ALMOST REGULAR AUSLANDER-REITEN COMPONENTS

AND QUASITILTED ALGEBRAS

Shiping Liu

Introduction

The problem of giving a general description of the shapes of Auslander-Reiten components of an artin algebra has been settled for semiregular components (see [4, 9, 14]). Recently, S. Li has considered this problem for components in which every possible path from an injective module to a projective module is sectional. The result says that such a component is embeddable in some $\mathbb{Z}\Delta$ with Δ a quiver without oriented cycles if it contains no oriented cycle. In this note, we shall show that such a component is a semiregular tube if it contains an oriented cycle. In this way, one obtains a complete description of the shapes of such components. For this reason, we propose to call such components almost regular. We shall further give some new characterizations of tilted and quasi-tilted algebras (see (2.1), (2.2)), which shows that every Auslander-Reiten component of a quasitilted algebra is almost regular. As an easy application, we shall obtain a result of Coelho-Skowroński [3] saying that a quasitilted algebra is tilted if it admits a non-semiregular Auslander-Reiten component.

1. Almost regular components

Throughout this note, let A be a connected artin algebra, mod A be the category of finitely generated right A-modules and ind A the full subcategory of mod A generated by the indecomposable modules. We denote by Γ_A the Auslander-Reiten quiver of A and by τ , τ^- the Auslander-Reiten translations DTr, TrD respectively. We shall identify a module X in ind A with the corresponding vertex [X] (that is, the isomorphism class of X) in Γ_A . We shall say that a module $X \in \Gamma_A$ is *left stable* (respectively, *right stable*) if $\tau^n X$ (respectively, $\tau^{-n}X$) is nonzero for all positive integers n.

Recall that a connected component of Γ_A is *regular* if it contains no projective or injective module; and *semiregular* if it does not contain both a projective module and an injective module.

1.1. DEFINITION. A connected component C of Γ_A is said to be *almost* regular if every possible path

$$X_0 \to X_1 \to \cdots \to X_{n-1} \to X_n$$

in C with X_0 being injective and X_n being projective is sectional, that is, there is no *i* with 0 < i < n such that $\tau X_{i+1} = X_{i-1}$.

Note that a semiregular Auslander-Reiten component is almost regular by definition. Conversely we have the following result.

1.2. THEOREM. Let C be an almost regular component of Γ_A . If C contains an oriented cycle, then it is semiregular.

Proof. Assume that \mathcal{C} contains both a projective module and an injective module. We first show that \mathcal{C} contains no τ -periodic module. In fact if this is not true, then \mathcal{C} contains an arrow $M \to N$ or $N \to M$ with M being τ -periodic and N being neither left stable nor right stable. Thus M admits a projective successor P and an injective predecessor I in \mathcal{C} . This gives rise to a nonsectional path in \mathcal{C} from I to P, and hence a contradiction. Let now

$$X_1 \to X_2 \to \cdots \to X_{r-1} \to X_r = X_1$$

be an oriented cycle in C. If the X_i are all stable, then they are all τ -periodic [8, (2.7)], which is a contradiction. Thus the cycle contains a nonstable module. We need only to consider the case where one of the X_i is not right stable. By applying τ^- if necessary, we may assume that X_1 is injective. Let

$$Y_1 \to Y_2 \to \cdots \to Y_s \to Y_{s+1}$$
 (*)

be a path in \mathcal{C} of minimal positive length such that Y_1 has an injective predecessor in \mathcal{C} and $Y_{s+1} = \tau^t Y_1$ with $t \ge 0$.

Assume that t = 0, that is $Y_{s+1} = Y_1$. Then the path

$$Y_1 \to Y_2 \to \cdots \to Y_s \to Y_{s+1} \to Y_{s+2} = Y_2$$

is not sectional [1]. Thus s > 2 since Y_1 and Y_2 are not τ -periodic. We shall obtain a contradiction to the minimality of the length of (*) by finding a shorter path of this kind. Let $1 < i_0 < s + 2$ be such that $Y_{i_0-1} = \tau Y_{i_0+1}$. Note that Y_{i_0+1} admits no projective successor in \mathcal{C} since Y_1 has an injective predecessor in \mathcal{C} . In particular the Y_i with $1 \leq i \leq s$ are all nonprojective. If $i_0 = s + 1$, then $Y_s = \tau Y_2$ and we have a desired path $Y_2 \to \cdots \to Y_s = \tau Y_2$. If $i_0 = s$, then $Y_{s-1} = \tau Y_{s+1} = \tau Y_1$ and we get a path $Y_1 \to \cdots \to Y_{s-1} = \tau Y_1$. If $1 < i_0 < s$, then

$$Y_1 \to \cdots \to Y_{i_0-1} \to \tau Y_{i_0+2} \to \cdots \to \tau Y_{s+1} = \tau Y_1$$

is a desired path since the Y_i are all nonprojective.

Thus t > 0. This implies that Y_1 has no projective successor in C since $\tau^t Y_1$ has an injective predecessor in C. Suppose that $0 \le j < t$ and C contains a path

$$\tau^j Y_1 \to \tau^j Y_2 \to \cdots \to \tau^j Y_s \to \tau^{t+j} Y_1$$

Since j < t, the module $\tau^j Y_1$ is a successor of $\tau^t Y_1$, and hence of Y_1 in C. Thus $\tau^{t+j}Y_1$ and the $\tau^j Y_i$ with $1 \le i \le s$ are all nonprojective. Thus C contains a path

$$\tau^{j+1}Y_1 \to \tau^{j+1}Y_2 \to \cdots \to \tau^{j+1}Y_s \to \tau^{t+j+1}Y_1.$$

By induction, C contains a path

$$\tau^t Y_1 \to \tau^t Y_2 \to \cdots \to \tau^t Y_s \to \tau^{2t} Y_1.$$

Continuing this argument, we conclude that for all $i \ge 0$, C contains a path

$$\tau^{it}Y_1 \to \tau^{it}Y_2 \to \cdots \to \tau^{it}Y_s \to \tau^{(i+1)t}Y_1.$$

Therefore the Y_i with $1 \leq i \leq s$ are all left stable, and C contains an infinite path

$$Y_1 \to Y_2 \to \dots \to Y_s \to \tau^t Y_1 \to \tau^t Y_2 \to \dots \to \tau^t Y_s \to \tau^{2t} Y_1 \to \dots$$
 (**)

Suppose that $Y_j = \tau^k Y_i$ with $1 \le i < j \le s$ and $k \in \mathbb{Z}$. Then we have two paths $Y_i \to \cdots \to Y_j = \tau^k Y_i$ and

$$Y_j \to \dots \to Y_s \to \tau^t Y_1 \to \dots \to \tau^t Y_i = \tau^{t-k} Y_j$$

of length less than s. This is again a contradiction to the minimality of the length of (*) since either $k \ge 0$ or $t - k \ge 0$. Therefore the Y_i with $1 \le i \le s$ pairwise belong to different τ -orbits. In particular the infinite path (**) is sectional.

Let Γ be the left stable component of Γ_A containing the Y_i . Then Γ contains oriented cycles but no τ -periodic module. Thus every module in Γ admits at most two immediate predecessors in Γ [9, (2.3)]. We shall prove that the Y_i with $1 \leq i \leq s$ meet each τ -orbit of Γ . Indeed, let $\tau^j Y_i$ with $1 \leq i \leq s$ and $j \in \mathbb{Z}$ be a module in Γ and Z an immediate successor of $\tau^j Y_i$ in Γ . Let p, q be positive integers such that p + j = qt. Then $\tau^{p+1}Z$ is an immediate predecessor of $\tau^{p+j}Y_i = \tau^{qt}Y_i$ in Γ . Since q > 0, the module $\tau^{qt}Y_i$ has two distinct immediate predecessors in Γ which lie in the τ -orbit of the Y_i with $1 \leq i \leq s$. Therefore Zlies in the τ -orbit of the Y_i with $1 \leq i \leq s$.

Let $U = \tau^n Y_i$ with $1 \leq i \leq s$ and $n \in \mathbb{Z}$ be a module in Γ . If $n \leq 0$, then U is clearly a successor of Y_1 in Γ . If n > 0, then n = td + m with $d \geq 0$ and $0 \leq m < t$. Therefore U is a successor of $\tau^{(d+1)t}Y_i$, and hence of Y_1 in Γ . This shows that every module in Γ is a successor of Y_1 in Γ . Suppose that Γ is different from \mathcal{C} , that is \mathcal{C} contains a projective module. Then \mathcal{C} contains an arrow $M \to P$ with $M \in \Gamma$ and P being projective. Thus P is a successor of Y_1 in \mathcal{C} , which is a contradiction. Therefore $\mathcal{C} = \Gamma$ is left stable. This completes the proof the theorem.

Let \mathcal{C} be a connected component of Γ_A . Recall that a section of \mathcal{C} is a connected full convex subquiver which contains no oriented cycle and meets exactly once each τ -orbit of \mathcal{C} (see [11, section 2]). The main result of [7] says that \mathcal{C} contains a section Δ if and only if \mathcal{C} is almost regular and contains no oriented cycle. In this case, \mathcal{C} can be embedded in $\mathbb{Z}\Delta$ [9, (3.2)]. Combining these results with those in [4], [9, (2.5)] and [14], we obtain the following description of the shapes of almost regular Auslander-Reiten components.

1.3. THEOREM. Let C be an almost regular component of Γ_A . Then C is either a ray tube, a coray tube, a stable tube or can be embedded in some $\mathbb{Z}\Delta$ with Δ a valued quiver without oriented cycles.

We conclude this section by studying some behaviors of the maps involving modules from an Auslander-Reiten component containing a section. Recall that a *path* in ind A is a sequence

$$X_0 \xrightarrow{f_1} X_1 \to \dots \to X_{n-1} \xrightarrow{f_n} X_n$$

of nonzero non-isomorphisms in ind A. In this case, we call X_0 a predecessor of X_n , and X_n a successor of X_0 in ind A. Moreover the path is said to be sectional if there is no *i* with 0 < i < n such that $\tau X_{i+1} \cong X_{i-1}$. Thus a (sectional) path of irreducibles maps in ind A gives rise to a (sectional) path in Γ_A and vice versa.

1.4. LEMMA. Let C be a connected component of Γ_A containing a section Δ . Let $f: X \to Y$ be a nonzero map in ind A. If Y lies in some $\tau^r \Delta$ with $r \in \mathbb{Z}$ while X is not a predecessor of Y in C, then $\tau^n \Delta$ with $n \ge r$ contains a module which is a successor of X in ind A.

Proof. Assume that Y lies in $\tau^r \Delta$ and X is not a predecessor of Y in C. We shall use induction on s = n - r. The lemma is trivially true for s = 0. Suppose that s > 0 and the lemma is true for s - 1. Since X is not a predecessor of Y in C and f is nonzero, there is an infinite path

$$\cdots \to Y_i \to Y_{i-1} \to \cdots \to Y_1 \to Y_0 = Y$$

in \mathcal{C} such that $\operatorname{Hom}_A(X, Y_i) \neq 0$ for all $i \geq 0$. Since \mathcal{C} is embedded in $\mathbb{Z}\Delta$, every Y_i belongs to some $\tau^{r_i}\Delta$ with $r_i \geq r$. Now the lemma is true for s if there is some $r_i \geq n$. Otherwise, there is some $i_0 \geq 0$ such that $r_i = r_{i_0}$ for all $i \geq i_0$. Therefore the path

$$\cdots \to Y_j \to Y_{j-1} \to \cdots \to Y_{i_0+1} \to Y_{i_0}$$

lies entirely in $\tau^{r_{i_0}}\Delta$, and hence is sectional. By Lemma 2 of [S], there is some $p, q \geq r_0$ such that $\operatorname{Hom}_A(Y_p, \tau Y_q) \neq 0$. Note that Y_p is not a predecessor of τY_q in \mathcal{C} . By inductive hypothesis, there is a module in $\tau^n \Delta$ which is a successor of Y_p , and hence of X in ind A. The proof is completed.

2. Quasitilted algebras

We begin this section with a new characterization of tilted algebras which shows the separating property of a complete slice. We denote by D(A) the standard injective cogenerator of mod A.

2.1. THEOREM. Let C be a connected component of Γ_A . Then A is tilted with C a connecting component of Γ_A if and only if C contains a section Δ satisfying: (1) Hom_A(X, τY) = 0 for all X, $Y \in \Delta$,

(2) $\operatorname{Hom}_A(\tau^- X, A) = 0$ for all $X \in \Delta$, and

(3) $\operatorname{Hom}_A(D(A), \tau X) = 0$ for all $X \in \Delta$.

Proof. Assume that A is tilted and C is a connecting component of Γ_A . Let S be a complete slice in mod A whose indecomposable objects lie in C. It is then well-known that the full subquiver Δ of C generated by the indecomposable objects of S is a desired section of C.

Conversely let Δ be a section of \mathcal{C} satisfying the conditions stated in the theorem. Then Δ is finite [13, Lemma 2]. Let T be the direct sum of the modules in Δ . Then T is a partial tilting module of injective dimension less than two (see, for example, [12, (2.4)]). Hence there is a module N in mod-A such that $T \oplus N$ is tilting module [2, (2.1)]. Assume that there is an indecomposable direct summand U of N that is not a direct summand of T. Then either $\operatorname{Hom}_A(U,T) \neq 0$ or $\operatorname{Hom}_A(T,U) \neq 0$ since $\operatorname{End}_A(T \oplus N)$ is connected. This implies that either $\operatorname{Hom}_A(U,\tau T) \neq 0$ or $\operatorname{Hom}_A(\tau^-T,U) \neq 0$ since Δ is a finite section of \mathcal{C} . Therefore either $\operatorname{Ext}^1_A(T,U) \neq 0$ or $\operatorname{Ext}^1_A(U,T) \neq 0$. This is contrary to $T \oplus N$ being a tilting module. Therefore T is a tilting module, and hence a faithful module. It follows now from [10, (1.6)] that A is tilted and \mathcal{C} is a connecting component of Γ_A .

Recall that A is *quasitilted* if the global dimension of A is at most two and every module in ind A is either of projective dimension less than two or of injective dimension dimension less than two. There are many characterizations of quasitilted algebras (see [5]). We note that the following is convenient in certain cases.

2.2. PROPOSITION. An artin algebra A is quasitilted if and only if every possible path in ind A from an injective module to a projective module is sectional.

Proof. We first give the proof of sufficiency which is due to Happel. Assume that A is not quasitilted. If the global dimension of A is greater than two, then there is a simple A-module S of projective dimension greater than two. Hence the first syzygy of S has an indecomposable direct summand X of projective dimension greater than one. Therefore $\operatorname{Hom}_A(D(A), \tau X) \neq 0$. Note that X is a submodule of the radical of the projective cover of S. This gives rise to a nonsectional path in ind A from an injective module to a projective module. If there is some Y in ind A of projective and injective dimensions both greater than one, then $\operatorname{Hom}_A(D(A), \tau X) \neq 0$ and $\operatorname{Hom}_A(\tau^- X, A) \neq 0$. So we can also find a nonsectional path in ind A from an injective module to a projective module.

Assume now that

$$X_0 \xrightarrow{f_1} X_1 \to \dots \to X_{n-1} \xrightarrow{f_n} X_n$$

is a nonsectional path in ind A with X_0 being injective and X_n being projective. We shall show that X_n has a predecessor in ind A whose projective dimension is greater than one. This implies that A is not quasitilted [5, (1.14)]. Indeed, let 0 < r < n be such that $\tau X_{r+1} = X_{r-1}$. Then r > 1 since X_0 is injective. If $f_1 \cdots f_{r-1} \neq 0$, then the projective dimension of X_{r+1} is greater than one. Suppose that $f_1 \cdots f_r = 0$. Let $1 < s \leq r$ be such that $f_1 \cdots f_{s-1} \neq 0$ and $(f_1 \cdots f_{s-1})f_s = 0$. By the lemma of Section 1 of [6], there is some Z in ind A such that $\operatorname{Hom}_A(X_0, \tau Z) \neq 0$ and $\operatorname{Hom}_A(Z, X_s) \neq 0$. Therefore Z is a predecessor of X_n in ind A of projective dimension greater than one. The proof is completed.

As an immediate consequence, every connected component of the Auslander-Reiten quiver of a quasitilted algebra is almost regular (see also [5, (1.11)]).

2.3. THEOREM [3]. Let A be a connected quasitilted artin algebra. If Γ_A contains a non-semiregular component C, then A is tilted with C the connecting component of Γ_A .

Proof. Let \mathcal{C} be a non-semiregular component of Γ_A . By Theorem 1.2, \mathcal{C} contains no oriented cycle. By [7, (2.10)], \mathcal{C} contains a section Δ such that every module in Δ has an injective predecessor in Δ while $\tau\Delta$ has no injective predecessor in \mathcal{C} . Dually \mathcal{C} contains a section Δ_1 such that every module in Δ_1 has a projective successor in Δ_1 .

Assume that $\operatorname{Hom}_A(\tau^-X, P) \neq 0$ with $X \in \Delta$ and $P \in \operatorname{ind} A$ being projective. Since X has an injective predecessor I in Δ , we have a nonsectional path in ind A from I to P, which is a contradiction. Suppose that there is a path in ind A from an injective module I_0 to a module τX with $X \in \Delta$. Then I_0 is not a predecessor of τX in C. Applying Lemma 1.4 to Δ_1 , we get a module $Y \in \Delta_1$ such that τY is a successor of I_0 in ind A. Since Y admits a projective successor P_0 in Δ_1 , this gives rise to a nonsectional path in ind A from I_0 to P_0 , which is impossible. Therefore there is no module in $\tau \Delta$ which is a successor of an injective module in ind A. In particular $\operatorname{Hom}_A(D(A), \tau \Delta) = 0$ and $\operatorname{Hom}_A(\Delta, \tau \Delta) = 0$. By Theorem 2.1, A is tilted and C is the connecting component of Γ_A . This completes the proof.

Acknowledgement. The author gratefully acknowledges partial support from NSERC of Canada.

References

- R. BAUTISTA and S. O. SMALØ, Nonexistent cycles, Comm. Algebra 11 (1996) 67-82.
- K. BONGARTZ, *Tilted algebras*, Lecture Notes in Mathematics 903 (Springer, Berlin, 1981) 26 - 38.
- F. COELHO and A. SKOWROŃSKI, On Auslander-Reiten components for quasi-tilted algebras, Fund. Math. 149 (1996) 67 - 82.
- 4. D. HAPPEL, U. PREISER and C. M. RINGEL, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to DTrperiodic modules, Lecture Notes in Mathematics 832 (Springer, Berlin, 1980) 280 - 294.

- 5. D. HAPPEL, I. REITEN and S. O. SMALØ, *Tilting in abelian categories and quasitilted algebras*, Memoirs Amer. Math. Soc. 575 (1996).
- D. HAPPEL and C. M. RINGEL, *Directing projective modules*, Arch. Math. 60 (1993) 237 - 246.
- **7.** S. LI, The embedding of the components of the Auslander-Reiten quiver of an artin algebra containing no oriented cycle, preprint.
- S. LIU, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992) 32 - 54.
- S. LIU, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. (2) 47 (1993) 405 - 416.
- S. LIU, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. 16 (1993) 12 - 19.
- S. LIU, On short cycles in a module category, J. London Math. Soc. (2) 51 (1995) 62 - 74.
- 12. C. M. RINGEL, *Tame algebras and integral quadratic forms*, Lecture Notes in Mathematics 1099 (Springer, Berlin, 1984).
- A. SKOWROŃSKI, Regualr Auslander-Reiten components containing directing modules, Amer. Math. Soc. 120 (1994) 19 - 26.
- Y. ZHANG, The structure of stable components, Canad. J. Math. 43 (1991) 652 - 672.

Département de Mathématiques Université de Sherbrooke Sherbrooke, Québec Canada J1K 2R1

Email: shiping.liu@dmi.usherb.ca