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Introduction

Throughout this paper, k stands for a field. Let A be a finite dimensional
k-algebra, and A-mod the category of finite dimensional left A-modules. The
homological properties of A-mod are recorded in the derived category Db(A) of
bounded complexes in A-mod. We want to study this category in the following
aspects. First of all, since Db(A) is a Krull-Schmidt category, it is important
to understand what the indecomposable objects are. Secondly, if A is of finite
global dimension, then the Auslander-Reiten theory applies in Db(A); see [11,
12], and we would like to compute the almost split triangles and describe the
shapes of the Auslander-Reiten components. In certain cases, this will enable
us to determine if two given algebras are derived equivalent or not. Finally,
the complexity of Db(A) is measured by its type which is finite, discrete, tame,
or wild; see [5, 9, 10, 22]. In case A is hereditary, Db(A) is well-understood;
see [12]. Moreover, if A is a gentle algebra, then the indecomposable objects in
Db(A) and the type of Db(A) are explicitly described in [5]. The aim of this
paper is to study Db(A) in case A is elementary (that is, all simple modules are
one dimensional) with radical squared zero. Our strategy is to find a proper
covering of the ordinary quiver of A and then to study Db(A) in terms of the
derived category of the bounded complexes of finite dimensional representations
of the covering. Note that an elementary algebra with radical squared zero is
the Koszul dual of the path algebra of its ordinary quiver. In this connection,
our technique can be viewed as a combination of the covering theory [6] and the
Koszul duality [4].

1. The minimal gradable covering of a quiver

A quiver (or oriented graph) Q consists of a set Q0 of vertices and a set
Q1 of arrows between vertices, and the type of Q is its underlying graph. If
α : a → b is an arrow in Q, we say that α starts at a and ends in b and write
a = s(α), b = e(α). For a vertex a in Q, denote by a+ the set of arrows starting
at a and by a− the set of arrows ending in a. One says that Q is locally finite
if a+ and a− are both finite for all a ∈ Q0. A path p of positive length r in
Q is a formal product p = α1 · · ·αr with αi ∈ Q1 such that s(αi) = e(αi−1),
for all 0 < i ≤ r. Such a path p is called an oriented cycle if s(α1) = e(αr).
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To each vertex a, one associates a trivial path εa with s(εa) = e(εa) which is of
length 0 by convention. Furthermore, for each α ∈ Q1, we introduce a formal
inverse α−1 with s(α−1) = e(α) and e(α−1) = s(α). A walk w in Q is a formal
product w = c1c2 · · · cr with r > 0, where ci is a trivial path, an arrow or the
inverse of an arrow such that s(ci) = e(ci−1) for all 1 ≤ i < r. In this case, we
write s(w) = s(c1) and e(w) = e(cr), and we say that w is a walk from s(w)
to e(w). If w = c1 · · · cr and w′ = c′1 · · · c′s are walks such that e(w) = s(w′),
then ww′ = c1 · · · crc′1 · · · c′s is a walk, called the composite of w and w′. A walk
w in Q is called closed if s(w) = e(w); reduced if w is either a trivial path, or
w = c1 · · · cr with ci ∈ Q1 or c−1

i ∈ Q1 such that ci+1 6= c−1
i for all 1 ≤ i < r;

and a cycle if w is non-trivial, reduced and closed. The degree ∂(w) of a walk
w is defined as follows. We first define ∂(w) = 0, 1, or −1 in case w is a trivial
path, an arrow, or the inverse of an arrow respectively, and then extend this
definition to all walks in Q by ∂(uv) = ∂(u)+∂(v) whenever u, v are walks with
e(u) = s(v). In particular, a path is a walk whose degree is equal to its length.
The set of walks in Q will be denoted by W (Q). One says that Q is connected
if, for any x, y ∈ Q0, there exists some w ∈W (Q) with s(w) = x and e(w) = y.

For vertices x, y in Q, we denote by Q(x, y) the set of paths in Q from x to
y, by Q≤ 1(x, y) the set of paths from x to y of length less than or equal to 1,
and by Q1(x, y) the set of arrows from x to y. A quiver ∆ is a subquiver of Q
if ∆i ⊆ Qi for i = 0, 1. A subquiver ∆ of Q is full if ∆1(x, y) = Q1(x, y) for
all x, y ∈ ∆0; and convex if a path in Q lies entirely in ∆ whenever its starting
point and end-point lie in ∆.

A quiver-morphism φ : Q′ → Q consists of two maps φ0 : Q′0 → Q0 and
φ1 : Q′1 → Q1 such that φ1(Q′1(a, b)) ⊆ Q1(φ0(a), φ0(b)) for all a, b ∈ Q′0. In
this case, φ induces naturally a map from W (Q′) to W (Q), denoted again by
φ, such that ∂(φ(w)) = ∂(w) for all w ∈W (Q′).

Furthermore, a quiver-morphism π = (π0, π1) : Q̃→ Q is called a covering if
π0 is surjective, and for each vertex a in Q̃, the map π1 induces two bijections
a+ → (π0(a))+ and a− → (π0(a))−. In this case, an automorphism σ of Q̃ is
called a π-automorphism if σ makes the diagram

Q̃
σ //

π

��

Q̃

π

��
Q Q

commutative. We denote by Autπ(Q̃) the group of π-automorphisms of Q̃.

1.1. Definition. A quiver Q is called gradable if every closed walk in Q is
of degree zero.
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Remark. A quiver without cycles is evidently gradable. On the other hand,
a gradable quiver contains no oriented cycle.

Let Q be a gradable quiver. Given x, y ∈ Q0, all possible walks in Q from x
to y have the same degree which we denote by d(x, y). Defining x ∼ y provided
that d(x, y) = 0 yields an equivalence relation ∼ on Q0. The equivalence classes
in Q0/∼ are called the grading classes of Q0. Indeed, we may grade Q0 in the
following way. Fix arbitrarily a ∈ Q0. For each n ∈ ZZ, let Qn(a) denote the set
of vertices x such that d(a, x) = n. Clearly, the classes in Q0/∼ are precisely
the non-empty Qn(a) with n ∈ ZZ.

1.2. Lemma. Let Q be a connected gradable quiver with a ∈ Q0.
(1) The set Q0 is the disjoint union of the Qn(a) with n ∈ ZZ.
(2) If x ∈ Qm(a), then y ∈ Qn(a) if and only if d(x, y) = n−m.
(3) If Qm(a) 6= ∅ and Qn(a) 6= ∅, then Qi(a) 6= ∅ for all i between m and n.
(4) If b ∈ Q0 with d(a, b) = s, then Qn(b) = Qn+s(a) for all n ∈ ZZ.
Proof. Since Q is connected, Q0 is the union of the Qn(a), n ∈ ZZ, and since

Q is gradable, the Qn(a) are pairwise disjoint. Thus (1) follows. Moreover, it is
easy to see that d(x, z) = d(x, y)+d(y, z) for all x, y, z ∈ Q0, from which (2) and
(4) follow trivially. For proving (3), we assume that m < n and Qm(a) 6= ∅ and
Qn(a) 6= ∅. We shall proceed by induction on r = n−m. If r = 0, then there is
nothing to prove. Suppose that r > 0 and that (3) holds for r−1. Let x ∈ Qm(a)
and y ∈ Qn(a). Then there exists a walk w = c1 · · · ct of degree r from x to y,
where ci or c−1

i is an arrow in Q. Let s be the minimal integer between 1 and t
such that ∂(c1 · · · cs) > 0. Then ∂(c1 · · · cs) = 1. Thus d(x, s(cs)) = 0 and cs is
an arrow. Therefore, e(cs) ∈ Qm+1(a). By the induction hypothesis, Qi(a) 6= ∅,
for any m+ 1 ≤ i ≤ n. The proof of the lemma is completed.

The universal covering of a quiver is clearly gradable since it has no cycle.
Next, we shall find a minimal such covering.

1.3. Theorem. Let Q be a connected quiver. Then there exists a connected
gradable quiver Q̃ and a quiver-covering π : Q̃ → Q which acts injectively on
each grading class of Q̃.

Proof. Fix arbitrarily a vertex x in Q. Let W (Q, x) be the set of walks
w in Q with s(w) = x. For u, v ∈ W (Q, x), we define u ∼ v provided that
e(u) = e(v) and ∂(u) = ∂(v). This is clearly an equivalence relation on W (Q, x).
For u ∈ W (Q, x), let [u] = {w ∈ W (Q, x) | w ∼ u}. Now we define a quiver
Q̃ = (Q̃0, Q̃1), where Q̃0 is the set of the classes [u] with u ∈ W (Q, x). For
µ, ν ∈ Q̃0, if α is an arrow in Q such that u ∈ µ and v ∈ ν with v = uα, then we
draw an unique arrow αµν : µ → ν, called the arrow from µ to ν induced from
α. We define Q̃1 to be the set of arrows induced from the arrows in Q.

For µ ∈ Q̃0, let π0(µ) = e(u) with u ∈ µ. Since Q is connected, the map
π0 : Q̃0 → Q0 is surjective. If αµν : µ → ν is an arrow in Q̃ induced from
α ∈ Q1, we then define π1(αµν) = α. Clearly π = (π0, π1) is a quiver-morphism
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from Q̃ to Q. Let µ be a vertex in Q̃ and write a = π0(µ). For α ∈ a+,
choose u ∈ µ and let ν = [uα]. Then αµν is an arrow from µ to ν such that
π1(αµν) = α. Moreover, if αµν′ : µ→ ν′ is another arrow induced from α, then
there exists u′ ∈ µ such that u′α ∈ ν′. Since u ∼ u′, we have uα ∼ u′α. Hence
ν′ = ν. This shows that π1 induces a bijection from µ+ onto a+. Similarly, we
see that π1 induces a bijection from µ− onto a−. Therefore, π : Q̃ → Q is a
quiver-covering.

Now let µ, ν ∈ Q̃0. Choose u ∈ µ and v ∈ ν, and set a = π0(µ) and
b = π0(ν). Since Q is connected, there exists a walk w = c1 · · · cs in Q from a to
b, where ci is an arrow or the inverse of an arrow in Q. By the definition of Q̃1,
we see that w induces a walk ρ from µ to ν such that π1(ρ) = w. This shows
that Q̃ is connected. Moreover, if ρ is closed, that is u ∼ v, then ∂(u) = ∂(v).
Hence ∂(w) = 0, and consequently ∂(ρ) = 0. This shows that Q̃ is gradable.
Finally, assume that ∂(ρ) = 0 and a = b. Then e(u) = e(v) and ∂(u) = ∂(v).
Hence u ∼ v, that is, µ = ν. This proves that the restriction of π0 to each
grading class of Q̃0 is injective. The proof of the theorem is completed.

The covering as stated Theorem 1.3 has certain universal property.

1.4. Theorem. Let Q be a connected quiver with π : Q̃ → Q a quiver-
covering as stated in Theorem 1.3. Let φ : Q̄ → Q be a quiver-covering with
Q̄ connected and gradable. If x∗ ∈ Q̄0 and y∗ ∈ Q̃0 such that φ(x∗) = π(y∗),
then there exists an unique quiver-covering ψ : Q̄ → Q̃ which sends x∗ to y∗

and makes the following diagram commutative :

Q̄
ψ //

φ

��

Q̃

π

��
Q Q

Proof. Assume that x∗ ∈ Q̄0 and y∗ ∈ Q̃0 such that φ(x∗) = π(y∗). Let x be
a vertex in Q̄. Choose a walk u in Q̄ from x∗ to x. Then there exists an unique
walk v in Q̃ with s(v) = y∗ such that π(v) = φ(u). We define ψ0(x) = e(v).
Note that ∂(v) = ∂(π(v)) = ∂(φ(u)) = ∂(u). Let u1 be another walk in Q̄ from
x∗ to x and v1 a walk in Q̃ with s(v1) = y∗ such that π(v1) = φ(u1). Then
we also have ∂(v1) = ∂(u1) and, since Q̄ is gradable, we get ∂(u1) = ∂(u).
Hence ∂(v−1v1) = 0. That is, e(v) and e(v1) lie in the same grading class of Q̃0.
Moreover, π(e(v)) = e(π(v)) = φ(x), and π(e(v1)) = φ(x). Since the action of
π on each grading class is injective, we get e(u1) = e(u). This shows that ψ0

is well-defined, and ψ0(x∗) = y∗ by definition. If α : x → y is an arrow in Q̄,
then there exists an unique β ∈ Q̃1 with s(α) = e(v) and π(β) = φ(α). Since
π(vβ) = φ(uα), one gets ψ0(y) = e(α). Now we define ψ1(α) = β. This yields a
quiver-morphism ψ = (ψ0, ψ1) from Q̄ to Q̃ making the diagram stated in the
theorem commutative. Since φ and π are both coverings, we deduce easily that
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ψ is a covering. Finally, the uniqueness of ψ follows from a routine verification.
The proof of the theorem is completed.

Remark. It follows from Theorem 1.4 that a covering π : Q̃→ Q as stated
in Theorem 1.3 is unique up to isomorphism. Thus we may call the covering
morphism π, as well as the quiver Q̃, the minimal gradable covering of Q. It is
clear that Q is gradable if and only if π is an isomorphism.

1.5. Lemma. Let π : Q̃ → Q be the minimal gradable covering of a finite
connected quiver Q, and let a be a vertex in Q̃.

(1) The set Q̃n(a) is finite, for all n.
(2) If Q is not gradable, then Q̃n(a) is not empty for any n.
(3) If x ∈ Q̃n(a) and y ∈ Q̃n+1(a) for some n, then π induces a bijection

from Q̃1(x, y) onto Q1(π(x), π(y)).
(4) If σ ∈ Autπ(Q̃) such that σ(Q̃s) ∩ Q̃t 6= ∅ for some integers s, t, then

σ(Q̃n+s) = Q̃n+t for all n.
Proof. For each n ∈ ZZ, by Theorem 1.3, π induces an injection Q̃n(a)→ Q.

In particular, Q̃n(a) is finite. Assume now that there exists a closed walk w in
Q of degree s 6= 0. Let b = s(w) and x ∈ Q̃t(a) such that π(x) = b. For each
m ∈ ZZ, there exists a walk um in Q̃ with s(um) = x and π(um) = wm. Then
∂(um) = ∂(wm) = ms. By Lemma 1.2(2), e(um) ∈ Q̃t+ms. Now it follows from
Lemma 1.2(3) that Q̃n(a) 6= ∅, for any n ∈ ZZ.

Next, let (x, y) ∈ Q̃n(a)× Q̃n+1(a) for some n. Being a covering, π induces
an injection π1 : Q̃1(x, y) → Q1(π(x), π(y)). If α ∈ Q1(π(x), π(y)), then there
exists β : x → z in Q̃1 such that π(β) = α. Note that z ∈ Q̃n+1(a) and
π(z) = π(y). Thus z = y, and hence β ∈ Q̃1(x, y). That shows that the map
π1 : Q̃1(x, y)→ Q1(π(x), π(y)) is surjective.

Finally, let σ ∈ Autπ(Q̃) such that σ(x) = y with x ∈ Q̃s and y ∈ Q̃t. Let ũ
be a walk in Q̃ from x to y. By Lemma 1.2(2), ũ is of degree t − s. Let n be
any integer and z ∈ Q̃n(a). Choose a walk ṽ in Q̃ from z to x. Then σ(ṽ) is a
walk from σ(z) to y. Thus ṽũσ(ṽ)−1 is a walk of degree t − s from z to σ(z).
By Lemma 1.2(2), σ(z) ∈ Q̃n+t−s(a). This implies that σ(Q̃n(a)) ⊆ Q̃n+t−s(a),
for all integers n. Since σ is an automorphism, σ(Q̃n(a)) = Q̃n+t−s(a), for all
integers n. Replacing n by n + s, we get σ(Q̃n+s(a)) = Q̃n+t(a). The proof of
the lemma is completed.

It is easy to see that a non-gradable quiver contains cycles of positive degree.
This observation leads to the following definition.

1.6. Definition. Let Q be a finite connected quiver. The grading period
of Q is a non-negative integer r such that r = 0 in case Q is gradable, and
otherwise, r is the minimal degree among the positive degrees of closed walks
in Q.
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1.7. Lemma. Let π : Q̃ → Q be the minimal gradable covering of a finite
connected quiver Q of grading period r, and let a ∈ Q̃0. The following conditions
are equivalent for integers s, t :

(1) s ≡ t (mod r).
(2) π(Q̃n+s(a)) = π(Q̃n+t(a)), for all integers n.
(3) π(Q̃n+s(a)) ∩ π(Q̃n+t(a)) 6= ∅, for some integer n.
(4) σ(Q̃n+s(a)) = Q̃n+t(a) for some σ ∈ Autπ(Q̃) and some integer n.
Proof. Let (x, y) ∈ Q̃n+t(a) × Q̃n+s(a) for some n such that π(x) = π(y).

By Theorem 1.4, there exists a π-automorphism σ of Q̃ such that σ(x) = y.
By Lemma 1.5(4), σ(Q̃n+s(a)) = Q̃n+t(a). This proves that (3) implies (4).
Moreover, if there exists some σ ∈ Autπ(Q̃) such that σ(Q̃m+s(a)) = Q̃m+t(a)
for some m. By Lemma 1.5(4), σ(Q̃n+s(a)) = Q̃n+t(a) for all n. Since σ is a
π-automorphism, π(Q̃n+s(a)) = π(Q̃n+t(a)) for all n. Since (2) implies trivially
(3), we see that (2), (3), and (4) are equivalent.

Let w be a closed walk in Q of degree r. Choose a vertex b in Q̃, say
b ∈ Q̃m(a) for some m, such that π(b) = s(w). Let w̃ be a walk in Q̃ with
s(w̃) = b such that π(w̃) = w. Setting c = e(w̃), we have π(c) = π(b). Moreover,
c ∈ Q̃m+r since ∂(w̃) = ∂(w). That is π(Q̃m) ∩ π(Q̃m+r) 6= ∅. By what
we have shown, π(Q̃n(a)) = π(Q̃n+r(a)), for all integers n. If s = t + rq

for some integer q, then π(Q̃s(a)) = π(Q̃t+rq(a)) = Q̃t. That is, (1) implies
(3). Suppose that s 6≡ t (mod r). If r = 0, then Q is gradable. Hence π is
an isomorphism. In particular, (2) does not hold. Assume that r > 0 but
(2) holds. In particular, π(Q̃0(a)) = π(Q̃s−t(a)). Write s − t = rq + r0 with
0 < r0 < r. Then π(Q̃0(a)) = π(Q̃rq+r0(a)) = π(Q̃r0(a)). Let π(a) = π(x0)
for some x0 ∈ π(Q̃r0(a)). Choose a walk w0 from a to x0 in Q̃. Then w0 is of
degree r0, and consequently, π(w0) is a closed walk in Q of positive degree r0,
a contradiction. This proves that (2) implies (1). The proof of the lemma is
completed.

In the sequel, we shall consider the following infinite graphs

IA∞ : ◦ ◦ . . . ◦ . . .

IA∞∞ : . . . ◦ . . . ◦ ◦ . . . ◦ . . .

Moreover, we recall that a finite quiver is wild if it is of neither Dynkin nor
Euclidean type.

1.8. Proposition. Let π : Q̃ → Q be the minimal gradable covering of a
finite connected quiver Q.

(1) If Q is non-gradable of type ĨAn with n ≥ 1, then Q̃ is of type IA∞∞.
(2) If Q is wild, then Q̃ contains a finite wild subquiver.
Proof. First we define the weight of a vertex in a quiver to be the sum of

the number of arrows starting at or ending in the vertex. Given any x ∈ Q̃0, we
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see that x and π(x) have the same weight since π is a covering. Let Q be non-
gradable of type ĨAn. Then every vertex in Q has weight two, and so does every
vertex in Q̃. Being infinite by Lemma 1.5(2), Q̃ is of type IA∞∞. This proves
(1). Suppose now that Q is wild. Then Q̃ has a vertex a of weight greater than
two. If Q is gradable, then Q̃ ∼= Q. Otherwise, Q has positive grading period r.
We deduce from Lemma 1.7 that π(Q̃0(a)) = π(Q̃nr(a)), for all n ∈ ZZ. Thus
π−(a) contains infinitely many vertices, each of them has weight greater than
two. Therefore, Q̃ has a finite wild subquiver. The proof of the proposition is
completed.

2. Representations of Quivers

Throughout this section, Q stands for a connected locally finite quiver which
is interval-finite, that is, Q(a, b) is finite for all a, b ∈ Q0. Recall that a k-
representation M of Q consists of a family of k-spaces M(x) with x ∈ Q0, and a
family of k-linear mapsM(α) : M(x)→M(y) with α : x→ y ∈ Q1. IfM is non-
zero, the support Supp(M) of M is the set of vertices x in Q for which M(x) 6= 0.
We say that M is locally finite dimensional if dimkM(x) is finite for all x ∈ Q0,
finite dimensional if

∑
x∈Q0

dimkM(x) is finite. A morphism f : M → N of
k-representations of Q consists of a family of k-linear maps f(x) : M(x)→ N(x)
with x ∈ Q0 such that M(α)f(y) = f(x)N(α) for all arrows α : x→ y in Q. The
k-representations of Q form a hereditary abelian k-category, denoted as Rep(Q).
The full subcategory of Rep(Q) of locally finite dimensional representations is
denoted by rep(Q), and that of finite dimensional ones is denoted by repb(Q).
On the other hand, the path algebra kQ (not necessarily with an identity) of Q
over k has as k-basis the set of paths in Q and multiplication induced from the
concatenation of the paths. We see that kQ has as a complete set of pairwise
orthogonal primitive idempotents the set of trivial paths inQ and that kQ has an
identity if and only ifQ is finite. It is well known that Rep(Q) is equivalent to the
category of right kQ-modules. In this connection, we shall apply some module
theoretic notions to the k-representations of Q without further explanations.

To each vertex a in Q, we associate an indecomposable k-representation Pa
of Q which is defined as follows: for a vertex x, the k-space Pa(x) has as a basis
the set of paths from a to x; and for an arrow α : x → y, the k-linear map
Pa(α) : Pa(x) → Pa(y) sends every path p to pα. Since Pa = εa(kQ) where
εa is the trivial path at a, we see that Pa is a projective object in the abelian
category Rep(Q). Dually, we define an indecomposable k-representation Ia of Q
as follows: for x ∈ Q0, the k-space Ia(x) has as a basis the set of paths in Q
from x to a; and for α : x → y ∈ Q1, the k-linear map Ia(α) : Ia(x) → Ia(y)
sends every path of the form αq to q and vanishes on the paths which do not
factor through α. In order to show that the Ia with a ∈ Q0 are injective objects
in Rep(Q), we recall that the tensor product M ⊗k V of an object M in Rep(Q)
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and a k-vector space V is defined so that (M ⊗k V )(a) = M(a)⊗k V for a ∈ Q0

and (M ⊗k V )(α) = M(α)⊗k 1IV for α ∈ Q1.

2.1. Lemma. Let M be a k-representation of Q, and V be a k-vector space.
For each vertex a in Q, there exists a k-linear isomorphism

φM : HomkQ(M, Ia ⊗k V )→ Homk(M(a), V ),

which is natural in M .
Proof. Let a ∈ Q0. For x ∈ Q0, we have (Ia⊗k V )(x) = ⊕ρ∈Q(x,a) (kρ⊗k V ).

For ρ ∈ Q(x, a), let pρ : Ia(x) → kρ be the canonical projection, and let
qρ : kρ → Ia(a) be the k-linear isomorphism sending ρ to εa. We see then
from the definition that (V ⊗ Ia)(ρ) = (pρ ⊗ 1IV )(qρ ⊗ 1IV ). Given a morphism
f : M → Ia ⊗k V in Rep(Q), we define φM (f) to be the following composite:

M(a)
f(a)−→ Ia(a)⊗k V eV−→ V,

where eV is such that eV (λεa⊗ v) = λv, for λ ∈ k and v ∈ V . It is evident that
φM is k-linear. Assume that φM (f) = 0. Since eV is an isomorphism, f(a) = 0.
Let x be an arbitrary vertex in Q. If Q(x, a) = ∅, then f(x) = 0. Otherwise,
for any ρ ∈ Q(x, a), we have

0 = M(ρ)f(a) = f(x)(Ia ⊗ V )(ρ) = f(x)(pρ ⊗ 1IV )(qρ ⊗ 1IV ).

Since qρ is an isomorphism, f(x)(pρ ⊗ 1IV ) = 0. This implies that f(x) = 0.
Thus f = 0. That is, φM is a monomorphism.

For proving that φM is an epimorphism, let g : M(a) → V be a k-linear
map. Define f(a) = ge−1

V : M(a) → Ia(a) ⊗k V . For x ∈ Q0, if Q(x, a) = ∅,
then define f(x) = 0. Otherwise, Q(x, a) is finite, since Q is interval-finite by
hypothesis. In particular, (Ia⊗V )(x) =

∏
ρ∈Q(x,a)(kρ⊗V ). Thus there exists a

k-linear map h : M(x)→ V ⊗Ia(x) such that h(pρ⊗1IV ) = M(ρ)g(a)(q−1
ρ ⊗1IV ).

Then
h(Ia ⊗ V )(ρ) = h(pρ ⊗ 1IV )(qρ ⊗ 1IV ) = M(ρ)g(a),

for every ρ ∈ Q(x, a). Define now f(x) = h. It is now easy to see that the
morphisms f(x) with x ∈ Q0 yield a morphism f : M → Ia ⊗k V in Rep(Q)
such that φM (f) = g. Finally, it is easy to verify that φM is natural in M . The
proof of the lemma is completed.

Remark. For a ∈ Q0, it follows from the above result that Ia ⊗k V is an
injective object in the abelian category Rep(Q) for any k-vector space V . In
particular, Ia itself is injective.

For the rest of this section, we assume that Q is gradable such that the
grading classes are all finite. Fix a vertex a0 in Q, and write Qn = Qn(a0)
for all n ∈ ZZ. By Lemma 1.2, Q0 is the disjoint of the Qn with n ∈ ZZ, and
each arrow in Q is of the form x→ y with (x, y) ∈ Qn ×Qn+1 for some n. An
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object M in Rep(Q) is called bounded-above if there exists some integer r such
that M(x) = 0 for x ∈ Qn with n ≥ r. By Lemma 1.2(3), this notion does
not depend on the choice of the vertex a0. The full category of bounded-above
representations of Rep(Q) and that of rep(Q) will be denoted by Rep−(Q) and
rep−(Q), respectively.

Let M be an object in Rep(Q) and n ∈ ZZ. We define an object M≤n in
Rep−(Q) as follows: for x ∈ Q0, we have M≤n(x) = M(x) if x ∈ Qm with
m ≤ n and M≤n(x) = 0 otherwise; for α ∈ Q1, we have M≤n(α) = M(α) if
s(α) ∈ Qm with m < n and M≤n(α) = 0 otherwise. In a similar manner, we
define objects M≥n and M>n in Rep(Q).

2.2. Lemma. Let M,N be objects in Rep(Q), and let be V a k-vector space
and n an integer.

(1) M≤n ∼= M/M>n.
(2) (M ⊕N)≤n = M≤n ⊕N≤n and (M ⊕N)≥n = M≥n ⊕N≥n.
(3) (M ⊗k V )≤n ∼= M≤n ⊗k V and (M ⊗k V )≥n ∼= M≥n ⊗k V.
Proof. We need only to prove (1), since (2) and (3) are evident. We shall

construct an epimorphism p : M → M≤n in Rep(Q) as follows. For x ∈ Q0,
define p(x) : M(x) → M≤n(x) by p(x) = 1IM(x) if x ∈ Qm with m ≤ n, and
otherwise p(x) = 0. Let α : x→ y ∈ Q1 with x ∈ Qm. Consider the diagram:

M(x)
M(α) //

p(x)

��

M(y)

p(y)

��
M≤n(x)

M≤n(α)// M≤n(y).

If m < n, then M≤n(α) = M(α), p(x) = 1IM(x) and p(y) = 1IM(y). Otherwise,
M≤n(α) = 0 and p(y) = 0. Thus the above diagram is commutative in any case.
Clearly, the kernel of p is M>n. The proof of the lemma is completed.

2.3. Definition. Let M be an object in Rep−(Q), and let n be an integer.
We say that M is n-truncated injective if M≤n ∼= ⊕x∈Qn Ix ⊗k Vx with Vx a k-
vector space, or equivalently, M≤n is injective with soc(M≤n) = ⊕x∈QnM(x).
Moreover, M is called truncated injective if M is n-truncated injective for some
integer n.

Note that a finite dimensional k-representation of Q is truncated injective.

2.4. Lemma. Let M be object in Rep−(Q). If M is n-truncated injective
for some integer n, then M is m-truncated injective for every m ≤ n.

Proof. Assume that M is n-truncated injective and m is an integer with
m < n. Observe that M≤m = (M≤n)≤m. By Lemma 2.2(2)(3), we may assume
M≤n = Ia for some a ∈ Qn. Assume that S = {b1, ..., br} is the set of vertices
in Qm which are predecessors of a in Q. For each 1 ≤ i ≤ r, let Vi be the
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k-vector space having as a basis the set of paths from bi to a. We now consider
the morphism φi : Ibi ⊗k Vi → (Ia)≤m given by φi(c) = 0 in case Ibi(c) = 0; and
otherwise, φi(c)(γ⊗ρ) = γρ, for γ ∈ Ibi(c) and ρ ∈ Vi. Then we have a morphism
φ = (φ1, ..., φr) : ⊕ri=1Ibi ⊗k Vi → (Ia)≤m. Clearly φ is a monomorphism, and
it is an epimorphism since every path from a vertex c such that (Ibi)

≤m(c) 6= 0
to the vertex a is of the form γρ with ρ a path from some bi to a. The proof of
the proposition is completed.

It follows from Lemmas 1.2(4) and 2.4 that the notion of a truncated injective
representation does not depend on the choice of the vertex a0 for grading Q0.

2.5. Proposition. Let M,N be objects in Rep−(Q) which are n-truncated
injective for some integer n.

(1) M ∼= N if and only if M≥n ∼= N≥n.
(2) M = 0 if and only if M≥n = 0.
(3) M is indecomposable if and only if M≥n is indecomposable.
Proof. Let φ : M≥n → N≥n be an isomorphism in Rep−(Q). In particular,

φn = ⊕x∈Qnφ(x) : ⊕x∈QnM≥n(x) → ⊕x∈QnN≥n(x) is an isomorphism from
soc(M≤n) to soc(N≤n). Since M≤n and N≤n are both injective, φn extends
to an isomorphism ψ : M≤n → N≤n in Rep−(Q). For each x ∈ Q0, we define
a k-linear map ζ(x) : M(x) → N(x) by ζ(x) = φ(x) if x ∈ Qm with m ≥
n and ζ(x) = ψ(x) otherwise. Since the arrows x → y in Q are such that
(x, y) ∈ Qt × Qt+1 for some t, it is easy to verify that ζ = {ζ(x) | x ∈ Q0}
is an isomorphism in Rep−(Q) from M onto N . This establishes (1), and
consequently (2) holds.

Assume now that M≥n is indecomposable. Let M = M1 ⊕ M2. Then
M1,M2 are n-truncated injective and M≥n = M≥n1 ⊕M≥n2 . Thus M≥n1 = 0 or
M≥n2 = 0. By (2), we get M1 = 0 or M2 = 0. That is, M is indecomposable.
Finally suppose that M≥n is not indecomposable. If M≥n = 0, then by (2),
M = 0. Otherwise, M≥n = U ⊕ V with U, V nonzero objects in Repb(Q).
Then soc(M≤n) = ⊕x∈QnM(x) = ⊕x∈Qn(U(x)⊕V (x)). Since M is n-truncated
injective, we may writeM≤n = I⊕J , where I, J are injective objects in Rep−(Q)
such that soc I = ⊕x∈QnU(x) and soc J = ⊕x∈QnV (x). We construct a nonzero
object Ũ in Rep−(Q) by defining, Ũ(x) = I(x) if x ∈ Qm with m ≤ n, and
otherwise Ũ(x) = U(x); and Ũ(α) = I(α) if s(α) ∈ Qm with m < n, and
otherwise Ũ(α) = U(α). Then Ũ≤n = I, Ũ≥n = U. Similarly, we obtain a
nonzero object Ṽ in Rep−(Q) such that Ṽ ≤n = J and Ṽ ≥n = V. Now Ũ ⊕ Ṽ is
an object in Rep−(Q) such that M≥n ∼= (Ũ ⊕ Ṽ )≥n. By (1), M ∼= Ũ ⊕ Ṽ . This
completes the proof of the proposition.

3. The bounded derived category

Recall that a k-category is a category in which the morphism sets are k-
vector spaces and the composition of morphisms are k-bilinear. Let A be an
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additive k-category which is a full subcategory of an abelian k-category B. A
complex (X•, d•X), or simply X•, in A is a double infinite chain

· · · → Xn dnX−→ Xn+1 dn+1
X−→ Xn+2 → · · · , n ∈ ZZ

of morphisms between objects in A such that dnXd
n+1
X = 0 for every integer n,

where Xn is called the component of X• of degree n, and dnX , the differential
of degree n. Such a complex is called bounded-above if Xn = 0 for all but
finitely many positive integers n; bounded if Xn = 0 for all but finitely many
integers n; and a stalk complex concentrated in degree s if Xn = 0 for any
n 6= s. The n-th cohomology of X• is the object Hn(X•) = Ker(dnX)/Im(dn−1

X )
in B. One says that X• has bounded cohomology if Hn(X•) = 0 for all but
finitely many integers n. A morphism of complexes φ• : X• → Y • consists
of a family of morphisms φn : Xn → Y n in A such that dnXφ

n+1 = φndnY
for all n. Such a morphism is a called a quasi-isomorphism if φn induces an
isomorphism Hn(X•) → Hn(Y •) for each n, and null-homotopic if there exist
morphisms hn : Xn → Y n−1 in A such that φn = dnXh

n+1 + hndnY for all
n ∈ ZZ. The complexes in A form an additive k-category denoted as C(A).
For X• ∈ C(A) and s ∈ ZZ, the shift of X• by s, written as X•[s], is the
complex whose component and differential of degree n are Xn+s and (−1)sdn+s

X ,
respectively, for any n ∈ ZZ. The homotopy category K(A) of C(A) is its quotient
category modulo the ideal of null-homotopic morphisms. This is a triangulated
k-category whose translation functor is the shift by 1 and whose exact triangles
are induced from the mapping cones. Now the derived category D(A) of A
is the localization of K(A) with respect to the quasi-isomorphisms, which is
also a triangulated k-category with exact triangles induced from those of K(A).
Moreover, the full subcategories of bounded-above complexes of C(A), K(A),
and D(A) will be denoted by C−(A), K−(A), and D−(A), respectively; and
those of bounded-above complexes with bounded cohomology will be denoted by
C−,b(A), K−,b(A), and D−,b(A), respectively; and those of bounded complexes
will be denoted by Cb(A), Kb(A), and Db(A), respectively. Note that K−,b(A),
D−,b(A), Kb(A), and Db(A) are all triangulated k-categories. Finally, if one
identifies an object in A as a stalk complexe concentrated in degree 0, then A
becomes a full subcategory of each of Cb(A), Kb(A) and Db(A). We refer to
[23] for more details on these notions.

Now let A be a finite-dimensional k-algebra. The k-category of all left A-
modules and that of finitely generated ones will be denoted by A-Mod and
A-mod, respectively. Moreover, the full subcategories of projective modules of
these categories are denoted by A-Proj and A-proj, respectively. Our main
interest lies in the derived category Db(A) of Cb(A-mod), called the bounded
derived category of A. As usual, we replace Db(A) by a more accessible cate-
gory. Indeed, sending a bounded complex in A-mod to its projective resolution
yields an equivalence of triangulated categories from Db(A) to K−,b(A-proj).
The quasi-inverse of this equivalence is written as E : K−,b(A-proj) → Db(A).
Furthermore, we shall pass from K−,b(A-proj) to another even better behaved
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category. For this purpose, we need some more terminology. A morphism in
A-Mod is called radical if its image is contained in the radical of its co-domain;
and a complex in A-Mod is called radical if the differentials are all radical mor-
phisms. For a full subcategory A of A-Mod, we denote by RC−,b(A) the full
subcategory of C−,b(A) of radical complexes, and consider the canonical pro-
jection functor G : RC−,b(A)→ K−,b(A), which acts identically on the objects
and sends a morphism to its homotopy class. For collecting the properties of
this functor, we recall that a morphism f : X → Y in an additive category is
left almost split if f is not a section and every morphism g : X → Z which is
not a section factors through f . Dually, one has the notion of a right almost
morphism.

3.1. Proposition. Let A be a finite dimensional k-algebra, and consider
the projection functor G : RC−,b(A-Proj)→ K−,b(A-Proj).

(1) A morphism φ• in RC−,b(A-Proj) is a section (respectively, retraction)
if and only if G(φ•) is a section (respectively, retraction) in K−,b(A-Proj).

(2) If φ• is a left (respectively, right) almost split morphism in RC−,b(A-proj),
then G(φ•) is let (respectively, right) almost split in K−,b(A-proj).

(3) G is dense and preserves indecomposability and isomorphism classes.
Proof. Let φ• : X• → Y • be a morphism in RC−,b(A-Proj). If φ• is a

section, then G(φ•) is clearly a section. Assume now that G(φ•) is a section. Let
ψ• : Y • → X• be a morphism in RCb(A-Proj) such that G(φ•)G(ψ•) = 1IG(X•),
that is, 1IX• − φ•ψ• is null-homotopic. In particular, 1IXn − φnζn are all radical
morphisms since X•, Y • are radical complexes. Thus (1IX• −φ•ψ•)s = 0, where
s is the nilpotency of radA. As a consequence, φ•ψ• is an automorphism of
X•, and hence φ• is a section. Assume now that φ• is left almost split. Then
G(φ•) is not a section. Let ψ• : X• → Z• be a morphism in RCb(A-Proj) such
that G(ψ•) is not a section. Then ψ• : X• → Z• is not a section. Thus ψ•

factors through φ•, and hence G(ψ•) factors through G(φ•). That is, G(φ•) is
left almost split. This proves (1) and (2).

Since G is full, we deduce immediately from (1) that G preserves isomor-
phism classes. Let X• be an object in RC−,b(A-Proj) which is indecomposable
in K−,b(A-Proj). Assume that X• = Y • ⊕ Z• in RC−,b(A-Proj). Since X• is
indecomposable in K−,b(A-Proj), we may assume that 1IY • is null-homotopic.
Since Y • is radical, we get 1IsY • = 0, where s is the nilpotency of radA. Hence
1IY • = 0, that is, Y • = 0. This shows that G preserves indecomposability.
Finally let (X•, d•X) be an object in K−,b(A-Proj). We may assume that
Hn(X•) = 0 for all n ≤ 0. Suppose that X• is not radical. Since X• is
bounded-above, there exists a maximal s such that ds−1

X is not radical. We may
assume that ds−1

X is of the following form:

ds−1
X =

(
1IM 0
h gs−1

)
: Xs−1 = M ⊕Ns−1 →M ⊕Ns = Xs,

where gs−1 is radical. Since dsX is radical with ds−1
X dsX = 0, we have dsX =

(
0
gs

)
,

where gs is radical such that gs−1gs = 0. Writing ds−2
X = (fs−2, gs−2), we get
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fs−2 + gs−2h = 0 and gs−2gs−1 = 0. Suppose that s > 0. Define Y n = Nn if
s− 1 ≤ n ≤ s and otherwise Y n = Xn. Moreover, let dnY = gn if s− 2 ≤ n ≤ s
and otherwise dnY = dnX . Then (Y •, d•Y ) is a complex in C−,b(A-proj) such that
Hn(Y •) = 0 for n ≤ 0, and dnY is radical for n ≥ s−1. Let φn =

(
0

1INn
)

if s−1 ≤
n ≤ s and φn = 1IXn otherwise; and let ψs−1 = (−h, 1INs−1), ψs = (0, 1INs), and
ψn = 1IXn for n 6= s − 1, s. Then φ• = {φn | n ∈ ZZ} and ψ• = {ψn | n ∈ ZZ}
are morphisms in C−,b(A-proj) such that ψ•φ• = 1IY • and φ•ψ• is homotopic
to 1IX• . Thus X• ∼= Y • in K−,b(A-Proj). By induction, we may assume that
Hn(X•) = 0 for n ≤ 0 and dnX is radical for n ≥ 0. Write d0

X = pj, where
p : X0 → L is an epimorphism and j : L→ X1 is an monomorphism. Let

· · · −→ Pn
dn−→ Pn+1 −→ · · · −→ P−1 d−1

−→ P 0 d0

−→ L→ 0

be a minimal projective resolution of L in A-Mod. Define Zn = Pn for n ≤ 0,
and Zn = Xn for n > 0. Moreover, let dnZ = dn for n < 0, dnZ = dnX for
n > 0, and d0

Z = d0j. Then (Z•, d•Z) ∈ RC−,b(A-Proj) such that X• ∼= Z• in
K−,b(A-Proj). The proof of the proposition is completed.

For the rest of this section, assume that A is connected and elementary with
rad2(A) = 0. Then A ∼= kQ/I, where Q is the ordinary quiver of A which is
connected and finite, and I is the ideal in kQ generated by the paths of length
two. For simplifying the notation, we shall assume throughout that A = kQ/I.
For a vertex a in Q, we write P [a] = Aea with ea = εa + I, where εa is the
trivial path in Q at a, and S[a] = P [a]/radP [a]. For an arrow α : a → b in Q,
let P [α] : P [a] → P [b] denote the right multiplication by ᾱ = α + I, and for a
trivial path εa, let P [εa] = 1IP [a]. Fix a minimal gradable covering π : Q̃ → Q

of Q. Since Q is finite, Q̃ is locally finite. Choose a vertex x̃ in Q̃ and write
Q̃n = Q̃n(x̃) for all n ∈ ZZ. It follows from Lemma 1.5 that the Q̃n are all finite
and the arrows in Q̃ are of the form x → y with x ∈ Q̃n and y ∈ Q̃n+1 for
some n. As a consequence, Q̃ is interval-finite. We shall write uπ = π(u) for
u ∈ Q̃0 ∪ Q̃1. All tensor products in this section are over the ground field k.

3.2. Lemma. Let U, V be k-vector spaces. If a, b are vertices in Q, then
every A-linear map φ : P [a]⊗ U → P [b]⊗ V can be uniquely written as

φ =
∑

ρ∈Q≤1(a,b)
P [ρ]⊗ fρ, fρ ∈ Homk(U, V ).

Moreover, φ is radical if and only if φ =
∑
α∈Q1(a,b) P [α]⊗fα, fα ∈ Homk(U, V ).

Proof. Every A-linear map φ : P [a]⊗ U → P [b]⊗ V is uniquely determined
by its restriction to ea⊗U , which yields a k-linear map f : ea⊗U → (eaAeb)⊗V .
Conversely every k-linear map f : ea ⊗ U → (eaAeb)⊗ V can be extended in a
unique way to an A-linear map φ : P [a]⊗U → P [b]⊗V . Since rad2(A) = 0, we
have (eaAeb)⊗ V = ⊕ρ∈Q≤1(a,b)(kρ)⊗ V. Observe that φ = P [ρ]⊗ fρ for some
fρ ∈ Homk(U, V ) if and only if φ(ea ⊗ U) ⊆ (kρ)⊗ V . Now every k-linear map
f : ea⊗U → (eaAeb)⊗V can be uniquely written as a sum f =

∑
ρ∈Q≤1(a,b) fρ
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with fρ(ea⊗U) ⊆ (kρ)⊗V . Thus every A-linear map φ : P [a]⊗U → P [b]⊗V can
be uniquely written as a sum φ =

∑
ρ∈Q≤1(a,b) P [ρ]⊗ fρ with fρ ∈ Homk(U, V ).

Finally, let φ =
∑
ρ∈Q≤1(a,b) P [ρ]⊗ fρ with fρ ∈ Homk(U, V ) be an A-linear

map. Note that rad(P [b] ⊗ V ) = (radP [b]) ⊗ V . If φ =
∑
α∈Q1(a,b) P [α] ⊗ fα,

then φ is clearly radical. Otherwise, a = b and fεa(u) 6= 0 for some u ∈ U. Now
φ(ea⊗ u) = ea⊗ fεa(u) 6∈ rad(P [b]⊗ V ). That is, φ is not radical. The proof of
the lemma is completed.

Let M be a k-representation of Q̃. We shall construct a radical complex
(F (M)•, d•F (M)) in A-Proj. For n ∈ ZZ, let F (M)n = ⊕x∈ eQn P [xπ] ⊗ M(x)
and dnF (M) : F (M)n → F (M)n+1 be the A-linear map given by the matrix
(dnF (M)(x, y))(x,y)∈ eQn× eQn+1 , where

dnF (M)(x, y) =
∑

α∈ eQ(x,y)
P [απ]⊗M(α) : P [xπ]⊗M(x)→ P [yπ]⊗M(y).

Since rad2(A) = 0, (F (M)•, d•F (M)) is indeed a radical complex. Let f : M → N

be a morphism in Rep(Q̃). For each integer n, we define

F (f)n = ⊕x∈ eQn 1IP [xπ ] ⊗ f(x) : F (M)n → F (N)n.

It is easy to verify that F (f)• = {F (f)n |n ∈ ZZ } is a morphism in RC(A-Proj)
from F (M)• to F (N)•. This yields a k-linear functor

F : Rep(Q̃)→ RC(A-Proj),

which is said to be induced from the covering π : Q̃→ Q.

We need some more notation. Let σ ∈ Autπ(Q̃). Denote by r(σ) the integer
such that σ(Q̃0) = Q̃r(σ). It follows from Lemma 1.5(4) that σ(Q̃n) = Q̃n+r(σ),
for every integer n. If M ∈ Rep(Q̃), we define the σ-translate Mσ of M by
Mσ(x) = M(σ(x)) and Mσ(α) = (−1)r(σ)M(σ(α)), for x ∈ Q̃0 and α ∈ Q̃1.

3.3. Lemma. The functor F : Rep(Q̃)→ RC(A-Proj) is faithful and exact.
Moreover, if M ∈ Rep(Q̃) and σ ∈ Autπ(Q̃), then F (Mσ)• = F (M)•[r(σ)].

Proof. The first part follows immediately from the fact that the tensor
product involved in the definition of F is over the field k. Let M ∈ Rep(Q̃) and
σ ∈ Autπ(Q̃). For each n ∈ ZZ, we have

F (Mσ)n = ⊕x∈ eQnP [xπ]⊗Mσ(x) = ⊕x∈ eQnP [σ(x)π]⊗M(σ(x)) = F (M)n+r(σ),

where the last equality holds since σ(Q̃n) = Q̃n+r(σ). Moreover, for each pair
(x, y) ∈ Q̃n × Q̃n+1,

dnF (Mσ)(x, y) =
∑
α∈ eQ1(x,y) P [απ]⊗Mσ(α)

= (−1)r(σ)
∑
α∈ eQ1(x,y) P [σ(α)π]⊗M(σ(α))

= (−1)r(σ)d
n+r(σ)
F (M) (σ(x), σ(y)),
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where the last equality follows from the equality σ(Q̃1(x, y)) = Q̃1(σ(x), σ(y)).
Therefore, dnF (Mσ) = (−1)r(σ)d

n+r(σ)
F (M) . This shows that F (Mσ)• = F (M)•[r(σ)].

The proof of the lemma is completed.

For M ∈ Rep(Q̃), it is clear that F (M)• ∈ RC−(A-Proj) if and only if
M ∈ Rep−(Q̃).

3.4. Lemma. Every indecomposable object in RC−(A-Proj) is isomorphic
to a shift of some F (M)• with M an indecomposable object in Rep−(Q̃).

Proof. Assume that (X•, d•X) is an indecomposable object in RC−(A-Proj).
Let Λ be the set of integers n for which Xn 6= 0. Since X• is indecomposable
and bounded-above, Λ is interval-closed with a maximal element r. For n ∈ Λ,
write

Xn ∼= ⊕a∈S(n)P [a]⊗ V (n, a),

where S(n) is a subset of Q0 and V (n, a) is a non-zero k-vector space. For
n ∈ Λ\{r}, write dnX = (dnX(a, b))(a,b)∈S(n)×S(n+1) with dnX(a, b) some A-linear
map from P [a]⊗ V (n, a) to P [b]⊗ V (n+ 1, b)). By Lemma 3.2,

dnX(a, b) =
∑

α∈Q1(a,b)
P [α]⊗ f(n, α)

with f(n, α) ∈ Homk(V (n, a), V (n+ 1, b)).
Choose arbitrarily a vertex ar in S(r) and let xr be some vertex in Q̃ with

xπr = ar. Shifting X• if necessary, we may assume that xr ∈ Q̃r. Let n ∈ Λ.
For each a ∈ S(n), we claim that there exists an unique x in Q̃n such that
xπ = a. Indeed, the uniqueness follows from Theorem 1.3. For the existence,
we may assume that a 6= ar. Since X• is indecomposable, there exist integers
n = n0, n1, . . . , ns = r in Λ with s > 0 and ni = ni+1 ± 1, and vertices
a = b0, b1, . . . , bs = ar in Q with bi ∈ S(ni) such that dniX (bi, bi+1) 6= 0 if
ni = ni+1 − 1 or dni+1

X (bi+1, bi) 6= 0 if ni = ni+1 + 1. This gives rise to a walk
w = αn1−n0

1 αn2−n1
2 · · ·αns−ns−1

s in Q from a to ar. Let w̃ be the walk in Q̃
with e(w̃) = xr such that π(w̃) = w. Letting x = s(w̃), we get xπ = a. Since
∂(w̃) = ∂(w) =

∑
0≤i<s(ni+1 − ni) = r − n, we have x ∈ Q̃n by Lemma 1.2(2).

This establishes our claim. Set S̃(n) = {x ∈ Q̃n | xπ ∈ S(n)}.
Next we define an object M ∈ Rep−(Q̃) as follows. For each vertex x in Q̃,

define M(x) = V (n, xπ) if x ∈ S̃(n) with n ∈ Λ; and M(x) = 0 otherwise. For
each arrow β : x→ y in Q̃, define M(β) = f(n, βπ) if (x, y) ∈ S̃(n)× S̃(n+ 1)
with n ∈ Λ\{r}; and M(β) = 0 otherwise.

It remains to show that F (M)• = X•. Let n be any integer. If n 6∈ Λ, then
it is evident that F (M)n = 0 = Xn. If n ∈ Λ, then it follows from the definition
of M and our previous claim that

F (M)n = ⊕x∈eS(n)P [xπ]⊗ V (n, xπ) = ⊕a∈S(n)P [a]⊗ V (n, a) = Xn.

Moreover, if n = r or n 6∈ Λ, then dnF (M) = 0 = dnX . Assume that n ∈ Λ
with n < r. By the definition of M , dnF (M) = (dnF (M)(x, y))(x,y)∈eS(n)×eS(n+1),
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where dnF (M)(x, y) =
∑
β∈ eQ1(x,y)P [βπ] ⊗ f(n, βπ). Now for each pair (a, b) in

S(n) × S(n + 1), there exists an unique pair (x, y) in S̃(n) × S̃(n + 1) with
(xπ, yπ) = (a, b). By Lemma 1.5(3), we have

∑
β∈ eQ1(x,y)

P [βπ]⊗ f(n, βπ) =
∑

α∈Q1(a,b)
P [α]⊗ f(n, α),

that is, dnF (M)(x, y) = dnX(a, b). As a consequence, dnF (M) = dnX . This shows
that F (M)• = X•. The proof of the lemma is completed.

3.5. Lemma. Let M be an object in Rep−(Q̃), and let φ• : F (M)• → X•

be a nonzero morphism in RC−(A-Proj) with X• indecomposable. If φ• is non-
radical, then X• ∼= F (N)•, and otherwise, X• ∼= F (N)•[1], where N is some
object in Rep−(Q̃).

Proof. By Lemma 3.4, we may assume that X• = F (L)•[s] with L ∈
Rep−(Q̃) and s ∈ ZZ. For each integer n, write φn = (φn(x, y))(x,y)∈ eQn× eQn+s ,
where φn(x, y) : P [xπ] ⊗ M(x) → P [yπ] ⊗ L(y) is an A-linear map. As-
sume first that φ is radical. Let m be such that φm 6= 0. Then there exists
(x, y) ∈ Q̃m × Q̃m+s such that φm(x, y) 6= 0. By Lemma 3.2, Q has an ar-
row xπ → yπ, which is lifted to an arrow x → z in Q̃. Then z ∈ Q̃m+1 such
that zπ = yπ, that is π(Q̃)m+s ∩ π(Q̃m+1) 6= ∅. By Lemmas 1.7(4), there
exists some σ ∈ Autπ(Q̃) such that σ(Q̃m+s) = Q̃m+1. By Lemma 1.5(4),
σ(Q̃0) = Q̃s−1, that is, r(σ) = s − 1. By Lemma 3.3, F (Lσ)• = F (L)•[s − 1].
Thus X• = F (L)•[s] = F (Lσ)•[1]. If φ is not radical, then there exists
(a0, b0) ∈ Q̃m × Q̃m+s such that φm(x0, y0) is not radical for some m ∈ ZZ.
Therefore, π(Q̃m+s)∩π(Q̃m) 6= ∅. As argued previously, F (L)•[s] = F (Lθ)• for
some θ ∈ Autπ(Q̃). This completes the proof of the lemma.

3.6. Lemma. Let φ• : F (M)• → F (N)• be a morphism in RC−(A-Proj)
with M,N some objects in Rep−(Q̃). Then there exists a morphism f : M → N

in Rep−(Q̃) such that φ• = F (f)•+ψ• with ψ• a radical morphism. In this case,
φ• is a section (retraction) if and only if f is a section (retraction). Moreover,
if M = N and φ• is an idempotent, then f is an idempotent.

Proof. For each integer n, write φn = (φn(x, y))(x, y)∈ eQn× eQn , where φn(x, y)

is an A-linear map from P [xπ]⊗M(x) to P [yπ]⊗N(y). For (x, y) ∈ Q̃n×Q̃n, set
δxy = 1IP [xπ ] if x = y, and δxy = 0 otherwise. Note that xπ = yπ only if x = y.
We deduce from Lemma 3.2 that φn(x, y) = δxy⊗fxy+

∑
α∈Q1(xπ, yπ) P [α]⊗fα,

where fxy, fα ∈ Homk(M(x), N(y)). Put ψn(x, y) =
∑
α∈Q1(xπ,yπ) P [απ]⊗ fα.

Then ψn = (ψn(x, y))(x, y)∈ eQn× eQn : F (M)n → F (N)n is a radical A-linear
map. Since rad2(A) vanishes, ψ• = {ψn |n ∈ ZZ} is a radical morphism in
RC−(A-Proj) from F (M)• to F (N)•. Setting ηn = ⊕x∈ eQn1IP [xπ ] ⊗ fxx, we get
a morphism η• = {ηn |n ∈ ZZ} in RC−,b(A-Proj) from F (M)• to F (N)•. It
remains to verify that f = {fxx | x ∈ Q̃0} is a morphism in Rep−(Q̃) from M

to N . Indeed, let x, y ∈ Q̃0 be such that Q̃1(x, y) is non-empty, and assume
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that x ∈ Q̃n, and hence y ∈ Q̃n+1, for some n. We deduce from the equality
dnF (M)η

n+1 = ηndnF (N) that

∑
β∈ eQ1(x,y)

P [βπ]⊗M(β)fy =
∑

β∈ eQ1(x,y)
P [βπ]⊗ fxN(β).

Since π : Q̃1(x, y) → Q1(xπ, yπ) is bijective by Lemma 1.5(3), we deduce
from the uniqueness stated in Lemma 3.2 that M(β)fy = fxM(β), for all
β ∈ Q̃1(x, y). That is, f ∈ Rep−(Q̃) such that η• = F (f)•. This establishes the
first part of the lemma.

Suppose now that φ• is a section. Then φ•ζ• = 1IF (M)• for some morphism
ζ• : F (N)• → F (M)• in RC−(A-Proj). As we have just shown, there exists
a morphism g : N → M in Rep−(Q̃) such that ζ• = F (g)• + η•, where η• is
radical. This gives rise to F (1IM − fg)• = 1IF (M)• − F (fg)• = ψ•η•. Being
radical, F (1IM − fg)• is squared zero since (radA)2 = 0. Thus (1IM − fg)2 = 0
since F is faithful. Consequently, fg is an automorphism of M , and hence f is
a section. Conversely, assume that there exists a morphism h : N → M such
that fh = 1IM . Then φ•F (h)• = 1IF (M)•+ψ•F (h)•. It follows from rad2(A) = 0
that (1IF (M)• −φ•F (h)•)2 = 0. As a consequence, φ• is a section. Similarly, one
can show that f is a retraction if and only if φ• is a retraction.

Finally assume that M = N . If φ• is an idempotent, then φn(x, x) =∑
y∈ eQn φn(x, y)φn(y, x) for all x ∈ Q̃n. This yields

1I⊗ (fxx − f2
xx) +

∑
α∈Q1(xπ,xπ)

P [α]⊗ (fα − fαfxx − fxxfα) = 0,

for all x ∈ Q̃n. By the uniqueness stated in Lemma 3.2 we have f2
xx = fxx, and

consequently f2 = f . The proof of the lemma is completed.

Next we shall determine the representations M in Rep−(Q̃) such that F (M)•

lies in RC−,b(A-Proj). For this purpose we choose, for each moduleN in A-Mod,
a minimal projective resolution P •N of N which is the object in RC−,b(A-Proj)
such that PnN = 0 for n > 0, P 0

N is the projective cover of N , and Hn(P •N ) = 0
for n < 0.

3.7. Lemma. Let Ix be the indecomposable injective k-representation of Q̃
associated to a vertex x. If x ∈ Q̃n, then F (Ix)• = P •S [−n], where S is the
simple A-module supported by xπ.

Proof. We need only to consider the case where x ∈ Q̃0. Note that a path
p in Q̃ ending in x is of length t if and only if s(p) ∈ Q̃−t. For each m ≤ 0,
let Θm = {pm1, . . . , pm,sm} with sm ≥ 0 be the set of paths of length −m
ending in x. Write ymi = s(pmi) and bmi = π(ymi), i = 1, . . . , sm. Then
⊕y∈ eQmIx(y) has as a k-basis the set {pm1, . . . , pm,sm}. For each m < 0, write

pmi = αmiqm+1,i with αmi ∈ Q̃1 and qm+1,i ∈ Θm+1, i = 1, . . . , sm. Then
F (Ix)m = ⊕smi=1 P [bmi]⊗ Ix(ymi) has as a k-basis the set

{εymi ⊗ pmi, αm−1,j ⊗ qmj | i = 1, . . . , sm; j = 1, . . . , sm−1},
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where ū = u + I ∈ A. By definition, dmF (Ix) sends εymi ⊗ pmi to αmi ⊗ qm+1,i,
i = 1, . . . , sm and vanishes on αm−1,j ⊗ qmj , j = 1, . . . , sm−1. Therefore, the
kernel of dmF (Ix) has as a k-basis the set {αm−1,j⊗ qmj | j = 1, . . . , sm−1}, which
is a k-basis of the image of dm−1

F (Ix). Hence, Hm(F (Ix)) = 0 for all m < 0. Since
F (Ix)0 = P [xπ], we get F (Ix)• = P •S . The proof of the lemma is completed.

3.8. Proposition. An object M in Rep−(Q̃) is truncated injective if and
only if F (M)• has bounded cohomology.

Proof. First let n be an integer such that M≤n = ⊕ri=1(Ixi ⊗ Vi), where the
xi are vertices in Q̃n and the Vi are k-vector spaces. It follows easily from the
definition of F that F (N ⊗ V )• ∼= F (N)• ⊗ V for any object N in Rep(Q̃) and
k-vector space V . Therefore, for m < n, we have

Hm(F (M)•) = Hm(F (M≤n)•) = ⊕ri=1Hm(F (Ixi)
•)⊗ Vi,

which vanishes by Lemma 3.7. Thus F (M)• ∈ RC−,b(A-Proj). Conversely,
let n be an integer such that Hm(F (M)•) = 0 for all m ≤ n. Let S be the
image of dnF (M). Then F (M≤n)• ∼= P •S [−n]. If S = 0, then F (M≤n)• = 0.
Thus M≤n = 0, and M is n-truncated injective. Otherwise, S is semi-simple.
Hence S ∼= ⊕si=1S[yπi ] ⊗ Ui, where y1, . . . , ys ∈ Q̃n and U1, . . . , Us are some
k-vector spaces, and F (M)n ∼= ⊕si=1P [yπi ]⊗Ui. It follows from Lemma 3.7 that
F (M≤n)• ∼= F (⊕si=1Iyi⊗Ui)•. We deduce easily from the second part of Lemma
3.6 that M≤n ∼= ⊕si=1Iyi ⊗ Ui. That is, M is n-truncated injective. The proof
of the proposition is completed.

The full subcategory of truncated injective representations of Rep−(Q̃) and
that of rep−(Q̃)) will be denoted by Rep−,i(Q̃) and rep−,i(Q̃), respectively.
By Proposition 3.8, the functor F : Rep(Q̃) → RC(A-Proj) induces functors
Rep−,i(Q̃)→ RC−,b(A-Proj) and rep−,i(Q̃)→ RC−,b(A-proj) which, by abuse
of notation, will be denoted again by F .

3.9. Lemma. The functor F : Rep−,i(Q̃) → RC−,b(A-Proj) preserves
isomorphism classes and indecomposability. Moreover, F is fully faithful in
case the grading period of Q is different from 1.

Proof. It follows easily from the second part of Lemma 3.6 that F pre-
serves isomorphism classes. Let M be an object in Rep−,i(Q̃). If F (M)• is
indecomposable, then M is clearly indecomposable. Suppose now that M is in-
decomposable. Let e• be an idempotent endomorphism of F (M)•. By the last
part of Lemma 3.6, e• = F (f)• + ψ•, where f is an idempotent endomorphism
of M and ψ• a radical morphism. If f = 1IM , then e• is an isomorphism, and
hence e• = 1IF (M)• . If f = 0, then e• is radical, and hence nilpotent. Therefore
e• = 0. This shows that F (M)• is indecomposable.

For proving the second part of the lemma, we note that F is always faithful
by Lemma 3.3. Suppose that there exists some morphism φ• : F (M)• → F (N)•

in RC−,b(A-Proj), where M,N ∈ Rep−,i(Q̃), such that φ• 6= F (f)• for any
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morphism f : M → N in Rep−,i(Q̃). By the first part of Lemma 3.6, there
exists a non-zero radical morphism η• : F (M)• → F (N)•. As argued in the
proof of Lemma 3.5, we see that π(Q̃m)∩ π(Q̃m+1) 6= ∅ for some integer m. By
Proposition 1.7, m and m + 1 are congruent modulo the grading period of Q.
Hence the grading period of Q is 1. This completes the proof of the lemma.

3.10. Lemma. Let M be a non-zero object in Rep−,i(Q̃). Two integers s, t
are congruent modulo the grading period of Q if and only if F (M)•[s] ∼= F (N)•[t]
for some N ∈ Rep−,i(Q̃). In this case, N ∼= Mσ for some σ ∈ Autπ(Q̃).

Proof. Let r be the grading period of Q. Assume that s ≡ t (mod r). By
Lemmas 1.7(4) and 1.5(4), there exists σ ∈ Autπ(Q̃) with r(σ) = s − t. By
Lemma 3.3, F (Mσ)•[t] ∼= F (M)•[s]. Suppose conversely that there exists an
isomorphism φ• : F (M)•[s] → F (N)•[t] in Rep−,i(Q̃). As argued in the proof
of Lemma 3.5, π(Q̃m+s) ∩ π(Q̃m+t) 6= ∅ for some integer m. By Proposition
1.7, s ≡ t (modr) and there exists some σ ∈ Autπ(Q̃) with r(σ) = s − t. By
Lemma 3.3, F (Mσ)•[t] = F (M)•[s], and thus F (Mσ)• ∼= F (N)•. By Lemma
3.9, N ∼= Mσ. The proof of the lemma is completed.

We are now ready to describe the indecomposable objects and some mor-
phism spaces in Db(A) in terms of those in rep−,i(Q̃). We call the composite

F : rep−,i(Q̃) F−→ RC−,b(A-proj) G−→ K−,b(A-proj) E−→ Db(A)

the functor induced from the minimal gradable covering π : Q̃→ Q. Moreover,
we denote by ind−,i(Q̃) a complete set of representatives of isomorphism classes
of the indecomposable objects in rep−,i(Q̃). For r ≥ 0, set ZZ r = ZZ if r = 0,
and ZZ r = {0, 1, . . . r − 1} if r > 0.

3.11. Theorem. Let A be a finite-dimensional connected elementary k-
algebra with radical squared zero, and let π : Q̃ → Q be the minimal gradable
covering and r the grading period of the ordinary quiver Q of A.

(1) The induced functor F : rep−,i(Q̃) → Db(A) preserves isomorphism
classes and indecomposability.

(2) The complexes F(M)•[s] with M ∈ ind−,i(Q̃) and s ∈ ZZ r are the non-
isomorphic indecomposable objects in RC−,b(A-proj).

(3) If HomDb(A)(F(M)•,F(N)•[s]) 6= 0 with M,N ∈ ind−,i(Q̃) and s ∈ ZZ r,
then s = 0 or 1.

Proof. Statement (1) follows from Proposition 3.1(3) and Lemma 3.9. Let
M,N ∈ ind−,i(Q̃) and s, t ∈ ZZ r such that F(M)•[s] ∼= F(N)•[t]. Since G and
E preserve isomorphism classes, we have F (M)•[s] ∼= F (N)•[t]. By Lemma
3.10, s = t. Thus F (M)• ∼= F (N)•. By Lemma 3.9, M ∼= N , and hence
M = N . This shows that the F(M)•[s] are pairwise non-isomorphic. Next
let X• be an indecomposable object in Db(A). In view of Proposition 3.1(3),
X• ∼= E(G(Y •)) for some indecomposable object Y • in RC−,b(A-proj). By
Lemma 3.4, Y • ∼= F (L)•[s0] with L ∈ ind−,i(Q̃) and s0 ∈ ZZ. Now s0 ≡ s(modr)
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for some s ∈ ZZr. Applying Lemma 3.10, we get F (L)•[s0] = F (Lσ)[s] for some
σ ∈ Autπ(Q̃). Hence X• ∼= F(Lσ)[s]. This proves (2).

Assume that HomDb(A)(F(M)•,F(N)•[s]) 6= 0 with M,N ∈ ind−,i(Q̃) and
s ∈ ZZ r. If r = 1, then ZZr = {0}. In particular, s = 0. Assume that r 6= 1.
Then 0, 1 ∈ ZZr. Since G,E are full, HomRC−,b(A-proj)(F (M)•, F (N)•[s]) 6= 0.
By Lemma 3.5, F (N)•[s] ∼= F (N1)•[t1] with N1 ∈ ind−,i(Q̃) and 0 ≤ t1 ≤ 1.
Noting that t1 ∈ ZZr, we get s = t1 by (2). This completes the proof of the
theorem.

Next we shall extend the functor F to an exact functor of triangulated
categories F̂ : Db(rep−,i(Q̃)) → Db(A). Let M• be a bounded complex in
rep−,i(Q̃). Applying F to each of the components of M•, we get a double
complex F (M•)• in A-proj as follows:

...
...

· · · // F (M i+1)j
(−1)i+1dj

F (Mi+1)//

OO

F (M i+1)j+1

OO

// · · ·

· · · // F (M i)j
(−1)idj

F (Mi)//

F (diM )j

OO

F (M i)j+1

F (diM )j+1

OO

// · · ·

...

OO

...

OO

which is clearly bounded. We then define F̂ (M•)• ∈ C−(A-pro) to be the total
complex of the double complex F (M•)•. More explicitly, let s, t be integers
such that Mn 6= 0 only if s ≤ n ≤ t. Then F̂ (M•)n = ⊕i+j=nF (M i)j and
dnbF (M•)

is given by a (t − s + 1) × (t − s + 1)-matrix with (i, i)-entry being

(−1)idn−iF (Mi) for s ≤ i ≤ t, (i, i + 1)-entry being F (diM )n−i for s ≤ i < t,
and all other entries being null. Using the Acyclic Assembly Lemma, see [23,
(2.7.3)], we deduce easily that F̂ (M•)• has bounded cohomology and hence
lies in C−,b(A-proj). For a morphism f• : M• → N• in Cb(rep−,i(Q̃)), setting
F̂ (f•)n = ⊕i+j=nF (f i)j , we get a morphism F̂ (f•)• = {F̂ (f)n | n ∈ ZZ} of
complexes from F̂ (M•)• to F̂ (N•)•. This gives rise to a k-linear functor

F̂ : Cb(rep−,i(Q̃))→ C−,b(A-proj)

such that F̂ (M)• = F (M)• for object M ∈ rep−,i(Q̃) and F̂ (f)• = F (f)• for
morphism f ∈ rep−,i(Q̃).

3.12. Lemma. Let M• be an object and f• a morphism in Cb(rep−,i(Q̃)).
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(1) F̂ (M•[1])• = F̂ (M•)•[1], and C•bF (f•)
= F̂ (C•f )•.

(2) F̂ (M•)• is acyclic whenever M• is acyclic.
Proof. It is a routine verification that F̂ (M•[1])• = F̂ (M•)•[1]. Suppose

now that M• is acyclic. Since F is exact, the double complex F (M•)• has
exact columns, and hence its total complex F̂ (M•)• is acyclic; see, for example,
[23, (2.7.3)]. Let now f• : M• → N• be a morphism of complexes. Assume that
s, t are integers such that Mn 6= 0 or Nn 6= 0 only if s ≤ n ≤ t. Let n be a fixed
integer. We see that Cnf = Mn+1 ⊕Nn, F (Cnf )• = F (Mn+1)• ⊕ F (Nn)•, and
CnbF (f•)

= F̂ (M•)n+1 ⊕ F̂ (N•)n. It is easy to check that

CnbF (f•)
= ⊕ti=s(F (M i)n−i+1 ⊕ F (N i)n−i) = F̂ (C•f )n.

For s ≤ i, j ≤ t and U, V ∈ {M,N}, let gij(U, V ) be the composite

F (U i)n−i+1 qi(U)−→ CnbF (f•)

dnC bF (f•)−→ Cn+1bF (f•)

pj(V )−→ F (V j)n+1,

where qi(U) is the canonical injection and pj(V ) is the canonical projection. A
routine but tedious verification shows that

gij(U, V ) =





(−1)i+1dn−i+1
F (Mi), if j = i, (U, V ) = (M,M);

−F (diM )n−i+1, if j = i+ 1, (U, V ) = (M,M);
F (f i)n−i+1, if j = i, (U, V ) = (M,N);
(−1)idn−iF (Ni), if j = i, (U, V ) = (N,N);
F (diN )n−i, if j = i+ 1, (U, V ) = (N,N);
0, otherwise.

Similarly, let hij(U, V ) be the composite

F (U i)n+1−i q′i(U)−→ F̂ (C•f )n
dnbF (C•

f
)−→ F̂ (C•f )n+1

p′j(V )−→ F (V j)n+1,

where q′i(U) is the canonical injection, and p′j(V ) is the canonical projection.
Observing that qi(M)′ : F (M i)n−i+1 → F̂ (C•f )n factors through F (Ci−1

f )n−i+1

and p′j(M) : F̂ (C•f )n+1 → F (M j)n−j+2 factors through F (Cj−1
f )n−j+2 , we get

hij(U, V ) =





(−1)i−1dn−i+1
F (Mi), if j = i, (U, V ) = (M,M);

−F (diM )n−i+1, if j = i+ 1, (U, V ) = (M,M);
F (f i)n−i+1, if j = i, (U, V ) = (M,N);
(−1)idn−iF (Ni), if j = i, (U, V ) = (N,N);
F (diN )n−i, if j = i+ 1, (U, V ) = (N,N);
0, otherwise.

This shows that dnC bF (f•)
= dnbF (C•f )

. Thus C•bF (f•)
= F̂ (C•f )•. The proof of the

lemma is completed.
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In view of Lemma 3.12, F̂ sends exact triangles to exact ones. Further, if
f• : X• → Y • is a quasi-isomorphism in Cb(rep−,i(Q̃)), then C•f is acyclic. By
Lemma 3.12, C•bF (f•)

= F̂ (C•f )• is acyclic. Hence F̂ (f•)• is a quasi-isomorphism

in C−,b(A-proj). As a consequence, there exist exact functors of triangulated
categories F̃ and F̂ making the following diagram commutative:

Cb(rep−,i(Q̃))

bF
��

p eQ // Kb(rep−,i(Q̃))
q eQ //

eF
��

Db(rep−,i(Q̃))

bF
��

C−,b(A-proj)
pA // K−,b(A-proj) E // Db(A),

where p eQ, pA are projection functors and q eQ is the localizing functor. We call

F̂ the functor induced from the minimal gradable covering π. It is easy to see
that F̂ |rep−,i( eQ) = F .

Remark. Note that A = kQ/I with I being generated by the paths of
length two is the Koszul dual of the Koszul algebra kQ. If Q is gradable, then
the functor F̂ coincides with the classical Koszul duality; see [4].

3.13. Theorem. Let A be a finite-dimensional connected elementary k-
algebra with radical squared zero. Let π : Q̃ → Q be the minimal gradable
covering of the ordinary quiver Q of A, and let F̂ : Db(rep−,i(Q̃)) → Db(A)
be the induced functor. Then F̂ is a triangle-equivalence if and only if Q is
gradable.

Proof. Assume that Q has positive grading period r. Let M be an indecom-
posable object in rep−,i(Q̃). By Lemma 3.10, there exists an indecomposable
object N in rep−,i(Q̃) such that F (M)•[r] = F (N)•. Thus F̂(M [r]) ∼= F̂(N).
In particular, F̂ is not an equivalence.

We note that the sufficiency follows from [4]. However, we present a short
proof using our own approach. Assume that Q is gradable and take π = 1IQ.
It follows from Lemma 3.4 that F̂ is dense. Note that rep−,i(Q) = rep(Q)
since Q is finite, and C−,b(A-proj) = Cb(A-proj) since Q has no oriented cy-
cle. By Theorem 3.12, it suffices to show that F̂ induces a bijection from
HomDb(rep(Q))(M,N [t]) onto HomDb(A)(F̂(M), F̂(N)[t]), for M,N ∈ rep(Q)
and t ∈ ZZ. If t 6= 0, 1, then this follows from Theorem 3.11(3) and the fact
that rep(Q) is hereditary. Assume first that t = 0. Consider the following
commutative diagram:
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HomCb(rep(Q))(M,N)

pQ(M,N)

��

bFMN // HomCb(A-proj)(F̂ (M)•, F̂ (N)•)

pA(M,N)

��
HomKb(rep(Q))(M,N)

qQ(M,N)

��

eFMN // HomKb(A-proj)(F̃ (M)•, F̃ (N)•)

EMN∼=
��

HomDb(rep(Q))(M,N)
bFMN // HomDb(A-proj)(F̂(M)•, F̂(N)•).

Since rep(Q) is a full subcategory of each of Cb(rep(Q)), Kb(rep(Q)), and
Db(rep(Q)), both pQ(M,N) and qQ(M,N) are bijective. On the other hand,
by Lemma 3.9, the functor F : rep(Q) → RCb(A-proj) is fully faithful. Thus
F̂MN is a bijection. Since Q is gradable, HomA(F (M)n+1, F (N)n) = 0 for
all integers n. Thus a morphism F (M)• → F (N)• is null-homotopic if and
only if it is null. This implies that pA(M,N) is injective and hence bijec-
tive. As a consequence, F̂MN is bijective. Consider now the case where t = 1.
Let θ• : F̂(M)• → F̂(N)•[1] be a morphism in Db(A-mod), which embeds in

an exact triangle F̂(N)•
φ• // Y •

ψ• // F̂(M)•
θ• // F̂(N)•[1] . By Theorem

3.11(3), the above triangle is isomorphic to an exact triangle

F̂(N)•
(ζ•, ν•)// F̂(L1)• ⊕ Z•

(ξ•0 )
// F̂(M)•

θ• // F̂(N)•[1] ,

where L1 ∈ rep(Q) and Z• ∈ Db(A-mod). Since (0, 1IZ•)
(
ξ•

0

)
= 0, there exists

µ• : Z• → F (N)• such that µ•(ζ•, ν•) = (0, 1IZ•). In particular, µ•ν• = 1IZ• .
As a consequence, Z• is either null or a direct summand of F̂(N)•. Since F̂ pre-
serves indecomposability, we see that Z• ∼= F̂(L2) for some L2 ∈ rep(Q). Thus
Y • ∼= F̂(L)•, where L = L1⊕L2. Now it follows from what we have proved that

φ• = F̂(f)• for some f : N → L in rep(Q). Let N
f // L

g // U
h // N [1]

be an exact triangle in Db(rep(Q)). This induces a commutative diagram

F̂(N)•
φ• // Y •

∼=
��

ψ• // F̂(M)•

η•∼=
��

θ• // F̂(N)•[1]

F̂(N)•
bF(f•) // F̂(L)•

bF(g)• // F̂(U)•
bF(h)• // F̂(N)•[1]

in Db(A-mod). By what we have proved, η• = F̂(u)• with u : M → U an
isomorphism in rep(Q). Therefore, θ• = F̂(uh)•. Moreover, if θ• = 0, then
F̂(h)• = 0. Hence F (g)• is a retraction. As a consequence, g is a retraction,
that is h = 0. In particular, uh = 0. This proves that F̂ induces a bijection
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from HomDb(rep(Q))(M,N [1]) onto HomDb(A)(F̂(M)•, F̂(N)•[1]). The proof of
the theorem is completed.

Let X• be a non-zero bounded complex in an additive category. If s is
the minimal integer such that Xs 6= 0 and t is the maximal integer such that
Xt 6= 0, then the positive integer t − s + 1 is called the width of X•. It is well
known that every indecomposable object in the bounded derived category of a
finite-dimensional hereditary algebra is isomorphic to a complex of width one;
see [12].

3.14. Corollary. Let A be a finite-dimensional elementary k-algebra with
radical non-zero but squared zero, and let Q be the ordinary quiver of A. If Q is
gradable, then Db(A) ∼= Db(kQop) and every indecomposable object in Db(A) is
isomorphic to a complex of width less than the number of grading classes of Q.

Proof. Assume that Q is gradable. It follows from Theorem 3.13 that
there exists a triangle-equivalence F̂ : Db(rep(Q)) → Db(A). Now kQop is
a finite dimensional hereditary k-algebra such that Db(kQop-mod) is triangle-
equivalent to Db(mod-kQ), where mod-kQ is the category of finite dimensional
right kQ-modules which is equivalent to rep(Q). Hence Db(mod-kQ) is triangle-
equivalent to Db(rep(Q)). Moreover, since A is not semi-simple, the number of
grading classes of Q is an integer m > 1. Let M be an indecomposable object
in rep(Q). Then F(M)• is an indecomposable object in Db(A) which, by the
definition, is of width ≤ m. Assume that F(M)• is of the form :

· · · → 0→ Xs ds−→ Xs+1 ds+1

−→ Xs+2 ds+2

−→ · · · d
t−2

−→ Xt−1 dt−1

−→ Xt → 0→ · · ·

with Xs 6= 0 and Xt 6= 0. If s = t, then F(M)• is of width 1 which is
less than m. Otherwise, Xs is a direct sum of simple projective A-modules.
Thus the indecomposability of F(M)• implies that ds is a monomorphism. Let
p : Xs+1 → Y s+1 be the cokernel of ds. Then ds+1 = p d̄s+1 for some A-linear
map d̄s+1 : Y s+1 → Xs+1. It is now evident that F(M)• is quasi-isomorphic to
the complex

· · · −→ 0 −→ Y s+1 d̄s+1

−→ Xs+2 ds+2

−→ · · · d
t−2

−→ Xt−1 dt−1

−→ Xt −→ 0 −→ · · ·

which is of width t− s < m. The proof of the corollary is completed.

4. Auslander-Reiten theory in Db(A)

The Auslander-Reiten theory applies in the bounded derived category of a
finite dimensional algebra of finite global dimension; see, for example, [12]. It is
well understood for hereditary algebras. The objective of this section is to show
that this is also the case for algebras with radical squared zero.
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We begin with a brief recall. Let A be an additive k-category in which the
morphism spaces are finite dimensional over k and every indecomposable object
has an elementary local endomorphism algebra. One calls a left almost mor-
phism f : X → Y in A a source morphism for X provided that a factorization
f = fh holds only if h is an automorphism. In this case, X is indecomposable
and f is unique up to isomorphism. In a dual manner, one defines the notion
of a sink morphism. Suppose that every indecomposable object in A admits a
source morphism and a sink morphism. One defines the Auslander-Reiten quiver
ΓA of A as follows. The set of vertices is a complete set of representatives of
isomorphism classes of the indecomposable objects in A. The number of arrows
from a vertex X to a vertex Y is the multiplicity of Y as an indecomposable
summand of the codomain of the source morphism for X, or equivalently, the
multiplicity of X as an indecomposable summand of the domain of the sink
morphism for Y . The connected components of the quiver ΓA are called the
Auslander-Reiten components of A.

Assume that A is abelian. A short exact sequence 0→ X
f−→ Y

g−→ Z → 0
in A is called almost split if f is a source morphism, or equivalently, g is a sink
morphism. In this case, one calls X the Auslander-Reiten translate of Z and
write X = τ

A
Z. One says that A has almost split sequences provided that every

indecomposable object X in A admits a source morphism which is a monomor-
phism whenever X is non-injective, and a sink morphism which is an epimor-
phism whenever X is non-projective. In this case τ

A
, called the Auslander-

Reiten translation for A, is defined on all indecomposable non-projective objects
and makes ΓA a translation quiver in the sense of [20, (2.1)].

Assume that A is triangulated with a shift functor T . Recall that an exact
triangle X

f−→ Y
g−→ Z

h−→ T (X) with X,Z indecomposable is called an almost
split triangle ending with Z provided that f is left almost split or g is right
almost split, or equivalently, f is a source morphism and g is a sink morphism;
see [11, (4.1)]. In this case, one calls X the Auslander-Reiten translate of Z
and writes X = τ

A
Z. One says that A has almost split triangles provided that

every indecomposable object in A is the ending term of an almost split triangle.
In this case τA, called the Auslander-Reiten translation for A, is defined on all
indecomposable objects and makes ΓA a stable translation quiver.

For describing the shapes of Auslander-Reiten components, one needs a clas-
sical construction of a stable translation quiver ZZ∆ from a quiver ∆ with no
oriented cycle. The vertices of ZZ∆ are (n, x) with n ∈ ZZ and x ∈ ∆0. Each
arrow x → y in ∆ induces, for each n ∈ ZZ, two arrows (n, x) → (n, y) and
(n, y)→ (n+ 1, x) in ZZ∆. The set of arrows in ZZ∆ is formed by such induced
arrows. The translation τ is defined by τ(n, x) = (n− 1, x), n ∈ ZZ. Denote by
IN∆ the full translation subquiver of ZZ∆ generated by (n, x) with x ∈ ∆0 and
n ≥ 0, and by IN−∆ that generated by (n, x) with x ∈ ∆0 and n ≤ 0. If ∆ is a
tree of type Ω, then ZZ∆ does not depend on the orientation of ∆ and we write
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ZZ∆ = ZZΩ. Finally, recall that a translation quiver is called a stable tube if it is
isomorphic to ZZIA∞/<τ s> for some s ≥ 1.

For the rest of this section, let A = kQ/I, whereQ is a finite connected quiver
and I is the ideal in kQ generated by the paths of length two. Fix a minimal
gradable covering π : Q̃→ Q of Q. Assume that A is of finite global dimension.
Then Q contains no oriented cycle, and consequently, Q̃ contains no infinite
path. Thus the indecomposable projective and injective representations of Q̃
are finite-dimensional, and consequently, rep−,i(Q̃) = repb(Q̃). Now repb(Q̃)
admits almost split sequences; see [6, (2.2)]. The shapes of the Auslander-
Reiten components of repb(Q̃) are well described in case Q̃ is finite or of type
IA∞∞; see [7, 17, 18]. We shall generalize these results to a more general context.
For each a ∈ Q̃0, let Pa and Ia be the associated indecomposable projective
and injective representations. As usual, one sees easily that the inclusion map
qa : radPa → Pa is the sink morphism for Pa, and the canonical projection
pa : Ia → Ia/socIa is the source morphism for Ia. Thus, for a, b ∈ Q̃0, the
number of arrows from Pa to Pb in Γrepb( eQ) is equal to the number of arrows

from b to a in Q̃. As a consequence, the full subquiver of Γrepb( eQ) generated by

the Pa with a ∈ Q̃ is isomorphic to Q̃op, the opposite quiver of Q̃. In particular,
the Pa with a ∈ Q̃0 lie in the same connected component of Γrepb( eQ), called the

preprojective component. Dually, the Ia with a ∈ Q̃0 lie in the same connected
component of Γrepb( eQ), called the preinjective component, and generate a full

subquiver isomorphic to Q̃op. The Auslander-Reiten components of repb(Q̃)
which are neither preprojective nor preinjective are called regular.

4.1. Lemma. Assume that Q̃ is infinite but contains no infinite path. Then
the Auslander-Reiten quiver of repb(Q̃) consists of the preprojective component
which is of shape INQ̃ op, the preinjective component which is of shape IN−Q̃ op,
and some regular components which are of shape ZZIA∞. Moreover, the number
of regular components is 2 in case Q̃ is of type IA∞∞.

Proof. First of all, as argued in [17, (II.3, III.3)], the preprojective and prein-
jective components of Γrepb( eQ) are disjoint, and consequently, they are of shapes

INQ̃op and IN−Q̃ op, respectively. Let C be a regular component of Γrepb( eQ). We
claim that C contains no oriented cycle. Suppose on the contrary that there ex-
ists an oriented cycle Θ in C. Let M be the direct sum of the modules appearing
in Θ. Since Q̃ contains no infinite path, there exists a finite connected convex
subquiver Q̃M of Q̃ which supports the minimal projective and injective presen-
tations of M in repb(Q̃). Note that the Auslander-Reiten translation for repb(Q̃)
is given by DTr, the dual of the transpose; see [1]. In view of the construction
of Dtr, one sees that Θ remains to be an oriented cycle in the Auslander-Reiten
quiver of rep(Q̃M ). It is then well known that Q̃M is of Euclidean type; see,
for example, [18]. Being connected and infinite, Q̃ has a finite wild convex sub-
quiver Σ containing Q̃M . Once again, Θ remains to be an oriented cycle in
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the Auslander-Reiten quiver of rep(Σ), and hence Σ is of Euclidean type. This
contradiction confirms our claim. Being a stable translation quiver, C contains
a section ∆, and hence C ∼= ZZ∆; see [15, (2.1), (2.3),(2.4)]. Furthermore, Dtr
preserves monomorphisms in repb(Q̃). Thus the dimension function yields a
strict monotone additive function on C, and consequently, ∆ is either finite or
of type IA∞; see [21]. Suppose that ∆ is finite. Let N be the direct sum of the
modules lying in ∆. Choose a finite connected convex subquiver Ω of Q̃ which
supports the minimal projective and injective presentations of N in repb(Q̃) and
has more vertices than ∆ does. It follows again from the construction of Dtr
that ∆ remains to be a section of a Auslander-Reiten component of rep(Ω). In
view of the shapes of the Auslander-Reiten components of rep(Ω), we see that
Ω ∼= ∆op, which is absurd since Ω and ∆op do not have the same number of
vertices. This proves the first part of the lemma, while the second part follows
from [17, (III.3)]. The proof of the lemma is completed.

We now concentrate on the triangulated category Db(A). As did before, we
choose arbitrarily a vertex a0 in Q̃ and put Q̃n = Q̃n(a0), for all n ∈ ZZ. Let
F : rep−,i(Q̃)→ RCb(A-proj) the functor induced from the covering π : Q̃→ Q.

4.2. Lemma. If f : M → N is a monomorphism in rep−,i(Q̃), then every
radical morphism F (M)• → X• in RC−,b(A-proj) factors through F (f)•.

Proof. Let f : M → N be a monomorphism in rep−,i(Q̃). Consider a nonzero
radical morphism φ• : F (M)• → X• in RC−,b(A-proj) with X• indecompos-
able. By Lemma 3.5, we may assume that X• = F (L)•[1] with L ∈ rep−,i(Q̃).
Fix an integer n, and write φn = (φn(x, y))(x,y)∈ eQn× eQn+1 , where φn(x, y) is a

radical A-linear map from P [xπ]⊗M(x) to P [yπ]⊗L(y). Fix (x, y) ∈ Q̃n×Q̃n+1.
Since Q1(xπ, yπ) = π(Q̃1(x, y)) by Lemma 1.5(3), we deduce from Lemma
3.2 that φn(x, y) =

∑
α∈ eQ1(x,y) P [απ] ⊗ gα, where gα ∈ Homk(M(x), L(y)).

Since f(x) : M(x) → N(x) is injective, for each α ∈ Q̃1(x, y), there exists
hα ∈ Homk(N(x), L(y)) such that gα = f(x)hα. This yields a radical A-linear
map ψn(x, y) =

∑
α∈ eQ1(x,y) P [απ] ⊗ hα : P [xπ] ⊗ N(x) → P [yπ] ⊗ L(y) such

that (1IP [xπ ]⊗ f(x))ψn(x, y) = φn(x, y). Now ψn = (ψn(x, y))(x,y)∈ eQn× eQn+1 is a
radical A-linear map from F (N)n → F (L)n+1 such that φn = F (f)nψn. Since
rad2(A) = 0, we see that ψ• = {ψn | n ∈ ZZ} is a morphism from F (N)• to
F (L)•[1] such that φ• = F (f)•ψ•. This completes the proof of the lemma.

4.3. Lemma. The functor F : rep−,i(Q̃)→ RC−,b(A-proj) sends left almost
split monomorphisms to left almost split monomorphisms, and right almost split
epimorphisms to right almost split epimorphisms.

Proof. Let f : M → N be a left almost split monomorphism in rep−,i(Q̃).
Since F is exact, F (f)• is a monomorphism and is not a section by Lemma
3.6. Let φ• : F (M)• → X• with X• indecomposable be a nonzero morphism in
RC−,b(A-proj) which is not a section. If φ• is radical, then it factors through
F (f)• by Lemma 4.2. Otherwise, by Lemma 3.5, we may assume that X• =
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F (L)• with L ∈ rep−,i(Q̃). By Lemma 3.6, φ• = F (g)• + ψ•, where g : M → L

is a morphism in rep−,i(Q̃) which is not a section, and ψ• is a radical morphism
in RC−,b(A-proj). Now g factors through f , and hence F (g)• factors through
F (f)•. Moreover, ψ• factors through F (f)• by Lemma 4.2. Thus, φ• factors
through F (f)•. The proof of the lemma is completed.

Assume that A is of finite global dimension. We fix some notation for some
special morphisms in RCb(A-proj) associated to a vertex a in Q̃. Assume that
a ∈ Q̃m for some integer m. First, write p•a = F (pa) with pa : Ia → Ia/socIa
the canonical projection and q•a = F (qa) with qa : radPa → Pa the inclusion
map. Since Ia(x) = Pa(x) for all x ∈ Q̃m, we have F (Ia)m = F (Pa)m =
P [aπ]. Moreover, (radPa)(y) = Pa(y) and (Ia/socIa)(y) = Ia(y) for all y 6= a.
Consequently, F (Pa)n = F (radPa)n and F (Ia)n = F (Ia/socIa)n, for all n 6= m.
Now let u•a : F (Ia)• → F (radPa)•[1] be the morphism in RCb(A-proj) with
uma = dmF (Pa) and una = 0 for n 6= m, and v•a : F (Ia/socIa)• → F (Pa)•[1]
the one such that vm−1

a = dm−1
F (Ia) and vna = 0 for n 6= m − 1. Finally, define

w•a : F (Pa)• → F (Ia)• by wma = 1IP [aπ ] and wna = 0 for n 6= m.

4.4. Lemma. Assume that A is of finite global dimension. Associated to
each vertex a in Q̃, there exists in RCb(A-proj) a left almost split morphism
(p•a,−u•a) : F (Ia)• → F (Ia/socIa)• ⊕ F (radPa)•[1] and a right almost split one

(
v•a
q•a[1]

)
: F (Ia/socIa)• ⊕ F (radPa)•[1]→ F (Pa)•[1].

Proof. Let a ∈ Q̃m. We shall prove only the first part of the lemma since
the second part follows dually. Let φ• : F (Ia)• → X• with X• indecomposable
be a morphism in RC−,b(A-proj) which is not a section. Assume first that φ• is
radical. By Lemma 3.5, we may assume that X• = F (N)•[1] with N ∈ repb(Q̃).
Since F is exact, RCb(A-proj) admits a short exact sequence

0 −→ F (Sa)•
F (ja)•−→ F (Ia)•

p•a−→ F (Ia/socIa)• −→ 0,

where Sa is the simple representation concentrated on a and ja : Sa → Ia is the
inclusion map. For each n, define ζn : F (Ia)n → F (N)n+1 by ζn = 0 for n ≥ m
and ζn = φn for n < m. Since the ζn are all radical, ζ• = {ζn | n ∈ ZZ} is a
morphism from F (Ia)• to F (N)•[1] such that F (ja)•ζ• = 0. Thus ζ• factors
through p•a. Consider now θ• = φ• − ζ•. Then θm = φm and θn = 0 for all
n 6= m. Note that uma = (uma (y))y∈ eQm+1 , where

uma (y) =
∑

α∈ eQ1(a,y)
P [απ]⊗ Pa(α) : P [aπ]⊗ Pa(a)→ P [yπ]⊗ Pa(y).

Write θm = (θm(y))y∈ eQm+1 with θm(y) : P [aπ]⊗Pa(a)→ P [yπ]⊗N(y) a radical
A-linear map. By Lemmas 1.5(3) and 3.2, θm(y) =

∑
α∈ eQ1(a,y) P [απ]⊗ fα with

fα ∈ Homk(Pa(a), N(y)). Fix a vertex y ∈ Q̃m+1. Note that Q̃1(a, y) is a k-basis
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of (radPa)(y). For each α ∈ Q̃1(a, y), denote by gα : (radPa)(y)→ N(y) the k-
linear map which sends α to fα(εa) and vanishes on the other arrows. Set gy =∑
α∈ eQ1(a,y) gα : (radPa)(y)→ N(y). Since Pa(α)gα = fα and Pa(α)gβ = 0 for

β 6= α, we have θm(y) = uma (y)(1IP [yπ ] ⊗ gy). Now ηm = (1IP [yπ ] ⊗ gy)y∈ eQm+1

is an A-linear map from F (radPa)m+1 to F (N)m+1 such that θm = uma η
m.

Since radPa is projective with top ⊕y∈ eQm+1(radPa)(y), there exists an unique

morphism g : radPa → N in repb(Q̃) such that g(y) = gy, for all y ∈ Q̃m+1.
This yields a morphism F (g)• : F (radPa)• → F (N)• in RCb(A-proj) such that
F (g)m+1 = ηm and F (g)n = 0 for n ≤ m. Thus F (g)•[1] is a morphism in
RCb(A-proj) such that θ• = u•a F (g)•[1]. Thus, φ• = θ• + ζ• factors through
the morphism (u•a,−p•a).

Suppose now that φ• is not radical. By Lemma 3.5, we may assume that
X• = F (N)• with N ∈ repb(Q̃). By Lemma 3.6, φ• = F (f)• + ψ• with
f a morphism in repb(Q̃) which is not a section, and ψ• a radical morphism
in RCb(A-proj). Since f factors through pa : Ia → Ia/socIa, we see that
F (f)• factors through p•a. Being radical, ψ• factors through (p•a,−u•a) as shown
previously. Consequently, φ• factors through (u•a,−p•a). This completes the
proof of the lemma.

We are now ready to describe the almost split triangles in Db(A) in case A
is of finite global dimension.

4.5. Theorem. Let A be a finite-dimensional elementary k-algebra with
finite global dimension and radical squared zero. Let π : Q̃ → Q be a minimal
gradable covering of the ordinary quiver Q of A, and let F : repb(Q̃) → Db(A)
be the induced functor.

(1) Each almost split sequence 0 → M → N → L → 0 in repb(Q̃) induces
an almost split triangle F(M)• → F(N)• → F(L)• → F(M)•[1] in Db(A).

(2) For each vertex a in Q̃, there exists in Db(A) an almost split triangle

F(Ia)• → F(Ia/socIa)• ⊕F(radPa)•[1]→ F(Pa)•[1]→ F(Ia)•[1].

(3) Every almost split triangle in Db(A) is isomorphic to a shift of some
triangle stated in (1) or (2).

Proof. Recall that F induces an exact functor F̂ : Db(repb(Q̃)) → Db(A)

with F̂ |repb( eQ) = F = E ◦ G ◦ F . Let η : 0 → M
f−→ N

g−→ L → 0 be an

almost split sequence in repb(Q̃). Then M
f−→ N

g−→ L
η−→ M [1] is an exact

triangle in Db(repb(Q̃)). Thus F̂(M)
bF(f)−→ F̂(N)

bF(g)−→ F̂(L)
bF(η)−→ F̂(M)[1] is an

exact triangle in Db(A). We deduce from Proposition 3.1(2) and Lemma 4.2
that F̂(f) = F(f) is left almost split and F̂(g) = F(g) is right almost split.
This establishes (1). Now let a be a vertex in Q̃, say a ∈ Q̃m for some m. Let
C• be the mapping cone of (p•a,−u•a) : F (Ia)• → F (Ia/socIa)• ⊕ F (radPa)•[1].
Since

F (Ia/socIa)n ⊕ F (radPa)n[1] =
{
F (radPa)n+1 = F (Pa)n+1, if n ≥ m;
F (Ia/socIa)n = F (Ia)n, if n < m,
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we see that Cn = F (Pa)n+1 for n ≥ m, and Cn = F (Ia)n+1⊕F (Ia)n for n < m.
Moreover, dnC = −dn+1

F (Pa) for n ≥ m, dm−1
C =

(−dmF (Pa)
0

)
, and

dnC =

(
−dn+1

F (Ia) 1I
0 dnF (Ia)

)

for n < m − 1. Define a morphism ξ• : C• → F (Pa)•[1] in Cb(A-proj) by
ξn = 0 for n < m − 1, ξm−1 = (1IF (Pa)m , d

m−1
F (Ia))

T , and ξn = 1IF (Pa)n+1 for
n ≥ m; and a morphism η• : F (Pa)•[1] → C• such that ηn = 0 for n < m − 1,
ηm−1 = (1IF (Pa)m , 0), and ηn = 1IF (Pa)n+1 for n ≥ m. Then ξ•η• = 1IF (Pa)•[1],
while η•ξ• is homotopic to 1IC• via a contraction g• defined by gn = 0 for n ≥ m,
and

gn =
(

0 0
1IF (Ia)n 0

)
,

for n < m. This proves that ξ• is a homotopy equivalence. Consider now the
diagram

F (Ia)•
(p•a,−u•a)// F (Ia/socIa)• ⊕ F (radPa)•[1]

j• // C•

ξ•

��

p• // F (Ia)•[1]

F (Ia)•
(p•a,−u•a)// F (Ia/socIa)• ⊕ F (radPa)•[1]

( v
•
a

q•a[1]) // F (Pa)•[1]
w•a[1] // F (Ia)•[1],

in RC−,b(A-proj), where j• is the canonical injection, and p• is the canonical
projection. It is easy to verify that the square in the middle is commutative.
Moreover, p• is homotopic to ξ•w•a[1] via a contraction h• defined by hn =
0 for n ≥ m, and hn = (0, 1IF (Ia)n)T for n < m. Applying the projection
functor RC−,b(A-proj)→ Kb(A) to the above diagram followed by the triangle-
equivalence E : Kb(A-proj)→ Db(A), we get a commutative diagram in Db(A).
In particular,

F(Ia)• // F(Ia/socIa)• ⊕F(radPa)•[1] // F(Pa)•[1] // F(Ia)•[1],

is an exact triangle in Db(A) which, by Lemma 4.4 and Proposition 3.1(2), is
an almost split triangle. This proves (2). Finally, (3) follows easily from the
uniqueness of almost split triangles and the fact that repb(Q̃) has almost split
sequences. The proof of the theorem is completed.

The previous result enables us to describe the shapes of the Auslander-Reiten
components of Db(A) in case A is of finite global dimension.

4.6. Theorem. Let A be a finite-dimensional elementary k-algebra with
finite global dimension and radical squared zero. Let π : Q̃→ Q be the minimal
gradable covering of the ordinary quiver Q of A.
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(1) If Q is gradable, then ΓDb(A)
∼= ΓDb(rep(Q)). As a consequence, an

Auslander-Reiten component of Db(A) is either of shape ZZQop or ZZIA∞ or
a stable tube.

(2) If Q is of positive grading period r, then ΓDb(A) consists of r components
of shape ZZQ̃op and some components of shape ZZIA∞ whose number is 2r in case
Q is of type ĨAn.

Proof. The first part of (1) is an immediate consequence of Theorem 3.13,
while the second part is well-known; see [12, (5.6)]. Assume now that Q is of
positive grading period r. By Lemma 4.1, Γrepb( eQ) consists of the preprojective
component P, the preinjective component I and a set R of regular components.
Let F : repb(Q̃) → Db(A) be the functor induced from π. For each integer i,
denote by I[i] the set of complexes F(M)•[i] with M ∈ I, by P[i] the set of
complexes F(N)•[i] with N ∈ P, and R[i] the set of complexes F(L)•[i] with
L lying in some component in R. By Theorem 3.11(2), the set of vertices of
Γrepb( eQ) is formed by the complexes lying in I[i], R[i] and P[i+ 1], i ∈ ZZr.

Let C be a component inR. For each i ∈ ZZr, we deduce easily from Theorems
4.5(1) and 3.11(1) that the complexes F(M)•[i] with M ∈ C form an Auslander-
Reiten component Ci of Db(A) which is isomorphic to C as a translation quiver.
By Theorem 3.11(2), the Ci with i ∈ ZZr are r pairwise distinct components
which are of shape ZZIA∞. If Q is type ĨAn, then R consists of two components,
which induce 2r Auslander-Reiten components of shape ZZIA∞ of ΓDb(A).

Next fix an integer i ∈ ZZr. By Theorem 4.5(1) and 3.11(1), the complexes
in I[i] generate a full subquiver of ΓDb(A) of shape INQ̃op which is closed under
predecessors, while the complexes in P[i+1] generate a full subquiver of ΓDb(A)

of shape IN−Q̃op which is closed under successors. Assume that F(M)•[i] =
F(N)•[i + 1] for some M ∈ I and N ∈ P. By Lemma 3.10, N ∼= Mσ for
some σ ∈ Autπ(Q̃). However, σ induces an auto-equivalence of repb(Q̃) and
thus an automorphism of Γrepb( eQ). In particular, Iσ is a connected component
of Γrepb( eQ) which is isomorphic to I as a translation quiver. In view of Lemma
4.1, we see that σ(I) = I. In particular, N = Mσ ∈ I, a contradiction. Now
we deduce from Theorem 4.7(2) that the complexes F(M)•[i] and F(N)•[i+ 1]
form a component of ΓDb(A) which is of shape ZZQ̃op. This completes the proof
of the theorem.

Recall that a finite dimensional k-algebra A is called derived hereditary or
piecewise hereditary if Db(A) is triangle-equivalent to Db(H), where H is a
finite-dimensional hereditary k-algebra.

4.7. Corollary. Let A be a finite-dimensional elementary k-algebra with
radical squared zero. Then A is derived hereditary if and only if the ordinary
quiver of A is gradable.

Proof. By Corollary 3.14, it suffices to show the necessity. Let Q be
the ordinary quiver of A with minimal gradable covering Q̃. Assume that
Db(A) ∼= Db(H) with H a finite-dimensional k-algebra. Then A is of finite
global dimension and the Auslander-Reiten quiver of Db(A) has components
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with finite sections. It follows then from Theorem 4.6 that Q̃ is finite. By
Proposition 1.8, Q is gradable. The proof of the corollary is completed.

5. The Derived type

Throughout this section, we assume that k is algebraically closed. Let A
be a finite-dimensional k-algebra with bounded derived category Db(A). For
X• ∈ Db(A), one calls the infinite vector

hdim(X•) = (dimkHn(X•))n∈ZZ

the cohomology dimension vector of X•, which has at most finitely many nonzero
components. Denote by IN(ZZ) the set of vectors h = (hn)n∈ZZ with hn ∈ IN such
that hn = 0 for all but finite many integers n.

One says that A is derived finite if Db(A) has only finitely many indecom-
posable objects up to shift and isomorphism. It is known that A is derived
finite if and only if Db(A) is triangle-equivalent to Db(H) with H a hereditary
k-algebra of Dynkin type; see [22].

Recall that A is derived discrete if, for any given h ∈ IN(ZZ), there exist at
most finitely many indecomposable objects up to isomorphism of cohomology
dimension vector h in Db(A); see [22]. Moreover, we say that A is strictly
derived discrete if it is derived discrete but not derived finite.

Next, consider the k-algebra k[x] of polynomials in one variable. It is well
known that the simple k[x]-modules up to isomorphism are Tλ = k[x]/(x− λ),
λ ∈ k. One says that A is derived tame if, for any given h ∈ IN(ZZ), there exist
bounded complexes M•1 , . . . ,M

•
r of A-k[x]-bimodules which are k[x]-free of finite

rank such that all but finitely many (up to isomorphism) indecomposable objects
of cohomology dimension vector h in Db(A) are of the form M•i ⊗k[x] Tλ with
1 ≤ i ≤ r and λ ∈ k; compare [10]. We shall say that A is strictly derived tame
if it is derived tame but not derived discrete.

Finally, let IF = k < x, y > be the k-algebra of polynomials in two non-
commuting variables, and denote by IF-mod the category of finite dimensional
left IF-modules. One calls A derived wild if there exists a bounded complex M•

of A-IF-bimodules which are IF-free of finite rank such that the functor

M• ⊗IF − : IF-mod→ Db(A)

preserves indecomposability and isomorphism classes; compare [9]. It has been
shown in [9] that A is either derived tame or derived wild, but not both.
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5.1. Lemma. Let (P •, d•) be a complex in RC−(A-proj) of cohomology
dimension vector h = (hn)n∈ZZ. Write a = dimkA. If P r+1 = 0 for some r, then

dimk(Pn/radPn) ≤ hn + hn+1a+ · · ·+ hra
r−n, n ≤ r.

Proof. By hypothesis, Imdn ⊆ radPn+1 for all n. Since P r+1 = 0, we
have Hr(P •) = P r/Imdr−1. Hence dimk(P r/radP r) ≤ dimk(P r/Imdr−1) = hr.
Assume that n < r and that the statement holds for n + 1. In particular,
dimkP

n+1 ≤ a dimk(Pn+1/radPn+1) ≤ hn+1a+ · · ·+ hra
r−n. Now

dimk(Pn/radPn) ≤ dimk(Pn/Im dn−1)
= dimk(Pn/Ker dn) + dimk(Ker dn/Im dn−1)
= dimkIm dn + dimkHn(P •)
≤ hn + hn+1a+ · · ·+ hra

r−n.

This completes the proof of the lemma.

Let B be an arbitrary k-algebra. A B-representation M of a quiver Q
consists of a family of right B-modules M(a) with a ∈ Q0 and a family of
B-linear maps M(α) : M(a) → M(b) with α : a → b ∈ Q1. Clearly a B-
representation of Q is also a k-representation. We say that M is B-free of finite
rank if the M(a) are all B-free such that ⊕a∈Q0M(a) is of finite rank. In this
case, for a finite dimensional left B-module U , denote by M ⊗B U the finite
dimensional k-representation of Q such that (M ⊗B U)(a) = M(a) ⊗B U for
a ∈ Q0, and (M ⊗B U)(α) = M(α)⊗B 1IU for α ∈ Q1.

5.2. Theorem. Let A be a finite dimensional k-algebra with radical squared
zero, and let Q be the ordinary quiver A.

(1) If Q is of Dynkin type, then A is derived finite.
(2) If Q is non gradable of type ĨAn, then A is strictly derived discrete.
(3) If Q is gradable of Euclidean type, then A is strictly derived tame.
(4) If Q is wild, then A is derived wild.
Proof. Let π : Q̃ → Q be the minimal gradable covering of Q. Let

F : rep−,i(Q̃) → RC−,b(A-proj) and F : rep−,i(Q̃) → Db(A) be the induced
functors as defined in Section 3. By Theorem 3.11, F preserves indecompos-
ability and isomorphism classes, and every indecomposable object in Db(A) is
isomorphic to a shift of some complex F(M)• with M an indecomposable object
in rep−,i(Q). If Q is of Dynkin type, then Q̃ ∼= Q. Hence there exist only finitely
many non-isomorphic indecomposable objects in rep(Q̃). Therefore, Db(A) has
only finitely many indecomposable objects up to shift and isomorphism.

For proving the remaining cases, we need to introduce some notation. Fix
a vector h = (hn)n∈ZZ ∈ IN(ZZ). Let r, s with r ≤ s be integers such that hn = 0
whenever n > s or n ≤ r. Consider the full subquiver Q̃[r,s] of Q̃ generated
by the vertices lying in the Q̃n with r ≤ n ≤ s. Note that Q̃[r,s] is finite
and connected. Denote by M(h) the set of non-isomorphic indecomposable
objects in rep−,i(Q̃) whose images under F have cohomology dimension vector
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h. Let M ∈ M(h). Then F (M)• is of cohomology dimension vector h. Write
Mn = ⊕x∈QnM(x) for all n ∈ ZZ. If n > s, we deduce easily from Lemma 5.1
that F (M)n = 0, and hence Mn = 0. Therefore,

dimk(M≥r) =
∑

r≤n≤s
dimkM

n =
∑

r≤n≤s
dimkF (M)n/radF (M)n.

Using again Lemma 5.1, we get a constant c(h) independent of M such that
dimk(M≥r) ≤ c(h). Moreover, we deduce from the proof of Proposition 3.8
that M is r-truncated injective. Thus M≥r(h) = {M≥r | M ∈ M(h)} is, by
Proposition 2.4, a set of non-isomorphic indecomposable k-representations of
Q̃[r,s] of dimension ≤ c(h).

Consider now the case where Q is non-gradable of type ĨAt with t ≥ 1. By
Proposition 1.8(1), Q̃ is of type IA∞∞. As a consequence, Q̃[r,s] is a quiver of
type IAm. Therefore, M≥r(h) is finite, and so is M(h) by Proposition 2.4(1).
This shows that A is derived discrete. Furthermore, for each n ≥ 1, there exists
an indecomposable object Vn of dimension n in repb(Q̃), which gives rise to an
indecomposable object of width n in RC−,b(A-proj). Consequently, the F(Vn)
with n ≥ 1 are indecomposable objects in Db(A) such that F(Vn) is neither
isomorphic to nor a shift of F(Vn′) whenever n 6= n′. That is, A is not derived
finite. This proves (2).

Next, we deal with the case where Q is gradable of Euclidean type. We may
then assume that Q̃ = Q. It is well known that there exist k[x]-representations
M1, . . . ,Ml of Q̃ which are k[x]-free of finite rank such that, up to isomorphism,
all but finitely many indecomposables objects in rep(Q̃) of dimension ≤ c(h)
are of the form Mi ⊗k[x] Tλ with λ ∈ k and 1 ≤ i ≤ l. It is easy to see that
F (Mi⊗k[x]Tλ)• ∼= F (Mi)•⊗k[x]Tλ. Thus the F (Mi)• with 1 ≤ i ≤ l are bounded
complexes of A-k[x]-bimodules which are A-projective and k[x]-free of finite rank
such that all but finitely many (up to isomorphism) indecomposable objects in
Db(A) are of the form F (Mi)• ⊗k[x] Tλ. Hence A is derived tame. Moreover,
it is well known that there exists a vector (nx)x∈ eQ0

of positive integers and

an infinite set M of non-isomorphic indecomposable objects M in rep(Q̃) such
that dimkM(x) = nx for all x ∈ Q̃0. Therefore, there exist infinite many non-
isomorphic complexes F (M)• of the same cohomology dimension vector. This
shows that A is not derived discrete.

Finally, suppose that Q is a wild quiver. By Proposition 1.8(2), Q̃ has a
finite connected full subquiver ∆ of wild type. It is then well known that there
exists an IF-representation N of ∆ which is IF-free of finite rank such that

N ⊗IF − : IF-mod→ rep(∆)

preserves indecomposability and isomorphism classes. Then F (N)• is a bounded
complex of A-IF-bimodules which are A-projective and IF-free of finite rank such
that

F (N)• ⊗IF − : IF-mod→ Db(A)

preserves indecomposability and isomorphism classes. This completes the proof
of the theorem.
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