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INTRODUCTION

Throughout this paper, k stands for a field. Let A be a finite dimensional
k-algebra, and A-mod the category of finite dimensional left A-modules. The
homological properties of A-mod are recorded in the derived category D?(A) of
bounded complexes in A-mod. We want to study this category in the following
aspects. First of all, since DY(A) is a Krull-Schmidt category, it is important
to understand what the indecomposable objects are. Secondly, if A is of finite
global dimension, then the Auslander-Reiten theory applies in D?(A); see [11,
12], and we would like to compute the almost split triangles and describe the
shapes of the Auslander-Reiten components. In certain cases, this will enable
us to determine if two given algebras are derived equivalent or not. Finally,
the complexity of D?(A) is measured by its type which is finite, discrete, tame,
or wild; see [5, 9, 10, 22]. In case A is hereditary, D’(A) is well-understood;
see [12]. Moreover, if A is a gentle algebra, then the indecomposable objects in
DP(A) and the type of D?(A) are explicitly described in [5]. The aim of this
paper is to study D?(A) in case A is elementary (that is, all simple modules are
one dimensional) with radical squared zero. Our strategy is to find a proper
covering of the ordinary quiver of A and then to study D?(A) in terms of the
derived category of the bounded complexes of finite dimensional representations
of the covering. Note that an elementary algebra with radical squared zero is
the Koszul dual of the path algebra of its ordinary quiver. In this connection,
our technique can be viewed as a combination of the covering theory [6] and the
Koszul duality [4].

1. THE MINIMAL GRADABLE COVERING OF A QUIVER

A quiver (or oriented graph) @ consists of a set @y of vertices and a set
@1 of arrows between vertices, and the type of @ is its underlying graph. If
«a :a — bis an arrow in @, we say that « starts at a and ends in b and write
a = s(a), b =e(a). For a vertex a in @, denote by a™ the set of arrows starting
at a and by a~ the set of arrows ending in a. One says that Q is locally finite
if aT and @~ are both finite for all a € Qy. A path p of positive length r in
Q is a formal product p = a1 -+, with a; € Q1 such that s(a;) = e(a;—1),
for all 0 < ¢ < 7. Such a path p is called an oriented cycle if s(a1) = e(a).



To each vertex a, one associates a trivial path e, with s(e,) = e(e,) which is of
length 0 by convention. Furthermore, for each o € @1, we introduce a formal
inverse o=t with s(a™!) = e(a) and e(a™!) = s(a). A walk w in Q is a formal
product w = ¢jco - - - ¢, with r > 0, where ¢; is a trivial path, an arrow or the
inverse of an arrow such that s(¢;) = e(c;—1) for all 1 <4 < r. In this case, we
write s(w) = s(c1) and e(w) = e(c,), and we say that w is a walk from s(w)
to e(w). fw=cy---¢, and w' = ¢} --- ¢, are walks such that e(w) = s(w’),
then ww' = ¢y -+ ¢} - -+ ¢} is a walk, called the composite of w and w’. A walk
w in @ is called closed if s(w) = e(w); reduced if w is either a trivial path, or
w=cy- ¢ with ¢; € Q1 or c[l € (1 such that c;4q ;éc;l forall 1 <i<r;
and a cycle if w is non-trivial, reduced and closed. The degree d(w) of a walk
w is defined as follows. We first define d(w) = 0,1, or —1 in case w is a trivial
path, an arrow, or the inverse of an arrow respectively, and then extend this
definition to all walks in @ by d(uv) = d(u) 4+ 0(v) whenever u, v are walks with
e(u) = s(v). In particular, a path is a walk whose degree is equal to its length.
The set of walks in @ will be denoted by W (Q). One says that Q is connected
if, for any z,y € Qo, there exists some w € W(Q) with s(w) = = and e(w) = y.

For vertices z,y in @, we denote by Q(x,y) the set of paths in @ from x to
y, by Q<1(z,y) the set of paths from x to y of length less than or equal to 1,
and by Q1(z,y) the set of arrows from z to y. A quiver A is a subquiver of Q
if A, C Q; for i =0,1. A subquiver A of Q is full if Ay(x,y) = Q1(z,y) for
all x,y € Ag; and convez if a path in @ lies entirely in A whenever its starting
point and end-point lie in A.

A quiver-morphism ¢ : Q' — @ consists of two maps ¢o : Q[ — Qo and
b1+ Q) — Qq such that ¢,(Q}(a,5)) C @ (o(a), do(b)) for all @b € Q). Tn
this case, ¢ induces naturally a map from W(Q’) to W(Q), denoted again by
¢, such that 9(¢p(w)) = A(w) for all w € W(Q’).

Furthermore, a quiver-morphism 7 = (mg, 1) : @ — (@ is called a covering if
o is surjective, and for each vertex a in @, the map 71 induces two bijections
at — (mo(a))™ and a= — (mp(a))”. In this case, an automorphism o of @ is
called a mw-automorphism if o makes the diagram

™

Q——
Qi

Q<=—&

commutative. We denote by Aut, (Qv) the group of m-automorphisms of @

1.1. DEFINITION. A quiver @ is called gradable if every closed walk in @ is
of degree zero.



REMARK. A quiver without cycles is evidently gradable. On the other hand,
a gradable quiver contains no oriented cycle.

Let @ be a gradable quiver. Given z,y € Qq, all possible walks in @) from x
to y have the same degree which we denote by d(x,y). Defining z ~ y provided
that d(z,y) = 0 yields an equivalence relation ~ on ()o. The equivalence classes
in Qo/~ are called the grading classes of Qp. Indeed, we may grade Qg in the
following way. Fix arbitrarily a € Q. For each n € Z, let Q™(a) denote the set
of vertices x such that d(a,z) = n. Clearly, the classes in g/~ are precisely
the non-empty Q"(a) with n € Z.

1.2. LEMMA. Let Q be a connected gradable quiver with a € Q.

) The set Qq 1is the disjoint union of the Q™(a) with n € Z.

) If x € Q™ (a), then y € Q™(a) if and only if d(z,y) =n —m.

) If Q™ (a) # 0 and Q™(a) # 0, then Q' (a) # O for all i between m and n.
) If b € Qo with d(a,b) = s, then Q™(b) = Q" *(a) for alln € Z.

Proof. Since @ is connected, Qg is the union of the Q™ (a), n € Z, and since
Q is gradable, the Q™ (a) are pairwise disjoint. Thus (1) follows. Moreover, it is
easy to see that d(x, z) = d(x,y)+d(y, ) for all ,y, z € Qq, from which (2) and
(4) follow trivially. For proving (3), we assume that m < n and Q™ (a) # 0 and
Q" (a) # 0. We shall proceed by induction on 7 = n —m. If r = 0, then there is
nothing to prove. Suppose that r > 0 and that (3) holds for r—1. Let x € Q™ (a)
and y € @"(a). Then there exists a walk w = ¢ - - - ¢; of degree r from z to y,
where ¢; or c; !is an arrow in Q. Let s be the minimal integer between 1 and ¢
such that 9(cq---c¢5) > 0. Then 9(cy - --¢5) = 1. Thus d(z,s(cs)) = 0 and ¢ is
an arrow. Therefore, e(cs) € Q™! (a). By the induction hypothesis, Q%(a) # 0,
for any m 4+ 1 < ¢ < n. The proof of the lemma is completed.
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The universal covering of a quiver is clearly gradable since it has no cycle.
Next, we shall find a minimal such covering.

1.3. THEOREM. Let Q be a connected quiver. Then there exists a connected
gradable quiver Q and_a quiver-covering m : Q) — Q which acts injectively on
each grading class of Q.

Proof. Fix arbitrarily a vertex x in . Let W(Q,z) be the set of walks
w in @ with s(w) = z. For u,v € W(Q,x), we define u ~ v provided that
e(u) = e(v) and 9(u) = d(v). This is clearly an equivalence relation on W(Q, x).
For u € W(Q,z), let [u] = {w € W(Q,z) | w ~ u}. Now we define a quiver
Q = (@0,@1), where Q is the set of the classes [u] with v € W(Q,x). For
W,V E @0, if @ is an arrow in @ such that v € p and v € v with v = ua, then we
draw an unique arrow «,, : u — v, called the arrow from p to v induced from
a. We deﬁneNle to be the set of arrows induced from the arrows in Q.

For p € Qo, let mo(u) = e(u) with w € p. Since @ is connected, the map
T @0 — Qo is surjective. If oy @ p — v is an arrow in @ induced from
a € Q1, we then define m; (o, ) = a. Clearly m = (m, 1) is a quiver-morphism



from Q to Q. Let p be a vertex in Q and write a = mo(p). For o € a™,

choose v € p and let v = [ua]. Then oy, is an arrow from p to v such that
mi(au,) = . Moreover, if «,,s : p — v/ is another arrow induced from «, then
there exists u’ € p such that v’ € V. Since u ~ ', we have ua ~ u’«. Hence
V' = v. This shows that 7 induces a bijection from p* onto a™. Similarly, we
see that m; induces a bijection from g~ onto a~. Therefore, 7 : Q — Q is a
quiver-covering. _

Now let p,v € Qp. Choose u € p and v € v, and set a = mp(p) and
b = mo(v). Since @Q is connected, there exists a walk w = ¢1 - -+ ¢ in @ from a to
b, where ¢; is an arrow or the inverse of an arrow in ). By the definition of @1,
we see that w induces a walk p from p to v such that 7m1(p) = w. This shows
that @ is connected. Moreover, if p is closed, that is u ~ v, then d(u) = d(v).
Hence d(w) = 0, and consequently 8(p) = 0. This shows that @ is gradable.
Finally, assume that 9(p) = 0 and @ = b. Then e(u) = e(v) and d(u) = I(v).
Hence u ~ v, that is, p = v. This proves that the restriction of my to each
grading class of Qg is injective. The proof of the theorem is completed.

The covering as stated Theorem 1.3 has certain universal property.

1.4. THEOREM. Let Q be a connected quiver with 7 : @ — @ a quiver-
covering as stated in Theorem 1.3. Let ¢ : Q — Q) be a quiver-covering with
Q connected and gradable. If z* € Qo and y* € Qo such that ¢(z*) = w(y*),

then there exists an unique quiver-covering ¥ : QQ — @ which sends z* to y*
and makes the following diagram commutative:

Q
Q
Proof. Assume that z* € Qq and y* € Qo such that ¢(z*) = w(y*). Let z be

a vertex in ~Q Choose a walk v in @ from 2* to . Then there exists an unique
walk v in @ with s(v) = y* such that m(v) = ¢(u). We define ¢(z) = e(v).
Note that d(v) = d(7(v)) = 9(¢(u)) = A(u). Let u; be another walk in Q from
2* to z and vy a walk in Q with s(v;) = y* such that m(v;) = ¢(u;). Then
we also have d(v1) = O(u1) and, since Q is gradable, we get d(u1) = O(u).
Hence d(v'v1) = 0. That is, e(v) and e(v1) lie in the same grading class of Qq.
Moreover, mw(e(v)) = e(n(v)) = ¢(z), and 7(e(vy)) = ¢(x). Since the action of
7 on each grading class is injective, we get e(u;) = e(u). This shows that g
is well-defined, and o (2*) = y* by definition. If a : z — y is an arrow in Q,
then there exists an unique 8 € Q; with s(a) = e(v) and 7(8) = ¢(a). Since
m(vB) = P(ua), one gets Yo (y) = e(a). Now we define ¥ («) = 3. This yields a
quiver-morphism 1 = (vg,%1) from Q to @ making the diagram stated in the
theorem commutative. Since ¢ and 7 are both coverings, we deduce easily that

Y

Qi

@
Q ——

-~



1 is a covering. Finally, the uniqueness of ¢ follows from a routine verification.
The proof of the theorem is completed.

REMARK. It follows from Theorem 1.4 that a covering  : @ — (@ as stated
in Theorem 1.3 is unique up to isomorphism. Thus we may call the covering
morphism 7, as well as the quiver @, the minimal gradable covering of Q. It is
clear that @ is gradable if and only if 7 is an isomorphism.

1.5. LEMMA. Let 7 : é — Q be the minimal gradable covering of a finite
connected quiver Q, and let a be a vertez in Q.

(1) The set Q™(a) is finite, for all n.

(2) If Q is not gradable, then Qvn(a) is not empty for any n.

(3) If z € Q"(a) and y € Q"' (a) for some n, then 7 induces a bijection
from Or(w,y) onto @y (n(@), ().

(4) If 0 € Aut,(Q) such that o(Q*) N Q" # 0 for some integers s,t, then
a(Qs) = Q" for all n.

Proof. For each n € Z, by Theorem 1.3, w induces an injection @”(a) — Q.
In particular, é"(a) is finite. Assume now that there exists a closed walk w in
Q of degree s # 0. Let b = s(w) and = € Q'(a) such that 7(z) = b. For each
m € Z, there exists a walk ty, in Q with s(uy) = & and 7(uy) = w™. Then
O(tm) = O(w™) = ms. By Lemma 1.2(2), e(un,) € Q™. Now it follows from
Lemma 1.2(3) that Q™(a) # 0, for any n € Z.

Next, let (z,y) € Q"(a) x Q"*1(a) for some n. Being a covering, 7 induces
an injection m : Q1(x,y) — Q1(w(z),7(y)). If & € Q1(w(x),7(y)), then there
exists 3 : © — z in @, such that 7(8) = «. Note that z € Q""!(a) and
7(z) = 7(y). Thus z = y, and hence 8 € Q;(z,y). That shows that the map
™ Q1(z,y) — Q1(m(x),m(y)) is surjective.

Finally, let o € Aut,r(@) such that o(z) = y with = € Q° and y € Q'. Let @
be a walk in é from z to y. By Lemma 1.2(2), @ is of degree t — s. Let n be
any integer and z € Q"(a). Choose a walk @ in Q from z to z. Then o(7) is a
walk from o(z) to y. Thus dao(9)~! is a walk of degree t — s from z to o(2).
By Lemma 1.2(2), o(z) € Q"*~*(a). This implies that o(Q"(a)) C Q"~*(a),
for all integers n. Since ¢ is an automorphism, 0(@”(@)) = éfl*"f_“;(a)7 for all
integers n. Replacing n by n + s, we get o(Q"5(a)) = Q" (a). The proof of
the lemma is completed.

It is easy to see that a non-gradable quiver contains cycles of positive degree.
This observation leads to the following definition.

1.6. DEFINITION. Let @ be a finite connected quiver. The grading period
of @) is a non-negative integer r such that » = 0 in case @) is gradable, and
otherwise, r is the minimal degree among the positive degrees of closed walks

in Q.



1.7. LEMMA. Let 7 : @ — @ be the minimal gradable covering of a finite
connected quiver Q of grading period r, and let a € Qq. The following conditions
are equivalent for integers s,t :

(1) s =t (modr).

(2) 7(Q"5(a)) = m(Q"V(a)), for all integers n.

(3) 7(Q"(a)) N w(Q™(a)) # 0, for some integer n.

(4) o(Qm(a)) = Q" (a) for some o € Aut,(Q) and some integer n.

Proof. Let (z,y) € Q""(a) x Q"*(a) for some n such that w(z) = m(y)
By Theorem 1.4, there exists a m-automorphism o of @ such that o(z) = y
By Lemma 1.5(4), o(Q"*(a)) = Q™"(a). This proves that (3) implies (4)
Moreover, if there exists some o € Aut,(Q) such that o(Q™*(a)) = Q™ (a)
for some m. By Lemma 1.5(4), o(Q"**(a)) = Q"**(a) for all n. Since o is a
r-automorphism, 7(Q"*(a)) = 7(Q"*(a)) for all n. Since (2) implies trivially
(3), we see that (2), (3), and (4) are equivalent.

Let w be a closed walk in @ of degree r. Choose a vertex b in Q, say
b € Q™(a) for some m, such that 7(b) = s(w). Let w be a walk in @ with
s(w) = b such that 7(w) = w. Setting ¢ = e(w), we have 7(c) = w(b). Moreover,
c € QM since (W) = A(w). That is 7(Q™) N w(Q™+") # 0. By what
we have shown, m(Q"(a)) = 7(Q"*"(a)), for all integers n. If s = t + rq
for some integer ¢, then m(Q%(a)) = m(Q"*"9(a)) = Q. That is, (1) implies
(3). Suppose that s # ¢(modr). If r = 0, then @ is gradable. Hence 7 is
an isomorphism. In particular, (2) does not hold. Assume that r > 0 but
(2) holds. In particular, 7(Q%(a)) = 7(Q* (a)). Write s — t = rq + 7o with
0 < 79 < 7. Then 7(Q%a)) = 7(Q""(a)) = 7(Q™(a)). Let w(a) = m(zo)
for some o € m(Q™(a)). Choose a walk wy from a to zo in Q. Then wy is of
degree 1, and consequently, m(wyg) is a closed walk in @ of positive degree 79,
a contradiction. This proves that (2) implies (1). The proof of the lemma is
completed.

In the sequel, we shall consider the following infinite graphs

A,: o ) o

A .. o ) o o
oo

Moreover, we recall that a finite quiver is wild if it is of neither Dynkin nor
Euclidean type.

1.8. PROPOSITION. Let 7 : @ — @ be the minimal gradable covering of a
finite connected quiver Q. _ _

(1) If Q is non-gradable of type B, with n > 1, then Q is of type A.

(2) If Q is wild, then C~2 contains a finite wild subquiver.

Proof. First we define the weight of a vertex in a quiver to be the sum of
the number of arrows starting at or ending in the vertex. Given any = € Qq, we



see that x and m(x) have the same weight since 7 is a covering. Let @ be non-
gradable of type A,,. Then every vertex in () has weight two, and so does every
vertex in (. Being infinite by Lemma 1.5(2), @ is of type AZ.. This proves
(1). Suppose now that @ is wild. Then Q has a vertex a of weight greater than
two. If @ is gradable, then @ = Q. Otherwise, @ has positive grading period 7.
We deduce from Lemma 1.7 that 7(Q°%(a)) = 7(Q""(a)), for all n € Z. Thus
7~ (a) contains infinitely many vertices, each of them has weight greater than
two. Therefore, é has a finite wild subquiver. The proof of the proposition is
completed.

2. REPRESENTATIONS OF QUIVERS

Throughout this section, @ stands for a connected locally finite quiver which
is interval-finite, that is, Q(a,b) is finite for all a,b € Qg. Recall that a k-
representation M of @ consists of a family of k-spaces M (x) with x € Qq, and a
family of k-linear maps M («) : M(x) — M(y) witha : ¢ — y € Q1. If M is non-
zero, the support Supp(M) of M is the set of vertices z in @ for which M (z) # 0.
We say that M is locally finite dimensional if dimg M (z) is finite for all x € Qo,
finite dimensional if 3 o dimgM(z) is finite. A morphism f : M — N of
k-representations of @) consists of a family of k-linear maps f(z) : M(x) — N(x)
with € Qg such that M («)f(y) = f(x)N(«) for all arrows a : © — y in Q. The
k-representations of () form a hereditary abelian k-category, denoted as Rep(Q).
The full subcategory of Rep(Q) of locally finite dimensional representations is
denoted by rep(Q), and that of finite dimensional ones is denoted by rep®(Q).
On the other hand, the path algebra kQ (not necessarily with an identity) of @
over k has as k-basis the set of paths in () and multiplication induced from the
concatenation of the paths. We see that kQ has as a complete set of pairwise
orthogonal primitive idempotents the set of trivial paths in Q and that £Q has an
identity if and only if @ is finite. It is well known that Rep(Q) is equivalent to the
category of right kQ-modules. In this connection, we shall apply some module
theoretic notions to the k-representations of Q without further explanations.

To each vertex a in @), we associate an indecomposable k-representation P,
of @ which is defined as follows: for a vertex z, the k-space P,(x) has as a basis
the set of paths from a to z; and for an arrow « : ¢ — y, the k-linear map
P,(a) : Py(z) — P,(y) sends every path p to pa. Since P, = ¢,(kQ) where
€, is the trivial path at a, we see that P, is a projective object in the abelian
category Rep(Q). Dually, we define an indecomposable k-representation I, of @
as follows: for x € Qq, the k-space I,(z) has as a basis the set of paths in Q
from x to a; and for o : & — y € @1, the k-linear map I,() : I(z) — I.(y)
sends every path of the form agq to ¢ and vanishes on the paths which do not
factor through «. In order to show that the I, with a € Q¢ are injective objects
in Rep(Q), we recall that the tensor product M ®; V of an object M in Rep(Q)



and a k-vector space V is defined so that (M ®; V)(a) = M(a) ®; V for a € Qq
and (M ®; V)(a) = M(«a) @ 1y for a € Q.

2.1. LEMMA. Let M be a k-representation of Q, and V be a k-vector space.
For each vertex a in Q, there exists a k-linear isomorphism

¢a : Hompg(M, I, ®; V) — Homy(M(a),V),

which is natural in M.

Proof. Let a € Qo. For x € Qo, we have (I, @ V)(2) = ©pecqz,a) (kp@i V).
For p € Q(z,a), let p, : I,(x) — kp be the canonical projection, and let
qp : kp — I,(a) be the k-linear isomorphism sending p to €,. We see then
from the definition that (V & I,)(p) = (p, ® 1v)(g, ® 1y). Given a morphism
f:M —1I,®;V in Rep(Q), we define ¢ps(f) to be the following composite:

M(a) " 1,(0) 2k V 25,

where ey is such that ey (Ae, ® v) = Av, for A € k and v € V. Tt is evident that
o is k-linear. Assume that ¢ (f) = 0. Since ey is an isomorphism, f(a) = 0.
Let z be an arbitrary vertex in Q. If Q(z,a) = 0, then f(x) = 0. Otherwise,
for any p € Q(z,a), we have

0=M(p)f(a)=f(x)(L.®@V)(p) = f(2)(p, ® Iv)(g, ® 1y).

Since ¢, is an isomorphism, f(z)(p, ® 1y) = 0. This implies that f(z) = 0.
Thus f = 0. That is, ¢ is a monomorphism.

For proving that ¢,s is an epimorphism, let g : M(a) — V be a k-linear
map. Define f(a) = ge;;! : M(a) — I,(a) @1 V. For x € Qo, if Q(x,a) = 0,
then define f(z) = 0. Otherwise, Q(z,a) is finite, since @ is interval-finite by
hypothesis. In particular, (Io ® V)(z) =[] eq(s,qa) (ko ® V). Thus there exists a
k-linear map h : M(x) — V ®I,(x) such that h(p, ®1v) = M(p)g(a)(q, ' @1v).
Then

hIo @ V)(p) = h(p, ® 1v)(g, @ 1v) = M(p)g(a),

for every p € Q(x,a). Define now f(x) = h. It is now easy to see that the
morphisms f(x) with € Qg yield a morphism f : M — I, ®; V in Rep(Q)
such that ¢p(f) = g. Finally, it is easy to verify that ¢, is natural in M. The
proof of the lemma is completed.

REMARK. For a € @y, it follows from the above result that I, ®; V is an
injective object in the abelian category Rep(Q) for any k-vector space V. In
particular, I, itself is injective.

For the rest of this section, we assume that ) is gradable such that the
grading classes are all finite. Fix a vertex ap in @, and write Q™ = Q"(aop)
for all n € Z. By Lemma 1.2, @)y is the disjoint of the Q™ with n € Z, and
each arrow in @ is of the form x — y with (z,y) € Q™ x Q™! for some n. An



object M in Rep(Q) is called bounded-above if there exists some integer r such
that M(z) = 0 for x € Q™ with n > r. By Lemma 1.2(3), this notion does
not depend on the choice of the vertex ag. The full category of bounded-above
representations of Rep(Q) and that of rep(Q) will be denoted by Rep™ (Q) and

rep” (@), respectively.

Let M be an object in Rep(Q) and n € Z. We define an object M<" in
Rep™ (Q) as follows: for z € Qp, we have M="(z) = M(x) if x € Q™ with
m < n and M="(z) = 0 otherwise; for « € Q1, we have M<"(a) = M(«) if
s(a) € Q™ with m < n and M="(a) = 0 otherwise. In a similar manner, we
define objects M=" and M>" in Rep(Q).

2.2. LEMMA. Let M, N be objects in Rep(Q), and let be V' a k-vector space
and n an integer.

(1) Ms" = M/M>".

(2) (M ® N)S"=M="® N=" and (M & N)=" = M=" @ N=".

(3) (M@, V)S" = MS" @, V and (M @ V)2" = M2" @, V.

Proof. We need only to prove (1), since (2) and (3) are evident. We shall
construct an epimorphism p : M — M=" in Rep(Q) as follows. For x € Q,
define p(z) : M(z) — M="(z) by p(z) = 1y if € Q™ with m < n, and
otherwise p(z) = 0. Let a: z — y € Q1 with x € Q™. Consider the diagram:

M) 2 w(y)

p(w)l ip(y)
M="(a
M= (z) T prsngy),

If m < n, then M<"(a) = M(c), p(x) = 1ps(z) and p(y) = 1ps(y). Otherwise,
M="(a)) = 0 and p(y) = 0. Thus the above diagram is commutative in any case.
Clearly, the kernel of p is M>™. The proof of the lemma is completed.

2.3. DEFINITION. Let M be an object in Rep™ (@), and let n be an integer.
We say that M is n-truncated injective if M= o~ Dreqn Iz 1V, with V; a k-
vector space, or equivalently, M=" is injective with soc(M=") = @,cqn M ().
Moreover, M is called truncated injective if M is n-truncated injective for some
integer n.

Note that a finite dimensional k-representation of @) is truncated injective.

2.4. LEMMA. Let M be object in Rep™ (Q). If M is n-truncated injective
for some integer n, then M is m-truncated injective for every m < n.

Proof. Assume that M is n-truncated injective and m is an integer with
m < n. Observe that M=™ = (M<")=™, By Lemma 2.2(2)(3), we may assume
M=" = I, for some a € Q™. Assume that S = {by,...,b.} is the set of vertices
in @™ which are predecessors of a in ). For each 1 < i < r, let V; be the



k-vector space having as a basis the set of paths from b; to a. We now consider
the morphism ¢; : I, ®; Vi — (I,)<™ given by ¢;(c) = 0 in case I, (c) = 0; and
otherwise, ¢;(c)(v®p) = vp, for v € I, (c) and p € V;. Then we have a morphism
&= (¢1,-,&r) 1 ®_1Ip, @1 Vi — (I,)S™. Clearly ¢ is a monomorphism, and
it is an epimorphism since every path from a vertex c such that (I,)<™(c) # 0
to the vertex a is of the form ~yp with p a path from some b; to a. The proof of
the proposition is completed.

It follows from Lemmas 1.2(4) and 2.4 that the notion of a truncated injective
representation does not depend on the choice of the vertex ag for grading Q.

2.5. PROPOSITION. Let M, N be objects in Rep™ (Q) which are n-truncated
injective for some integer n.

(1) M = N if and only if MZ" = N2",

(2) M =0 if and only if M=" = 0.

(3) M is indecomposable if and only if M=" is indecomposable.

Proof. Let ¢ : M=" — N=" be an isomorphism in Rep™ (Q). In particular,
P = Bregnd(x) + Bregn MZ"(x) — DregnN="(x) is an isomorphism from
soc(M<") to soc(N<"). Since M<" and N<" are both injective, ¢" extends
to an isomorphism ¢ : M<" — N=<" in Rep™ (Q). For each = € Qo, we define
a k-linear map ((z) : M(z) — N(z) by ((z) = ¢(z) if z € Q™ with m >
n and ((x) = ¢(x) otherwise. Since the arrows  — gy in @ are such that
(r,y) € Q' x Q! for some ¢, it is easy to verify that ¢ = {{(x) | z € Qo}
is an isomorphism in Rep™ (Q) from M onto N. This establishes (1), and
consequently (2) holds.

Assume now that MZ" is indecomposable. Let M = M; @& M,. Then
M, My are n-truncated injective and M=" = MZ" @ Mz". Thus MZ" = 0 or
M;" = 0. By (2), we get M7 = 0 or My = 0. That is, M is indecomposable.
Finally suppose that MZ=" is not indecomposable. If MZ" = 0, then by (2),
M = 0. Otherwise, M2" = U @& V with U,V nonzero objects in Rep’(Q).
Then soc(M=") = ®,con M(x) = Greqn (U(z)@V (x)). Since M is n-truncated
injective, we may write M <" = I®.J, where I, J are injective objects in Rep™ (Q)
such that soc I = @4eonU(z) and soc J = @yegnV(z). We construct a nonzero

object U in Rep™ (Q) by defining, U(z) = I(z) if # € Q™ with m < n, and
otherwise U(z) = U(z); and U(a) = I(a) if s(a) € Q™ with m < n, and
otherwise U(a) = U(a). Then US" = I, U2" = U. Similarly, we obtain a
nonzero object V in Rep™ (Q) such that V<" = .J and V=" = V. Now U @ V is
an object in Rep™ (Q) such that M=" = (U @ V)2". By (1), M = U @ V. This

completes the proof of the proposition.
3. THE BOUNDED DERIVED CATEGORY

Recall that a k-category is a category in which the morphism sets are k-
vector spaces and the composition of morphisms are k-bilinear. Let 2 be an
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additive k-category which is a full subcategory of an abelian k-category 8B. A
complex (X*,d%), or simply X*, in 2 is a double infinite chain
d dytt
Cs X X X X2 L neZ

of morphisms between objects in 2 such that d}d}?‘l = 0 for every integer n,
where X" is called the component of X*® of degree n, and d%, the differential
of degree n. Such a complex is called bounded-above if X™ = 0 for all but
finitely many positive integers n; bounded if X™ = 0 for all but finitely many
integers n; and a stalk complex concentrated in degree s if X™ = 0 for any
n # s. The n-th cohomology of X*® is the object H"(X*®) = Ker(d%)/Im(d% ")
in B. One says that X*® has bounded cohomology if H*(X®) = 0 for all but
finitely many integers n. A morphism of complexes ¢* : X®* — Y* consists
of a family of morphisms ¢" : X™ — Y™ in 2 such that d%¢"*! = ¢"d}
for all n. Such a morphism is a called a quasi-isomorphism if ¢™ induces an
isomorphism H"(X*) — H"(Y*) for each n, and null-homotopic if there exist
morphisms 2" : X" — Y"1 in 2 such that ¢" = d%h" T + h"d% for all
n € Z. The complexes in A form an additive k-category denoted as C(2l).
For X* € C(2) and s € Z, the shift of X* by s, written as X°®[s|, is the
complex whose component and differential of degree n are X" *+* and (—1)*d’¥"™,
respectively, for any n € Z. The homotopy category K (L) of C(2) is its quotient
category modulo the ideal of null-homotopic morphisms. This is a triangulated
k-category whose translation functor is the shift by 1 and whose exact triangles
are induced from the mapping cones. Now the derived category D(2) of A
is the localization of K (2A) with respect to the quasi-isomorphisms, which is
also a triangulated k-category with exact triangles induced from those of K ().
Moreover, the full subcategories of bounded-above complexes of C(2), K (2),
and D(2) will be denoted by C~(2(), K~ (), and D~ (2(), respectively; and
those of bounded-above complexes with bounded cohomology will be denoted by
C—b®), K—A), and D~*(2), respectively; and those of bounded complexes
will be denoted by C*(21), K*(2(), and D®(2), respectively. Note that K ~*(2),
D=b(2), K*®), and Db() are all triangulated k-categories. Finally, if one
identifies an object in 2 as a stalk complexe concentrated in degree 0, then 2
becomes a full subcategory of each of C*(21), K®(2A) and D*(2). We refer to
[23] for more details on these notions.

Now let A be a finite-dimensional k-algebra. The k-category of all left A-
modules and that of finitely generated ones will be denoted by A-Mod and
A-mod, respectively. Moreover, the full subcategories of projective modules of
these categories are denoted by A-Proj and A-proj, respectively. Our main
interest lies in the derived category D°(A) of C’(A-mod), called the bounded
derived category of A. As usual, we replace D’(A) by a more accessible cate-
gory. Indeed, sending a bounded complex in A-mod to its projective resolution
yields an equivalence of triangulated categories from DY(A) to K~ *(A-proj).
The quasi-inverse of this equivalence is written as E : K ~*(A-proj) — D°(A).
Furthermore, we shall pass from K ~*(A-proj) to another even better behaved
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category. For this purpose, we need some more terminology. A morphism in
A-Mod is called radical if its image is contained in the radical of its co-domain;
and a complex in A-Mod is called radical if the differentials are all radical mor-
phisms. For a full subcategory 2 of A-Mod, we denote by RC~?(2) the full
subcategory of C~*(2) of radical complexes, and consider the canonical pro-
jection functor G : RC~*(A) — K (), which acts identically on the objects
and sends a morphism to its homotopy class. For collecting the properties of
this functor, we recall that a morphism f : X — Y in an additive category is
left almost split if f is not a section and every morphism g : X — Z which is
not a section factors through f. Dually, one has the notion of a right almost
morphism.

3.1. PROPOSITION. Let A be a finite dimensional k-algebra, and consider
the projection functor G : RC™*(A-Proj) — K —*(A-Proj).

(1) A morphism ¢* in RC~*(A-Proj) is a section (respectively, retraction)
if and only if G(¢®) is a section (respectively, retraction) in K ~*(A-Proj).

(2) If ¢* is a left (respectively, right) almost split morphism in RC~*(A-proj),
then G(¢*) is let (respectively, right) almost split in K ~*(A-proj).

(3) G is dense and preserves indecomposability and isomorphism classes.

Proof. Let ¢* : X* — Y* be a morphism in RC~*(A-Proj). If ¢® is a
section, then G(¢*®) is clearly a section. Assume now that G(¢*) is a section. Let
¥* :Y* — X* be a morphism in RC®(A-Proj) such that G(¢°)G(¢*) = 1g(xs),
that is, 1xe — @®%* is null-homotopic. In particular, 1x~» — ¢ (™ are all radical
morphisms since X*,Y® are radical complexes. Thus (1xe — ¢®*9*)® = 0, where
s is the nilpotency of radA. As a consequence, ¢®1® is an automorphism of
X* and hence ¢°® is a section. Assume now that ¢°® is left almost split. Then
G(¢*) is not a section. Let ¥* : X* — Z* be a morphism in RC?(A-Proj) such
that G(¢*) is not a section. Then 9*® : X®* — Z* is not a section. Thus ©*
factors through ¢*, and hence G(9*) factors through G(¢*). That is, G(¢*) is
left almost split. This proves (1) and (2).

Since G is full, we deduce immediately from (1) that G preserves isomor-
phism classes. Let X*® be an object in RC~*(A-Proj) which is indecomposable
in K~ °(A-Proj). Assume that X®* = Y* @ Z* in RO~ (A-Proj). Since X* is
indecomposable in K ~?(A-Proj), we may assume that 1y« is null-homotopic.
Since Y'* is radical, we get 15« = 0, where s is the nilpotency of radA. Hence
1y« = 0, that is, Y* = 0. This shows that G preserves indecomposability.
Finally let (X*®,d%) be an object in K~ °(A-Proj). We may assume that
H™"(X*®) = 0 for all n < 0. Suppose that X* is not radical. Since X* is
bounded-above, there exists a maximal s such that di{l is not radical. We may
assume that d ' is of the following form:

d " = ( ]f];/[ gso—l > X5 '=MaeN"' 5 MeN° =X,

!is radical. Since d% is radical with d3 'd% = 0, we have d% = (go),

where ¢° is radical such that g°~ !¢ = 0. Writing di(_2 = (f*72,9°72), we get

where ¢°~
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f2+¢°2h =0 and g° 2¢° ! = 0. Suppose that s > 0. Define Y = N" if
s —1<n < s and otherwise Y = X". Moreover, let dy = g" if s —2<n <s
and otherwise di = d%. Then (Y'*,d$ ) is a complex in C~®(A-proj) such that
H™(Y*) =0 for n <0, and d} is radical for n > s—1. Let ¢ = (12n) ifs—1<
n < s and ¢" = 1x» otherwise; and let ¥°~! = (=h, 1y--1), ¥* = (0, 1), and
" = 1xn for n # s — 1,s. Then ¢* = {¢" | n € Z} and ¢* = {Y" | n € Z}
are morphisms in C~*(A-proj) such that 1)*¢* = 1y+ and ¢** is homotopic
to 1xe. Thus X* =2 Y*® in K—*(A-Proj). By induction, we may assume that
H"(X*) = 0 for n < 0 and d% is radical for n > 0. Write d% = pj, where
p: X% — L is an epimorphism and j : L — X' is an monomorphism. Let
pn M opntl . p1dlpo A gy

be a minimal projective resolution of L in A-Mod. Define Z"™ = P" for n < 0,
and Z" = X" for n > 0. Moreover, let d, = d" for n < 0, d} = d% for
n > 0, and d) = d°j. Then (Z°,d%) € RC~*(A-Proj) such that X® = Z* in
K~*(A-Proj). The proof of the proposition is completed.

For the rest of this section, assume that A is connected and elementary with
rad?(A) = 0. Then A = kQ/I, where Q is the ordinary quiver of A which is
connected and finite, and I is the ideal in kQ) generated by the paths of length
two. For simplifying the notation, we shall assume throughout that A = kQ/I.
For a vertex a in @, we write Pla] = Ae, with e, = ¢, + I, where ¢, is the
trivial path in @ at a, and S[a] = P[a]/radP[a]. For an arrow «: a — b in Q,
let Pla] : Pla] — P[b] denote the right multiplication by & = a + I, and for a
trivial path e,, let Ple,] = 1p[,). Fix a minimal gradable covering 7 : Q—Q
of Q. Since Q is finite, @ is locally finite. Choose a vertex ¥ in @ and write
Q" = Q" () for all n € Z. Tt follows from Lemma 1.5 that the Q™ are all finite
and the arrows in @ are of the form # — y with x € @" and y € @”‘H for
some n. As a consequence, ) is interval-finite. We shall write u™ = 7(u) for
u € @0 U @1. All tensor products in this section are over the ground field k.

3.2. LEMMA. Let U,V be k-vector spaces. If a,b are vertices in @, then
every A-linear map ¢ : Pla] @ U — P[b] ® V' can be uniquely written as

=2 s (amy P10V For fp € Homi (U, V).

Moreover, ¢ is radical if and only if ¢ = 3° 5, () Pl]®fa, fo € Homy(U, V).

Proof. Every A-linear map ¢ : Pla] ® U — P[b] ® V is uniquely determined
by its restriction to e, ®U, which yields a k-linear map f : e,QU — (e, Aep) V.
Conversely every k-linear map f : e, ® U — (e, Aep) ® V can be extended in a
unique way to an A-linear map ¢ : Pla] @ U — P[b]® V. Since rad?(A) = 0, we
have (eqAep) @V = ©peq, (ap) (kp) @ V. Observe that ¢ = Plp] ® f, for some
f» € Homy (U, V) if and only if ¢(e, ® U) C (kp) ® V. Now every k-linear map
f:ea®U — (eq,Aep) ® V can be uniquely written as a sum f = Zp€Q<1(a,b) fo
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with f,(e,®U) C (kp)®V. Thus every A-linear map ¢ : Pla|®U — P[b]®@V can
be uniquely written as a sum ¢ =3_ c_ () Plo]® f, with f, € Homy (U, V).

Finally, let ¢ = Zp€Q<1 () PPl ® fp with f, € Homy, (U, V) be an A-linear
map. Note that rad(P[b] ® V) = (radP[b]) @ V. If ¢ = 3 c0, (ap) Pl @ fa,
then ¢ is clearly radical. Otherwise, a = b and f._(u) # 0 for some u € U. Now
Pleqa@u) = e, @ fo, (u) € rad(P[b] ® V). That is, ¢ is not radical. The proof of
the lemma is completed.

Let M be a k-representation of @ We shall construct a radical complex
(F(M)*,d%pp)) in A-Proj. For n € Z, let F(M)" = &, 5. Plz"] @ M(x)
and dj,p ¢ F(M)" — F(M)"*! be the A-linear map given by the matrix
(5a) (#:9)) (2. G x o Where

Tran@ 9 =Y, 5. Pla™ @ M) : Pl M(a) — Ply) @ M(y).

Since rad?(A) = 0, (F(M)* s d% ) ) is indeed a radical complex. Let f : M — N

be a morphism in Rep(Q). For each integer n, we define
F(f)" = ©,50 1par) @ f(x) : F(M)" — F(N)".

Tt is easy to verify that F(f)* = {F(f)™|n € Z } is a morphism in RC(A-Proj)
from F(M)® to F(N)*. This yields a k-linear functor

F : Rep(Q) — RC(A-Proj),
which is said to be induced from the covering w : @ — Q.

We need some more notation. Let o € Aut,(Q). Denote by 7(o) the integer
such that o(Q°) = Q"(?). It follows from Lemma 1.5(4) that o(Q™) = Q"+"(9),
for every integer n. If M € Rep(Q), we define the o-translate M? of M by
M (z) = M(o(z)) and M°(a) = (—1)"@) M (o (c)), for z € Qp and « € Q.

3.3. LEMMA. The functor F : Rep(Q) — RC(A-Proj) is faithful and ezact.
Moreover, if M € Rep(Q) and o € Aut(Q), then F(M®)® = F(M)*[r(0)].

Proof. The first part follows immediately from the fact that the tensor
product involved in the definition of F is over the field k. Let M € Rep(Q) and
o € Aut,(Q). For each n € Z, we have

F(M°)" =@, 5. Pla"] @ M°(z) = &, 5. Plo(x)"] @ M(c(x)) = F(M)"),

zeQ" IGQ"

where the last equality holds since a(@”) = @”*T("). Moreover, for each pair

(z,y) € Q™ x Q"+,

By (,9) = Tocd ey Plom] @ M7 (a)
= ()L, 5,y Plo(@)™] © M(a(a))
(—1) @ dpi (o), o)),
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where the last equality follows from the equality o(Q1(x,y)) = Q1(0(z), o (y)).
Therefore, dy. o) = (—1)T(”)d?(rj\r/[(;’). This shows that F(M?)® = F(M)*[r(0)].
The proof of the lemma is completed.

For M € Rep(Q), it is clear that F(M)® € RC™(A-Proj) if and only if
M € Rep™ (Q).

3.4. LEMMA. FEvery indecomposable object in RC'~ (A-Proj) is isomorphic
to a shift of some F(M)® with M an indecomposable object in Repf(é),

Proof. Assume that (X*,d%) is an indecomposable object in RC~ (A-Proj).
Let A be the set of integers n for which X™ # 0. Since X*® is indecomposable
and bounded-above, A is interval-closed with a maximal element r. For n € A,
write

X" = ®aES(n)P[a] ® V(n,a),

where S(n) is a subset of Qo and V(n,a) is a non-zero k-vector space. For

n € A\{r}, write d% = (d’%(a,b))(a,p)eS(n)xS(n+1) With d’% (a,b) some A-linear
map from Pla] ® V(n,a) to P[b] ® V(n + 1,b)). By Lemma 3.2,

Belab) =Y o Plal@ f(na)

with f(n,a) € Homg(V(n,a),V(n+1,0)).

Choose arbitrarily a vertex a, in S(r) and let x, be some vertex in @ with
xF = a,. Shifting X* if necessary, we may assume that x, € ér. Let n € A.
For each a € S(n), we claim that there exists an unique z in @" such that
2™ = a. Indeed, the uniqueness follows from Theorem 1.3. For the existence,
we may assume that a # a,. Since X*® is indecomposable, there exist integers
n = ng,N1,...,ns = r in A with s > 0 and n; = n;4; £ 1, and vertices
a = bo,b1,...,bs = a, in Q with b; € S(n;) such that d'y(b;,bi11) # 0 if
ni =nit1 — 1 or dy™ (biy1,b;) # 0 if n; = ni11 + 1. This gives rise to a walk
w = Tah? M " in Q from a to a,. Let w be the walk in Q
with e(w) = x, such that m(w) = w. Letting = s(w), we get ™ = a. Since
O(w) = 0(w) = gc;cs(niy1 —ni) =r —n, we have x € Q" by Lemma 1.2(2).
This establishes our claim. Set S(n) = {z € Q" | 2™ € S(n)}.

Next we define an object M € Rep™ (é) as follows. For each vertex x in @,
define M (z) = V(n,z™) if 2 € S(n) with n € A; and M(z) = 0 otherwise. For
each arrow 8 : 2 — y in Q, define M(8) = f(n, 87) if (z,y) € S(n) x S(n+1)
with n € A\{r}; and M(8) = 0 otherwise.

It remains to show that F(M)® = X°. Let n be any integer. If n ¢ A, then
it is evident that F(M)™ =0 = X". If n € A, then it follows from the definition
of M and our previous claim that

F(M)n - @meg(n)P[Iﬂ-] ® V(TL, ‘Tﬂ) = 69aES(n)]D[a] ® V(TL, a) = X"
Moreover, if n = r or n ¢ A, then d}(M) =0 =d%. Assume that n € A

with n < r. By the definition of M, d}(M) = (d}?(M) (x,y))(%y)eg(n)xg(nﬂ),
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where di ) (2,9) = 3505, (24 P18 ® f(n, B7). Now for each~pair (a,b) in
S(n) x S(n + 1), there exists an unique pair (z,y) in S(n) x S(n + 1) with
(z™,y™) = (a,b). By Lemma 1.5(3), we have

deél(m7y)P[ﬂﬂ] ® f(n,B") = Zate(a,b)P[a} ® f(n,q),

that is, d,p(2,y) = d%(a,b). As a consequence, dy,py = d%. This shows
that F'(M)®* = X*. The proof of the lemma is completed.

3.5. LEMMA. Let M be an object in Rep™ (Q), and let ¢* : F(M)® — X*
be a nonzero morphism in RC~(A-Proj) with X* indecomposable. If ¢* is non-
radical, then X* = F(N)®, and otherwise, X®* = F(N)*®[1], where N is some
object in Rep™ (C~2)

Proof. By Lemma 3.4, we may assume that X*® = F(L)*[s] with L €
Rep (Q) and s € Z. For each integer n, write ¢" = (¢”(x,y))(w’y)eénxén“,
where ¢"(z,y) : Plz™] ® M(x) — P[y"] ® L(y) is an A-linear map. As-
sume first that ¢ is radical. Let m be such that ¢™ # 0. Then there exists
(z,y) € Qm X Qm+S such that ¢™(z,y) # 0. By Lemma 3.2,  has an ar-
row ™ — y™, which is lifted to an arrow x — z in Q Then z € Q’”Jrl such
that 2™ = y7, that is 7(Q)™"* N m(Q™) # 0. By Lemmas 1.7(4), there
exists some o € Aut,(Q) such that o(Q™) = Q™*!. By Lemma 1.5(4),
o(Q%) = @1, that is, 7(0) = s — 1. By Lemma 3.3, F(L?)* = F(L)*[s — 1].
Thus X* = F(L)*[s] = F(L?)*[1]. If ¢ is not radical, then there exists
(ao,by) € Q™ x QT such that ¢™(z¢,y0) is not radical for some m € Z.
Therefore, 7(Q™ )N (Q™) # 0. As argued previously, F(L)®[s] = F(L?)* for
some 6 € Aut,(Q). This completes the proof of the lemma.

3.6. LEMMA. Let ¢* : F(M)®* — F(N)® be a morphism in RC~(A-Proj)
with M, N some objects in Repf(@), Then there exists a morphism f: M — N
in Rep™ (@) such that ¢* = F(f)®+1* with ¥* a radical morphism. In this case,
@° is a section (retraction) if and only if f is a section (retraction). Moreover,
if M = N and ¢°® is an idempotent, then f is an idempotent.

Proof. For each integer n, write ¢" = (¢"(x, y))(a:,y)e@nxéjm where ¢™(x,y)
is an A-linear map from Plz"|® M (x) to Ply™]® N (y). For (ac, y) € Q" xQ", set
dzy = 1p[e=) if =y, and ., = 0 otherwise. Note that ™ = y™ only if z = y.
We deduce from Lemma 3.2 that ¢"(z,y) = 2y ® fay +2_0eq, (am, y=) L] @ fa,
where foy, fo € Homg(M(2), N(y)). Put ¥"(z,y) = >, cq,@ry=) Pl @ fa.
Then ¢™ = (1/1"(w7y))(x’y)eénx@l : F(M)* — F(N)" is a radical A-linear
map. Since rad?(A) vanishes, ¢* = {¢™|n € Z} is a radical morphism in
RC™ (A-Proj) from F(M)® to F(N)®. Setting 0" = ©, 50 1pr] @ fou, we get
a morphism 7* = {n"|n € Z} in RC~*(A-Proj) from F(M)® to F(N)*. It
remains to verify that f = {f.. | = € @0} is a morphism in Rep™ (@) from M
to N. Indeed, let z,y € @0 be such that él(x,y) is non-empty, and assume
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that x € @”, and hence y € @”"’1, for some n. We deduce from the equality
d’}(M)n”+1 = n"d}y) that

2 sctiwm PBTIOM@)fy =32 s PIBT@ [N(B).

Since 7 : Q1(z,y) — Q1(z™,y™) is bijective by Lemma 1.5(3), we deduce
from the uniqueness stated in Lemma 3.2 that M(8)f, = f.M(5), for all
CRS @1(37, y). That is, f € Rep_(@) such that n®* = F(f)®. This establishes the
first part of the lemma.

Suppose now that ¢* is a section. Then ¢*C® = 1p(pr)s for some morphism
¢*: F(N)* — F(M)* in RC~(A-Proj). As we have just shown, there exists
a morphism ¢ : N — M in Repf(@) such that ¢* = F(g)® + n°®, where n® is
radical. This gives rise to F'(1y — fg)* = 1panye — F(fg)* = ¢*n®. Being
radical, F(1p — fg)® is squared zero since (radA)? = 0. Thus (1 — fg)? =0
since F' is faithful. Consequently, fg is an automorphism of M, and hence f is
a section. Conversely, assume that there exists a morphism h : N — M such
that fh = 1p;. Then ¢*F(h)* = 1pa)e +10* F(Rh)*. Tt follows from rad®(A) =0
that (1par)s — #*F(h)*)? = 0. As a consequence, ¢® is a section. Similarly, one
can show that f is a retraction if and only if ¢°® is a retraction.

Finally assume that M = N. If ¢°® is an idempotent, then ¢"(z,x) =

>yean ¢ (@,y)¢" (y, ) for all z € Q™. This yields
1® (fow = gm) + Za€Q1(w" w”)P[a] ® (fa = fafoz = foafa) =0,

for all z € @”. By the uniqueness stated in Lemma 3.2 we have f2, = f,., and
consequently f2 = f. The proof of the lemma is completed.

Next we shall determine the representations M in Rep™ (Q) such that F'(M)®
lies in RC'~+*(A-Proj). For this purpose we choose, for each module N in A-Mod,
a minimal projective resolution Py of N which is the object in RC~*(A-Proj)
such that PE = 0 for n > 0, Py is the projective cover of N, and H"(Py) =0
for n < 0.

3.7. LEMMA. Let I, be the indecomposable injective k-representation of @
associated to a vertex x. If x € Q", then F(I,;)* = P&[—n], where S is the
simple A-module supported by x™. B

Proof. We need only to consider the case where x €~Q0. Note that a path
p in @ ending in x is of length ¢ if and only if s(p) € Q~*. For each m < 0,
let @ = {Pm1,---,Pm.s,, } With s, > 0 be the set of paths of length —m
ending in x. Write ymi = $(pmi) and by = T™(Ymi), ¢ = 1,...,8m. Then
@yGQme(y) has as a k-basis the set {pm1,...,Pm,s,, }. For each m < 0, write

Pmi = Omilms1,i With am; € Q1 and Gmi1,; € Omy1, @ = 1,...,5p,. Then
F(I;)™ = @™ Plbmi] ® I;(ym:) has as a k-basis the set

{gquz & Pmis am—l,j ®Qmj | 1= 17 .. '75m;j = 13 .. 'asm—l}a
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where u = u + I € A. By definition, d?(lw) sends €y, ., ® Dmi t0 ®mi & @14,
i =1,...,5, and vanishes on ®m—1,; ® ¢m;j, j = 1,...,5m—1. Therefore, the
kernel of d}l(lz) has as a k-basis the set {@pm—1,;@¢m; | j =1,..., Sm—1}, which
is a k-basis of the image of d?(}i). Hence, H™(F(I)) = 0 for all m < 0. Since
F(1,)° = P[a™], we get F(I;)* = P¢. The proof of the lemma is completed.

3.8. PROPOSITION. An object M in Rep~ (é) is truncated injective if and
only if F(M)® has bounded cohomology.

Proof. First let n be an integer such that M<" = @"_, (I, ® V;), where the
x; are vertices in @” and the V; are k-vector spaces. It follows easily frqm the
definition of F that F(N ® V)* = F(N)* ® V for any object N in Rep(Q) and
k-vector space V. Therefore, for m < n, we have

H™(F(M)*) = H™(F(M=")*) = &_ H"(F(I,,)*) ® V;

which vanishes by Lemma 3.7. Thus F(M)* € RC~?(A-Proj). Conversely,
let n be an integer such that H™(F(M)®) = 0 for all m < n. Let S be the
image of dg ;. Then F(M=m)* = Pg[—n]. If S = 0, then F(M=")* = 0.
Thus M=" = 0, and M is n-truncated injective. Otherwise, S is semi-simple.
Hence S = @;_,S[yf] ® U;, where y1,...,ys € Q™ and Uy,...,Us are some
k-vector spaces, and F(M)" = &7_; PlyT] ® U;. It follows from Lemma 3.7 that
F(M=")* = F(®5_,1,,®U;)*. We deduce easily from the second part of Lemma
3.6 that M<" =~ @¢ I, ® U;. That is, M is n-truncated injective. The proof
of the proposition is completed.

The full subcategory of truncated injective representations of Repf(é) and
that of rep~(Q)) will be denoted by Rep*(Q) and rep—(Q), respectively.
By Proposition 3.8, the functor F' : Rep(Q) — RC(A-Proj) induces functors

Repf’i(@) — RC~"(A-Proj) and rep™(Q) — RC~*(A-proj) which, by abuse
of notation, will be denoted again by F.

3.9. LEMMA. The functor F : Rep " (Q) — RC~*(A-Proj) preserves
isomorphism classes and indecomposability. Moreover, F is fully faithful in
case the grading period of Q) is different from 1.

Proof. It follows easily from the second part of Lemma 3.6 that F' pre-
serves isomorphism classes. Let M be an object in Rep **(Q). If F(M)® is
indecomposable, then M is clearly indecomposable. Suppose now that M is in-
decomposable. Let e® be an idempotent endomorphism of F(M)®. By the last
part of Lemma 3.6, ¢®* = F'(f)® 4+ ¢*, where f is an idempotent endomorphism
of M and 1* a radical morphism. If f = 1,7, then e® is an isomorphism, and
hence e® = 1p(ppys. If f =0, then e® is radical, and hence nilpotent. Therefore
€®* = 0. This shows that F(M)*® is indecomposable.

For proving the second part of the lemma, we note that F' is always faithful
by Lemma 3.3. Suppose that there exists some morphism ¢*® : F(M)* — F(N)*
in RC~"(A-Proj), where M, N € Repf’i(@), such that ¢* # F(f)® for any
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morphism f : M — N in Rep_’i(@). By the first part of Lemma 3.6, there
exists a non-zero radical morphism 7® : F(M)®* — F(N)®. As argued in the
proof of Lemma 3.5, we see that 7(Q™) N (Q™ 1) # () for some integer m. By
Proposition 1.7, m and m + 1 are congruent modulo the grading period of Q.

Hence the grading period of @ is 1. This completes the proof of the lemma.

3.10. LEMMA. Let M be a non-zero object in Repf’i(@). Two integers s,t
are congruent modulo the grading period of Q if and only if F(M)®[s] = F(N)*|[t]
for some N € Rep_’i(é). In this case, N = M? for some o € Autw(é).

Proof. Let r be the grading period of ). Assume that s = ¢ (modr). By
Lemmas 1.7(4) and 1.5(4), there exists 0 € Aut,(Q) with r(c) = s —t. By
Lemma 3.3, F(M?)*[t] = F(M)*[s]. Suppose conversely that there exists an
isomorphism ¢* : F(M)*[s] — F(N)*[t] in Rep™*(Q). As argued in the proof
of Lemma 3.5, 7(Q™**) N w(Q™**) # () for some integer m. By Proposition
1.7, s = t (modr) and there exists some o € Aut,(Q) with r(c) = s — . By
Lemma 3.3, F(M?)*[t] = F(M)*[s], and thus F(M?)®* = F(N)*. By Lemma
3.9, N = M°?. The proof of the lemma is completed.

We are now ready to describe the indecomposable objects and some mor-

phism spaces in D?(A) in terms of those in rep™%(Q). We call the composite
—_i/~N F —b N G —b N b
F: rep *(Q) — RC™°(A-proj) — K °(A-proj) — D"(A)

the functor induced from the minimal gradable covering 7 : @ — Q. Moreover,
we denote by ind™"*(Q) a complete set of representatives of isomorphism classes

of the indecomposable objects in rep~#(Q). For r > 0, set Z, = Z if r = 0,
and Z, ={0,1,...r — 1} if r > 0.

3.11. THEOREM. Let A be a finite-dimensional connected elementary k-
algebra with radical squared zero, and let m : QQ — Q be the minimal gradable
covering and r the grading period of the ordinary quiver Q of A.

(1) The induced functor F : rep=*(Q) — DP(A) preserves isomorphism
classes and indecomposability. B

(2) The complexes F(M)®*[s] with M € ind™"(Q) and s € Z, are the non-
isomorphic indecomposable objects in RC~*( A-proj).

(3) If Hompo(a)(F(M)®, F(N)*[s]) # 0 with M,N € ind~"(Q) and s € Z,,
then s =0 or 1.

Proof. Statement (1) follows from Proposition 3.1(3) and Lemma 3.9. Let
M, N € ind™*(Q) and s,t € Z, such that F(M)®*[s] = F(N)*[t]. Since G and
E preserve isomorphism classes, we have F(M)®[s] &2 F(N)*[t]. By Lemma
3.10, s = ¢t. Thus F(M)* = F(N)*. By Lemma 3.9, M = N, and hence
M = N. This shows that the F(M)®[s] are pairwise non-isomorphic. Next
let X* be an indecomposable object in DY(A). In view of Proposition 3.1(3),
X* = E(G(Y*)) for some indecomposable object Y* in RC~*(A-proj). By
Lemma 3.4, Y* = F(L)*[so] with L € ind™*(Q) and so € Z. Now s = s(modr)
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for some s € Z,. Applying Lemma 3.10, we get F'(L)®*[so] = F(L7)[s] for some
o € Aut,(Q). Hence X* 22 F(L7)[s]. This proves (2).

Assume that Homps a4y (F(M)®, F(N)®[s]) # 0 with M, N € ind~*(Q) and
s € Z,. It r =1, then Z, = {0}. In particular, s = 0. Assume that r # 1.
Then 0,1 € Z,. Since G, E are full, Hompgec—b(a-proj) (F(M)®, F(N)*[s]) # 0.
By Lemma 3.5, F(N)*[s] = F(Ny)*[t1] with Ny € ind™*(Q) and 0 < ¢; < 1.
Noting that t; € Z,, we get s = t; by (2). This completes the proof of the
theorem.

Next we shall extend the functor F to an exact functor of triangulated
categories F : D’(rep™(Q)) — DP’(A). Let M*® be a bounded complex in
rep_vi(@). Applying F' to each of the components of M*®, we get a double
complex F'(M*)® in A-proj as follows:

. . (71)i+1d;(Mi+l) . .
e F(MZJrl)J F(Mz+1)J+1 .
F(d},)’ B Fd})7*!
(D" ari

- — F(M?)7 F(M#)it! — ..

which is clearly bounded. We then define F(M*)® € C~(A-pro) to be the total
complex of the double complex F(M®)*. More explicitly, let s,¢ be integers
such that M™ # 0 only if s < n < ¢. Then F(M*)" = @®;4;j—, F(M")? and

d%(M_) is given by a (t — s + 1) x (¢t — s + 1)-matrix with (¢,7)-entry being

(—1)%}?]@[7;) for s < i <t, (i,i + 1)-entry being F(d%,)"~" for s < i < t,
and all other entries being null. Using the Acyclic Assembly Lemma, see [23,
(2.7.3)], we deduce easily that 13(]\/[ *)* has bounded cohomology and hence
lies in C~*(A-proj). For a morphism f* : M* — N*® in C?(rep—*(Q)), setting
F(f*)" = @iy j—nF(f")?, we get a morphism F(f*)® = {F(f)" | n € Z} of

complexes from ﬁ(M‘)' to ﬁ(N')’. This gives rise to a k-linear functor
F: C"(rep™(Q)) — C~*(A-proj)

such that ﬁ(M)‘ = F(M)® for object M € rep~(Q) and ﬁ(f)‘ = F(f)* for

morphism f € rep~*(Q).

3.12. LEMMA. Let M* be an object and f* a morphism in C*(rep=(Q)).
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(1) F(M*[1]))* = F(M*)*[1], and C%(f_) = F(C})*.

(2) F(M®*)® is acyclic whenever M® is acyclic.

Proof. Tt is a routine verification that F(M®[1])® = F(M*)*[1]. Suppose
now that M?® is acyclic. Since F is exact, the double complex F'(M*®)® has
exact columns, and hence its total complex ﬁ(M *)* is acyclic; see, for example,
[23, (2.7.3)]. Let now f*®: M* — N*® be a morphism of complexes. Assume that
s, t are integers such that M™ # 0 or N™ # 0 only if s < n <t. Let n be a fixed
integer. We see that C} = M @ N", F(C})* = F(M"™")* @ F(N")*, and

C;i(f o= = F(M*)"1 @ F(N*)". It is easy to check that
€2 oy = By (POLY™41 & PN = B

For s <i,j <tand U,V € {M,N}, let g;;(U,V) be the composite

.
i\n—i i(U) ~n “Rese n p; (V) j\n
F(U) +1 94 Cﬁ(f.) F(f®) Cﬁ—(‘,—fl.) F(V]) Jrl,

where ¢;(U) is the canonical injection and p;(V') is the canonical projection. A
routine but tedious verification shows that

(-1, =1, (U,V) = (M, M);
—F(di)" Y ifj=i+1, (U V)= (M,M);
F(frn—t, if j =1, (U, V)= (M,N);
Gij UaV = n—i o .
i ) (— )dF(Nl) if j =1, (U,V)=(N,N);
F(dy)"=,  ifj=it+1, (U.V)=(N,N);
0, otherwise.

Similarly, let h;;(U, V') be the composite

d% Fey)

(Vv .
(Uz)n+1 i qz (Cf) _ F(Co)n+1 pi)) F(Vg)n+1’
where ¢;(U) is the canonical injection, and p}(V') is the canonical projection.
Observing that ¢;(M)" : F(M#)n—itt — ﬁ(C})" factors through F(C'}ifl)"_i*‘1
and p;(M) : ﬁ(C})"‘*‘1 — F(M7)"=3%2 factors through F(C’}l_l)’L_j“‘2 , we get

(D", =14, (U, V) = (M, M);
_F(dl )n l+1 lfJ:7’+1a (U,V):(M,M)7
i\n—i+1 if i =41 (U V):(M N)
hij(U, V) = (f)m A ’ N
i(OV) (— )dF(Nl) if j =1, (U, V)= (N,N);
F(dy)"=,  ifj=i+1, (UV)=(N,N);
0, otherwise.
This shows that ch(f . = dﬁ(c;)' Thus Cﬁ(f-) = F(C})*. The proof of the

lemma is completed.
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In view of Lemma 3.12, F sends exact triangles to exact ones. Further, if

f*: X* = Y* is a quasi-isomorphism in C?(rep~(Q)), then C% is acyclic. By
Lemma 3.12, C'ﬁ(f.) =
in O~*(A-proj). As a consequence, there exist exact functors of triangulated
categories F' and F making the following diagram commutative:

ﬁ(C’;)’ is acyclic. Hence F(f*)* is a quasi-isomorphism

Ps ~ a5

C"(rep~#(Q)) — K" (rep™#(Q)) — D'(rep~(Q))

L

C(A-proj) —> K ~*(A-proj) Db(4),

where PG PA are projection functors and 45 is the localizing functor. We call

F the functor induced from the minimal gradable covering 7. It is easy to see
that f|rep*=i(@) =F.

REMARK. Note that A = kQ/I with I being generated by the paths of
length two is the Koszul dual of the Koszul algebra £Q. If @) is gradable, then
the functor F' coincides with the classical Koszul duality; see [4].

3.13. THEOREM. Let A be a finite-dimensional connected elementary k-
algebra with radical squared zero. Let m : Q — @ be the minimal gradable
covering of the ordinary quiver Q of A, and let F : D’(rep™*(Q)) — DY(A)
be the induced functor. Then Fisa triangle-equivalence if and only if @ is
gradable.

Proof. Assume that @ has positive grading period 7. Let M be an indecom-
posable object in rep~¢(Q). By Lemma 3.10, there exists an indecomposable
object N in rep~(Q) such that F(M)*[r] = F(N)®. Thus F(M[r]) = F(N).
In particular, F is not an equivalence.

We note that the sufficiency follows from [4]. However, we present a short
proof using our own approach. Assume that @ is gradable and take 7 = 1g.
It follows from Lemma 3.4 that F is dense. Note that rep 4 (Q) = rep(Q)
since @ is finite, and C~?(A-proj) = C®(A-proj) since @ has no oriented cy-
cle. By Theorem 3.12, it suffices to show that F induces a bijection from
Hom pb (rep(@)) (M, N[t]) onto Hom pu4y(F (M), F(N)[t]), for M, N € rep(Q)
and t € Z. If t # 0,1, then this follows from Theorem 3.11(3) and the fact
that rep(@) is hereditary. Assume first that ¢ = 0. Consider the following
commutative diagram:
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7
Homen (rep (@) (M, N) =% Home 4-proj)

F
Home(rep(Q)) (M, N) % Home(A-pI'Oj)

(
pQ(M,N) ipA(M,N)
(
9@ (M,N) mi

Since rep(Q) is a full subcategory of each of C’(rep(Q)), K®(rep(Q)), and
D’(rep(Q)), both pgo(M, N) and go(M, N) are bijective. On the other hand,
by Lemma 3.9, the functor F : rep(Q) — RC®(A-proj) is fully faithful. Thus
Fuy is a bijection. Since @ is gradable, Hom4(F(M)"+! F(N)") = 0 for
all integers n. Thus a morphism F(M)®* — F(N)*® is null-homotopic if and
only if it is null. This implies that pa(M,N) is injective and hence bijec-
tive. As a consequence, fMN is bijective. Consider now the case where t = 1.
Let 0 : F(M)* — F(N)*[1] be a morphism in D?(A-mod), which embeds in

an exact triangle ﬁ(N)' —Y* L> ]?(M)' L> f(N)'[l] . By Theorem

3.11(3), the above triangle is isomorphic to an exact triangle

Ay D B e 20 Forye —2 F )]

where L; € rep(Q) and Z* € D*(A-mod). Since (0, lz-)(%.) = 0, there exists
pu® 2 Z* — F(N)® such that p®(¢®,v®) = (0,1z+). In particular, p*v® = 1z..
As a consequence, Z* is either null or a direct summand of F(N)®. Since F pre-

~
~

serves indecomposability, we see that Z® = F(Ls) for some Lo € rep(Q). Thus
Y* = F(L)*, where L = L1 ® Lo. Now it follows from what we have proved that

¢* = F(f)* for some f : N — Linrep(Q). Let N —>[ %=1 —"= N[1]

be an exact triangle in D®(rep(Q)). This induces a commutative diagram

FNy —L sy s By L= Fvyeqy
S FU) fl 29" fln. Fhy
Ay 2 Fye T Fae TS B vy

in D?(A-mod). By what we have proved, n* = F(u)® with u : M — U an
isomorphism in rep(Q). Therefore, §° = F(uh)®. Moreover, if 8* = 0, then
F(h)®* = 0. Hence F(g)*® is a retraction. As a consequence, g is a retraction,

that is h = 0. In particular, uh = 0. This proves that F induces a bijection
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from Hom po (e () (M, N[1]) onto Hom pe(a) (ﬁ(M)',j—z(N)'[l]) The proof of
the theorem is completed.

Let X*® be a non-zero bounded complex in an additive category. If s is
the minimal integer such that X* # 0 and t is the maximal integer such that
X!t #£ 0, then the positive integer ¢t — s 4 1 is called the width of X*®. It is well
known that every indecomposable object in the bounded derived category of a
finite-dimensional hereditary algebra is isomorphic to a complex of width one;
see [12].

3.14. COROLLARY. Let A be a finite-dimensional elementary k-algebra with
radical non-zero but squared zero, and let Q) be the ordinary quiver of A. If Q is
gradable, then D*(A) = D*(kQ°P) and every indecomposable object in D®(A) is
isomorphic to a complex of width less than the number of grading classes of Q.

Proof. Assume that @ is gradable. It follows from Theorem 3.13 that
there exists a triangle-equivalence F : D’(rep(Q)) — DP?(A). Now kQ°P is
a finite dimensional hereditary k-algebra such that D?(kQ°P-mod) is triangle-
equivalent to D®(mod-kQ), where mod-k(Q is the category of finite dimensional
right kQ-modules which is equivalent to rep(Q). Hence D?(mod-kQ) is triangle-
equivalent to D®(rep(Q)). Moreover, since A is not semi-simple, the number of
grading classes of ) is an integer m > 1. Let M be an indecomposable object
in rep(Q). Then F(M)® is an indecomposable object in D*(A) which, by the
definition, is of width < m. Assume that F(M)® is of the form:

a4 g5+ a5+2 =2 gt
s XS & xSt xst22 L2 L xt-1e  xt L ...

with X* # 0 and X* # 0. If s = ¢, then F(M)® is of width 1 which is
less than m. Otherwise, X* is a direct sum of simple projective A-modules.
Thus the indecomposability of F(M)® implies that d°® is a monomorphism. Let
p: X5t — Y5+ be the cokernel of d*. Then d*t! = pd**! for some A-linear

map d*t1 : Y5t — X5+ It is now evident that F(M)® is quasi-isomorphic to
the complex

gt qo+2 b2 gt
e ) yst L  xst2d 4 x-St ) —s ...

which is of width t — s < m. The proof of the corollary is completed.
4. AUSLANDER-REITEN THEORY IN D’(A)

The Auslander-Reiten theory applies in the bounded derived category of a
finite dimensional algebra of finite global dimension; see, for example, [12]. Tt is
well understood for hereditary algebras. The objective of this section is to show
that this is also the case for algebras with radical squared zero.
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We begin with a brief recall. Let 21 be an additive k-category in which the
morphism spaces are finite dimensional over k£ and every indecomposable object
has an elementary local endomorphism algebra. One calls a left almost mor-
phism f: X — Y in 2 a source morphism for X provided that a factorization
f = fh holds only if A is an automorphism. In this case, X is indecomposable
and f is unique up to isomorphism. In a dual manner, one defines the notion
of a sink morphism. Suppose that every indecomposable object in 2 admits a
source morphism and a sink morphism. One defines the Auslander-Reiten quiver
Iy of A as follows. The set of vertices is a complete set of representatives of
isomorphism classes of the indecomposable objects in 2. The number of arrows
from a vertex X to a vertex Y is the multiplicity of Y as an indecomposable
summand of the codomain of the source morphism for X, or equivalently, the
multiplicity of X as an indecomposable summand of the domain of the sink
morphism for Y. The connected components of the quiver Iy are called the
Auslander-Reiten components of 2.

Assume that 2 is abelian. A short exact sequence 0 — X Ty 270
in 2 is called almost split if f is a source morphism, or equivalently, g is a sink
morphism. In this case, one calls X the Auslander-Reiten translate of Z and
write X = 7, Z. One says that 2 has almost split sequences provided that every
indecomposable object X in 2 admits a source morphism which is a monomor-
phism whenever X is non-injective, and a sink morphism which is an epimor-
phism whenever X is non-projective. In this case 7,, called the Auslander-
Reiten translation for 2, is defined on all indecomposable non-projective objects
and makes Iy a translation quiver in the sense of [20, (2.1)].

Assume that 2 is triangulated with a shift functor T'. Recall that an exact

triangle X Sy s T(X) with X, Z indecomposable is called an almost
split triangle ending with Z provided that f is left almost split or g is right
almost split, or equivalently, f is a source morphism and ¢ is a sink morphism,;
see [11, (4.1)]. In this case, one calls X the Auslander-Reiten translate of Z
and writes X = 7, Z. One says that 2 has almost split triangles provided that
every indecomposable object in 2 is the ending term of an almost split triangle.
In this case 7y, called the Auslander-Reiten translation for 2, is defined on all
indecomposable objects and makes Iy a stable translation quiver.

For describing the shapes of Auslander-Reiten components, one needs a clas-
sical construction of a stable translation quiver ZA from a quiver A with no
oriented cycle. The vertices of ZA are (n,z) with n € Z and = € Ay. Each
arrow x — gy in A induces, for each n € Z, two arrows (n,z) — (n,y) and
(n,y) = (n+ 1,2) in ZA. The set of arrows in ZA is formed by such induced
arrows. The translation 7 is defined by 7(n,z) = (n — 1,x), n € Z. Denote by
INA the full translation subquiver of ZA generated by (n,z) with € Ag and
n > 0, and by IN'A that generated by (n,z) with € Ag and n < 0. If Aisa
tree of type {2, then ZA does not depend on the orientation of A and we write

25



ZA = ZS2. Finally, recall that a translation quiver is called a stable tube if it is
isomorphic to ZRA .,/ <7°> for some s > 1.

For the rest of this section, let A = kQ/I, where () is a finite connected quiver
and [ is the ideal in kQ generated by the paths of length two. Fix a minimal
gradable covering 7 : Q — @ of Q). Assume that A is of finite global dimension.
Then @ contains no oriented cycle, and consequently, () contains no infinite
path. Thus the indecomposable projective and injective representations of @
are finite-dimensional, and consequently, rep™%(Q) = rep®(Q). Now rep’(Q)
admits almost split sequences; see [6, (2.2)]. The shapes of the Auslander-
Reiten components of repb(é) are well described in case @ is finite or of type
RAZZ; see [7, 17, 18]. We shall generalize these results to a more general context.
For each a € éo, let P, and I, be the associated indecomposable projective
and injective representations. As usual, one sees easily that the inclusion map
qq : radP, — P, is the sink morphism for F,, and the canonical projection
pa ¢ I, — I,/socl, is the source morphism for I,. Thus, for a,b € Qp, the
number of arrows from P, to P, in Frepb ) is equal to the number of arrows

from b to a in é As a consequence, the full subquiver of I' rept () generated by

the P, with a € Q: is isomorphic to @0p7 the opposite quiver of @ In particular,
the P, with a € Qg lie in the same connected component of I’ rept (3 called the
preprojective component. Dually, the I, with a € @0 lie in the same connected
component of Frepb(@), called the preinjective component, and generate a full

subquiver isomorphic to Q°P. The Auslander-Reiten components of rep’(Q)
which are neither preprojective nor preinjective are called regular.

4.1. LEMMA. Assume that Qv is infinite but contains no infinite path. Then
the Auslander-Reiten quiver of rep®(Q) consists of the preprojective component
which is of shape ﬂ\f@ °P_the preinjective component which is of shape W_é opP,
and some regular components which_are of shape ZR . Moreover, the number
of reqular components is 2 in case Q is of type AJ.

Proof. First of all, as argued in [17, (I1.3, II1.3)], the preprojective and prein-

jective components of Fmpb( ) are disjoint, and consequently, they are of shapes

W@Op and ﬂ\F@ °P respectively. Let C be a regular component of I’ reph(3)* We
claim that C contains no oriented cycle. Suppose on the contrary that there ex-
ists an oriented cycle © in C. Let M be the direct sum of the modules appearing
in ©. Since () contains no infinite path, there exists a finite connected convex
subquiver Qs of @ which supports the minimal projective and injective presen-
tations of M in rep®(Q). Note that the Auslander-Reiten translation for rep®(Q)
is given by DTr, the dual of the transpose; see [1]. In view of the construction
of Dtr, one sees that © remains to be an oriented cycle in the Auslander-Reiten
quiver of rep(Qar). It is then well known that Qas is of Euclidean type; see,
for example, [18]. Being connected and infinite, @ has a finite wild convex sub-
quiver Y containing C~2M. Once again, © remains to be an oriented cycle in
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the Auslander-Reiten quiver of rep(X), and hence ¥ is of Euclidean type. This
contradiction confirms our claim. Being a stable translation quiver, C contains
a section A, and hence C & ZA; see [15, (2.1), (2.3),(2.4)]. Furthermore, Dtr
preserves monomorphisms in repb(@). Thus the dimension function yields a
strict monotone additive function on C, and consequently, A is either finite or
of type A; see [21]. Suppose that A is finite. Let N be the direct sum of the
modules lying in A. Choose a finite connected convex subquiver {2 of @Nwhich
supports the minimal projective and injective presentations of N in rep®(Q) and
has more vertices than A does. It follows again from the construction of Dtr
that A remains to be a section of a Auslander-Reiten component of rep(£2). In
view of the shapes of the Auslander-Reiten components of rep(f2), we see that
2 =2 A°P, which is absurd since {2 and A°P do not have the same number of
vertices. This proves the first part of the lemma, while the second part follows
from [17, (IIL.3)]. The proof of the lemma is completed.

We now concentrate on the triangulated category DY(A). As did before, we
choose arbitrarily a vertex ag in @ and put Q@™ = Q"(ag), for all n € Z. Let

F :rep™(Q) — RC®(A-proj) the functor induced from the covering 7 : Q — Q.
4.2. LEMMA. If f : M — N is a monomorphism in rep*7i(@), then every
radical morphism F(M)® — X* in RC~*(A-proj) factors through F(f)®.
Proof. Let f : M — N be a monomorphism in rep_’i(@). Consider a nonzero
radical morphism ¢* : F(M)* — X* in RC~*(A-proj) with X* indecompos-
able. By Lemma 3.5, we may assume that X* = F(L)*[1] with L € rep~(Q).
Fix an integer n, and write ¢" = (¢”($,y))(zyy)eénxénﬂ, where ¢ (z,y) is a
radical A-linear map from P[z™]@M (z) to Ply™|@L(y). Fix (z,y) € Q" x Q"+
Since Q1(z™,y™) = 7(Q1(z,y)) by Lemma 1.5(3), we deduce from Lemma
3.2 that ¢"(2,y) = X ,cGy(ay) L1O7] © ga, where go € Homy (M (z), L(y)).
Since f(z) : M(z) — N(z) is injective, for each a € Qi(x,y), there exists
ha € Homy(N(z), L(y)) such that g, = f(2)he. This yields a radical A-linear
D (7,9) = Yoeq, gy PlO™)  ha : PleT] @ N(z) — Ply™] @ L(y) such
that (]P[w"] @ f(x))"(z,y) = ¢"(x,y). Now 9" = ("(w, y))(Ly)eénX@nJrl is a
radical A-linear map from F(N)™ — F(L)"™! such that ¢" = F(f)"". Since
rad’(A) = 0, we see that 1»* = {¢)" | n € Z} is a morphism from F(N)® to
F(L)*[1] such that ¢* = F(f)*y*. This completes the proof of the lemma.

4.3. LEMMA. The functor F : repf’i(@) — RC~P(A-proj) sends left almost
split monomorphisms to left almost split monomorphisms, and right almost split
epimorphisms to right almost split epimorphisms. B

Proof. Let f: M — N be a left almost split monomorphism in rep~*(Q).
Since F' is exact, F(f)® is a monomorphism and is not a section by Lemma
3.6. Let ¢* : F(M)®* — X* with X* indecomposable be a nonzero morphism in
RC~*(A-proj) which is not a section. If ¢* is radical, then it factors through
F(f)* by Lemma 4.2. Otherwise, by Lemma 3.5, we may assume that X°® =
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F(L)* with L € rep—*(Q). By Lemma 3.6, ¢* = F(g)® +¢*, where g: M — L
is a morphism in rep_’i(é)v) which is not a section, and 1® is a radical morphism
in RC~*(A-proj). Now g factors through f, and hence F(g)® factors through
F(f)*. Moreover, ¢* factors through F(f)® by Lemma 4.2. Thus, ¢* factors

through F(f)°®. The proof of the lemma is completed.

Assume that A is of finite global dimension. We fix some notation for some
special morphisms in RC?(A-proj) associated to a vertex a in ). Assume that
a € Q™ for some integer m. First, write pe = F(py) with p, : I, — I, /socl,
the canonical projection and ¢ = F(q,) with ¢, : radP, — P, the inclusion
map. Since I,(z) = P,(z) for all z € Q™, we have F(I,)™ = F(P,)™ =
P[a™]. Moreover, (radP,)(y) = P.(y) and (I,/socl,)(y) = I,(y) for all y # a.
Consequently, F'(P,)" = F(radP,)" and F(I,)" = F(I,/socl,)", for all n # m.
Now let u$ : F(I,)®* — F(radP,)®[1] be the morphism in RC®(A-proj) with
ug' = dpp,y and ug = 0 for n # m, and v§ : F(la/socls)® — F(FP,)*[1]
the one such that v~ ! = d;'f(_lal) and v = 0 for n # m — 1. Finally, define
wy : F(P,)* — F(I,)* by w]' = 1p[g~) and w]} = 0 for n # m.

4.4. LEMMA. Assume that A is of finite global dimension. Associated to

each vertex a in Q, there exists in RC®(A-proj) a left almost split morphism
(ph,—u?) : F(I,)* — F(I,/socl,)® @ F(radP,)*[1] and a right almost split one

(q{[l]) : F(I,/socl,)® @ F(radP,)*[1] — F(P,)*[1].

Proof. Let a € va We shall prove only the first part of the lemma since
the second part follows dually. Let ¢® : FI(I;)* — X*® with X* indecomposable
be a morphism in RC~*(A-proj) which is not a section. Assume first that ¢® is

radical. By Lemma 3.5, we may assume that X*® = F(N)®[1] with N € rep®(Q).
Since F is exact, RC®(A-proj) admits a short exact sequence

0 — F(5.)°* "9 F(1,)* 5 F(1, Jsocl,)* — 0,

where S, is the simple representation concentrated on a and j, : S, — I, is the
inclusion map. For each n, define (" : F(I,)" — F(N)"*1 by (" =0 forn >m
and " = ¢™ for n < m. Since the ¢™ are all radical, ¢* = {¢(" | n € Z} is a
morphism from F(I,)® to F(N)*[1] such that F(j,)*¢®* = 0. Thus ¢* factors
through p5. Consider now 6* = ¢* — (*. Then ™ = ¢™ and 6" = 0 for all
n # m. Note that ug" = (ug'(y)),cgm+1, where

a

W) =Y 50 PlaT @ Pula) : Pla™) @ Pala) — Ply™) @ Puly).

Write 0™ = (6™(y)), egm+: With 0™ (y) : Pla™]® Pa(a) — Ply"]@ N (y) aradical
A-linear map. By Lemmas 1.5(3) and 3.2, 6™ (y) = 3_ 5, (4., Ll0"] © fo with
fa € Homy (P, (a), N(y)). Fixavertexy € Q1. Note that Q1 (a,y) is a k-basis
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of (radP,)(y). For each a € Q1(a,y), denote by g : (radP,)(y) — N(y) the k-
linear map which sends a to fo(gq) and vanishes on the other arrows. Set g, =
Zaeél(a,y) Jo : (radP,)(y) — N(y). Since P,(a)go = fo and P,(a)gg = 0 for
B # a, we have 0™ (y) = ug'(y)(1py=) ® gy). Now 0™ = (Ippy=) ® gy),cGm
is an A-linear map from F(radP,)™"! to F(N)™*! such that ™ = umn™.
Since rad P, is projective with top @yeémﬂ(radPa)(y), there exists an unique

morphism ¢ : radP, — N in rep’(Q) such that g(y) = g,, for all y € Q1.
This yields a morphism F(g)® : F(radP,)* — F(N)*® in RC®(A-proj) such that
F(g)™*l = n™ and F(g)" = 0 for n < m. Thus F(g)*[1] is a morphism in
RC®(A-proj) such that 0 = u% F(g)*[1]. Thus, ¢* = 0® + ¢* factors through
the morphism (ug, —p?).

Suppose now that ¢® is not radical. By Lemma 3.5, we may assume that

X* = F(N)* with N € rep’(Q). By Lemma 3.6, ¢* = F(f)* + ¢* with
f a morphism in repb(@) which is not a section, and *® a radical morphism
in RC®(A-proj). Since f factors through p, : I, — I,/socl,, we see that
F(f)* factors through p?. Being radical, ¥* factors through (p?, —u?) as shown
previously. Consequently, ¢* factors through (ug,—p?). This completes the
proof of the lemma.

We are now ready to describe the almost split triangles in D¥(A) in case A
is of finite global dimension.

4.5. THEOREM. Let A be a finite-dimensional elementary k-algebra with
finite global dimension and radical squared zero. Let m: Q — @Q be a minimal
gradable covering of the ordinary quiver Q of A, and let F : rep®(Q) — D?(A)
be the induced functor. B

(1) Each almost split sequence 0 — M — N — L — 0 in rep®(Q) induces
an almost split triangle F(M)® — F(N)® — F(L)* — F(M)*[1] in Db(A).

(2) For each verter a in Q, there exists in D®(A) an almost split triangle

F(1,)® — F(la/s0cl,)® @ F(radPy)®[1] — F(P,)*[1] — F(I,)°[1].

(3) Every almost split triangle in D(A) is isomorphic to a shift of some
triangle stated in (1) or (2). N

Proof. Recall that F induces an exact functor F : D’(rep®(Q)) — Db(A)
withf|repb(é) =F=FEoGoF. Let n: 0 - M LN %L — 0bean
almost split sequence in rep?(Q). Then M NS LM [1] is an exact
triangle in D?(rep®(Q)). Thus F(M) it F(N) 74 F(L) 7 F(M)[1] is an
exact triangle in D®(A). We deduce from Proposition 3.1(2) and Lemma 4.2
that F(f) = F(f) is left almost split and F(g) = F(g) is right almost split.
This establishes (1). Now let a be a vertex in @, say a € Q™ for some m. Let
C* be the mapping cone of (ph, —u?) : F(1,)* — F(I,/socl,)® & F(radP,)*[1].
Since

] n niqr | F(radP,)" = F(P,)" Y, if n > m;
F(Ia/bOCIa) D F(I'adPa) [1] - { F(Ia/SOCIa)n — F(Ia)n, ifn < m,
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we see that C" = F(P,)"*! for n > m, and C" = F(I,)"" @ F(I,)" for n < m.
Moreover, df, = —d%L  for n >m, dfy' = (—d%wa)), and

F(Pa)
m—+1
. —dtt n1
0 di s

for n < m — 1. Define a morphism ¢* : C* — F(P,)*[1] in C*(A-proj) by
& =0 forn < m-—1, £m—1 = (]F(pa)m,d;?(}j))T, and &" = IF(Pa)n+1 for
n > m; and a morphism n® : F(P,)*[1] — C*® such that n™ =0 for n <m — 1,

nmil = (]F(pa)m,O), and n" = ]F( P,)n+1 for n > m. Then £°n® = ]F(p) *[1]
while n*£*® is homotopic to 1¢e via a contraction ¢g°® defined by g™ = 0 for n > m,
and

n_ ( 0 0 >
g IF(Ia)n O ’

for n < m. This proves that £° is a homotopy equivalence. Consider now the
diagram

(pg,—u2)

F(L,)* F(I,/socl,)* @ F(radP,)*[1] — > F(1,)*[1]
U. lf.
Iy @R ($tn) ey Wil .
(I)* "% B (1, fsocl,)* @ F(radP,)*[1] F(P,)*[1] 2255 F(1,)°[1],

in RC~*(A-proj), where j* is the canonical injection, and p® is the canonical
projection. It is easy to verify that the square in the middle is commutative.
Moreover, p® is homotopic to £*w?[1] via a contraction h® defined by h" =
0 for n > m, and K™ = (0, 1F([a)n)T for n < m. Applying the projection
functor RC~*?(A-proj) — K®(A) to the above diagram followed by the triangle-
equivalence E : K’(A-proj) — D"(A), we get a commutative diagram in D®(A).
In particular,

F(I,)* —— F(I,/socl,)® & F(radP,)*[1] —— F(P,)*[1] ——= F(1,)*[1],

is an exact triangle in D®(A) which, by Lemma 4.4 and Proposition 3.1(2), is
an almost split triangle. This proves (2). Finally, (3) follows easily from the
uniqueness of almost split triangles and the fact that repb(@) has almost split
sequences. The proof of the theorem is completed.

The previous result enables us to describe the shapes of the Auslander-Reiten
components of D’(A) in case A is of finite global dimension.

4.6. THEOREM. Let A be a finite-dimensional elementary k-algebra with

finite global dimension and radical squared zero. Let w: Q — Q be the minimal
gradable covering of the ordinary quiver Q of A.
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(1) If Q is gradable, then I'pr(ay = I'prrep(q))- As a consequence, an
Auslander-Reiten component of DY(A) is either of shape ZQP or ZR., or
a stable tube.

(2) If Q is of positive grading period r, then I'poay consists of r components
of shape Z@‘f) and some components of shape Z R , whose number is 2r in case
Q is of type I,,.

Proof. The first part of (1) is an immediate consequence of Theorem 3.13,
while the second part is well-known; see [12, (5.6)]. Assume now that @ is of
positive grading period r. By Lemma 4.1, I' rept (D) consists of the preprojective
component P, the preinjective component 7 and a set R of regular components.
Let F : rep®(Q) — DY(A) be the functor induced from 7. For each integer i,
denote by Z[i] the set of complexes F(M)*[i] with M € Z, by P[i] the set of
complexes F(N)*[i] with N € P, and R][i] the set of complexes F(L)*[i] with
L lying in some component in R. By Theorem 3.11(2), the set of vertices of
I pv(@) is formed by the complexes lying in T[], R[i] and P[i + 1], i € Z,:.

Let C be a component in R. For each ¢ € Z,., we deduce easily from Theorems
4.5(1) and 3.11(1) that the complexes F(M)*[i] with M € C form an Auslander-
Reiten component C; of D?(A) which is isomorphic to C as a translation quiver.
By Theorem 3.11(2), the C; with i € Z, are r pairwise distinct components
which are of shape ZA . If Q is type ﬁm then R consists of two components,
which induce 2r Auslander-Reiten components of shape ZA of I'ps(a).

Next fix an integer ¢ € Z,. By Theorem 4.5(1) and 3.11(1), the complexes
in Z[i] generate a full subquiver of I'ps(4) of shape W@Op which is closed under
predecessors, while the complexes in P[i + 1] generate a full subquiver of I'p(a)

of shape IN"Q°P which is closed under successors. Assume that F(M)*[i] =
F(N)*[i + 1] for some M € T and N € P. By Lemma 3.10, N = M? for
some o € Aut,r(@). However, o induces an auto-equivalence of repb(@) and
thus an automorphism of Fmpb @) In particular, Z? is a connected component
of I rept (D) which is isomorphic to Z as a translation quiver. In view of Lemma
4.1, we see that 0(Z) = Z. In particular, N = M? € Z, a contradiction. Now
we deduce from Theorem 4.7(2) that the complexes F(M)*[i] and F(N)*[i + 1]
form a component of I'pe(4) which is of shape Z@Op. This completes the proof
of the theorem.

Recall that a finite dimensional k-algebra A is called derived hereditary or
piecewise hereditary if DP(A) is triangle-equivalent to D°(H), where H is a
finite-dimensional hereditary k-algebra.

4.7. COROLLARY. Let A be a finite-dimensional elementary k-algebra with
radical squared zero. Then A is derived hereditary if and only if the ordinary
quiver of A is gradable.

Proof. By Corollary 3.14, it suffices to show the necessity. Let @ be
the ordinary quiver of A with minimal gradable covering . Assume that
D(A) = DY(H) with H a finite-dimensional k-algebra. Then A is of finite
global dimension and the Auslander-Reiten quiver of D?(A) has components
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with finite sections. It follows then from Theorem 4.6 that @ is finite. By
Proposition 1.8, @ is gradable. The proof of the corollary is completed.

5. THE DERIVED TYPE

Throughout this section, we assume that k is algebraically closed. Let A
be a finite-dimensional k-algebra with bounded derived category D’(A). For
X* € D'(A), one calls the infinite vector

hdﬁ(X') = (dlman (X.))TLEZ

the cohomology dimension vector of X®, which has at most finitely many nonzero
components. Denote by IN? the set of vectors h = (hn)nez with h,, € IN such
that h,, = 0 for all but finite many integers n.

One says that A is derived finite if D®(A) has only finitely many indecom-
posable objects up to shift and isomorphism. It is known that A is derived
finite if and only if D?(A) is triangle-equivalent to D°(H) with H a hereditary
k-algebra of Dynkin type; see [22].

Recall that A is derived discrete if, for any given h € HV(Z), there exist at
most finitely many indecomposable objects up to isomorphism of cohomology
dimension vector h in DY(A); see [22]. Moreover, we say that A is strictly
derived discrete if it is derived discrete but not derived finite.

Next, consider the k-algebra k[x] of polynomials in one variable. It is well
known that the simple k[z]-modules up to isomorphism are Ty = k[z]/(x — \),
A € k. One says that A is derived tame if, for any given h € IN® | there exist
bounded complexes M7, ..., M? of A-k[x]-bimodules which are k[x]-free of finite
rank such that all but finitely many (up to isomorphism) indecomposable objects
of cohomology dimension vector h in D?(A) are of the form M} Qgle) Tr With
1 <¢<rand X € k; compare [10]. We shall say that A is strictly derived tame
if it is derived tame but not derived discrete.

Finally, let IFF = k < x,y > be the k-algebra of polynomials in two non-
commuting variables, and denote by F-mod the category of finite dimensional
left IF-modules. One calls A derived wild if there exists a bounded complex M*®
of A-IF-bimodules which are FF-free of finite rank such that the functor

M® ®, — : F-mod — D(A)

preserves indecomposability and isomorphism classes; compare [9]. It has been
shown in [9] that A is either derived tame or derived wild, but not both.
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5.1. LEMMA. Let (P*,d®) be a complex in RC~(A-proj) of cohomology
dimension vector h = (hy,)nez. Write a = dim, A. If P*1 = 0 for some r, then

dimy (P"/radP") < hp, + hpyra+ -+ hpa” ™", n <o

Proof. By hypothesis, Imd® C radP"*! for all n. Since P! = 0, we
have H"(P*) = P"/Imd"~*. Hence dimy(P"/radP") < dimy,(P"/Imd" ') = h,..
Assume that n < r and that the statement holds for n + 1. In particular,
dimy, P"™t < adimg (Pt /radP" ) < hyy1a+ -+ + hea” ™. Now

dimg (P"/radP™) < dimg (P"/Imd"~1)
dimy (P™/Ker d") + dimy (Ker d" /Tm d"~1)
= dimgImd™ + dimH" (P*)

< hp+hpria+---+hpa™ "

This completes the proof of the lemma.

Let B be an arbitrary k-algebra. A B-representation M of a quiver @
consists of a family of right B-modules M(a) with a € Qo and a family of
B-linear maps M(«) : M(a) — M(b) with @ : a — b € Q1. Clearly a B-
representation of () is also a k-representation. We say that M is B-free of finite
rank if the M (a) are all B-free such that &,ecq,M (a) is of finite rank. In this
case, for a finite dimensional left B-module U, denote by M ®p U the finite
dimensional k-representation of @ such that (M ®p U)(a) = M(a) ®p U for
a € Qo, and (M ®@p U)(a) = M(a) ®@p 1y for a € Q1.

5.2. THEOREM. Let A be a finite dimensional k-algebra with radical squared
zero, and let Q be the ordinary quiver A.

(1) If Q is of Dynkin type, then A is derived finite.

(2) If Q is non gradable of type Iin, then A is strictly derived discrete.

(3) If Q is gradable of Euclidean type, then A is strictly derived tame.

(4) If Q is wild, then A is derived wild.

Proof. Let m : @ — () be the minimal gradable covering of Q. Let
F :rep~4(Q) — RC~*(A-proj) and F : rep~*(Q) — D’(A) be the induced
functors as defined in Section 3. By Theorem 3.11, F preserves indecompos-
ability and isomorphism classes, and every indecomposable object in Db(A) is
isomorphic to a shift of some complex F(M)® with M an indecomposable object
in rep™#(Q). If Q is of Dynkin type, then é 2 (). Hence there exist only finitely
many non-isomorphic indecomposable objects in rep(@). Therefore, D?(A) has
only finitely many indecomposable objects up to shift and isomorphism.

For proving the remaining cases, we need to introduce some notation. Fix
a vector h = (hy)nez € IND | Let r,s with 7 < s be integers such that h,, =0
whenever n > s or n < r. Consider the full subquiver QV[’"’S] ofNCj generated
by the vertices lying in the Q™ with 7 < n < s. Note that Q™! is finite
and connected. Denote by M(h) the set of non-isomorphic indecomposable

objects in rep™*(Q)) whose images under F have cohomology dimension vector
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h. Let M € M(h). Then F(M)* is of cohomology dimension vector h. Write
M™ = @zeqnM(zx) for all n € Z. If n > s, we deduce easily from Lemma 5.1
that F'(M)™ = 0, and hence M™ = 0. Therefore,

: >r : n : n n
dimy (M= )zzrgngsdlmkM :ngngsdlmkF(M) JradF(M)".
Using again Lemma 5.1, we get a constant c¢(h) independent of M such that
dimy,(M=") < c(h). Moreover, we deduce from the proof of Proposition 3.8
that M is r-truncated injective. Thus M="(h) = {M=" | M € M(h)} is, by
Proposition 2.4, a set of non-isomorphic indecomposable k-representations of
Q"*! of dimension < c(h).

Consider now the case where @ is non-gradable of type j&t with t > 1. By
Proposition 1.8(1), @ is of type A%. As a consequence, Q! is a quiver of
type B,,. Therefore, M="(h) is finite, and so is M(h) by Proposition 2.4(1).
This shows that A is derived discrete. Furthermore, for each n > 1, there exists
an indecomposable object V;, of dimension n in rep®(Q), which gives rise to an
indecomposable object of width n in RC~*(A-proj). Consequently, the F(V},)
with n > 1 are indecomposable objects in DY(A) such that F(V},) is neither
isomorphic to nor a shift of F(V,+) whenever n # n’. That is, A is not derived
finite. This proves (2).

Next, we deal with the case where @ is gradable of Euclidean type. We may
then assume that @ = Q. It is well known that there exist k[z]-representations
My, ..., M of @ which are k[z]-free of finite rank such that, up to isomorphism,
all but finitely many indecomposables objects in rep(@) of dimension < c(h)
are of the form M; Qple) Th with A € k and 1 < ¢ < [. It is easy to see that
F(M;®p[)T\)® = F(M;)® ®k[2)Tx. Thus the F(M;)* with 1 < i <[ are bounded
complexes of A-k[x]-bimodules which are A-projective and k[z]-free of finite rank
such that all but finitely many (up to isomorphism) indecomposable objects in
DP(A) are of the form F(M;)* @, Th. Hence A is derived tame. Moreover,
it is well known that there exists a vector (n) of positive integers and

zEQo
an infinite set M of non-isomorphic indecomposable objects M in rep(Q) such
that dimyM (z) = n, for all z € Qo. Therefore, there exist infinite many non-
isomorphic complexes F(M)® of the same cohomology dimension vector. This
shows that A is not derived discrete. _
Finally, suppose that Q is a wild quiver. By Proposition 1.8(2), @ has a
finite connected full subquiver A of wild type. It is then well known that there
exists an [F-representation N of A which is F-free of finite rank such that

N ®p — : IF-mod — rep(A)

preserves indecomposability and isomorphism classes. Then F(N)® is a bounded
complex of A-IF-bimodules which are A-projective and IF-free of finite rank such
that

F(N)* ®p — : IF-mod — D°(A)

preserves indecomposability and isomorphism classes. This completes the proof
of the theorem.
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