ALMOST REGULAR AUSLANDER-REITEN COMPONENTS
 AND QUASITILTED ALGEBRAS

Shiping Liu

Introduction

The problem of giving a general description of the shapes of AuslanderReiten components of an artin algebra has been settled for semiregular components (see $[\mathbf{4}, \mathbf{9}, 14]$). Recently, S . Li has considered this problem for components in which every possible path from an injective module to a projective module is sectional. The result says that such a component is embeddable in some $\mathbb{Z} \Delta$ with Δ a quiver without oriented cycles if it contains no oriented cycle. In this note, we shall show that such a component is a semiregular tube if it contains an oriented cycle. In this way, one obtains a complete description of the shapes of such components. For this reason, we propose to call such components almost regular. We shall further give some new characterizations of tilted and quasi-tilted algebras (see (2.1), (2.2)), which shows that every Auslander-Reiten component of a quasitilted algebra is almost regular. As an easy application, we shall obtain a result of Coelho-Skowroński [3] saying that a quasitilted algebra is tilted if it admits a non-semiregular Auslander-Reiten component.

1. Almost regular components

Throughout this note, let A be a connected artin algebra, $\bmod A$ be the category of finitely generated right A-modules and ind A the full subcategory of $\bmod A$ generated by the indecomposable modules. We denote by Γ_{A} the Auslander-Reiten quiver of A and by τ, τ^{-}the Auslander-Reiten translations $\mathrm{DTr}, \operatorname{TrD}$ respectively. We shall identify a module X in ind A with the corresponding vertex $[X]$ (that is, the isomorphism class of X) in Γ_{A}. We shall say that a module $X \in \Gamma_{A}$ is left stable (respectively, right stable) if $\tau^{n} X$ (respectively, $\tau^{-n} X$) is nonzero for all positive integers n.

Recall that a connected component of Γ_{A} is regular if it contains no projective or injective module; and semiregular if it does not contain both a projective module and an injective module.
1.1. Definition. A connected component \mathcal{C} of Γ_{A} is said to be almost regular if every possible path

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n-1} \rightarrow X_{n}
$$

in \mathcal{C} with X_{0} being injective and X_{n} being projective is sectional, that is, there is no i with $0<i<n$ such that $\tau X_{i+1}=X_{i-1}$.

Note that a semiregular Auslander-Reiten component is almost regular by definition. Conversely we have the following result.
1.2. Theorem. Let \mathcal{C} be an almost regular component of Γ_{A}. If \mathcal{C} contains an oriented cycle, then it is semiregular.

Proof. Assume that \mathcal{C} contains both a projective module and an injective module. We first show that \mathcal{C} contains no τ-periodic module. In fact if this is not true, then \mathcal{C} contains an arrow $M \rightarrow N$ or $N \rightarrow M$ with M being τ-periodic and N being neither left stable nor right stable. Thus M admits a projective successor P and an injective predecessor I in \mathcal{C}. This gives rise to a nonsectional path in \mathcal{C} from I to P, and hence a contradiction. Let now

$$
X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{r-1} \rightarrow X_{r}=X_{1}
$$

be an oriented cycle in \mathcal{C}. If the X_{i} are all stable, then they are all τ-periodic [8, (2.7)], which is a contradiction. Thus the cycle contains a nonstable module. We need only to consider the case where one of the X_{i} is not right stable. By applying τ^{-}if necessary, we may assume that X_{1} is injective. Let

$$
\begin{equation*}
Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow Y_{s} \rightarrow Y_{s+1} \tag{*}
\end{equation*}
$$

be a path in \mathcal{C} of minimal positive length such that Y_{1} has an injective predecessor in \mathcal{C} and $Y_{s+1}=\tau^{t} Y_{1}$ with $t \geq 0$.

Assume that $t=0$, that is $Y_{s+1}=Y_{1}$. Then the path

$$
Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow Y_{s} \rightarrow Y_{s+1} \rightarrow Y_{s+2}=Y_{2}
$$

is not sectional [$\mathbf{1}]$. Thus $s>2$ since Y_{1} and Y_{2} are not τ-periodic. We shall obtain a contradiction to the minimality of the length of $(*)$ by finding a shorter path of this kind. Let $1<i_{0}<s+2$ be such that $Y_{i_{0}-1}=\tau Y_{i_{0}+1}$. Note that $Y_{i_{0}+1}$ admits no projective successor in \mathcal{C} since Y_{1} has an injective predecessor in \mathcal{C}. In particular the Y_{i} with $1 \leq i \leq s$ are all nonprojective. If $i_{0}=s+1$, then $Y_{s}=\tau Y_{2}$ and we have a desired path $Y_{2} \rightarrow \cdots \rightarrow Y_{s}=\tau Y_{2}$. If $i_{0}=s$, then $Y_{s-1}=\tau Y_{s+1}=\tau Y_{1}$ and we get a path $Y_{1} \rightarrow \cdots \rightarrow Y_{s-1}=\tau Y_{1}$. If $1<i_{0}<s$, then

$$
Y_{1} \rightarrow \cdots \rightarrow Y_{i_{0}-1} \rightarrow \tau Y_{i_{0}+2} \rightarrow \cdots \rightarrow \tau Y_{s+1}=\tau Y_{1}
$$

is a desired path since the Y_{i} are all nonprojective.
Thus $t>0$. This implies that Y_{1} has no projective successor in \mathcal{C} since $\tau^{t} Y_{1}$ has an injective predecessor in \mathcal{C}. Suppose that $0 \leq j<t$ and \mathcal{C} contains a path

$$
\tau^{j} Y_{1} \rightarrow \tau^{j} Y_{2} \rightarrow \cdots \rightarrow \tau^{j} Y_{s} \rightarrow \tau^{t+j} Y_{1}
$$

Since $j<t$, the module $\tau^{j} Y_{1}$ is a successor of $\tau^{t} Y_{1}$, and hence of Y_{1} in \mathcal{C}. Thus $\tau^{t+j} Y_{1}$ and the $\tau^{j} Y_{i}$ with $1 \leq i \leq s$ are all nonprojective. Thus \mathcal{C} contains a path

$$
\tau^{j+1} Y_{1} \rightarrow \tau^{j+1} Y_{2} \rightarrow \cdots \rightarrow \tau^{j+1} Y_{s} \rightarrow \tau^{t+j+1} Y_{1}
$$

By induction, \mathcal{C} contains a path

$$
\tau^{t} Y_{1} \rightarrow \tau^{t} Y_{2} \rightarrow \cdots \rightarrow \tau^{t} Y_{s} \rightarrow \tau^{2 t} Y_{1}
$$

Continuing this argument, we conclude that for all $i \geq 0, \mathcal{C}$ contains a path

$$
\tau^{i t} Y_{1} \rightarrow \tau^{i t} Y_{2} \rightarrow \cdots \rightarrow \tau^{i t} Y_{s} \rightarrow \tau^{(i+1) t} Y_{1}
$$

Therefore the Y_{i} with $1 \leq i \leq s$ are all left stable, and \mathcal{C} contains an infinite path

$$
Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow Y_{s} \rightarrow \tau^{t} Y_{1} \rightarrow \tau^{t} Y_{2} \rightarrow \cdots \rightarrow \tau^{t} Y_{s} \rightarrow \tau^{2 t} Y_{1} \rightarrow \cdots \quad(* *)
$$

Suppose that $Y_{j}=\tau^{k} Y_{i}$ with $1 \leq i<j \leq s$ and $k \in \mathbb{Z}$. Then we have two paths $Y_{i} \rightarrow \cdots \rightarrow Y_{j}=\tau^{k} Y_{i}$ and

$$
Y_{j} \rightarrow \cdots \rightarrow Y_{s} \rightarrow \tau^{t} Y_{1} \rightarrow \cdots \rightarrow \tau^{t} Y_{i}=\tau^{t-k} Y_{j}
$$

of length less than s. This is again a contradiction to the minimality of the length of $(*)$ since either $k \geq 0$ or $t-k \geq 0$. Therefore the Y_{i} with $1 \leq i \leq s$ pairwise belong to different τ-orbits. In particular the infinite path $(* *)$ is sectional.

Let Γ be the left stable component of Γ_{A} containing the Y_{i}. Then Γ contains oriented cycles but no τ-periodic module. Thus every module in Γ admits at most two immediate predecessors in $\Gamma[\mathbf{9},(2.3)]$. We shall prove that the Y_{i} with $1 \leq i \leq s$ meet each τ-orbit of Γ. Indeed, let $\tau^{j} Y_{i}$ with $1 \leq i \leq s$ and $j \in \mathbb{Z}$ be a module in Γ and Z an immediate successor of $\tau^{j} Y_{i}$ in Γ. Let p, q be positive integers such that $p+j=q t$. Then $\tau^{p+1} Z$ is an immediate predecessor of $\tau^{p+j} Y_{i}=\tau^{q t} Y_{i}$ in Γ. Since $q>0$, the module $\tau^{q t} Y_{i}$ has two distinct immediate predecessors in Γ which lie in the τ-orbit of the Y_{i} with $1 \leq i \leq s$. Therefore Z lies in the τ-orbit of the Y_{i} with $1 \leq i \leq s$.

Let $U=\tau^{n} Y_{i}$ with $1 \leq i \leq s$ and $n \in \mathbb{Z}$ be a module in Γ. If $n \leq 0$, then U is clearly a successor of Y_{1} in Γ. If $n>0$, then $n=t d+m$ with $d \geq 0$ and $0 \leq m<t$. Therefore U is a successor of $\tau^{(d+1) t} Y_{i}$, and hence of Y_{1} in Γ. This shows that every module in Γ is a successor of Y_{1} in Γ. Suppose that Γ is different from \mathcal{C}, that is \mathcal{C} contains a projective module. Then \mathcal{C} contains an arrow $M \rightarrow P$ with $M \in \Gamma$ and P being projective. Thus P is a successor of Y_{1} in \mathcal{C}, which is a contradiction. Therefore $\mathcal{C}=\Gamma$ is left stable. This completes the proof the theorem.

Let \mathcal{C} be a connected component of Γ_{A}. Recall that a section of \mathcal{C} is a connected full convex subquiver which contains no oriented cycle and meets exactly once each τ-orbit of \mathcal{C} (see [11, section 2]). The main result of $[\mathbf{7}]$ says that \mathcal{C} contains a section Δ if and only if \mathcal{C} is almost regular and contains no oriented cycle. In this case, \mathcal{C} can be embedded in $\mathbb{Z} \Delta[\mathbf{9},(3.2)]$. Combining these results with those in $[\mathbf{4}],[\mathbf{9},(2.5)]$ and $[\mathbf{1 4}]$, we obtain the following description of the shapes of almost regular Auslander-Reiten components.
1.3. Theorem. Let \mathcal{C} be an almost regular component of Γ_{A}. Then \mathcal{C} is either a ray tube, a coray tube, a stable tube or can be embedded in some $\mathbb{Z} \Delta$ with Δ a valued quiver without oriented cycles.

We conclude this section by studying some behaviors of the maps involving modules from an Auslander-Reiten component containing a section. Recall that a path in ind A is a sequence

$$
X_{0} \xrightarrow{f_{1}} X_{1} \rightarrow \cdots \rightarrow X_{n-1} \xrightarrow{f_{n}} X_{n}
$$

of nonzero non-isomorphisms in ind A. In this case, we call X_{0} a predecessor of X_{n}, and X_{n} a successor of X_{0} in ind A. Moreover the path is said to be sectional if there is no i with $0<i<n$ such that $\tau X_{i+1} \cong X_{i-1}$. Thus a (sectional) path of irreducibles maps in ind A gives rise to a (sectional) path in Γ_{A} and vice versa.
1.4. Lemma. Let \mathcal{C} be a connected component of Γ_{A} containing a section Δ. Let $f: X \rightarrow Y$ be a nonzero map in ind A. If Y lies in some $\tau^{r} \Delta$ with $r \in \mathbb{Z}$ while X is not a predecessor of Y in \mathcal{C}, then $\tau^{n} \Delta$ with $n \geq r$ contains a module which is a successor of X in ind A.

Proof. Assume that Y lies in $\tau^{r} \Delta$ and X is not a predecessor of Y in \mathcal{C}. We shall use induction on $s=n-r$. The lemma is trivially true for $s=0$. Suppose that $s>0$ and the lemma is true for $s-1$. Since X is not a predecessor of Y in \mathcal{C} and f is nonzero, there is an infinite path

$$
\cdots \rightarrow Y_{i} \rightarrow Y_{i-1} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}=Y
$$

in \mathcal{C} such that $\operatorname{Hom}_{A}\left(X, Y_{i}\right) \neq 0$ for all $i \geq 0$. Since \mathcal{C} is embedded in $\mathbb{Z} \Delta$, every Y_{i} belongs to some $\tau^{r_{i}} \Delta$ with $r_{i} \geq r$. Now the lemma is true for s if there is some $r_{i} \geq n$. Otherwise, there is some $i_{0} \geq 0$ such that $r_{i}=r_{i_{0}}$ for all $i \geq i_{0}$. Therefore the path

$$
\cdots \rightarrow Y_{j} \rightarrow Y_{j-1} \rightarrow \cdots \rightarrow Y_{i_{0}+1} \rightarrow Y_{i_{0}}
$$

lies entirely in $\tau^{r_{i}} \Delta$, and hence is sectional. By Lemma 2 of $[\mathbf{S}]$, there is some $p, q \geq r_{0}$ such that $\operatorname{Hom}_{A}\left(Y_{p}, \tau Y_{q}\right) \neq 0$. Note that Y_{p} is not a predecessor of τY_{q} in \mathcal{C}. By inductive hypothesis, there is a module in $\tau^{n} \Delta$ which is a successor of Y_{p}, and hence of X in ind A. The proof is completed.

2. Quasitilted algebras

We begin this section with a new characterization of tilted algebras which shows the separating property of a complete slice. We denote by $D(A)$ the standard injective cogenerator of $\bmod A$.
2.1. Theorem. Let \mathcal{C} be a connected component of Γ_{A}. Then A is tilted with \mathcal{C} a connecting component of Γ_{A} if and only if \mathcal{C} contains a section Δ satisfying:
(1) $\operatorname{Hom}_{A}(X, \tau Y)=0$ for all $X, Y \in \Delta$,
(2) $\operatorname{Hom}_{A}\left(\tau^{-} X, A\right)=0$ for all $X \in \Delta$, and
(3) $\operatorname{Hom}_{A}(D(A), \tau X)=0$ for all $X \in \Delta$.

Proof. Assume that A is tilted and \mathcal{C} is a connecting component of Γ_{A}. Let \mathcal{S} be a complete slice in $\bmod A$ whose indecomposable objects lie in \mathcal{C}. It is then well-known that the full subquiver Δ of \mathcal{C} generated by the indecomposable objects of \mathcal{S} is a desired section of \mathcal{C}.

Conversely let Δ be a section of \mathcal{C} satisfying the conditions stated in the theorem. Then Δ is finite [13, Lemma 2]. Let T be the direct sum of the modules in Δ. Then T is a partial tilting module of injective dimension less than two (see, for example, $[\mathbf{1 2},(2.4)])$. Hence there is a module N in mod- A such that $T \oplus N$ is tilting module [2, (2.1)]. Assume that there is an indecomposable direct summand U of N that is not a direct summand of T. Then either $\operatorname{Hom}_{A}(U, T) \neq$ 0 or $\operatorname{Hom}_{A}(T, U) \neq 0$ since $\operatorname{End}_{A}(T \oplus N)$ is connected. This implies that either $\operatorname{Hom}_{A}(U, \tau T) \neq 0$ or $\operatorname{Hom}_{A}\left(\tau^{-} T, U\right) \neq 0$ since Δ is a finite section of \mathcal{C}. Therefore either $\operatorname{Ext}_{A}^{1}(T, U) \neq 0$ or $\operatorname{Ext}_{A}^{1}(U, T) \neq 0$. This is contrary to $T \oplus N$ being a tilting module. Therefore T is a tilting module, and hence a faithful module. It follows now from $[\mathbf{1 0},(1.6)]$ that A is tilted and \mathcal{C} is a connecting component of Γ_{A}.

Recall that A is quasitilted if the global dimension of A is at most two and every module in ind A is either of projective dimension less than two or of injective dimension dimension less than two. There are many characterizations of quasitilted algebras (see [5]). We note that the following is convenient in certain cases.
2.2. Proposition. An artin algebra A is quasitilted if and only if every possible path in ind A from an injective module to a projective module is sectional.

Proof. We first give the proof of sufficiency which is due to Happel. Assume that A is not quasitilted. If the global dimension of A is greater than two, then there is a simple A-module S of projective dimension greater than two. Hence the first syzygy of S has an indecomposable direct summand X of projective dimension greater than one. Therefore $\operatorname{Hom}_{A}(D(A), \tau X) \neq 0$. Note that X is a submodule of the radical of the projective cover of S. This gives rise to a nonsectional path in ind A from an injective module to a projective module. If there is some Y in ind A of projective and injective dimensions both greater than one, then $\operatorname{Hom}_{A}(D(A), \tau X) \neq 0$ and $\operatorname{Hom}_{A}\left(\tau^{-} X, A\right) \neq 0$. So we can also find a nonsectional path in ind A from an injective module to a projective module.

Assume now that

$$
X_{0} \xrightarrow{f_{1}} X_{1} \rightarrow \cdots \rightarrow X_{n-1} \xrightarrow{f_{n}} X_{n}
$$

is a nonsectional path in ind A with X_{0} being injective and X_{n} being projective. We shall show that X_{n} has a predecessor in ind A whose projective dimension is greater than one. This implies that A is not quasitilted [$\mathbf{5},(1.14)]$. Indeed, let $0<r<n$ be such that $\tau X_{r+1}=X_{r-1}$. Then $r>1$ since X_{0} is injective. If $f_{1} \cdots f_{r-1} \neq 0$, then the projective dimension of X_{r+1} is greater than one. Suppose that $f_{1} \cdots f_{r}=0$. Let $1<s \leq r$ be such that $f_{1} \cdots f_{s-1} \neq 0$ and
$\left(f_{1} \cdots f_{s-1}\right) f_{s}=0$. By the lemma of Section 1 of $[\mathbf{6}]$, there is some Z in ind A such that $\operatorname{Hom}_{A}\left(X_{0}, \tau Z\right) \neq 0$ and $\operatorname{Hom}_{A}\left(Z, X_{s}\right) \neq 0$. Therefore Z is a predecessor of X_{n} in ind A of projective dimension greater than one. The proof is completed.

As an immediate consequence, every connected component of the AuslanderReiten quiver of a quasitilted algebra is almost regular (see also [5, (1.11)]).
2.3. Theorem [3]. Let A be a connected quasitilted artin algebra. If Γ_{A} contains a non-semiregular component \mathcal{C}, then A is tilted with \mathcal{C} the connecting component of Γ_{A}.

Proof. Let \mathcal{C} be a non-semiregular component of Γ_{A}. By Theorem 1.2, \mathcal{C} contains no oriented cycle. By $[\mathbf{7},(2.10)], \mathcal{C}$ contains a section Δ such that every module in Δ has an injective predecessor in Δ while $\tau \Delta$ has no injective predecessor in \mathcal{C}. Dually \mathcal{C} contains a section Δ_{1} such that every module in Δ_{1} has a projective successor in Δ_{1}.

Assume that $\operatorname{Hom}_{A}\left(\tau^{-} X, P\right) \neq 0$ with $X \in \Delta$ and $P \in$ ind A being projective. Since X has an injective predecessor I in Δ, we have a nonsectional path in ind A from I to P, which is a contradiction. Suppose that there is a path in ind A from an injective module I_{0} to a module τX with $X \in \Delta$. Then I_{0} is not a predecessor of τX in \mathcal{C}. Applying Lemma 1.4 to Δ_{1}, we get a module $Y \in \Delta_{1}$ such that τY is a successor of I_{0} in ind A. Since Y admits a projective successor P_{0} in Δ_{1}, this gives rise to a nonsectional path in ind A from I_{0} to P_{0}, which is impossible. Therefore there is no module in $\tau \Delta$ which is a successor of an injective module in ind A. In particular $\operatorname{Hom}_{A}(D(A), \tau \Delta)=0$ and $\operatorname{Hom}_{A}(\Delta, \tau \Delta)=0$. By Theorem 2.1, A is tilted and \mathcal{C} is the connecting component of Γ_{A}. This completes the proof.

Acknowledgement. The author gratefully acknowledges partial support from NSERC of Canada.

References

1. R. Bautista and S. O. Smalø, Nonexistent cycles, Comm. Algebra 11 (1996) 67-82.
2. K. Bongartz, Tilted algebras, Lecture Notes in Mathematics 903 (Springer, Berlin, 1981) 26-38.
3. F. Coelho and A. Skowroński, On Auslander-Reiten components for quasi-tilted algebras, Fund. Math. 149 (1996) 67-82.
4. D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTrperiodic modules, Lecture Notes in Mathematics 832 (Springer, Berlin, 1980) 280-294.
5. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Memoirs Amer. Math. Soc. 575 (1996).
6. D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. 60 (1993) 237-246.
7. S. Li, The embedding of the components of the Auslander-Reiten quiver of an artin algebra containing no oriented cycle, preprint.
8. S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992) 32-54.
9. S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. (2) 47 (1993) 405-416.
10. S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. 16 (1993) 12-19.
11. S. Liu, On short cycles in a module category, J. London Math. Soc. (2) 51 (1995) 62-74.
12. C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099 (Springer, Berlin, 1984).
13. A. Skowroński, Regualr Auslander-Reiten components containing directing modules, Amer. Math. Soc. 120 (1994) 19-26.
14. Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991) 652-672.

Département de Mathématiques
Université de Sherbrooke
Sherbrooke, Québec
Canada J1K 2R1

Email: shiping.liu@dmi.usherb.ca

