].

4.5.Definition. Amorphism of valued translation quivers φ : (∆, v, τ) → (Ω , u, ρ)
is a valued-quiver-morphism φ : (∆, v) → (Ω , u) satisfying the condition: for any
non-projective x ∈ Γ 0, the image φ(x) is not projective with ρ(φ(x)) = φ(τ(x));
or equivalently, for any non-injective x ∈ Γ 0, the image φ(x) is not injective with
ρ−(φ(x)) = φ(τ−(x)).

Remark. A morphism of valued translation quivers φ : (Γ , τ, v) → (∆, ρ, d) is
an isomorphism if and only if φ : (Γ , v) → (∆, d) is a valued-quiver-isomorphism
satisfying the condition: for any projective x ∈ Γ 0, the image φ(x) is projective; or
equivalently, for any injective x ∈ Γ 0, the image φ(x) is injective.

The following definition extends the notion of a Galois covering for unvalued
translation quivers introduced by Riedtmann; see [16], and also [6].

4.6. Definition. Let (Γ , v, τ) be a valued translation quiver with a free action of
a group G. A morphism of valued translation quivers φ : (Γ , v, τ) → (∆, d, ρ) is
called a Galois G-covering provided that φ : (Γ , v) → (∆, d) is a Galois G-covering
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of valued quivers with the property : for any projective x ∈ Γ 0, the image φ(x) is
projective; or equivalently, for any injective x ∈ Γ 0, the image φ(x) is injective.

Remark. (1) The equivalence of the two conditions stated in Definition 4.6 follows
from the conditions (1) and (3) stated in Definition 4.3.

(2) A Galois G-covering of valued translation quivers φ : (∆, v, τ)→ (Ω , u, ρ) is
an isomorphism if and only if G is trivial, if and only if φ0 :∆0 →Ω0 is an injection.

For the rest of this section, letA be a Hom-finite Krull-SchmidtR-linear category,
where R is a commutative artinian ring. IfM ∈ A0, thenM

n with n > 0 will denote
the direct sum of n copies of M . If X,Y ∈ A0 are indecomposable, then we shall
denote by d′XY and dXY the dimensions of irr(X,Y ) over D

X
and D

Y
, respectively.

If irr(X,Y ) ̸= 0, then d′XY is the maximal integer such that A admits an irreducible

morphism fromXd′
XY to Y , while dXY is the maximal integer such thatA admits an

irreducible morphism from X to Y dXY ; see [5, (3.4)]. As a consequence, if M → Y
is a sink morphism, then d′XY is the multiplicity of X as a direct summand of M ,
and if X → N is a source morphism, then dXY is the multiplicity of Y as a direct
summand of N . Let indA denote a complete set of non-isomorphic indecomposable
objects in A. Then the Auslander-Reiten quiver ΓA of A is a valued translation
quiver defined as follows; see [12, (2.1)]: the vertex set is indA; for any vertices
X,Y , there exists a single arrow X → Y with valuation (dXY , d

′
XY ) if and only

if dXY > 0; and the translation τA is the Auslander-Reiten translation, that is,
X = τAZ if and only if A has an almost split sequence X → Y → Z.

Suppose now that G is a group acting freely on A. Let Σ be a complete set of
representatives of the G-orbits in A0. Then, we can choose indA to be the set of
objects g ·X with X ∈ Σ and g ∈ G. In this way, indA becomes G-stable, that is,
if M ∈ indA, then g ·M ∈ indA, for every g ∈ G. It is easy to see that the free
G-action on A induces a free G-action on the valued translation quiver ΓA .

4.7. Theorem. Let A,B be Hom-finite Krull-Schmidt R-linear categories with G
a group acting admissibly on A, where R is a commutative artinian ring, and let
F : A → B be a Galois G-covering.
(1) The functor F induces a Galois G-covering π : ΓA → ΓB of valued translation

quivers.
(2) If Γ is a connected component of ΓA , then π(Γ ) is a connected component of

ΓB and π restricts to a Galois GΓ -covering πΓ : Γ → π(Γ ).

Proof. Let Σ be a complete set of representatives of the G-orbits in indA. Then
the vertices in ΓA are the objects g ·X, with g ∈ G and X ∈ Σ . By Definition 2.8,
we may choose F (Σ ) = {F (X) | X ∈ Σ} to be the vertex set of ΓB .

Let M = g0·X be a vertex in ΓA, where g0 ∈ G and X ∈ Σ . Set π0(M) = F (X).
This defines a surjection π0 : (ΓA)0 → (ΓB)0 such that π0(g ·M) = π0(M), for
any g ∈ G. Moreover, by Definition 2.8(3), π0 satisfies Condition (3) stated in
Definition 4.3. Furthermore, F (M) ∼= F (X) = π0(M). By Theorem 3.7(3), M is
not projective in ΓA if and only if π0(M) is not projective in ΓB, and in this case,
π0(τAX) = τB(π0(X)) by Theorem 3.7(2). This shows that π0 commutes with the
translations and has the property stated in Definition 4.6.

Next, let α :M → N be an arrow in ΓA, where N = h·Y with h ∈ G and Y ∈ Σ .
By Proposition 3.3, irr(F (M), F (N)) ̸= 0 with dM,N ≤ dF (M),F (N) and d′M,N ≤
d′F (M),F (N). Assume that δ is the G-stabilizer for F . In view of the isomorphisms
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δg,X and δh,Y , we see that (dF (X),F (Y ), d
′
F (X),F (Y )) = (dF (M),F (N), d

′
F (M),F (N)).

Therefore, ΓB has an arrow β : π0(M) → π0(N) with dM,N ≤ dπ0(M),π0(N) and
d′M,N ≤ d′π0(M),π0(N). Set π1(α) = β. Then, π1(g ·α) = π1(α) for any g ∈ G. This

yields a morphism of valued translation quivers π = (π0, π1) : ΓA → ΓB, which
verifies the property stated in Definition 4.6.

It remains to show that π verifies Condition (4) stated in Definition 4.3. Consider
U ∈ (π(M))+. Let X+ ∩ π−(U) = {L1, . . . , Lr} and m = m1 + · · · +mr, where
mi = dX,Li . Then M

+ ∩ π−(U) = {g0 ·L1, . . . , g0 · Lr} and dM,g0·Li = dX,Li = mi,

for i = 1, . . . , r. This implies that
∑

V ∈M+∩π−(U) dM,V =
∑r

i=1 dM,g0·Li = m.

Set n = dπ(M),U = dF (X),U , which is maximal such that B has an irreducible
morphism f : F (X) → Un. By Proposition 3.4, A has an irreducible morphism
u : X → N with F (N) ∼= Un. We may assume that N = Nn1

1 ⊕ · · · ⊕Nns
s , where

ni > 0 and the Ni are distinct vertices in ΓA. Since u co-restricts to an irreducible
morphism ui : X → Nni

i , we see that Ni ∈ X+ ∩ π−(U) and dX,Ni ≥ ni, for
i = 1, . . . , s. This yields

n = n1 + · · ·+ ns ≤
∑s

i=1 dX,Ni ≤
∑

L∈X+∩π−(U) dX,L =
∑r

i=1 dX,Li = m.

On the other hand, since mi = dX,Li , there exists an irreducible morphism
wi : X → Lmi

i in A, for i = 1, . . . , r. Hence, w = (w1, · · · , wr)
T : X → ⊕r

i=1 L
mi
i is

irreducible in A; see [5, (3.2)]. By Proposition 3.3, F (w) : F (X) → ⊕r
i=1 F (Li)

mi

is irreducible in B. Since F (Li) ∼= π(Li) = U , we see that B has an irreducible
morphism g : F (X) → Um, and hence, m ≤ n. As a consequence, n = m, that is,
π verifies the first equation stated in Definition 4.3(4); and dually, it also verifies
the second equation. This establishes Statement (1).

For proving Statement (2), let Γ be a connected component of ΓA . By Lemma
4.4, π(Γ ) is a connected component of ΓB such that πΓ : Γ → π(Γ ) is a Galois
GΓ -covering of valued quivers. Since π is a morphism of valued translation quivers
and verifies the property stated in Definition 4.6, the same holds for πΓ . That is,
π
Γ
: Γ → π(Γ ) is a Galois GΓ -covering of valued translation quivers. The proof of

the theorem is completed.

5. Deriving adjoint pairs

Throughout this section, let A,B be abelian categories. The objective of this

section is to show that a graded adjoint pair between A and B induces a graded

adjoint pair between D(A) and D(B).

Let F : A → B be a linear functor. For X. ∈ C(A), define FC(X.) to be the
complex of which the component and the differentiation of degree n are F (Xn) and
F (dnX) respectively, for n ∈ Z. This yields a linear functor FC : C(A) → C(B).
The following result is well known; see, for example, [14, (V.1.2.2)].

5.1. Proposition. Let A,B be abelian categories. If F : A → B is an exact

functor, then it induces a commutative diagram of functors

C(A)

FC

��

PA // K(A)
LA //

FK

��

D(A)

FD

��
C(B)

PB // K(B)
LB // D(B),
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where F C is an exact functor between abelian categories, while FK , FD are exact
functors between triangulated categories.

In our late investigation, we shall need the following easy observation.

5.2. Lemma. Let A,B be abelian categories, and let E,F : A → B be exact func-

tors. If η : E → F is a functorial (iso)morphism, then it induces functorial
(iso)morphisms ηC : EC → FC , and ηK : EK → FK , and ηD : ED → FD

such that, for any X. ∈ C(A), we have ηK
X
. = P

B
(ηC

X
.) and ηD

X
. = L

B
(ηC

X
.).

Proof. Suppose that η : E → F is a functorial morphism. For each X. ∈ C(B), we

define ηC
X
. : EC(X.) → FC(X.) by setting its n-th component to be the morphism

η
Xn : E(Xn) → F (Xn). Since η

X
is natural in X, we see that ηC

X
. is a morphism

in C(B) which is natural in X.. Now, ηK
X
. = PB(ηC

X
.) : EK(X.) → FK(X.) is a

morphism in K(B), and ηD
X
. = LB(ηK

X
.) : ED(X.) → FD(X.) is a morphism in

D(B), both are natural in X.. Finally, if the ηX with X ∈ B are all isomorphisms,
then the ηC

X
., ηK

X
. and ηD

X
. with X. ∈ C(B) are all isomorphisms. The proof of the

lemma is completed.

The following result has been widely believed to be true. However, we find a
rigorous proof only in Milicic’s unpublished lectures notes; see [14, (V.1.7.1)].

5.3. Theorem (Milicic). Let A,B be abelian categories, and let F : A → B and

E : B → A be exact functors. If (F,E) is an adjoint pair, then the induced pairs
(F C , EC), (FK , EK), (FD, ED) are adjoint pairs.

Proof. We recall the description of the induced adjoint isomorphisms for our later
investigation, and refer the details to [14, (V.1.7.1)]. Assume that (F,E) is an
adjoint pair. For each pair (X,Y ) ∈ A0 ×B0, there exists an isomorphism

ϕX,Y : A(X,E(Y )) → B(F (X), Y ),

which is natural in both variables X,Y .

Fix X. ∈ C(A) and Y . ∈ C(B). If f . : X. → EC(Y .) is a morphism in C(A),

then we set ϕCX.,Y .(f
.) = (ϕXi,Y i(f i))i∈Z : FC(X.) → Y ., which is a morphism in

C(B). This yields an isomorphism

ϕCX.,Y . : C(A)(X
.
, EC(Y

.
)) → C(B)(FC(X

.
), Y

.
),

which is natural in both variables X. and Y .. Thus, (EC , FC) is an adjoint pair.
Next, the naturality of ϕX,Y in X,Y ensures that ϕCX.,Y . sends null-homotopic

morphisms to null-homotopic ones. Therefore, ϕCX.,Y . induces an isomorphism

ϕKX.,Y . : K(A)(X
.
, EK(Y

.
)) → K(B)(FK(X

.
), Y

.
),

which is natural in both variables X., Y .. That is, (EK , FK) is an adjoint pair.
Finally, observe that FK sends quasi-isomorphisms to quasi-isomorphisms. For

each morphism θ. = f̄ ./s̄. ∈ D(A)(X., ED(Y .)), where s̄. : M. → X. is a quasi-
isomorphism and f̄ . :M .→ Y . is a morphism in K(A), set

ϕDX.,Y .(θ
.
) = ϕKM.,Y .(f̄

.
)/F (s̄

.
).

This yields an isomorphism

ϕDX.,Y . : D(A)(X
.
, ED(Y

.
)) → D(B)(FD(X

.
), Y

.
),
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which is natural in both variables X., Y .. The proof of the theorem is completed.

For the rest of this section, assume that A is equipped with an action of a group
G. Regarding g ∈ G as an automorphism of A, we deduce immediately the following
statement from Proposition 5.1.

5.4. Lemma. Let A be an abelian category. If G is a group acting on A, then it acts
on each of C(A), K(A), D(A) in such a way that, for any g ∈ G, the following
diagram commutes :

C(A)

g

��

P
A // K(A)

L
A //

g

��

D(A)

g

��
C(A)

P
A // K(A)

L
A // D(A).

We shall say that A has enough projective objects provided that every object X
in A admits an epimorphism ε : P → X with P being projective. Recall that Db(A)
can be regarded as a full triangulated subcategory of D(A); see [10, (6.15)].

5.5. Lemma. Let A be an abelian category having enough projective objects and
equipped with a locally bounded action of a group G.

(1) If X., Y . ∈ Cb(A), then C(A) has a quasi-isomorphism s. : P .→ X. with P . a
bounded-above complex of projective objects such that C(A)(P ., g · Y .) = 0, for
all but finitely many g ∈ G.

(2) The category Db(A) is a G-subcategory of D(A) with a locally bounded G-action.

Proof. Clearly, Db(A) is stable under the G-action on D(A). Let X., Y . ∈ Cb(A).
Since A has enough projective objects, C(A) has a quasi-isomorphism s. : P .→ X.

with P . a bounded-above complex of projective objects; see [10, (7.5)]. Let m ≤ n
be integers such that Y i = 0 for i ̸∈ [m,n]. Since the G-action on A is locally
bounded, there exists a finite subsetG0 ofG such that A(P i, g·Y i) = 0, for g ∈ G\G0

and m ≤ i ≤ n. Thus, C(A)(P ., g ·Y .) = 0, and consequently, K(A)(P ., g ·Y .) = 0,
for any g ∈ G\G0. Since s̃

. is an isomorphism D(A), we have

Db(A)(X
.
, g · Y .) ∼= D(A)(X

.
, g · Y .) ∼= D(A)(P

.
, g · Y .) ∼= K(A)(P

.
, g · Y .) = 0,

where the last isomorphism follows from Lemma 1.9(1), for any g ∈ G\G0. The
proof of the lemma is completed.

We shall need the following easy result.

5.6. Lemma. Let F : A → B be a functor between abelian categories, and let G be
a group acting on A. If δ is a G-stabilizer for F , then it induces G-stabilizers δC ,
δK , and δD for the functors F C , FK , and FD, respectively.

Proof. Let δ be a G-stabilizer for F . Then, there exist functorial isomorphism
δg : F ◦ g → F , with g ∈ G, such that δh,X δg, h·X = δgh,X , for X ∈ A0 and

g, h ∈ G. For each g ∈ G, observing that (F ◦g)C = FC ◦g, and (F ◦g)K = FK ◦g,
and (F ◦ g)D = FD ◦ g, we deduce from Lemma 5.2 that δg induces functorial

isomorphisms δCg : FC ◦ g → FC , and δKg : FK ◦ g → FK , and δDg : FD ◦ g → FD.

Fix X .∈ C(A) and g, h ∈ G. For any n ∈ Z, we have δh,Xn ◦ δg, h·Xn = δgh,Xn ,

that is, (δCh,X.)
n ◦ (δCg, h·X.)n = (δCgh,X.)

n. This implies that δCh,X. ◦ δCg, h·X. = δCgh,X..

Applying first the functor P
A

and then L
A

yields δKh,X. ◦ δKg, h·X. = δKgh,X. and
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δDh,X. ◦ δDg, h·X. = δDgh,X.. The proof of the lemma is completed.

Furthermore, assume that A has essential direct sums. By Lemma 1.2, the
category of endofunctors of A has a direct sum G of the g ∈ G, regarded as auto-
morphisms of A with canonical injection jg : g → G. Being exact by Lemma 1.6, G
induces a commutative diagram

C(A)

GC

��

P
A // K(A)

L
A //

GK

��

D(A)

GD

��
C(A)

P
A // K(A)

L
A // D(A).

On the other hand, by Lemma 1.4 and Theorem 1.8, C(A), K(A), and D(A)
all have direct sums, and so does the category of linear endofunctors of each of
C(A), K(A) and D(A). It is easy to see that GC , GK , GD are the direct sums of
the g ∈ G, considered as automorphisms of C(A), K(A), D(A), respectively, with

canonical injections j C
g : g → GC , and jKg : g → GK , and jDg : g → GD, which are

induced as described in Lemma 5.2 from the canonical injections jg : g → G.

5.7. Proposition. Let A,B be abelian categories such that A has essential direct
sums and admits an action of a group G. Let F : A → B and E : B → A
be exact functors. If (F,E) is a G-graded adjoint pair, then the induced pairs
(FC , EC), (FK , EK) and (FD, ED) are G-graded adjoint pairs.

Proof. Assume that (F,E) is a G-graded adjoint pair. Then, we have a functorial
isomorphism γ : G → E ◦ F , a G-stabilizer δ for F , and an adjoint isomorphism
ϕ for (E,F ). It follows from Lemma 5.2 that γ induces functorial isomorphisms
γC : GC → EC ◦F C , and γK : GK → EK ◦FK , and γD : GD → EC ◦FD. Moreover,
by Lemma 5.6, δ induces G-stabilizers δC , δK , δD for F C , FK , FD, respectively.
Finally, as described in the proof of Theorem 5.3, ϕ induces adjoint isomorphisms
ϕC , ϕK , ϕD for (FC , EC), (FK , EK), (FD, ED), respectively.

Consider a morphism u. : X. → g ·Y . in C(A), where g ∈ G. By Definition
2.11(2), we have

ϕXn,F (Y n)(γY n ◦ j
g,Y n ◦ un) = δg,Y n ◦ F (un),

for all n ∈ Z. This yields
ϕCX.,FC(Y .)(γ

C
Y
. ◦ jC

g,Y
. ◦ u

.
) = δCg,Y . ◦ F C(u

.
).

Applying the projection functor P
B

: C(B) → K(B), we obtain

ϕKX.,FK(Y .)(γ
K
Y
. ◦ jK

g,Y
. ◦ ū

.
) = δKg,Y . ◦ FK(ū

.
).

Finally, let θ. = ū./s̄. : X. → g ·Y . with g ∈ G be a morphism in D(A), where
s̄. : Z. → X. is a quasi-morphism and ū. : Z. → g ·Y . is a morphism in K(A).
Observing that γD

Y
. ◦ jD

g,Y
. ◦ θ.= (γK

Y
. ◦ jK

g,Y
. ◦ ū.)/s̄., we obtain

ϕDX., FD(Y .)(γ
D
Y
. ◦ jD

g,Y
. ◦ θ

.
) = ϕKZ., FK(Y .)(γ

K
Y
. ◦ jK

g,Y
. ◦ ū

.
)/FK(s̄

.
)

=
(
δKg,Y . ◦ FK(ū

.
)
)
/FK(s̄

.
)

= δDg,Y . ◦
(
FK(ū

.
)/FK(s̄

.
)
)

= δDg,Y . ◦ FD(θ
.
).

The proof of the proposition is completed.
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6. Module categories and their derived categories

The objective of this section is to apply our previous results to study push-
down functors between the module categories and between their derived categories
induced from a Galois covering of locally bounded linear categories.

Throughout this section, k denotes a field, and all tensor products are over k.
Let Λ stand for a locally bounded linear category over k, that is, Λ is skeletal
such that ⊕x∈Λ0 (Λ(a, x) ⊕ Λ(a, x)) is finite dimensional, for any a ∈ Λ0; see [6,
(2.1)]. A left Λ-module is a k-linear functor M : Λ → Modk, where Modk is
the category of all k-vector spaces. If M,N are left Λ-modules, then a Λ-linear
morphism f : M → N consists of k-linear maps f(x) : M(x) → N(x), x ∈ Λ0,
such that f(y)M(α) = N(α)f(x), for every morphism α : x → y in Λ. We denote
by ModΛ the category of all left Λ-modules, which has essential direct sums by
Lemma 1.2. For M ∈ ModΛ, one defines its support suppM to be the set of x ∈ Λ0

for which M(x) ̸= 0. One says that M is finitely supported if suppM is finite, and
finite dimensional if

∑
x∈Λ0

dimkM(x) is finite. We shall denote by ModbΛ and

modbΛ the full abelian subcategories of ModΛ generated by the finitely supported
modules and by the finite dimensional modules, respectively.

For each x ∈ Λ0, it is well known that P [x] = Λ(x,−) is an indecomposable

projective object in ModΛ. Since Λ is locally bounded, P [x] ∈ modbΛ. Hence, for
any V ∈ Modk, the Λ-module P [x]⊗V lies in ModbΛ and is projective in ModΛ. We

denote by projΛ the full additive subcategory of modbΛ generated by the modules
isomorphic to P [x] for some x ∈ Λ0, and by ProjΛ the full additive subcategory of
ModbΛ generated by the modules isomorphic to some P [x] ⊗ V with x ∈ Λ0 and
V ∈ Modk.

6.1. Lemma. Let Λ be a locally bounded k-linear category. If M ∈ ModbΛ, then it
admits a projective cover ε : P → X with P ∈ ProjΛ in such a way that M ∈ modbΛ
if and only if P ∈ projΛ.

Proof. Let M ∈ ModbΛ having a finite support Σ . Since Λ is locally bounded,
M/radM ∼= ⊕x∈Σ S[x] ⊗ Ux, where S[x] is the simple Λ-module supported by x
and Ux ∈ Modk. Hence, P = ⊕x∈Σ P [x] ⊗ Ux is a projective cover of M , which
lies in ProjΛ. If M is finite dimensional, then Ux is finite dimensional for every
x ∈ Σ , and hence, P ∈ projΛ. Conversely, if P ∈ projΛ, then M is clearly finite
dimensional. The proof of the lemma is completed.

For the rest of this section, let G be a group acting on Λ. The G-action on Λ
induces a G-action on ModΛ as follows; see [8, (3.2)]. Fix g ∈ G. For a Λ-module
M : Λ → Modk, regarding g as an automorphism of Λ, one defines g·M =M ◦g−1 :
Λ → Modk; and for a Λ-linear morphism u :M → N , one defines g ·u : g ·M → g ·N
by setting (g · u)(x) = u(g−1 ·x), for x ∈ Λ0.

6.2. Lemma. Let Λ be a locally bounded k-linear category with an action of a group
G. If the G-action on Λ is free, then ModbΛ and modbΛ are G-subcategories of
ModΛ with a locally bounded G-action.

Proof. Assume that the G-action on Λ is free. Let M,N ∈ ModbΛ. For each g ∈ G,
by the definition of the G-action on ModΛ, we have supp(g ·N) = g ·suppN . As

an immediate consequence, ModbΛ and modbΛ are both G-subcategories of ModΛ.
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Suppose that suppM ∩ g · suppN ̸= ∅ for infinitely many g ∈ G. Being finite,
suppM has an element x with x ∈ g · suppN , for infinitely many g ∈ G. Since
suppN is finite, there exists y ∈ suppN such that x = g · y for infinitely many
g ∈ G. In particular, there exist two distinct elements g, h ∈ G such that g·y = h·y,
which is absurd. Thus, suppM ∩ g · suppN = ∅ for all but finitely many g ∈ G. In
particular, HomΛ(M, g · N) = 0 for all but finitely many g ∈ G. That is, the G-

action on ModbΛ is locally bounded, and consequently, so is the G-action on modbΛ.
The proof of the lemma is completed.

Assume that the G-action on Λ is admissible. Let π : Λ → A be a G-invariant
Galois G-covering between locally bounded k-linear categories. In [6, (3.2)], Bon-
gartz and Gabriel constructed an exact functor

πλ : ModΛ → ModA,

called push-down functor. Indeed, for a module M ∈ ModΛ, one defines an A-
module πλ(M) as follows. For a ∈ A0, one sets πλ(M)(a) = ⊕x∈π−(a)M(x), where

π−(a) = {x ∈ Λ0 | π(x) = a}. Let α : a → b a morphism in A. Since π is G-
invariant, for each pair (x, y) ∈ π−(a)× π−(b), there exists a unique αy,x ∈ Λ(x, y)
such that

∑
y∈π−(b) π(αy,x) = α, for every x ∈ π−(a). Observing that M(αy,x) is

a k-linear map from M(x) to M(y), one sets

πλ(M)(α) = (M(αy,x))(y,x)∈π−(b)×π−(a) : ⊕x∈π−(a)M(x) → ⊕y∈π−(b)M(y).

Next, let f :M → N be a morphism in ModΛ. Setting

πλ(f)(a) = diag{f(x) | x ∈ π−(a)} : ⊕x∈π−(a)M(x) → ⊕x∈π−(a)N(x),

for each a ∈ A0, one obtains a morphism πλ(f) : πλ(M) → πλ(N) in ModA.

The following result collects some properties of the push-down functor, which is
partially due to Bongartz-Gabriel; see [6, 8].

6.3. Lemma. Let Λ, A be locally bounded k-linear categories with G a group acting
admissibly on Λ, and let π : Λ → A be a G-invariant Galois G-covering.

(1) The push-down functor πλ : ModΛ → ModA admits a G-stabilizer δ.

(2) If x ∈ Λ0, then πλ(P [x]) ∼= P [π(x)].

Proof. (1) Fix g ∈ G. For M ∈ ModΛ, we define δg,M : πλ(g ·M) → πλ(M) by
setting, for a ∈ A0, that

δg,M (a) = (εy,x)(y,x)∈π−(a)×π−(a) : ⊕x∈π−(a)M(g−1 ·x) → ⊕y∈π−(a)M(y),

where εy,x : M(g−1 · x) → M(y) is a k-linear map so that εy,x = 1I if g−1 · x = y;
and εy,x = 0 otherwise. One verifies easily that δg,M is an A-linear isomorphism,
which is natural in M . This yields a natural isomorphism δg : πλ ◦ g → πλ.

Next, let g, h ∈ G. For each a ∈ A0, we write

δgh,M (a) = (εz,x)(z,x)∈π−(a)×π−(a) : ⊕x∈π−(a)M((gh)−1 · x) → ⊕z∈π−(a)M(z),

where εz,x : M((gh)−1 · x) → M(z) is defined such that εz,x = 1I if (gh)−1 · x = z;
and εz,x = 0 otherwise. Moreover, write

δg,h·M (a) = (ηy,x)(y,x)∈π−(a)×π−(a) : ⊕x∈π−(a)M(h−1(g−1·x)) → ⊕y∈π−(a)M(h−1·y),
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where ηy,x : M(h−1(g−1 · x)) → M(h−1 · y) is such that ηy,x = 1I provided that
g−1 · x = y; and ηy,x = 0 otherwise, and write

δh,M (a) = (ζz,y)(z,y)∈π−(a)×π−(a) : ⊕y∈π−(a)M(h−1 · y) → ⊕z∈π−(a)M(z),

where ζz,y : M(h−1 · y) → M(z) is such that ζz,y = 1I if h−1 · y = z; and ζz,y = 0
otherwise. Therefore,

δh,M (a) ◦ δg,h·M (a) = (ξz,x)(z,x)∈π−(a)×π−(a), where ξz,x =
∑

y∈π−(a) ζz,y ◦ ηy,x.

Assume that z = (gh)−1 ·x = h−1(g−1 ·x). For y ∈ π−(a), we have ζz,y ◦ηy,x = 0
if y ̸= g−1 · x, and otherwise, ζz,y ◦ ηy,x = 1. As a consequence, ξz,x = 1 in case
z = (gh)−1 · x. If z ̸= (gh)−1 · x, then ηy,x = 0 in case y ̸= g−1 · x and ζz,y = 0
if y = g−1 · x. Therefore, ξz,x = 0 in case z ̸= (gh)−1 · x. This implies that
δgh,M = δh,M ◦ δg,h·M , that is, δ is a G-stabilizer for πλ.

(2) Fix x ∈ Λ0. For each a ∈ A0, since π is G-invariant, we have a k-linear
isomorphism

πx,a : πλ(P [x])(a) = ⊕y∈π−(a)Λ(x, y) → A(x, a) = P [π(x)](a),

sending (fy,x)y∈π−(a) to
∑

y∈π−(a) π(fy,x), where fy,x ∈ Λ(x, y). Moreover, let

α : a → b be a morphism in A. For each pair (z, y) ∈ π−(b) × π−(a), there exists
αz,y ∈ Λ(y, z) such that

∑
z∈π−(b) π(αz,y) = α, for any y ∈ π−(a). By definition,

for each f = (fy,x)y∈π−(a) ∈ πλ(P [x])(a), we have

(πx,b ◦ πλ(P [x])(α)) (f) =
∑

z∈π−(b)

∑
y∈π−(a)π(αz,y)π(fy,x)

= α
∑

y∈π−(a)π(fy,x)

= (P [π(x)](α) ◦ πx,a) (f).

This shows that πλ(P [x]) ∼= P [π(x)]. The proof of the lemma is completed.

Moreover, Bongartz and Gabriel observed that the push-down functor πλ admits
an exact right adjoint

πµ : ModA→ ModΛ,

called pull-up functor, such that if N ∈ ModA, then πµ(N) is the composite of
π : Λ → A and N : A → Modk; and if f : M → N is a morphism in ModA, then
πµ(f) : πµ(M) → πµ(N) is defined by πµ(f)(x) = f(π(x)) for all x ∈ Λ0.

The following result is essentially due to Gabriel; see [8].

6.4. Proposition. Let Λ, A be locally bounded k-linear categories with G a group
acting admissibly on Λ. If π : Λ → A is a G-invariant Galois G-covering, then the
functors πλ : ModΛ → ModA and πµ : ModA → ModΛ form a G-graded adjoint
pair (πλ, πµ).

Proof. Let π : Λ → A be a G-invariant Galois G-covering. It is well known that
(πλ, πµ) is an adjoint pair. For our purpose, we recall the definition of the adjoint
isomorphism ϕ. Fix M ∈ ModΛ and N ∈ ModA. Let u ∈ HomΛ(M,πµ(N)),
consisting of a family of k-linear maps u(x) : M(x) → πµ(N)(x) = N(π(x)) with
x ∈ Λ0. For a ∈ A0, define

ϕM,N (u)(a) = (u(x))x∈π−(a) : ⊕x∈π−(a)M(x) → N(a).
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Then ϕM,N (u) = (ϕM,N (u)(a))a∈A0 is an A-linear morphism from πλ(M) to N .
This yields a natural k-linear map

ϕM,N : HomΛ(M,πµ(N)) → HomA(πλ(M), N).

Conversely, let v ∈ HomA(πλ(M), N). For each a ∈ A0, write

v(a) = (va,x)x∈π−(a) : ⊕x∈π−(a)M(x) → N(a),

where va, x ∈ Homk(M(x), N(a)). For each x ∈ Λ0, define

ψM,N (v)(x) = vπ(x), x :M(x) → N(π(x)) = πµ(N)(x).

Then ψM,N (v) = (ψM,N (v)(x))x∈Λ0
is a Λ-linear morphism from M to πµ(N).

This yields a k-linear map

ψM,N : HomΛ(πλ(M), N) → HomA(M,πµ(N)),

which is the inverse of ϕM,N .
Consider the direct sum G = ⊕g∈G g of the g ∈ G, regarded as automorphisms

of ModΛ, with canonical injections jg : g → G. For each M ∈ ModΛ, one defines a
Λ-linear morphism γ

M
: G(M) → πµ(πλ(M)) in such a way that, for any x ∈ Λ0,

γM (x) = (εy,g)(y,g)∈π−(π(x))×G : ⊕g∈GM(g−1 ·x) → ⊕y∈π−(π(x))M(y),

where εy,g = 1I if g−1(x) = y; and εy,g = 0 otherwise. It is easy to see that
γ

M
is an isomorphism which is natural in M . This yields a natural isomorphism

γ : G → πµ ◦ πλ.
Let u : M → g · N , where g ∈ G, be a morphism in ModΛ. Write ρg,N for the

composite of jg : g ·N → G(N) and γN : G(N) → πµ(πλ(N)). Fix a ∈ A0. For each
x ∈ π−(a), we have a k-linear map u(x) : M(x) → (g · N)(x) = N(g−1 · x), and
by definition, the k-linear map ρg,N (x) : (g ·N)(x) → πµπλ(N)(x) = πλ(N)(a) is a
column-matrix

ρg,N (x) = (εy,x)y∈π−(a) : N(g−1 ·x) → ⊕y∈π−(a)N(y),

where εy,x = 1I in case g−1 · x = y; and εy,x = 0 otherwise. As a consequence,
(ρg,N ◦ u)(x) :M(x) → πλ(N)(a) is the following column-matrix

(ρg,N ◦ u)(x) = (εy,x ◦ u(x))y∈π−(a) :M(x) → ⊕y∈π−(a)N(y) = πλ(N)(a).

In view of the above definition of ϕ, we see that the k-linear map

ϕM,πλ(N)(ρg,N ◦ u)(a) : πλ(M)(a) → πλ(N)(a)

is given by the following row-matrix

ϕM,πλ(N)(ρg,N ◦ u)(a) = ((ρg,N ◦ u)(x))x∈π−(a) : ⊕x∈π−(a)M(x) → πλ(N)(a),

which is indeed the following square matrix

(εy,x ◦ u(x))(y,x)∈π−(a)×π−(a) : ⊕x∈π−(a)M(x) → ⊕y∈π−(a)N(y).

On the other hand, πλ(u)(a) : πλ(M)(a) → πλ(g ·N)(a) is a diagonal matrix

πλ(u)(a) = diag {u(x)}x∈π−(a) : ⊕x∈π−(a)M(x) → ⊕x∈π−(a)N(g−1 · x).

Let δ be the G-stabilizer for πλ as described in Lemma 6.3. By definition,
δg,N (a) : πλ(g ·N) → πλ(N) is given by the following square matrix:

δg,N (a) = (εy,x)(y,x)∈π−(a)×π−(a) : ⊕x∈π−(a)N(g−1 · x) → ⊕y∈π−(a)N(y).
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Therefore, (δg,N ◦ πλ(u))(a) : πλ(M)(a) → πλ(N)(a) is given by the following
square matrix

(εy,x ◦ u(x))(y,x)∈π−(a)×π−(a) : ⊕x∈π−(a)M(x) → ⊕y∈π−(a)N(y).

That is, ϕM,πλ(N)(ρg,N ◦ u)(a) = (δg,N ◦ πλ(u))(a). This gives rise to

ϕM,πλ(N)(γN ◦ jg,N ◦ u) = δg,N ◦ πλ(u).
The proof of the proposition is completed.

Observe that the push-down functor πλ : ModΛ → ModA sends ModbΛ and
modbΛ into ModbA and modbA, respectively. Restricting this functor yields two
functors ModbΛ → ModbA and modbΛ → modbA which, by abuse of notation, are
both denoted by πλ again.

6.5.Theorem. Let Λ, A be locally bounded k-linear categories with G a group acting
admissibly on Λ. Let π : Λ → A be a G-invariant Galois G-covering.

(1) The push-down functor πλ : ModbΛ → ModbA is G-precovering.

(2) The push-down functor πλ : modbΛ → modbA is a G-precovering, and in case G
is torsion-free, it has the following properties.

(a) If M ∈ modbΛ is indecomposable, then πλ(M) is indecomposable.

(b) If M,N ∈ modbΛ are indecomposable with πλ(M) ∼= πλ(N), then N ∼= g·M
for some g ∈ G.

Proof. By Proposition 6.4, the push-down functor πλ : ModΛ → ModA and the
pull-up functor πµ : ModA → ModΛ form a G-graded adjoint pair (πλ, πµ). By

Lemma 6.2, ModbΛ and modbΛ are abelian G-subcategories of ModΛ with a locally
bounded G-action. Since the direct sums in ModΛ are essential, the G-actions on
ModbΛ and modbΛ are ModΛ-essential. It follows from Theorem 2.12 that both
πλ : ModbΛ → ModbA and πλ : modbΛ → modbA are G-precoverings.

Suppose that G is torsion-free. By Lemma 2.2, the G-action on modbΛ is free.
Since modbΛ is Hom-finite and abelian, the endomorphism algebra of any indecom-
posable module is local with a nilpotent radical. Therefore, the Statements (a) and
(b) follow immediately from Lemma 2.9. The proof of the theorem is completed.

Remark. (1) Theorem 6.5(1) generalizes slightly a result of Asashiba; see [2, (4.3)].
(2) Theorem 6.5(2) is essentially due to Gabriel; see [8]. It shows in particular

that if G is torsion-free, then πλ : modbΛ → modbA is a Galois covering if and only
if it is dense.

Next, we shall study the functors between the derived categories of the module
categories induced from the push-down functor. First of all, by Lemma 5.4, the
G-action on ModΛ induces a G-action on D(ModΛ).

6.6. Lemma. Let Λ be a locally bounded k-linear category with an action of a group
G. If the G-action on Λ is free, then Db(ModbΛ) and Db(modbΛ) are G-subcategories
of D(ModΛ) with a locally bounded G-action.

Proof. By Lemma 6.1, ModbΛ and Db(modbΛ) have enough ModΛ-projective ob-

jects. Thus, by Lemma 1.11, Db(ModbΛ) and Db(modbΛ) are full triangulated sub-
categories of D(ModΛ). Assume that the G-action on Λ is free. By Lemma 6.2,

ModbΛ and modbΛ are G-subcategories of ModbΛ with a locally bounded G-action.
Hence, Db(ModbΛ) and Db(modbΛ) are G-subcategories of D(ModΛ). Since the
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G-actions on ModbΛ and modbΛ are locally bounded, by Lemma 5.5, so are the
G-actions on Db(ModbΛ) and Db(modbΛ). The proof of the lemma is completed.

Now, by Proposition 5.1, the push-down functor πλ : ModΛ → ModA induces a
commutative diagram of functors

C(ModΛ)

πC
λ ��

PΛ // K(ModΛ)
LΛ //

πK
λ ��

D(ModΛ)

πD
λ��

C(ModA)
PA // K(ModA)

LA // D(ModA),

where the vertical functors are also called push-down functors. Moreover, the pull-
up functor πµ : ModA→ ModΛ induces a commutative diagram of functors:

C(ModA)
PA //

πC
µ ��

K(ModA)
LA //

πK
µ ��

D(ModA)

πD
µ��

C(ModΛ)
PΛ // K(ModΛ)

LΛ // D(ModΛ)

where the vertical functors are also called pull-up functors.

Note that the functor πD
λ : D(ModΛ) → D(ModA) sends Db(ModbΛ) and

Db(modbΛ) into Db(ModbA) and Db(modbA), respectively. Restricting this functor,

we obtain two functors Db(ModbΛ) → Db(ModbA) and Db(modbΛ) → Db(modbA)
which, by abuse of notation, both are denoted by πD

λ again.

6.7.Theorem. Let Λ, A be locally bounded k-linear categories with G a group acting
admissibly on Λ. Let π : Λ → A be a G-invariant Galois G-covering.

(1) The push-down functor πD
λ : Db(ModbΛ) → Db(ModbA) is a G-precovering.

(2) The push-down functor πD
λ : Db(modbΛ) → Db(modbA) is a G-precovering, and

in case G is torsion-free, it has the following properties.

(a) If M. ∈ Db(modbΛ) is indecomposable, then πD
λ (M.) is indecomposable.

(b) If M., N. ∈ Db(modbΛ) are indecomposable with πD
λ (M.) ∼= πD

λ (N.), then
N.∼= g ·M. for some g ∈ G.

Proof. First of all, by Theorem 1.8, D(ModΛ) has direct sums and is equipped
with a G-action induced from the G-action on ModΛ. By Proposition 6.4, the
two functors πλ : ModΛ → ModA and πµ : ModA → ModΛ form a G-graded

adjoint pair (πλ, πµ). By Proposition 5.7, the induced functors πD
λ : D(ModΛ) →

D(ModA) and πD
µ : D(ModA) → D(ModΛ) form a G-graded adjoint pair (πD

λ , π
D
µ ).

On the other hand, by Lemma 6.6, Db(ModbΛ) and Db(modbΛ) are G-subcategories
of D(ModΛ) with a locally bounded G-action.

(1) LetX., Y . ∈ Db(ModbΛ). By Lemma 5.5(1), there exists a quasi-isomorphism
s . : P .→ X. in C(ModbΛ), where P . is a bounded above-complex of projective Λ-

modules such that C(ModbΛ)(P ., g ·Y .) = 0, that is, C(ModΛ)(P ., g ·Y .) = 0, for
all but finitely many g ∈ G. By Proposition 1.10, P . is essential in the direct sum
⊕g∈G g ·Y . in D(ModΛ), and so is X. because s̃. is an isomorphism in D(ModΛ).
That is, the G-action on Db(ModbΛ) is D(ModΛ)-essential. By Theorem 2.12, we

see that πD
λ : Db(ModbΛ) → Db(ModbA) is a G-precovering.

(2) As argued above, we see that πD
λ : Db(modbΛ) → Db(modbA) is a G-

precovering. Suppose that G is torsion-free. By Lemma 2.2, the G-action on
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Db(modbΛ) is free. Since modbΛ is Hom-finite and has enough projective objects,

it is well known that Db(modbΛ) is Hom-finite. Moreover, since the idempotents

in Db(modbΛ) split; see [4, (2.10)], Db(modbΛ) is Krull-Schmidt. Therefore, the

endomorphism algebra of any indecomposable object in Db(modbΛ) is local with a

nilpotent radical. By Lemma 2.9, πD
λ : Db(modbΛ) → Db(modbA) has the properties

stated in Statements (a) and (b). The proof of the theorem is completed.

Remark. (1) Theorem 6.7 says in particular that if G is a torsion-free group, then

πD
λ : Db(modbΛ) → Db(modbA) is a Galois G-covering if and only if it is dense.
(2) The same result hold for the push-down functors between the complex cate-

gories and between the homotopy categories.

We conclude this section with a result which will be used in the next section.
A morphism f : M → N in ModΛ is called radical if the image of f is contained
in the radical of N . More generally, a complex over ModΛ is called radical if all
its differentials are radical morphisms. For ∗ ∈ {−, {−, b}}, we shall denote by
RC∗(ProjΛ) the full subcategory of C∗(ProjΛ) generated by the radical complexes.

6.8. Lemma. Let Λ be a locally bounded k-linear category. If X. ∈ Db(ModbΛ) is
indecomposable, then there exists some indecomposable complex P .∈ RC−(ProjΛ)
such that X. ∼= P . in D(ModbΛ) in such a way that P . ∈ RC−(projΛ) whenever

X. ∈ Db(modbΛ).

Proof. Let X. ∈ Db(ModbΛ) be indecomposable. Making use of Lemma 6.1, we

can find P .∈ RC−(ProjΛ) such that X.∼= P . in D(ModbΛ); see [10, (7.5)], where

P .∈ RC−(projΛ) whenever X. ∈ Db(modbΛ). By Lemmas 1.11 and 1.9, we obtain

EndDb(ModbΛ)(X
.
) ∼= EndD(ModbΛ)(X

.
) ∼= EndD(ModbΛ)(P

.
) = EndK(ModbΛ)(P

.
).

Since idempotents in Db(ModbΛ) split, EndDb(ModbΛ)(X
.) has no proper idempo-

tent, and neither does EndK(ModbΛ)(P
.). This implies that P . is indecomposable in

K(ModbΛ). Hence, P . is indecomposable in RC−(ProjΛ) because no non-zero com-

plex in RC−(ProjΛ) vanishes in K(ModbΛ). The proof of the lemma is completed.

7. The radical squared zero case

The objective of this section is to show how the covering technique can be applied
to study derived categories of modules over a locally bounded linear category with
radical squared zero.

We start with some combinatorial consideration. Throughout this section, let
Q = (Q0, Q1) be a connected locally finite quiver. Given a walk w in Q, we define
its degree ∂(w) in the following manner: if w is a trivial path, an arrow, or the
inverse of an arrow, then ∂(w) = 0, 1, or −1, respectively, and this definition is
extended to all walks in Q by ∂(uv) = ∂(u) + ∂(v). In particular, the degree of a
path is equal to its length.

7.1. Definition. A quiver Q is called gradable if all the closed walks in Q are of
degree zero.

Remark. (1) A quiver without (oriented or non-oriented) cycles is evidently
gradable. On the other hand, a gradable quiver contains no oriented cycle.
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(2) Suppose that Q is gradable. Then, for any x, y ∈ Q0, all the walks from x to
y have the same degree, written as d(x, y). Thus, each vertex a in Q determines a
graduation on Q as follows. For each i ∈ Z, denote by Q(a,i) the set of vertices x
for which d(a, x) = i. In this way, Q0 is the disjoint union of the Q(a,i), i ∈ Z; and
each arrow in Q is of the form x → y with x ∈ Q(a,i) and y ∈ Q(a,i+1) for some
i. Moreover, if b is antoher vertex, then Q(b,i) = Q(a,i+d(a,b)) for all i ∈ Z, where
d(a, b) is a constant.

Associated with a quiver Q, we define a new quiver QZ as follows: the vertices are
the pairs (a, i) with a ∈ Q0 and i ∈ Z, and the arrows are (α, i) : (a, i) → (b, i+1),
where i ∈ Z and α : a→ b is an arrow in Q. As shown below, QZ is gradable.

7.2. Lemma. Let Q be a quiver. If (a,m), (b, n) ∈ QZ, then QZ has a walk from
(a,m) to (b, n) if and only if Q has a walk of degree n−m from a to b, and in this
case, all the walks in QZ from (a,m) to (b, n) are of degree n−m.

Proof. Let (a,m), (b, n) be vertices in QZ. First, let w be a non-trivial walk
in QZ from (a,m) to (b, n). We may assume that w = (αr,mr)

dr · · · (α1,m1)
d1 ,

where r ≥ 1, αi ∈ Q1, mi ∈ Z, and di = ±1. For 1 ≤ i ≤ r, write bi = e(αdi
i ),

then e((αi,mi)
di) = (bi, ni) with ni ∈ Z. By definition, ni = m + d1 + · · · + di,

for i = 1, . . . , r. In particular, n = nr = m + d1 + · · · + dr = m + ∂(w). Thus

∂(w) = n −m, and αdr
r · · ·αd1

1 is a walk in Q from a to b of degree n −m. From
this, we deduce the necessity of the first part and the second part of the lemma.

It remains to prove the sufficiency of the first part of the lemma. Indeed, let v
be a walk of degree n−m in Q from a to b. If v is trivial, then (a,m) = (b, n), and
hence, the trivial path in QZ at (a,m) is of degree n−m. Otherwise, we can write

v = βds
s · · ·βd1

1 , where s ≥ 1, βi ∈ Q1 and di = ±1. Write a0 = a and m0 = m,

and write ai = e(βdi
i ) and mi = m0 + d1 + · · · + di, for i = 1, . . . , s. Moreover,

define ni = mi−1 if di = 1 and ni = mi if di = −1, for i = 1, . . . , s. Then,
(βi, ni)

di · · · (β1, n1)
d1 is a walk in QZ from (a0,m0) to (ai,mi), for i = 1, . . . , s.

In particular, since n = ms, we obtain a walk (βs, ns)
ds · · · (β1, n1)

d1 in QZ from
(a,m) to (b, n) of degree n−m. The proof of the lemma is completed.

We shall need the following notion in order to describe the connected components
of QZ.

7.3. Definition. Let Q be a connected quiver. The grading period of Q is defined
to be 0 in case Q is gradable, and otherwise, to be the minimum of the positive
degrees of closed walks in Q.

Observe that QZ has an automorphism σ, called the translation, sending (a, i)
to (a, i + 1), and (α, i) to (α, i + 1), where a ∈ Q0, α ∈ Q1 and i ∈ Z. The group
generated σ will be called the translation group of QZ. Moreover, for an integer
s ≥ 0, we write Zs = Z if s = 0; and Zs = {0, 1, · · · , s− 1} if s > 0.

7.4. Lemma. Let Q be a connected quiver of grading period r. Let C be a connected
component, and σ the translation, of QZ.

(1) If m,n ∈ Z, then σm(C) = σn(C) if and only if m ≡ n (mod r).

(2) The distinct connected components of QZ are σn(C) with n ∈ Zr.
(3) If w is a closed walk in Q, then ∂(w) is a multiple of r.
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Proof. Observe first that if η is an automorphism of QZ, then η(C) is a connected
component of QZ, and hence, C = η(C) or C ∩ η(C) = ∅. Fix a vertex (a, n0) in C,
where a ∈ Q0 and n0 ∈ Z.

(1) By definition, Q contains a closed walk of degree r which, we may assume, is
from a to a. By Lemma 7.2, QZ has a walk from (a, n0) to (a, n0 + r). Therefore,
σr(C) = C. As a consequence, σm(C) = σn(C) wheneverm ∼= n (mod r). Conversely,
assume that σm(C) = σn(C) with m ̸≡ n(mod r). In particular, QZ has walk from
(a, n0 + m) to (a, n0 + n). By Lemma 7.2, Q contains a walk from a to a of
degree m − n. In particular, Q is not gradable, and hence r > 0. If m1, n1 are
the remainders of m,n divided by r respectively, then σm1(C) = σn1(C). Then,
Q contains a walk from a to a of degree n1 − m1, which is a contradiction since
0 < |m1 − n1| < r. This establishes Statement (1).

(2) By Statement (1), the σn(C) with n ∈ Zr are distinct connected components
of QZ. Let (x, i) be an arbitrary vertex in QZ. Being connected, Q has a walk from
a to x, say, of degree d. By Lemma 7.2, QZ has a walk from (a, i − d) to (x, i).
Hence (x, i) ∈ σi−d−n0(C) = σt(C), where t ∈ Zr with i− d−n0 ≡ t ( mod r). This
establishes Statement (2).

(3) Let w be a closed walk of degree s in Q, which we may assume is from a to
a. By Lemma 7.2, Q has a walk from (a, 0) to (a, s). Suppose that (a, 0) lies in a
connected component D of QZ. Then (a, s) lies in the connected component σs(D),
and hence, D = σs(D). In view of Statement (1), s is a multiple of r. The proof of
the lemma is completed.

Remark. By Lemma 7.4, restricting σr to C yields an automorphism σC , called the
translation, of C. If Σ is the translation group of QZ, then ΣC = {g ∈ Σ | g(C) = C}
is generated by σC , which we shall call the translation group of C.

It is evident that we have a quiver-morphism q : QZ → Q, sending (a, i) and
(α, i) to a and α respectively. We shall call it the canonical quiver-morphism.

7.5. Theorem. Let Q be a connected locally finite quiver. Let Σ be the automor-
phism group and C a connected component of QZ.

(1) The canonical morphism q : QZ → Q is a Galois Σ-covering.
(2) Restricting q yields a Galois ΣC -covering qC : C → Q.
(3) The quiver Q is gradable if and only if qC is an isomorphism.
(4) If Q is finite, then Q is gradable if and only if C is finite.
(5) If ϕ : Γ → Q is a quiver-covering with Γ gradable, then there exists a quiver-

covering ψ : Γ → C such that ϕ = ψ ◦ qC .

Proof. By Lemma 7.4, ΣC = {σri | i ∈ Z}, where r is the grading period of Q.
(1) It is evident that Σ acts freely on QZ, the action of q on the vertices is

surjective, and q ◦ σi = q for any i ∈ Z. Moreover, if q(a, i) = (b, j), then b = a and
(b, j) = σj−i(a, i). For any vertex (a, i) in QZ, the arrows in QZ starting in (a, i)
are the arrows (α, i), where α ranges over the arrows in Q starting in a, and the
the arrows in QZ ending in (a, i) are the arrows (β, i− 1), where β ranges over the
arrows in Q ending in a. This shows that q is a Galois Σ -covering.

(2) Since Q is connected, Statement (2) follows immediately from Lemma 4.4.
(3) If qC is an isomorphism, then Q is gradable because C is gradable. Conversely,

if Q is gradable, then r = 0, and hence ΣC is trivial. Being a Galois ΣC -covering,
qC is an isomorphism.
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(4) Suppose that Q is finite. By Lemma 7.4(1), σir(C) = C for i ∈ Z. Let (a,m)
be a vertex in C. Then, (a,m + ri) ∈ C for all i ∈ Z. If r > 0, then C is infinite.
Otherwise, C ∼= Q by Statement (3), and hence, C is finite.

(5) Let ϕ : Γ → Q be a quiver-covering with Γ being gradable. Since Q is
connected, by Lemma 4.4(1), the restriction of ϕ to any connected component of Γ
is a quiver-covering. Thus, we may assume that Γ is connected. Choose x∗ ∈ Γ 0.
Then y = ϕ(x∗) ∈ Q, and there exists some integer s with y⋆ = (y, s) ∈ C0. Let
z ∈ Γ 0, and write nz = d(x∗, z). Choose a walk w̃ in Γ from x∗ to z, which
is necessarily of degree nz. Then ϕ(w̃) is a walk in Q from y to ϕ(z) of degree
nz. By Lemma 7.2, QZ contains a walk from y⋆ = (y, s) to (ϕ(z), s + nz). In
particular, (ϕ(z), s + nz) ∈ C. Define ψ0(z) = (ϕ(z), s + nz). If (b, i) ∈ C0 with
b ∈ Q0 then, by Lemma 7.2, Q has a walk w from y to b of degree i − s. Since
ϕ is a quiver-covering, Γ contains a walk ũ from x∗ to some vertex b∗ such that
ϕ(ũ) = w. Observing that ∂(ũ) = ∂(w) = i − s, we see that ψ0(b

∗) = (b, i). This
yields a surjection ψ0 : Γ 0 → C0. Next, let α : z → z1 be an arrow in Γ . Then
nz1 = nz + 1. Since ϕ(α) : ϕ(z) → ϕ(z1) is an arrow in Q, we obtain an arrow
(ϕ(α), nz) : (ϕ(z), nz) → (ϕ(z1), nz1) in C. Define ψ1(α) = (ϕ(α), nz). This gives
rise to a quiver-morphism ψ : Γ → C such that qC ◦ ψ = ϕ. Since ϕ, qC are both
quiver-coverings, so is ψ. The proof of the theorem is completed.

Remark. By Lemma 7.2(1), the connected components of QZ are pairwise
isomorphic. If C is such a component, due to the property stated in Theorem
7.5(5), we call qC : C → Q a minimal gradable covering of Q.

Let k be a field. Recall that the path category kQ of Q over k is a skeletal k-
linear category in which the objects are the vertices in Q; and a morphism space
(kQ)(x, y), with x, y ∈ Q0, has Q(x, y) as a k-basis. We shall be interested in the
following locally bounded k-linear category

A = kQ/(kQ+)2

with rad2(A) = 0, where kQ+ is the ideal in kQ generated by the arrows. Some-
times, it will be convenient to regard A as a k-algebra with a complete set of pairwise
orthogonal primitive idempotents {ea = ε̄a | a ∈ Q0}, where ū = u+ (kQ+)2 ∈ A,
for u ∈ kQ. Accordingly, a left module over the category A will be identified with
a left module over the algebra A which is unitary with respect to {ea | a ∈ Q0}. In
particular, for each a ∈ Q0, we have an indecomposable projective left A-module
P [a] = Aea; and for each arrow α : a → b in Q, we have an A-linear morphism
P [α] : P [b] → P [a], the right multiplication by ᾱ; and for a trivial path εa, we write
P [εa] = 1P [a]. All tensor products are over the base field k.

7.6. Lemma. Let A = kQ/(kQ+)2, where Q is a connected locally finite quiver. If
a, b ∈ Q0 and U, V are k-spaces, then an A-linear morphism ϕ : P [b]⊗U → P [a]⊗V
can be uniquely written as

ϕ =
∑

γ∈Q≤1(a, b)
P [γ]⊗ fγ , where fγ ∈ Homk(U, V ).

Moreover, ϕ is radical if and only if ϕ =
∑

α∈Q1(a,b)
P [α]⊗ fα, fα ∈ Homk(U, V ).

Proof. Let U, V be k-spaces. Suppose that ϕ : P [b]⊗U → P [a]⊗V , with a, b ∈ Q0,

is an A-linear morphism. Observe that ϕ(eb⊗U) ⊂ ebAea ⊗V . Since rad2(A) = 0,
we have ebAea ⊗ V = ⊕γ∈Q≤1(a, b)kγ̄ ⊗ V . Thus, for each u ∈ U , the element
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ϕ(eb ⊗ u) is uniquely written as

(∗) ϕ(eb ⊗ u) =
∑

γ∈Q≤1(a, b)
γ̄ ⊗ vγ , vγ ∈ V.

This yields, for each γ ∈ Q≤1(a, b), a k-linear map fγ : U → V : u 7→ vγ . Being

A-linear, ϕ =
∑

γ∈Q1(a, b)
P [γ]⊗fγ , and this expression is unique by the uniqueness

of the vγ in (∗).
If ϕ =

∑
α∈Q1(a, b)

P [α] ⊗ fα, then ϕ is clearly radical. Otherwise, b = a and

fεb(u) ̸= 0 for some u ∈ U. Thus ϕ(eb⊗u) = eb⊗ fεb(u), which is not in the radical
of P [a]⊗ V , that is, ϕ is not radical. The proof of the lemma is completed.

The following result is essential for our investigation.

7.7. Proposition. Let A = kQ/(kQ+)2, where Q is a connected gradable locally
finite quiver. Let P . be an indecomposable complex in RC−(ProjA). If a ∈ Q0,
then there exists an integer s such that, for every integer i, we have

P i = ⊕x∈Q(a,s−i) P [x]⊗ V i
x , where V i

x ∈ Mod k.

Proof. If Pn ̸= 0, then we may assume that Pn = ⊕x∈Ω(n)P [x] ⊗ V n
x , where

Ω(n) ⊆ Q0 and the V n
x are non-zero k-spaces; and if dnP ̸= 0, then we write

dnP = (dnP (y, x))(y,x)∈Ω(n+1)×Ω(n),

where dnP (y, x) : P [x] ⊗ V n
x → P [y] ⊗ V n+1

y is a radical A-linear morphism which,
by Lemma 7.6, can be written as

dnP (y, x) =
∑

α∈Q1(y,x)
P [α]⊗ fnα , where fnα ∈ Homk(V

n
y , V

n+1
x ).

Fix a ∈ Q0. Let x ∈ Ω(n) and y ∈ Ω(m) be distinct vertices, where n,m
are integers. Then x ∈ Q(a,s−n) and y ∈ Q(a,t−m), where s = n + d(a, x) and
t = m+d(a, y). In particular, d(x, y) = (t−m)−(s−n). Now, P [x]⊗V n

x is a non-zero
direct summand of Pn, while P [y]⊗V m

y is a non-zero direct summand of Pm. Since

P . is indecomposable, there exist integers n = n0, n1, . . . , nr = m with ni+1 = ni±1;
and vertices x = y0, y1, · · · , yr = y with yi ∈ Ω(ni) such that dni

P (yi+1, yi) ̸= 0 in

case ni+1 = ni + 1 or d
ni+1

P (yi, yi+1) ̸= 0 in case ni+1 = ni − 1. Using the above

description of the maps dnP , we obtain a walk w = α
nr−1−nr
r · · ·αn1−n2

2 αn0−n1
1 in Q

from x to y. This yields

(t− s) + (n−m) = d(x, y) = ∂(w) =
∑r−1

i=0 (ni+1 − ni) = n−m,

and consequently, t = s. Therefore, Ω(i) ⊆ Q(a,s−i) for every i such that P i ̸= 0.
Setting V j

z = 0 in case P j = 0 or z ̸∈ Ω(j), we obtain P i = ⊕x∈Q(a,s−i) P [x]⊗ V i
x ,

for every i. The proof of the proposition is completed.

For the rest of the paper, we fix a connected component Q̃ of QZ, and put

Ã = kQ̃/(kQ̃+)2,

a connected locally bounded k-linear category with rad2(Ã) = 0. Let G be the

translation group of Q̃. By linearity, the G-action on Q̃ induces a G-action on Ã.
Moreover, the minimal gradable covering π : Q̃ → Q induces a k-linear functor

Ã→ A which, for the simplicity of notation, will be denoted by π again.
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7.8. Lemma. Let A = kQ/(kQ+)2 and Ã = kQ̃/(kQ̃+)2, where Q is a connected

locally finite quiver and Q̃ is a connected component of QZ. The minimal gradable
covering π : Q̃ → Q induces a G-invariant Galois G-covering π : Ã → A, where G
is the translation group of Q̃.

Proof. First of all, it is easy to see that the G-action on Ã is admissible and the
functor π : Ã→ A is G-invariant and satisfies the conditions (1), (2) and (3) stated

in Definition 2.8. It suffices to show, for x∗, y∗ ∈ Q̃0, that

πx∗,y∗ : ⊕g∈GÃ(x
∗, g ·y∗) → A(π(x∗), π(y∗)) : (ug)g∈G →

∑
g∈G

π(ug)

is an isomorphism. Indeed, write π(x∗) = x and π(y∗) = y. By definition, A(x, y)

has a k-basis B = {η̄ | α ∈ Q≤1(x, y)}, and Ã(x∗, g · y∗) with g ∈ G has a k-basis

Bg = {ξ̄ | ξ ∈ Q̃≤1(x
∗, g · y∗)}. Since π : Q̃ → Q is a Galois G-covering, it induces

a bijection from ∪g∈GQ̃≤1(x
∗, g · y∗) onto Q≤1(x, y). As a consequence, πx∗,y∗ is a

k-linear isomorphism. The proof of the lemma is completed.

In the sequel, the G-invariant Galois G-covering π : Ã→ A stated in Lemma 7.8
will be called a minimal gradable covering of A. Recall that the push-down functor
πλ : ModÃ→ ModA induces a functor πC

λ : C(ModÃ) → C(ModA).

7.9. Lemma. Let A = kQ/(kQ+)2 and Ã = kQ̃/(kQ̃+)2, where Q is a connected

locally finite quiver and Q̃ is a connected component of QZ. Let π : Ã → A be
the minimal gradable covering. If P . ∈ RC−,b(ProjA), then P . ∼= πC

λ (L
.), where

L. ∈ RC−,b(ProjÃ), which lies in RC−,b(projÃ) in case P .∈ RC−,b(projA).

Proof. By Theorem 7.5(3), we may assume that Q is of grading period r > 0. Let
Σ be the translation group of QZ, which is generated by the translation σ of QZ.
By Theorem 7.5, we have a canonical Galois Σ -covering q : QZ → Q. Consider the

locally bounded k-linear category AZ = kQZ/IZ, where IZ is the square of the ideal
in kQZ generated by the arrows. In view of Lemma 7.8, we see that q : QZ → Q
induces a Σ -invariant Galois Σ -covering q : AZ → A. The push-down functor
qλ : ModAZ → ModA induces an exact functor qCλ : C(ModAZ) → C(ModA).

Let P .∈ RC−,b(ProjA). For each i ∈ Z, write P i = ⊕x∈Q0P [x]⊗ V i
x , where V

i
x

is a k-space; and diP = (diP (y, x))(y,x)∈Q0×Q0
, where diP (y, x) is a radical A-linear

map from P [x]⊗ V i
x to P [y]⊗ V i+1

y . By Lemma 7.6,

diP (y, x) =
∑

α∈Q1(y,x)
P [α]⊗ f iα, where f

i
α ∈ Homk(V

i
x , V

i+1
y ).

Define a complex X. ∈ RC−(ProjAZ) by setting Xi = ⊕x∈Q0 P [(x,−i)] ⊗ V i
x

and diX = (diX(y, x))(y,x)∈Q0×Q0
: Xi → Xi+1, where

diX(y, x) =
∑

α∈Q1(y,x)
P [(α,−i−1)]⊗f iα : P [(x,−i)]⊗V i

x → P [(y,−i−1)]⊗V i+1
y .

By Lemma 6.3(2), qCλ (X
.) = P ..

On the other hand, it follows from Lemma 7.4 that the connected components
of QZ are Cj = σj(Q̃), j = 0, · · · , r − 1. Thus, we may write X. = ⊕r−1

j=0X
.
j ,

where X.j ∈ RC−,b(ProjAZ) is supported by Cj . Clearly, there exist complexes

L.j ∈ RC−(ProjÃ) such that X.j = σj ·L.j , and hence, qCλ (X
.
j )

∼= qCλ (L
.
j), for

j = 0, . . . , r − 1. Thus, L.= ⊕r−1
j=0 L

.
j ∈ RC−(ProjÃ) is such that

qCλ (L
.
) ∼= ⊕r−1

j=0 q
C
λ (L

.
j)

∼= ⊕r−1
j=0 q

C
λ (X

.
j )

∼= qCλ (X
.
) ∼= P

.
.
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Since π : Q̃→ Q is the restriction of q, we see that πC
λ : C(ModÃ) → C(ModA)

is the restriction of qCλ . This yields πC
λ (L

.) = qCλ (L
.) ∼= P .. Moreover, since πC

λ is

exact and faithful, L.∈ RC−,b(ProjÃ).
Finally, if P .∈ RC−,b(projA), then the V i

x are finite dimensional for all x ∈ Q0

and i ∈ Z. Hence, by our construction, X. ∈ RC−(projAZ), and as a consequence,

L. ∈ RC−,b(projÃ). The proof of the lemma is completed.

We are now ready to have the main result of this section.

7.10. Theorem. Let A = kQ/(kQ+)2 and Ã = kQ̃/(kQ̃+)2, where Q is a connected

locally finite quiver and Q̃ is a connected component of QZ. Let π : Ã → A be the
minimal gradable covering, and G the translation group of Q̃.

(1) The push-down functor πD
λ : Db(modbÃ) → Db(modbA) is a Galois G-covering.

(2) The push-down functor πD
λ : Db(ModbÃ) → Db(ModbA) is a Galois G-covering.

Proof. By Proposition 7.8, the functor π : Ã → A is a G-invariant Galois G-
covering. By Theorem 7.5(3), we may assume that Q is of grading period r > 0.

Then, the translation ρ of Q̃ is of infinite order. In particular, G is torsion-free.
The G-actions on Db(ModbÃ) and Db(modbÃ) are locally bounded by Lemma 6.6,

and free by Lemma 2.2. By Theorem 6.7, both πD
λ : Db(modbÃ) → Db(modbA) and

πD
λ : Db(ModbÃ) → Db(ModbA) are G-precoverings.

(1) By Theorem 6.7(2), πD
λ : Db(modbÃ) → Db(modbA) satisfies the conditions

(2) and (3) stated in Definition 2.8. Let X. ∈ Db(modbA) be indecomposable.

By Lemma 6.8, X. ∼= P . in D(modbA), where P . is an indecomposable object in

RC−,b(projÃ). By Lemma 7.9, P .∼= πC
λ (L

.) for some L. ∈ RC−,b(projÃ), and then,

P .∼= πD
λ (L.) in D(modbÃ). It is well known that there exists some Y . ∈ Cb(modbÃ)

such that L. ∼= Y . in D(modbÃ). This yields the following isomorphisms

πD
λ (Y

.
) ∼= πD

λ (L
.
) ∼= P

.∼= X
.

in D(modbA). Since πD
λ (Y .) and X. are bounded, we obtain πD

λ (Y .) ∼= X. in

Db(modbA); see, for example, [10, (6.15)]. That is, πD
λ : Db(modbÃ) → Db(modbA)

is almost dense, and hence, a Galois G-covering.

(2) As argued above, the functor πD
λ : Db(ModbÃ) → Db(ModbA) is almost

dense. We claim that the G-action on Db(ModbÃ) is directed. Indeed, let X., Y . be
indecomposable objects in Db(ModbÃ). By Lemma 6.8, there exist indecomposable

complexes P ., L. ∈ RC−(ProjÃ) such that X.∼= P . and Y . ∼= L. in D(ModbÃ).

Fix a∗ = (a, i0) ∈ Q̃0, and write Q̃(i) = Q̃(a∗,i) for i ∈ Z. By Proposition 7.7,
there exist integers s, t such that

P i = ⊕x∗∈Q̃(s−i) P [x
∗ ]⊗ U i

x∗ ; Li = ⊕y∗∈Q̃(t−i) P [y
∗ ]⊗ V i

y∗ ,

where U i
x∗ , V i

y∗ are k-spaces, for any i ∈ Z.
Suppose that Db(ModbÃ)(Y ., X.) ̸= 0 and Db(ModbÃ)(X., Y .) ̸= 0. As a con-

sequence, D(ModbÃ)(L., P .) ̸= 0 and D(ModbÃ)(P ., L.) ̸= 0. In view of Lemma

1.9(1), we deduce that C(ModbÃ)(L., P .) ̸= 0 and C(ModbÃ)(P ., L.) ̸= 0. Let

u. : P . → L. and v. : L. → P . be non-zero morphisms in C(ModbÃ). In par-

ticular, fm ̸= 0 for some m. Then there exist x∗ ∈ Q̃(s−m) and y∗ ∈ Q̃(t−m)

such that HomÃ(P [x
∗], P [y∗]) ̸= 0. By Lemma 7.6, Q̃≤1(x

∗, y∗) ̸= ∅. Therefore,
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(t−m) − (s −m) = d(x∗, y∗) ≥ 0, that is, t ≥ s. Similarly, since vn ̸= 0 for some
n, we may deduce that s ≥ t. That is, s = t.

Let g = ρj ∈ G with j ∈ Z. Then d(z∗, g · z∗) = jr for any z∗ ∈ Q̃. Hence,

g ·Q̃(i) = Q̃(i+jr), for any i ∈ Z. This implies that g ·L. ∈ RC−(ProjÃ) such that,
for each i ∈ Z, we have

(g ·L)i = g ·Li = ⊕y∗∈Q(s−i) P [g · y∗ ]⊗ V i
y∗ = ⊕z∗∈Q((s+jr)−i)P [z∗ ]⊗ V i

g−1·z∗ .

Suppose that Db(ModbÃ)(g ·Y ., X.) ̸= 0 and Db(ModbÃ)(X., g ·Y .) ̸= 0. Since

g · Y . ∼= g · L. in D(ModbÃ), as shown above, we deduce that s + jr = s, that is,
j = 0. This establishes our claim.

Since idempotents inDb(ModbÃ) split, the indecomposable objects inDb(ModbÃ)

are properly indecomposable. By Lemma 2.10, πD
λ : Db(ModbÃ) → Db(ModbA) sa-

tisfies the conditions (2) and (3) stated in Definition 2.8, and hence, is a Galois
G-covering. The proof of the theorem is completed.

As an immediate consequence of Theorems 7.10 and 4.7, we obtain the following
interesting result.

7.11. Corollary. Let A = kQ/(kQ+)2 and Ã = kQ̃/(kQ̃+)2, where Q is a con-

nected locally finite quiver and Q̃ is a connected component of QZ. If G is the
translation group of Q̃, then the minimal gradable covering π : Ã → A induces a
Galois G-covering Fπ : ΓDb(modbÃ) → ΓDb(modbA).
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